WO2004036280A1 - 光部品及び光モジュール - Google Patents

光部品及び光モジュール Download PDF

Info

Publication number
WO2004036280A1
WO2004036280A1 PCT/JP2003/013305 JP0313305W WO2004036280A1 WO 2004036280 A1 WO2004036280 A1 WO 2004036280A1 JP 0313305 W JP0313305 W JP 0313305W WO 2004036280 A1 WO2004036280 A1 WO 2004036280A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
waveguide
spot size
optical component
fiber
Prior art date
Application number
PCT/JP2003/013305
Other languages
English (en)
French (fr)
Inventor
Masayuki Iwase
Atsushi Izawa
Yozo Ishikawa
Original Assignee
The Furukawa Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Furukawa Electric Co., Ltd. filed Critical The Furukawa Electric Co., Ltd.
Priority to AU2003301466A priority Critical patent/AU2003301466A1/en
Priority to JP2004544979A priority patent/JPWO2004036280A1/ja
Priority to US10/531,709 priority patent/US7412148B2/en
Publication of WO2004036280A1 publication Critical patent/WO2004036280A1/ja
Priority to US12/170,209 priority patent/US20090032984A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3628Mechanical coupling means for mounting fibres to supporting carriers
    • G02B6/3632Mechanical coupling means for mounting fibres to supporting carriers characterised by the cross-sectional shape of the mechanical coupling means
    • G02B6/3636Mechanical coupling means for mounting fibres to supporting carriers characterised by the cross-sectional shape of the mechanical coupling means the mechanical coupling means being grooves
    • G02B6/364Mechanical coupling means for mounting fibres to supporting carriers characterised by the cross-sectional shape of the mechanical coupling means the mechanical coupling means being grooves inverted grooves, e.g. dovetails
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1228Tapered waveguides, e.g. integrated spot-size transformers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3873Connectors using guide surfaces for aligning ferrule ends, e.g. tubes, sleeves, V-grooves, rods, pins, balls
    • G02B6/3885Multicore or multichannel optical connectors, i.e. one single ferrule containing more than one fibre, e.g. ribbon type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • G02B6/2558Reinforcement of splice joint
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3628Mechanical coupling means for mounting fibres to supporting carriers
    • G02B6/3648Supporting carriers of a microbench type, i.e. with micromachined additional mechanical structures
    • G02B6/3652Supporting carriers of a microbench type, i.e. with micromachined additional mechanical structures the additional structures being prepositioning mounting areas, allowing only movement in one dimension, e.g. grooves, trenches or vias in the microbench surface, i.e. self aligning supporting carriers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4246Bidirectionally operating package structures

Definitions

  • the present invention relates to an optical component used in optical communication and information processing, and an optical module using the same.
  • bidirectional communication systems using single-core optical fibers have become mainstream in access systems.
  • a laser beam with a wavelength of 1.49 ⁇ m or 1.555 ⁇ m is used from the center side to the subscriber side, and a 1.3 ⁇ laser is used from the subscriber side to the center.
  • Wavelength division multiplexing (WDM) using light is used.
  • the optical modules required for such a system include a semiconductor laser that generates a laser beam with a wavelength of 1.49 ⁇ or 1.55 ⁇ on the center side, and a laser with a wavelength of 1.3 ⁇ m. It requires a light receiving element such as a PD to receive light, and a WDM filter circuit to separate both wavelengths.
  • a semiconductor laser that generates a laser beam with a wavelength of 1.3 and a light-receiving element such as a PD that receives a laser beam with a wavelength of 1.49 / zm or 1.55 ⁇ are used. Requires a WDM filter circuit for separation.
  • a filter that is inclined with respect to the optical axis is placed at the fiber end, and only the light of the desired wavelength out of the light from the fiber end is reflected by the filter. Then, the light is guided to the light receiving element while being aligned by the lens.
  • light from a semiconductor laser can be coupled to the edge of the fin through a filter while being aligned by a lens (for example, Proceedings of the IEICE General Conference (2000), ⁇ -10-168).
  • ⁇ 543 “Coaxial integrated 0NU optical module for ATM-P0N for 622 Mb / s downlink”; Proceedings of the IEICE Electronics Society Conference (1996), C-208, p208 “Receptacle-type bidirectional wavelength multiplexing light” Module I ").
  • a second type of single-core bidirectional module an optical waveguide is bonded to the end of the fiber, and an angled groove is formed on the optical waveguide by dicing or the like. It has a structure to arrange.
  • the light from the fiber end only the light of the target wavelength is reflected by the filter and guided to the light receiving element, and the light from the semiconductor laser disposed behind the filter is transmitted through the filter and the waveguide.
  • the fiber is coupled to the end of the fiber (for example, Japanese Patent Application Laid-Open No. 2000-228555; Proceedings of the Institute of Electronics, Information and Communication Engineers, Electronitonic Society Conference, 1997), C-3-89 , pl98, “Surface Mounted LD / PD Integrated Module”).
  • the third type of single-core bidirectional module uses a V-shaped PLC waveguide, and arranges a fiber end and a semiconductor laser at a pair of V-shaped branched ends, respectively.
  • a filter is provided on the end face of the corresponding PLC waveguide, and the light receiving element is arranged opposite to this. Then, only the light of the desired wavelength out of the light from the fiber end is guided to the light receiving element via the filter at the end face of the PLC waveguide, and the light from the semiconductor laser is reflected by the filter provided on the end face of the PLC waveguide.
  • the first type of optical module requires an alignment process for adjusting the arrangement of the lenses and the like, which requires skill and precision in the production of the optical module and lowers the yield.
  • the second type of optical module uses a waveguide
  • alignment of a lens or the like is not required because a waveguide is used.However, after forming the waveguide, a groove process and a process of inserting and bonding a filter are required. Therefore, the manufacturing process of the optical module becomes complicated.
  • the third type of optical module also requires a step of attaching a filter, etc., separately from the formation of the waveguide, which complicates the optical module manufacturing process. Disclosure of the invention
  • An object of the present invention is to provide an optical component that enables easy production of a high-precision optical module.
  • Another object of the present invention is to provide an optical module that can be manufactured by a simple operation and has high accuracy.
  • An aspect of the optical component of the present invention has a surface shape extending along a predetermined axial direction, and can hold at least one optical waveguide while positioning at least a part of a side surface of the at least one optical waveguide.
  • a waveguide holding surface extending substantially opposite to the waveguide holding surface, and narrower than an outer diameter of the at least one optical waveguide in a predetermined width direction perpendicular to the predetermined axial direction;
  • At least one optical waveguide is positioned on at least a part of the side surface by the waveguide holding surface having a surface shape extending along a predetermined axial direction. Therefore, a simple alignment of the optical waveguide can be achieved only by inserting the optical waveguide along the waveguide holding surface of the waveguide groove.
  • the opening of the groove for the waveguide extends substantially opposite to the waveguide holding surface and has a width smaller than the outer diameter of at least one optical waveguide in a predetermined width direction, While preventing the optical waveguide positioned in the groove from being detached, light is introduced from the outside of the waveguide groove through the opening into the optical waveguide positioned in the waveguide groove, or light is introduced from the inside of the optical waveguide. It is possible to easily add a light branching / coupling function for extracting necessary light through the opening. When the optical waveguide is inserted into the waveguide groove, the end of the waveguide can be directly observed through the opening, so that the alignment of the end of the optical waveguide becomes relatively simple and the assembly is simplified. Accuracy can be increased.
  • the waveguide holding surface in the waveguide groove, may have an arc whose central angle is larger than a predetermined angle of more than 180 ° and perpendicular to the surface of the arc.
  • the opening has a semi-cylindrical shape obtained by extending in the predetermined axial direction, and the opening extends between a pair of circumferentially opposed peripheral ends of the semi-cylindrical waveguide holding surface. It is characterized by being present.
  • the cross-sectional shape of the groove for the waveguide is similar to the character “ ⁇ ”, so that the processing of the groove for the waveguide is relatively simple, and the optical waveguide can be precisely formed. It can be aligned and held securely.
  • the optical waveguide includes a filter having a predetermined characteristic “I”, and the filter is fixed so as to be located corresponding to the opening. It is characterized by being done.
  • the optical component can be used as an optical passive device such as an optical multiplexer / demultiplexer.
  • This filter can be a bandpass filter, an ND filter, or the like, but can also be a mirror.
  • the filter has a predetermined inclination angle with respect to an optical axis of propagation light propagating through the optical waveguide. According to such a configuration, since the filter has a predetermined inclination angle with respect to the above-described predetermined axial direction, for example, the reflection between the end face of the optical waveguide and the optical waveguide and the outside of the opening are used. Light can be easily coupled or split between them.
  • the filter is provided on an end face of the optical waveguide.
  • a high-precision filter can be easily incorporated using the end face of the optical waveguide.
  • At least a part of the waveguide groove has an ⁇ -shaped cross section.
  • the processing of the waveguide groove becomes relatively simple, and the optical waveguide can be aligned with high precision and securely held.
  • the optical component of the present invention is characterized in that a plurality of the waveguide grooves are provided.
  • each optical waveguide is easily held and aligned simply by inserting the optical waveguide into each waveguide groove.
  • the optical waveguide is characterized in that at least a part of a side surface thereof is locked in the waveguide groove.
  • the optical waveguide can be maintained in a state of being reliably positioned with respect to the groove for the waveguide.
  • “locking” is not limited to the case where the optical waveguide is fixed or adhered using solder or an adhesive, but the movement (along or around the axial direction) of the optical waveguide in the waveguide groove. It refers to a state that is limited by a certain level of resistance.
  • the optical module includes the optical component according to the aspect described above, and an optical element optically coupled to the optical component, wherein the optical component and the optical element are connected to each other through an opening of the optical component. And optically coupled.
  • the optical component constituting the optical module has the above-described waveguide groove, one or two optical waveguides can be inserted into the waveguide groove having a simple structure and the appropriate structure can be obtained.
  • the optical element can be composed of, for example, a photosensor, a laser diode, a lens, and the like.
  • the optical component further includes alignment means, and the optical component is positioned by the alignment means.
  • An aspect of an optical module according to the present invention includes: the optical component according to the above aspect; a light source unit that outputs a signal light guided to the optical component; and a spot size of the signal light output from the light source unit. And a spot size conversion unit for coupling with a spot size adapted to an end of the at least one optical waveguide.
  • the spot size conversion unit is formed by a plane lightwave circuit disposed on a substrate.
  • the spot size conversion section is formed by a plane lightwave circuit and The spot size can be easily converted by using the optical waveguide technology without using a lens or the like.
  • the substrate on which the spot size conversion unit is formed and the substrate on which the light source unit is formed are configured separately, and can be positioned independently.
  • the spot size conversion unit is formed on a separate substrate from the substrate on which the light source unit is formed, so that the alignment of both is performed independently, facilitating the manufacture of the optical module. can do.
  • the substrate on which the spot size is formed and the substrate on which the light source unit is formed are each formed with a V-groove, and a holding member for holding the optical component.
  • a protrusion is formed on the V-groove, and the positioning can be performed by fitting the respective V-grooves and the protrusion.
  • the substrate on which the light source unit is formed and the substrate on which the spot size conversion unit is formed need only be positioned by fitting the V-grooves formed respectively with the protrusions of the holding member. Positioning can be simplified.
  • FIG. 1 is a view for explaining an optical component according to the first embodiment.
  • FIG. 1A is a perspective view before assembly
  • FIG. 1B is a perspective view after assembly.
  • FIG. 2 is a front cross-sectional view of the optical component shown in FIG. 1 as viewed in the direction of arrows A-A.
  • FIG. 2B is a side cross-sectional view of the optical component shown in FIG. It is.
  • FIG. 3 is a diagram illustrating a method of processing the end face of the optical fiber.
  • FIG. 4 is a diagram illustrating a modified example of the fiber assembly fixing member shown in FIGS. 1 and 2.
  • FIG. 5 is a side sectional view illustrating the structure of a single-core bidirectional optical module according to the second embodiment.
  • FIG. 6 is a front view for explaining an alignment between the photodetector and the fiber holding member.
  • FIG. 7 is an oblique view illustrating the structure of a single-core bidirectional optical module according to the third embodiment.
  • FIG. 8 is a cross-sectional view of the optical module of FIG.
  • 8B is a sectional view of the optical module taken along the line D-D.
  • FIG. 9 is a side view illustrating the structure of the optical module according to the fourth embodiment.
  • FIG. 10 is a side sectional view for explaining the structure of the optical module according to the fifth embodiment.
  • FIG. 11 is a diagram illustrating the structure and operation of a spot size conversion element.
  • FIG. 12 is a diagram illustrating a relationship between the size of the propagation area of the spot size conversion element to which the dimensional conditions in Table 1 are applied and the size of the spot size of the propagating light.
  • FIG. 13 is a diagram showing the relationship between the coupling loss of each of the semiconductor laser device and the second optical fiber and the size of the propagation region.
  • FIG. 14 is a diagram illustrating a temperature characteristic of an output power of an optical module configured using a spot size conversion element.
  • FIG. 15 is a cross-sectional view illustrating the positioning of the spot size conversion unit with respect to the second holding member.
  • FIG. 16 is a top view of a spot size conversion element according to a modification of the fifth embodiment.
  • FIG. 1 is a view for explaining an optical component according to the first embodiment.
  • FIG. 1A is a perspective view before assembly
  • FIG. 1B is a perspective view after assembly.
  • FIG. 2A is a front cross-sectional view of the optical component shown in FIG. 1 taken along the line A-A.
  • FIG. 2B is a side cross-sectional view of the optical component shown in FIG. is there.
  • the optical component according to the first embodiment is a fiber assembling / fixing member, and has a structure having a fiber groove 20 that is an ⁇ -shaped waveguide groove at the upper center of a plate-shaped component main body 10. ing.
  • the fiber groove 20 has an opening extending between the fiber holding surface 21, which is a waveguide holding surface having a semi-cylindrical shape, and a pair of opposed peripheral ends 21 a, 21 b of the fiber holding surface 21.
  • Part 23 Fiber holding surface 2 At the end, a pair of shaft ends 21c and 21d are formed to allow insertion of the pair of optical fibers F1 and F2, which are optical waveguides.
  • the component body 10 is manufactured by transferring materials such as engineering plastics using a transfer molding machine and a hot press machine.
  • a pair of optical fibers Fl and F2 inserted into both shaft ends 21c and 21d provided in the fiber groove 20 are connected to the ends F1a and F1 near the center of the fiber groove 20. 2a is abutted and fixed.
  • various adhesives AD such as epoxy can be used.
  • the ends F1a and F2a can be directly observed through the opening 23, so that the optical components Can be easily improved in assembly accuracy.
  • both optical fibers Fl and F2 are not essential. For example, it is sufficient that the movement of both optical fibers F1 and F2 in the fiber groove 20 is prevented with a certain resistance.
  • the fiber holding surface 21 of the fiber groove 20 is composed of a support portion 21 g at the bottom of the groove and a pair of locking portions 21 h at the top of the groove.
  • the support portion 21g supports the ends Fla and F2a of the two optical fibers Fl and F2 from below the side surfaces.
  • the pair of locking portions 21h lock the ends F1a and F2a of both optical fibers Fl and F2 at two locations on the upper side of the side surface.
  • the two optical fibers F 1 and F 2 are held in the fiber groove 20 in a state of being aligned together.
  • An opening 23 is formed between the locking portions 21h, and the upper surfaces of the ends F1a and F2a of the optical fibers Fl and F2 are exposed.
  • a filter FL is interposed between the two optical fibers Fl and F2.
  • the filter FL is a dielectric multilayer film formed on the end F 1 a on the optical fiber F 1 side by using a film forming apparatus such as a vacuum evaporation apparatus, and has a wavelength longer than a specific wavelength. It functions as a cut filter that blocks short wavelength light, a bandpass filter that transmits only specific wavelengths, and so on.
  • the filter FL is a band-pass filter, only light having a desired wavelength among the light propagated by the core CO of the optical fiber F1 and reaching the filter FL passes through the filter FL, and the rest is all. Reflected.
  • the light of the specific wavelength that has passed through the filter FL travels straight as it is, is coupled to the fiber F2 via the end face FE2, and is propagated as it is by the core CO of the fiber F2.
  • the light reflected by the filter FL is out of the core CO because the end faces £ 1 of both optical fibers Fl and 2 are processed so that FE2 is tilted about 8 ° to the optical axis of the propagating light. And return light is prevented.
  • the filter FL is not indispensable.
  • the optical component shown in FIG. 1A is simply used as a mechanical splice connection component, no filter FL is provided on the end faces of both optical fibers Fl and F2.
  • the device shown in FIGS. 1 and 2 can be used as a power tap.
  • FIG. 3 is a view for explaining a method of processing the end face FE2 of the optical fiber F2 shown in FIG.
  • a multi-core MT ferrule 31 is prepared, optical fibers Fl to Fn are inserted into holes 32 formed in an array, and the fiber ends are inserted into an end face 33. Then, these optical fibers F :! to Fn are fixed with wax.
  • the holding holes 32 and the optical fibers Fl to Fn provided in the MT ferrule 31 are arranged in a direction perpendicular to the paper surface.
  • the optical fibers Fl to Fn are polished together with the MT ferrule 31, and the end face 33 is inclined, for example, by 30 °. Thereafter, the optical fibers Fl to Fn are separated from the MT ferrule 31, and the MT ferrule 31 and the optical fibers F :! to Fn are cleaned. Next, the optical fibers F1 to Fn are set again in the holes 32 of the MT ferrule 31, and the fiber ends are exposed to the end face 33 and fixed. Further, a stencil mask 35 is attached so as to cover the inclined end surface 133 of the MT ferrule 31 (see FIG. 3B). The stencil mask 35 has openings 35 a corresponding to the holes 32 exposed on the end face 33.
  • a mask is provided on the rear side of the VIT ferrule 31 so as to protect the coating of the optical fibers Fl to Fn, and the tip of the fiber holder 37 is fixed to the base side of the MT ferrule 31. (See Figure 3C).
  • a dielectric multilayer film made of an appropriate material is deposited.
  • a filter composed of a dielectric multilayer film can be formed only on the end faces of the optical fibers Fl to Fn.
  • the stencil mask 35 and the fiber holder 37 are removed, and the optical fibers Fl to Fn are separated from the MT ferrule 31.
  • a filter having the same characteristics can be formed on each end face of a large number of optical fibers Fl to Fn in one vapor deposition step.
  • FIG. 4 is a diagram illustrating a modification of the optical component shown in FIGS. 1 and 2.
  • FIG. 4A shows an example in which the arrangement and the like of the filter FL shown in FIG. 2B and the like are changed so as to function as, for example, a termination cable for reflection of a wavelength for monitoring light for monitoring.
  • the filter FL has an inclination of about 2 ° with respect to the optical axes of the two optical fibers F1 and F2.
  • the end faces £ 1 and FE2 of the optical fibers Fl and 2 are processed so as to be inclined by about 2 °, and the light of the wavelength; 1 reflected by the filter FL is returned to the traveling direction.
  • light of wavelength 2 transmitted through the filter FL goes straight as it is and is coupled to the optical fiber F2.
  • FIG. 4B is a side sectional view of a second modification in which the optical component in FIG. 4A is further modified.
  • a photodiode 25 which is an optical element, is disposed opposite to the filter FL, and the wavelength reflected by the filter FL; the light of L1 enters the photodiode 25 through the opening 23. I do.
  • the photodiode 25 is fixed in a state aligned with the filter FL and the opening 23 by a fixing member 26 made of a light-transmitting resin adhesive or the like.
  • FIG. 4C is a side sectional view of a third modification related to the optical component shown in FIGS.
  • the component body 110 is thickened, and a pit 28 for exposing the fiber junction is formed at the center.
  • the bottom 28a of the pit 28 is flat, and a fiber groove 120 is formed so as to cross the center of the bottom 28a.
  • the fiber groove 120 has a fin-like holding surface similar to that of FIG. 2A, has an ⁇ -shaped cross section, and has an opening 123 extending in the axial direction at the upper part. At the opening 123, the ends of the pair of optical fibers F1 and F2 inserted from the pair of holes 29a and 29b are exposed.
  • the opening 123 when the two optical fibers F1 and F2 are connected, the abutting state of the two, such as the close contact state, can be directly observed. As a result, the accuracy of assembling optical components can be easily increased.
  • FIG. 4D is a partial front sectional view of a fourth modification in which the optical components shown in FIGS. 1 and 2 are changed.
  • the fiber groove 220 has a pentagonal cross section obtained by cutting one vertex of a square.
  • the inner surface of the fiber groove 220 includes a pair of support surfaces 221 g, which is an example of a fiber holding surface, and a pair of locking surfaces 21 h.
  • the pair of support surfaces 2 2 1 g support both optical fibers Fl and F2 on the lower side of their side surfaces.
  • the pair of locking portions 21h lock the two optical fibers F1 and F2 at two locations on the upper side of the side surface.
  • both optical fibers Fl and F2 are held in the fiber groove 220 in a state of being aligned with each other.
  • An opening 223 is formed between the two locking surfaces 221h, and the upper surfaces of both optical fibers Fl and F2 are exposed.
  • FIG. 5 is a side sectional view illustrating the structure of a single-core bidirectional optical module according to the second embodiment.
  • This optical module 40 is manufactured using an optical component having the same structure as the fiber assembly fixing member shown in FIGS.
  • the optical module 40 includes a laser light source section 41 for generating a signal light having a wavelength of 1.3 ⁇ and a light detecting section for receiving a signal light having a wavelength of 1.49 ⁇ m. 42, and a first holding member 45 holding the first optical fiber F1 extending from the ferrule 43 and holding a WDM filter for separating the wavelengths 1.3 111 and 1.49 ⁇ . And a second holding member 46 that aligns the short second optical fiber F2 extending from the first holding member 45 with respect to the laser light source unit 41.
  • the laser light source section 41 has a semiconductor laser element 41a and a monitoring photodiode element 41b mounted on a Si substrate and connected by a waveguide, and has a wavelength 1 having a desired waveform.
  • the signal light of 3 ⁇ is supplied to the end of the second optical fiber F 2 fixed to the second holding member 46.
  • the light detecting section 42 has a photodiode element 42 a for signal detection mounted on a Si substrate, and is provided on an end face of the first optical fiber F 1 fixed to the first holding member 45. Receives the signal light with a wavelength of 1.49 ⁇ reflected by the formed WDM-type filter FL.
  • the first holding member 45 has a fiber groove 45a having an ⁇ -shaped cross section, similarly to the fiber assembly fixing member shown in FIG.
  • the second holding member 46 has a fiber groove 46a having a circular cross section.
  • the holding members 45 and 46 are used to align the optical fibers Fl and F2 with the optical elements 41a and 42a, and function as a kind of ferrule.
  • the laser light source section 41 and the light detection section 42 are fixed on a board 47 on which a lead frame is molded, together with chip parts such as an electric amplifier IC (TIA: Trans-impedance amplifier) and a capacitor for amplifying a received signal. Have been.
  • the laser light source section 41 and the light detection section 42 on the board 47 are inserted into the package 48 for fixing the fins 43, etc., and are sandwiched between the package 48 and the board 47. Sealed.
  • the first and second holding members 45, 46 for fixing the pair of optical fibers F1, F2 in an aligned state are formed separately, but are formed by transfer molding and hot pressing. Alternatively, it can be molded in a state of being integrated with the package 48.
  • FIG. 6 is a front view illustrating the alignment of the light detection unit 42 with respect to the first holding member 45.
  • the photodetector 42 is formed of a Si substrate, and can easily form V-grooves 42c and 42d of precise depth. Therefore, if the projections 45 c and 45 d that fit into the V-grooves 42 c and 42 d are formed in advance on the first holding member 45, the first pressure on the light detection unit 42 is maintained at a constant pressure. By simply pressing the holding members 45, both can be precisely positioned. Further, the laser light source section 41 and the second holding member 46 are also aligned in the same manner as the light detection section 42 and the first holding member 45.
  • Laser light source, part 4 1 The 1.3 ⁇ m wavelength signal light emitted from the end face of the semiconductor laser element 41 a formed on the first optical fiber F 2 enters one end of the second optical fiber F 2, passes through the filter FL, and passes through the first optical fiber F 1. And is coupled to an optical fiber (not shown) held by another ferrule provided outside.
  • the signal light having a wavelength of 1.49 ⁇ introduced from the outside is reflected by the filter FL via the first optical fiber F 1 and is incident on the photodiode element 42 a provided in the photodetector 42. I do.
  • the signal light having a wavelength of 1.49 ⁇ m was detected by the light detection unit 42, but the signal light having a wavelength of 1.55 ⁇ m or the wavelength 1.45 ⁇ m was changed due to a change in the filter FL or the like.
  • the photodetector 42 can detect both 49 ⁇ and 1.55 ⁇ m.
  • a board 47 as an electric package is assembled by fixing chip components other than the laser light source section 41 and the light detection section 42 on a lead frame. Then, the laser light source, the unit 41 and the light detection unit 42 are fixed on the substrate 47, and necessary electrical connections are made by gold wires or the like.
  • the first and second holding members 45 and 46 are assembled into a package 48 using a resin or an adhesive.
  • the first optical fiber F1 extending from the ferrule 43 and having the filter FL formed at the tip with an appropriate inclination angle is inserted from one end of the first holding member 45 provided on the package 48.
  • the second optical fiber F2 having an inclination angle corresponding to the inclination angle of the end face of the first optical fiber F1 is inserted from the other end of the first holding member 45 through the second holding member 46.
  • the two optical fibers Fl and F2 are fixed to the first holding member 45 or the like.
  • the filter is positioned so that the filter FL provided between the first and second optical fibers F1 and F2 is arranged at an appropriate position on the first holding member 45.
  • the ferrule 43 is also fixed to the package 48.
  • the substrate 47 is inserted into the package 48, and the V-grooves formed in the laser light source section 41 and the light detection section 42 on the substrate 47 are inserted into the first and second holding members 4 on the package 48. Fit the protrusions formed on 5, 46 and align them with each other. At the time of such positioning, the package 48 and the substrate 47 are bonded and sealed using a silicone resin or an epoxy resin, thereby completing the optical module body.
  • FIG. 7 is a perspective view illustrating the structure of a single-core bidirectional optical module according to the third embodiment.
  • the optical module 50 is obtained by performing a plurality of channels on the optical module shown in FIG.
  • the optical module 50 shown in FIG. 7 includes a ferrule 51, an array-type holding member 52, an array-type light-emitting unit 53, and an array-type light-receiving unit 54.
  • the array-type holding member 52 is conceptually different from the ferrule 51, but is formed integrally with the ferrule 51 by transfer molding and hot pressing.
  • the array-type holding member 52 is used for collectively aligning the array-type light-emitting portion 53 and the array-type light-receiving portion 54 with respect to the array-shaped fiber FA incorporated in the ferrule 51.
  • the array-type light emitting section 53 has a transmission LD array 53c and a monitor PD array 53d formed on an Si substrate 53a. V-grooves 53e and 53f for alignment are formed at both ends of the Si substrate 53a.
  • the transmission LD arrays 53c and the like are arranged at the same interval as the same number as the arrayed optical fibers FA incorporated in the ferrule 51.
  • the array type light receiving section 54 is obtained by forming a receiving PD array 54c on an Si substrate 54a. V-grooves 54 e and 54 f for alignment are formed at both ends of the S1 substrate 54 a.
  • the receiving PD array 54c is also arranged at the same interval by the same number as that of the arrayed optical fibers FA.
  • FIG. 8A is a cross-sectional view of the optical module 50 shown in FIG. 7 taken along the line CC
  • FIG. 8B is a cross-sectional view of the optical module 50 taken along the line DD.
  • fiber grooves 52b having a ⁇ -shaped cross section and extending in a direction perpendicular to the paper surface are parallel at equal intervals. Are formed.
  • Optical fiber FA is inserted into each fiber groove 52b. Are aligned and fixed in an array.
  • a pair of alignment projections 52c, 52d are formed on the left and right ends of the array-type holding member 52, and the alignment V-grooves 54e, formed in the array-type light receiving portion 54, are formed. Can be fitted to 5 4 f.
  • Each optical fiber FA held in the fiber groove 52b corresponds to a combination of the first and second optical fibers F1 and F2 shown in FIG. That is, wavelength division filters are provided on the connection surfaces of a pair of fiber parts constituting each optical fiber FA, and a PD array 54c for reception is formed at a position facing each filter.
  • Each photodiode 54 g is arranged in a one-to-one relationship.
  • the array-type holding member 52 is hollowed out toward the ferrule 51 side to form a depression 52f.
  • the transmitting LD array 53 c and the monitoring PD array 53 d mounted on the array type light emitting section 53 fit into the recess 52 f.
  • the protrusions 52 c, 52 d force formed on the array-type holding member 52 described above are fitted into the alignment V-grooves 53 e, 53 f formed on the array-type light emitting portion 53. I do.
  • each optical fin FA exposed on the end face of the above-mentioned dent 52 f side (rear side of the paper) of the array type holding member 52 is guided and fixed by a fiber groove 52 b extending perpendicularly to the paper face for transmission.
  • Each laser diode 53 g constituting the LD array 53 c is arranged in a one-to-one relationship.
  • the optical module 50 is equipped with an array-type holding member 52, an array-type light-emitting portion 53, and chip components such as TIA, and is cooled by a Peltier element or the like.
  • a type electric circuit board is also incorporated.
  • a long part of one of the optical fibers FA is inserted into the inside of the ferrule 51 through the fiber inlet 51b provided in the end face 41a of the ferrule 51, and the fiber groove 52b provided in the array-type holding member 52 is provided. And place them as appropriate.
  • the end face of the long portion of the optical fiber FA has the same inclination angle, and a filter made of a dielectric multilayer film is formed.
  • the short portion of the arrayed optical fiber FA is inserted from the other end (dent 52 f) side of the fiber groove 52 b provided in the array-type holding member 52, and abuts against the end face of the long portion. Alignment as appropriate. Then, glue the short part and the long part together And fix it in the fiber groove 52b.
  • FIG. 9 is a side view illustrating the structure of the optical module according to the fourth embodiment.
  • This optical module 70 is obtained by deforming and assembling the fiber assembly fixing member according to the first embodiment, and functions as an ADM (optical add / drop multiplexer).
  • 5 minutes 71 of the optical module 70 is composed of a fiber assembly fixing member 72 and three optical fibers Fl, F2 and F3. Each of the optical fibers Fl, F2, and F3 is inserted into an ⁇ -shaped fiber groove 72a provided in the fiber assembly fixing member 72 and fixed by an adhesive.
  • a first filter FL1 is formed on the end face of the first optical fiber F1, and reflects the signal light of wavelength 1.
  • a second filter FL2 is formed on the end face of the third optical fiber F3, and reflects the signal light having a wavelength of 11.
  • an emission port 74 for extracting the reflected light from the first filter FL1 through the opening 23 is provided.
  • an incident port 75 for inputting signal light to the second filter FL2 through the opening 23 is provided.
  • the former outgoing port 74 is a lens 74a that collects the signal light reflected by the first filter FL1, and a ferrule 74c that holds the end face of the optical fiber 74b at the focal point of the lens 74a.
  • the latter input port 75 has a ferrule 5b for holding the optical fiber 75a and a laser beam for focusing the signal light emitted from the end face of the optical fiber 75a to the center of the second filter FL2. 7 5 c.
  • the optical module 50 When signal light having a wavelength of L1 to n is input from the first optical fiber F1, the signal light of wavelength ⁇ 1 is reflected when passing through the first filter FL1, and passes through the aperture 23. After that, the light enters the output port 74 and is branched into the optical fins 74 b. As a result, signal light of wavelengths 2 to Ln propagates through the second optical fiber F2. Further, when the signal light is incident from the second optical filter F 2 to the third optical filter F 3, the signal light of the wavelength; L 1 incident from the input port 75 is reflected by the second filter FL 2. The signal light having a wavelength of L1 to Ln propagates in the third optical fiber F3.
  • FIG. 10 is a side sectional view illustrating the structure of the optical module according to the fifth embodiment.
  • This optical module 80 is based on the configuration of the optical module shown in FIG. 5 and incorporates a spot size conversion unit 90 for converting a spot size when supplying signal light from a light source unit to an optical fiber. It is.
  • the optical module ⁇ 80 includes a laser light source section 41, a light detection section 42, a first holding member 45, and a second holding member 46.
  • the basic structure and operation of each component are the same as those in FIG.
  • the fifth embodiment is different from the case of FIG. 5 in that a spot size conversion unit 90 is provided near the laser light source unit 41 in FIG.
  • the laser light source section 41 includes a semiconductor laser element 41a and a monitoring photodiode element 41b mounted on an Si substrate, and a spot size conversion section adjacent to the laser light source section 41b. 90 are located.
  • the spot size converter 90 has a spot size converter 90a mounted on a Si substrate. Then, the spot size conversion element 90 a receives the signal light having a wavelength of 1.3 ⁇ output from the laser light source section 41 b, converts the spot size and emits the same, and outputs the second holding member 4. It is supplied to the end of the second optical fiber F2 fixed to 6.
  • the spot size conversion element 90a is a rectangular planar lightwave circuit made of a predetermined material, and a propagation region R of a predetermined shape having a different refractive index is formed therein. .
  • This propagation region R is output from the semiconductor laser element 41a.
  • FIG. 11 shows the sizes of the spot size conversion element 90a in the X direction and the Y direction orthogonal to each other.
  • the X direction and the Y direction are both perpendicular to the optical axis of the signal light
  • the X direction is the horizontal direction of the optical module 80 (the direction perpendicular to the plane of FIG. 10)
  • the Y direction is the optical module 8. It matches the vertical direction of 0 (horizontal direction of the paper in Fig. 10).
  • the entrance end Ra is a square of size X1, Y1, and the exit end Rb is a square of size X2, Y2.
  • the partial area R 1 on the incident end Ra side has a shape of a length L 1 in a rectangular cross section of a certain size X 1, Y 1
  • the partial area R 3 on the emitting end R b side has a constant It has a rectangular cross section of size X2, Y2 and a length L3.
  • the intermediate partial region R 2 has a shape of length L 2 whose rectangular cross section gradually spreads from size XI, ⁇ 1 to size 2, Y 2.
  • the spot size of the optical signal in the semiconductor laser device 41b is considerably smaller than the spot size of the optical signal at the end of the second optical fiber F2. Therefore, the spot size conversion element 90a gradually increases the spot size of the optical signal propagating through the partial regions Rl, R2, and R3 via the incident end Ra, and is emitted from the exit end Rb.
  • the optical signal is converted so as to have a spot size suitable for the end of the second optical fiber F2. As a result, it is possible to reduce the coupling loss caused by the difference in the spot size between the semiconductor laser device 41b and the second optical fiber F2.
  • Table 1 shows an example of specific dimensional conditions of the propagation region R in the spot size conversion element 90a.
  • the dimensional conditions shown in Table 1 correspond to a configuration in which the propagation region R keeps the same size in the Y direction and expands in the X direction.
  • the spot size of the semiconductor laser element 4 1 b since decreases in the transverse direction (X-direction) compared to the second optical fiber F 2, mainly by the dimensions conditions shown in Table 1
  • the spot size is enlarged in the X direction.c
  • FIG. 12 is a diagram showing a relationship between the size (X direction) of the propagation region R of the spot size conversion element 90a to which the dimensional conditions in Table 1 are applied and the size of the spot size of the propagating light. As shown in FIG. 12, it can be seen that the spot size of the propagating light uniformly increases as the propagation region R increases in the X direction.
  • FIG. 13 is a diagram showing the relationship between the coupling loss of each of the semiconductor laser element 41 b and the second optical fiber F2 and the dimension of the propagation region R.
  • the coupling loss when coupling an optical signal from the semiconductor laser element 41 b to the spot size conversion element 90 a and the optical signal from the spot size conversion element 41 b to the second optical fiber F 2 are shown.
  • the coupling loss when the width of the entrance end Ra or the exit end Rb of the propagation region R is changed in each X direction.
  • FIG. 14 is a diagram illustrating the temperature characteristics of the output power of the optical module 80 (see FIG. 10) configured using the spot size conversion element 90a described above.
  • FIG. 14 shows a change in the output power of the optical module 80 with respect to the drive current of the semiconductor laser element 41 b over a temperature range of 140 to 85 degrees.
  • the coupling loss can be reduced by the spot size conversion element 90a, so that a sufficient output power can be secured.
  • the coupling loss due to the spot size conversion element 90a was about 4 dB (3.74 dB to 4.4. 6 d B).
  • the configuration in which the spot size conversion element 90a is provided enables coupling when signal light is supplied from the semiconductor laser element 41a to the end face of the second optical fiber F2. Since the loss can be reduced, the output power of the optical module 80 can be sufficiently secured. In this case, it is not necessary to use a spatial optical system composed of a lens or the like for converting the spot size or a semiconductor laser element having a spot size conversion function, and it is based on general manufacturing technology such as waveguide technology. Since a simple structure is adopted, cost reduction can be achieved with a simple configuration.
  • FIG. 15 is a cross-sectional view illustrating the alignment of the spot size conversion unit 90 with respect to the second holding member 46.
  • two V-grooves 91 and 92 are formed on both sides of the spot size converter 90a placed at the center.
  • two protrusions 93, 94 are formed at positions corresponding to the V-grooves 91, 92 described above. Therefore, when fitting the two V-grooves 9 1 and 9 2 and the two protrusions 9 3 and 9 4, the second holding member 46 is pressed against the spot size conversion section 90 with a constant pressure. Can be precisely positioned.
  • the laser light source section 41 is also configured in the same manner as in FIG. 15 so that the two can be aligned independently. It is possible to do. With the spot size converter 90 and the laser light source 41 aligned in this way, the package 88 and base The optical module 80 is completed by sealing the plate 87.
  • This modified example corresponds to a configuration in which the optical module 80 is provided with a plurality of channels as in the third embodiment.
  • FIG. 16 is a top view of the spot size conversion element 90a in the present modification.
  • the spot size conversion element 90a shown in FIG. 16 eight propagation regions R having the same shape are arranged in parallel, and each propagation region is configured to be able to transmit an optical signal.
  • the semiconductor laser element 41 and the second optical fiber F2 are each configured in an array type and arranged so as to match the position of each propagation region R of the spot size conversion element 90a, eight channels of light can be obtained.
  • Module 80 can be configured.
  • FIG. 16 shows an example in which the intervals of the eight propagation regions R are equal, a configuration in which they are arranged in parallel at different intervals may be used.
  • the spot size conversion element 90a is formed by a plane lightwave circuit
  • the present invention is not limited to this, and the spot size conversion element 90a may be formed by an optical fiber.
  • a graded-index fiber GIF (graded-index fiber) or a fiber in which the MFD (mode field diameter) of the optical fiber is locally enlarged by a heat diffusion technique is T E C
  • the length of the optical fiber is such that the output light from the semiconductor laser element 41b is converted to a spot size that can be most efficiently coupled (to minimize the insertion loss) to the second optical fiber F2.
  • the optical fiber used for the spot size conversion element 90a may be used by being fused with SMF. By configuring the spot size conversion element 90a using an optical fiber in this manner, it is possible to optically couple the semiconductor laser element 41b and the second optical fiber F2 with low loss. .
  • the present invention has been described with reference to the first to fifth embodiments.
  • the present invention is not limited to the above embodiments.
  • the cross-sectional shape of the groove 20, 45a, 52b can be appropriately changed in size and shape as long as it is approximately ⁇ -shaped.
  • the cross section of the fiber grooves 20, 45a, 52b is shallower than the strictly semicircular shape, the holding of the optical fiber becomes uncertain.
  • the cross section of the fiber grooves 20, 45a, 52b becomes close to a circle, the opening 23 functioning as a take-out window cannot be made sufficiently large.
  • the diameter of the optical fiber fixed to the fiber groove 20, 45a, 52b that is, the outer diameter is 125 ⁇ , for example, the circle in contact with the inner surface of the fiber 'groove 20, 45a, 52b
  • the center of the (cross-sectional circle) is 125 ⁇ , for example, the circle in contact with the inner surface of the fiber 'groove 20, 45a, 52b
  • the V-grooves 42c, 42d, 54e, 54f and the projections 45c, 45d, 52c, 52d are used as alignment means, and the filter FL is used.
  • optical fibers are aligned with the input and output surfaces of photodiodes and laser diodes, but these alignments must be achieved using a pair of V-grooves and a rod-shaped fiber sandwiched between them. You can also.
  • the filter FL made of a dielectric multilayer film is formed on the end face of the first optical fiber F1 or the like, but the characteristics of the filter FL can be appropriately changed according to the purpose. It can also be replaced with optical elements (broadly defined filters) such as half mirrors, mirrors, and FBGs (Fiber Bragg Gratings).
  • the optical component of the present invention simple holding and alignment of the optical waveguide can be achieved only by inserting the optical waveguide along the holding surface extending along the predetermined axial direction. Become.
  • the opening it is possible to prevent light from being introduced into the optical waveguide from the outside while preventing the optical waveguide positioned in the waveguide groove from being detached, or from inside the optical waveguide through the opening. Light can be extracted.
  • the alignment at the end of the optical waveguide is relatively simple, and the assembling accuracy can be improved.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Semiconductor Lasers (AREA)

Abstract

本発明の光部品は、所定の軸方向に沿って延びる面形状を有し、少なくとも1つの光導波路を、当該少なくとも一つの光導波路の側面の少なくとも一部で位置決めしつつ保持可能である導波路保持面と、導波路保持面に略対向して延在するとともに、所定の軸方向に垂直な所定の幅方向において、少なくとも一つの光導波路の外径よりも狭い幅を有する開口部とを有するガイド用の導波路用溝を備えて構成される。

Description

明 細 書 光部品及び光モジュール 技術分野
本発明は、 光通信や情報処理で使用する光部品及びこれを用いた光モジュール に関する。 背景技術
光通信分野のうちでもアクセス系のシステムでは、 近年、 1芯の光ファイバに よる双方向通信方式が主流になりつつある。 この場合、 センタ側から加入者側に へは、 1 . 4 9 μ mまたは 1 . 5 5 μ mの波長のレーザ光を用い、 加入者側から センタ惻へは、 1 . 3 μ πιのレーザ光を用いる波長多重伝送方式 (WDM) が利 用されている。
上記のようなシステムに必要とされる光モジュールは、 センタ側で、 波長 1 . 4 9 μ πιまたは 1 . 5 5 μ πιのレーザ光を発生する半導体レーザと、 波長 1 . 3 μ mのレーザ光を受信する P D等の受光素子と、 両波長を分離するための WDM フィルタ回路とを必要とする。 また、 加入者側でも、 波長 1 . 3 のレーザ光 を発生する半導体レーザと、 波長 1 . 4 9 /z mまたは 1 . 5 5 πιのレーザ光を 受信する P D等の受光素子と、 両波長を分離するための WDMフィルタ回路とを 必要とする。
例えば、 第 1のタイプの一芯双方向モジュールの場合、 ファイバ端に光軸に対 して傾斜させたフィルタを配置し、 ファイバ端からの光のうち目的とする波長の 光のみをフィルタで反射させてレンズにより調芯しつつ受光素子に導く。 一方、 半導体レーザからの光は、 レンズにより調芯しつつ、 フィルタを介してファイノく 端に結合させることができる (例えば、 電子情報通信学会総合大会予稿集 (2000 年)、 Β- 10- 168、 ρ543 「下り 622Mb/s対応 ATM-P0N用同軸集積型 0NU光モジユー ル」 ; 電子情報通信学会エレクロトニクスソサエティ大会予稿集 (1996年), C - 208, p208 「レセプタクル型双方向波長多重光モジュール I」)。 また、 第 2のタイプの一芯双方向モジユー ま、 ファイバ端に光導波路を接合 するとともに、この光導波路に対して角度付の溝をダイシング等によつて加工し、 この溝に傾斜したフィルタを配置する構造を有する。 ここで、 ファイバ端からの 光のうち目的とする波長の光のみをフィルタで反射させて受光素子に導き、 フィ ルタの後方に配置された半導体レーザからの光をフィルタ及び導波路を透過させ ることで、 ファイバ端に結合させている (例えば、 特開 2 0 0 0— 2 2 8 5 5 5 号公報; 電子情報通信学会エレクロトニタスソサエティ大会予稿集(1997年), C-3-89, pl98, 「表面実装型 LD/PD集積化モジュール」)。
また、 第 3のタイプの一芯双方向モジュールは、 V字状の P L C導波路を用い て V字の分岐した一対の端部にファイバ端と半導体レーザとをそれぞれ配置し、 V字の底部に対応する P L C導波路の端面にフィルタを設けこれに受光素子を対 向配置させている。 そして、 ファイバ端からの光のうち目的とする波長の光のみ を、 P L C導波路の端面でフィルタを介して受光素子に導き、 半導体レーザから の光を P L C導波路の端面に設けたフィルタで反射させてファイバ端に結合させ ている (例えば、電子情報通信学会総合大会予稿集(2000年)、 C- 3-132、 p3128、
「1. 3 μ m/1. 55 m— WDM型 PLCモジユーノレの開発」; Oguro et al., "\. 25Gb/s WDM Bi Directional Transceiver Module Using with bpot-size Conversion Region", 2002 Electronic Components and Technology Conference; 亀十情幸 δ 通信学会総合大会予稿集 (2000年), Β- 10- 166, p541 「ATM- PON 0UN用光送受信モ ジュールの作製」; 電子情報通信学会総合大会予稿集(2000年), C-3-129, p308
ΓΑΤΜ-Ρ0Ν 0UN用光送受信モジュールの低クロストーク化に関する検討」)。
し力 し、 上記第 1のタイプの光モジュールは、 レンズ等の配置調整を行う調芯 工程が必要となり、 光モジュールの製造に熟練や精度を要し、 歩留まりも低下す る。
また、 上記第 2のタイプの光モジュールは、 導波路を用いているためレンズ等 の調芯が不要であるが、 導波路の形成後に、 溝加工や、 フィルタの揷入 '接着の 工程が必要となり、 光モジュールの製造工程が複雑なものとなる。
また、 上記第 3のタイプの光モジュールも、 導波路の形成とは別に、 フィルタ の貼り付け等の工程が必要となり、光モジュールの製造工程が複雑なものとなる。 発明の開示
本発明は、 高精度の光モジュールの簡易な製造を可能する光部品を提供するこ とを目的とする。
また、 本発明は、 簡易な作業で作製することができ、 高い精度を有する光モジ ユールを提供することを目的とする。
本発明の光部品の態様は、 所定の軸方向に沿って延びる面形状を有し、 少なく とも 1つの光導波路を、 当該少なくとも一つの光導波路の側面の少なくとも一部 で位置決めしつつ保持可能である導波路保持面と、 前記導波路保持面に略対向し て延在するとともに、 前記所定の軸方向に垂直な所定の幅方向において、 前記少 なくとも一つの光導波路の外径よりも狭い幅を有する開口部とを有するガイド用 の導波路用溝を備えている。
かかる構成によれば、 上記光部品の導波路用溝では、 所定の軸方向に沿って延 びる面形状を有する導波路保持面によって、 少なくとも 1つの光導波路をその側 面の少なくとも一部で位置決めしつつ保持可能であるので、 導波路用溝の導波路 保持面に沿って光導波路を挿入するだけで光導波路の簡易な保持ゃァライメント が可能になる。
また、 導波路用溝の開口部が、 導波路保持面に略対向して延在するとともに、 所定の幅方向において少なくとも 1つの光導波路の外径よりも狭い幅を有するの で、 導波路用溝に位置決めされた光導波路の離脱を防止しつつ、 導波路用溝の外 部から導波路用溝に位置決めされた光導波路中に開口部を介して光を導入したり、 この光導波路中から開口部を介して必要な光を取り出したりする光分岐結合機能 を簡易に付加することができる。なお、導波路用溝に光導波路を揷入する際には、 開口部を介して導波路端を直接観察することができるので、 光導波路端部のァラ ィメントが比較的簡単なものとなり組立精度を高めることができる。
本発明の光部品の具体的な態様では、 前記導波路用溝において、 前記導波路保 持面は、 中心角が 1 8 0 ° よりも所定角度以上に大きな円弧を当該円弧の面に垂 直な前記所定の軸方向に延ばすことによって得られる半筒形状を有し、 前記開口 部は、 半筒形状の前記導波路持面について周方向の一対の対向する周端部間に延 在することを特徴としている。
力かる構成によれば、 導波路用溝の断面形状が文字 「Ω」 に似たものとなるの で、 導波路用溝の加工が比較的簡単なものとなり、 つ、 光導波路を高精度にァ ライメントして確実に保持することができる。
また、 本発明の光部品の具体的な態様では、 前記光導波路には、 所定の特' I"生を 持つフィルタが備えられ、 当該フィルタは、 前記開口部に対応して位置するよう に固定されることを特徴としている。
かかる構成によれば、 光部品を光合分波器等の光パッシブディバイスとして活 用することができる。 なお、 このフィルタは、 バンドパスフィルタ、 NDフィル タ等とすることができるが、 ミラーとすることもできる。
また、 本発明の光部品の具体的な態様では、 前記フィルタは、 前記光導波路を 伝搬される伝搬光の光軸に対し所定の傾斜角を有することを特徴としている。 かかる構成によれば、 フィルタは、 上述の所定の軸方向に対して所定の傾斜角 を有することになるので、 光導波路の端面での反射を利用して、 例えば光導波路 と開口の外部との間で簡易に光の結合や分岐を行うことができる。
また、 本発明の光部品の具体的な態様では、 前記フィルタは、 光導波路の端面 に設けられたことを特徴としている。
力かる構成によれば、 光導波路の端面を利用して簡易に高精度のフィルタを組 み込むことができる。
また、 本発明の光部品の具体的な態様では、 前記導波路用溝の少なくとも一部 の断面形状が Ω状であることを特徴している。
かかる構成によれば、 導波路用溝の加工が比較的簡単なものとなり、 かつ、 光 導波路を高精度にァライメントして確実に保持することができる。
また、 本発明の光部品の具体的な態様では、 複数の前記導波路用溝が備えられ たことを特^ [としている。
力かる構成によれば、 各導波路用溝に光導波路をそれぞれ挿入するだけで各光 導波路が簡易に保持されァライメントされる。
また、 本発明の光部品の具体的な態様では、 前記光導波路は、 その側面の少な くとも一部が前記導波路用溝に係止されていることを特徴としている。 力、かる構成によれば、 光導波路を導波路用溝に対して確実に位置決めした状態 に保つことができる。 なお 「係止」 とは、 半田や接着剤を利用して固定又は接着 される場合に限らず、 導波路用溝内において光導波路の運動 (軸方向に沿って又 は軸方向の回り) が一定以上の抵抗力で制限される状態をいう。
本発明の光モジュールの態様では、 上記態様の光部品と、 前記光部品と光学的 に結合される光学素子とを備え、 前記光部品と前記光学素子とは、 前記光部品の 開口部を介して光学的に結合されることを特徴としている。
力、かる構成によれば、 光モジュールを構成する光部品が上述のような導波路用 溝を備えるので、 簡単な構造の導波路用溝に 1つ又は 2つの光導波路を挿入して 適当な位置に固定するだけで、 光学素子から出射する光を開口部を介していずれ かの光導波路中に導入したり、 力かる光導波路中から開口部を介して必要な光を 取り出して光学素子に入射させたりすることができる。 なお、 光学素子は、 例え ばフォトセンサ、 レーザダイオード、 レンズ等で構成することができる。
本発明の光モジュールの具体的な態様では、 前記光部品がァライメント手段を さらに備え、 当該ァライメント手段により前記光部品が位置決めされることを特 徴としている。
力、かる構成によれば、 光部品を用いた光モジュールの作製を簡単で低コストで ありながら高精度とすることができる。
本発明の光モジュールの態様は、 上記態様の光部品と、 前記光部品に導かれる 信号光を出力する光源部と、 前記光源部から出力された信号光のスポットサイズ を変換し、 前記光部品の前記少なくとも一つの光導波路の端部に適合するスポッ トサイズで結合するスポットサイズ変換部とを備えることを特徴としている。 力、かる構成によれば、 光源部から出力された信号光が光導波路の端部に結合す る際、 双方のスポットサイズが異なる場合であってもスポットサイズ変換部によ り適正なスポットサイズに変換することができるので、 簡単な構成で信号光の結 合損失を確実に低減させて十分な出力パワーを確保することが可能となる。 本発明の光モジュールの具体的態様では、 前記スポットサイズ変換部は、 基板 上に载置された平面光波回路により形成されることを特徴としている。
力かる構成によれば、 スポットサイズ変換部を平面光波回路により形成し基板 上に載置すればょレ、ので、 光導波路技術を用いてレンズ等を用いることなくスポ ットサイズの変換を容易に行うことができる。
本発明の光モジュールの具体的態様では、 前記スポットサイズ変換部が形成さ れる基板と前記光源部が形成される基板は別体で構成され、 それぞれ独立に位置 決め可能であることを特徴としている。
力かる構成によれば、 光源部が形成される基板に対し、 それとは別体の基板に スポットサイズ変換部を形成したので、 両者の位置合わせを独立に行って光モジ ユールの製造を容易化することができる。
本発明の光モジュールの具体的態様では、 前記スポットサイズが形成される基 板と前記光源部が形成される基板には、 それぞれ V溝が形成されるとともに、 前 記光部品を保持する保持部材に突起が形成され、 前記各'々の V溝と前記突起を嵌 合することにより位置決め可能であることを特徴としている。
かかる構成によれば、 光源部が形成される基板とスポットサイズ変換部が形成 される基板は、 それぞれに形成された V溝を保持部材の突起と嵌合させて位置決 めすればよいので、 位置合わせを簡素ィ匕することができる。 図面の簡単な説明
図 1は、 第 1実施形態に係る光部品を説明するための図であり、 図 1 Aが組立 前の斜視図、 図 1 Bが組立後の斜視図である。
図 2は、図 1に示す光部品について、図 2 Aが A— A矢視の正面断面図であり、 図 2 Bは、 図 1に示す光部品の A— A矢視の側方断面図である。
図 3は、 光ファイバの端面の加工方法を説明する図である。
図 4は、 図 1及び図 2に示すファイバ組立固定部材の変形例を説明する図であ る。
図 5は、 第 2実施形態に係る一芯双方向型の光モジュールの構造を説明する側 方断面図である。
図 6は、 光検出部とファイバの保持部材とのァライメントを説明する正面図で ある。
図 7は、 第 3実施形態に係る一芯双方向型の光モジュールの構造を説明する斜 視図である。
図 8は、 図 7の光モジュールについて、 図 8 Aが C一 C矢視断面図であり、 図
8 Bが光.モジュールの D— D矢視断面図である。
図 9は、 第 4実施形態に係る光モジュールの構造を説明する側面図である。 図 1 0は、 第 5実施形態に係る光モジュールの構造を説明する説明する側方断 面図である。
図 1 1は、 スポットサイズ変換素子の構造及び動作を説明する図である。 図 1 2は、 表 1の寸法条件を適用したスポットサイズ変換素子の伝搬領域の大 きさと伝搬光のスポットサイズの大きさの関係を表す図である。
図 1 3は、 半導体レーザ素子及び第 2光ファイバのそれぞれの結合損失と伝搬 領域の寸法の関係を示す図である。
図 1 4は、 スポットサイズ変換素子を用いて構成される光モジュールの出力パ ヮ一の温度特性を表す図である。
図 1 5は、 第 2保持部材に対するスポットサイズ変換部の位置合わせを説明す る断面図である。
図 1 6は、 第 5実施形態の変形例におけるスポットサイズ変換素子の上面図で ある。 発明を実施するための最良の形態
(第 1実施形態)
図 1は、 第 1実施形態に係る光部品を説明するための図であり、 図 1 Aが組立 前の斜視図、 図 1 Bが組立後の斜視図である。 また、 図 2 Aは、 図 1に示す光部 品の A— A矢視の正面断面図であり、 図 2 Bは、 図 1に示す光部品の A— A矢視 の側方断面図である。
第 1実施形態に係る光部品は、 ファイバ組立固定部材であり、 板状の部品本体 1 0の上部中央に、 断面形状が Ω状の導波路用溝であるファイバ溝 2 0を有する 構造となっている。 つまり、 ファイバ溝 2 0は、 半筒形状を有する導波路保持面 であるファイバ保持面 2 1と、 ファイバ保持面 2 1の対向する一対の周端部 2 1 a、 2 1 b間に延びる開口部 2 3とからなる。 ファイバ保持面 2 1の軸方向の両 端には、 光導波路である一対の光ファイバ F 1、 F 2の揷入を許容する一対の軸 端部 2 1 c、 2 1 dが形成されている。
部品本体 1 0は、 トランスファ成形装置ゃホットプレス装置を利用して、 エンジニアリングプラスチック等の材料を加熱.加圧下で成形することによって
—体的に形成される。
ファイバ溝 2 0に設けた両軸端部 2 1 c、 2 1 dに揷入される一対の光フアイ バ F l、 F 2は、 ファイバ溝 2 0の中央付近で端部 F 1 a、 F 2 aが突き合わさ れて固定される。 両光ファイバ F l、 F 2の固定に際しては、 エポキシ等の各種 接着剤 ADを利用することができる。 ここで、 両光ファイバ F l、 F 2の端面同 士を突き合わせる際には、 開口部 2 3を介して端部 F 1 a、 F 2 aを直接観察す ることができるので、 光部品の組立精度を簡易に高めることができる。
なお、 用途にもよるが、 両光ファイバ F l、 F 2の固定は不可欠のものではな い。 例えば、 一定の抵抗力でファイバ溝 2 0中での両光ファイバ F 1、 F 2の移 動が防止されれば足る。
図 2 Aの正面断面に示すように、 ファイバ溝 2 0のファイバ保持面 2 1は、 溝 底部側の支持部 2 1 gと、 溝上部側の一対の係止部 2 1 hとからなる。 ここで、 支持部 2 1 gは、 両光ファイバ F l、 F 2の端部F l a、 F 2 aをその側面の下 方側から支持する。 また、 一対の係止部 2 1 hは、 両光ファイバ F l、 F 2の端 部 F 1 a、 F 2 aをその側面の上方側の 2箇所で係止する。 これにより、 両光フ アイバ F 1、 F 2がファイバ溝 2 0中にともにァライメントされた状態で保持さ れる。 両係止部 2 1 hの間は開口部 2 3になっており、 両光ファイバ F l、 F 2 の端部 F 1 a、 F 2 aの上側面が露出する。
図 2 Bの側方断面に示すように、 両光ファイバ F l、 F 2の間には、 フィルタ F Lが介挿されている。このフィルタ F Lは、光ファイバ F 1側の端部 F 1 aに、 例えば真空蒸着装置等の成膜装置を利用して成膜された誘電体多層膜であり、 特 定波長よりも長い波長や短い波長の光を遮断するカツトフィルタ、 特定波長のみ を透過させるパンドパスフィルタ等として機能する。 例えばフィルタ F Lがバン ドパスフィルタである場合、 光ファイバ F 1のコア C Oによって伝搬されてフィ ルタ F Lに達した光のうち所望波長の光のみがフィルタ F Lを通過し、 残りは全 て反射される。
フィルタ FLを通過した特定波長の光は、 そのまま直進し端面 FE 2を介して ファイバ F 2に結合され、ファイバ F 2のコア COによってそのまま伝搬される。 —方、 フィルタ FLで反射された光は、 両光ファイバ F l、 2の端面 £ 1、 FE2が伝搬光の光軸に対して 8 ° 程度傾斜するように加工されていることから コア CO外に出射し、 戻り光となることが防止される。
なお、 フィルタ FLは不可欠のものではない。 図 1 Aに示す光部品を単にメカ 二カルスプライス接続部品として用いる場合、 両光ファイバ F l、 F 2の端面に フィルタ FLを設けない。 また、 フィルタ FLとして、 波長特性を有しない ND フィルタやハーフミラー等を用いることにより、 図 1及び図 2に示すような装置 をパワータップとして用いることもできる。
図 3は、 図 1に示す光ファイバ F 2の端面 F E 2の加工方法を説明する図であ る。 まず、 図 3 Aの側面図に示すように、 多心の MTフエルール 31を準備し、 これにアレイ状に形成した孔 32に光ファイバ F l〜Fnを揷入して端面 33に ファイバ端を露出させ、これらの光ファイバ F:!〜 Fnをワックスにて固定する。 なお、 図面では明確でないが、 MTフエルール 31に設けた保持用の孔 32や 光ファイバ F l〜Fnは、 紙面に垂直な方向に配列されている。
次に、 MTフエルール 31とともに光ファイバ F l〜Fnを研磨して、 端面 3 3を例えば 30° 傾斜させる。 その後、 光ファイバ F l〜Fnを MTフエルール 31から分離して、 MTフェルール 31や光ファイバ F:!〜 F nを洗浄する。 次に、 MTフェルール 31の各孔 32に再び光ファイバ F 1〜F nをセットし、 端面 33にファイバ端を露出させて固定する。 さらに、 MTフエルール 31の傾 斜した端面 133を覆うようにステンシルマスク 35を取付ける (図 3B参照)。 ステンシルマスク 35には、 端面 33に露出する各孔 32に対応して開口部 35 aが形成されている。 さらに、 ファイバホルダ 37を利用して] VITフェルール 3 1の後方側で光ファイバ F l〜Fnの被覆を保護するようにマスクするとともに、 ファイバホルダ 37の先端を MTフエルール 31の根元側に固定する (図 3C参 照)。
その後は、 蒸着装置で、 MTフエルール 31の端面 133すなわちステンシル マスク 3 5側に適当な材料からなる誘電体多層膜を堆積する。 これにより、 各光 ファイバ F l〜F nの端面にのみ誘電体多層膜からなるフィルタを形成すること ができる。 フィルタの蒸着後は、 ステンシルマスク 3 5やファイバホルダ 3 7を 取り外し、 MTフェルール 3 1から各光ファイバ F l〜F nを分離する。 以上に より、 一回の蒸着工程で多数の光ファイバ F l〜F nの各端面に同一特性のフィ ルタを形成することができる。
図 4は、 図 1及ぴ図 2に示す光部品の変形例を説明する図である。 図 4 Aは、 図 2 B等に示すフィルタ F Lの配置等を変更して、 例えば光監視用モニタ波長反 射のためのターミネーションケーブル等として機能させる例を示す。 この場合、 フィルタ F Lが両光ファイバ F 1、 F 2の光軸に対して約 2 ° 程度の傾斜を有す る。 つまり、 光ファイバ F l、 2の端面 £ 1、 F E 2が約 2 ° 程度傾斜する ように加工されており、 フィルタ F Lで反射された例えば波長; 1の光は、 伝搬 してきた方向に戻される。一方、フィルタ F Lを透過した例えば波長え 2の光は、 そのまま直進して光ファイバ F 2に結合されることになる。
図 4 Bは、図 4 Aの光部品をさらに変更した第 2の変形例の側方断面図である。 この場合、 フィルタ F Lに対向して光学素子であるフォトダイオード 2 5が配置 されており、 フィルタ F Lで反射された波長; L 1の光は、 開口部 2 3を介してフ ォトダイオード 2 5に入射する。 このフォトダイオード 2 5は、 光透過性の樹脂 接着剤等からなる固定部材 2 6によって、 フィルタ F Lや開口部 2 3に対してァ ライメントされた状態で固定される。
図 4 Cは、 図 1及び図 2示す光部品に関連する第 3の変形例の側方断面図であ る。 この場合、 部品本体 1 1 0が厚くなつており、 中央にファイバ接合部を露出 させるためのピット 2 8が形成されている。 ピット 2 8の底部 2 8 aは平坦にな つており、底部 2 8 aの中央を横切るようにファイバ溝 1 2 0が形成されている。 このファイバ溝 1 2 0は、 図 2 Aの場合と同様のファイノく保持面を有して断面 形状が Ω状となっており、 上部に軸方向に延びる開口部 1 2 3を有する。 この開 口部 1 2 3には、一対の孔 2 9 a、 2 9 bから挿入された一対の光ファイバ F 1、 F 2の端部が露出する。 この場合も、 開口部 1 2 3を利用することにより、 両光 ファイバ F 1、 F 2の接続に際して両者の密着状態等の突き合わせ状態を直接観 察できるので、 光部品の組立精度を簡易に高めることができる。
なお、 両光ファイバ F l、 F 2の固定に際しては、 両孔 2 9 a、 2 9 bに両光 ファイバ F l、 F 2を揷入する際に両光ファイバ F 1、 F 2の側面に接着剤を付 着させて軸方向に往復移動させることで、 確実な固定が可能になる。
図 4 Dは、 図 1や図 2に示す光部品を変更した第 4の変形例の部分正面断面図 である。 この場合、 ファイバ溝 2 2 0は、 正方形の一頂点をカットした五角形状 の断面を有する。 ファイバ溝 2 2 0の内面は、 ファイバ保持面の一例である一対 の支持面 2 2 1 gと、 一対の係止面 2 1 hとからなる。 ここで、 一対の支持面 2 2 1 gは、 両光ファイバ F l、 F 2をその側面の下方側で支持する。 また、 一対 の係止部 2 1 hは、 両光ファイバ F 1、 F 2をその側面の上方側の 2箇所で係止 する。 これにより、 両光ファイバ F l、 F 2がファイバ溝 2 2 0中に互いにァラ ィメントされた状態で保持される。 両係止面 2 2 1 hの間は開口部 2 2 3になつ ており、 両光ファイバ F l、 F 2の上側面が露出する。
(第 2実施形態)
図 5は、 第 2実施形態に係る一芯双方向型の光モジュールの構造を説明する側 方断面図である。 この光モジュール 4 0は、 図 1及び図 2に示すファイバ組立固 定部材と同様の構造を有する光部品を用いて製造される。
図 5からも明らかなように、 光モジュール 4 0は、 波長 1 . 3 μ ιηの信号光を 発生するレーザ光源部 4 1と、 波長 1 . 4 9 μ mの信号光を受信する光検出部 4 2と、 フエルール 4 3から延びる第 1光ファイバ F 1を保持するとともに両波長 1 . 3 111及び1 . 4 9 μ πιを分離するための WDMフィルタを保持する第 1保 持部材 4 5と、 第 1保持部材 4 5から延びる短尺の第 2光ファイバ F 2をレーザ 光源部 4 1に対してァライメントする第 2保持部材 4 6とを備える。
レーザ光源部 4 1は、 半導体レーザ素子 4 1 aやモニタ用フォトダイォード素 子 4 1 bを S i基板上に搭載し、 導波路で接続したものであり、 所望の波形を有 する波長 1 . 3 μ πιの信号光を第 2保持部材 4 6に固定された第 2光ファイバ F 2の端部に供給する。
光検出部 4 2は、 信号検出用のフォトダイォード素子 4 2 aを S i基板上に搭 載したものであり、 第 1保持部材 4 5に固定された第 1光ファイバ F 1の端面に 形成された WDM型のフィルタ F Lで反射された波長 1 . 4 9 μ πιの信号光を受 信する。
第 1保持部材 4 5は、 図 1に示すファィパ組立固定部材と同様に断面形状が Ω 状のファイバ溝 4 5 aを有している。 一方、 第 2保持部材 4 6は、 一般的なフエ ルールと同様、 断面形状が円形のファイバ溝 4 6 aを有している。 両保持部材 4 5、 4 6は、 光ファイバ F l、 F 2と光素子 4 1 a、 4 2 aとをァライメントす るために用いられ、 一種のフエルールとして機能する。
なお、 レーザ光源部 4 1や光検出部 4 2は、 受信信号を増幅する電気アンプ I C (T I A: Trans-impedance amplifier) ,コンデンサ等のチップ部品とともに、 リードフレームをモールドした基板 4 7上に固定されている。 基板 4 7上のレー ザ光源部 4 1や光検出部 4 2は、 フヱノレ一ノレ 4 3等を固定するパッケージ 4 8内 部に挿入されパッケージ 4 8と基板 4 7とに挟まれた状態で封止される。 なお、 一対の光ファイバ F 1、 F 2を位置合わせした状態で固定するための第 1及び第 2保持部材 4 5、 4 6は、 別体として形成しているが、 トランスファ成形ゃホッ トプレスにより、 パッケージ 4 8と一体ィ匕した状態で成形することもできる。 こ のように、 パッケージ 4 8に第 1及び第 2保持部材 4 5、 4 6を予め一体的に作 り込んでおくことにより、 光モジュールの組立工程を簡単にすることができる。 図 6は、 第 1保持部材 4 5に対する光検出部 4 2のァライメントを説明する正 面図である。 光検出部 4 2は、 S i基板で形成されており、 精密な深さの V溝 4 2 c、 4 2 dを簡単に形成することができる。 よって、 第 1保持部材 4 5に V溝 4 2 c , 4 2 dにはまり込む突起 4 5 c、 4 5 dを予め形成しておけば、 光検出 部 4 2上に一定の圧力で第 1保持部材 4 5を押し付けるだけで、 両者を精密に位 置合わせすることができる。 また、 レーザ光源部 4 1と第 2保持部材 4 6も、 光 検出部 4 2及び第 1保持部材 4 5と同様にァライメントされる。
なお、 第 1及び第 2保持部材 4 5、 4 6がパッケージ 4 8に一体的に作り込ま れている場合、 パッケージ 4 8に対してレーザ光源部 4 1や光検出部 4 2を搭載 した基板 4 7を押し付けることにより、 第 1及び第 2保持部材 4 5、 4 6に対し て光検出部 4 2及ぴレーザ光源部 4 1をそれぞれァライメントすることができる。 図 5に戻って、 光モジュール 4◦の動作について説明する。 レーザ光源、部 4 1 に形成した半導体レーザ素子 4 1 aの端面から出射した波長 1 . 3 μ mの信号光 は、 第 2光ファイバ F 2の一端に入射してフィルタ F Lを透過し、 第 1光フアイ バ F 1を伝搬し、外部に設けた他のフェルールに保持された光ファイバ(不図示) に結合される。 また、 外部から導入された波長 1 . 4 9 μ πιの信号光は、 第 1光 ファイバ F 1を経てフィルタ F Lで反射され、 光検出部 4 2に設けたフォトダイ ォード素子 4 2 aに入射する。 なお、 この場合、 波長 1 . 4 9 μ mの信号光を光 検出部 4 2で検出することとしたが、 フィルタ F Lの変更等により、 波長 1 . 5 5 μ mの信号光或いは波長 1 . 4 9 μ πι、 1 . 5 5 μ mの双方を光検出部 4 2で 検出することもできる。
以下、 図 5に示す光モジュール 4 0の組立について簡単に説明する。 まず、 レ 一ザ光源部 4 1や光検出部 4 2以外のチップ部品をリ一ドフレーム上に固定する ことによって電気パッケージである基板 4 7を組み立てる。 そして、 レーザ光源、 部 4 1や光検出部 4 2を基板 4 7上に固定して必要な電気接続を金ワイヤ等によ り行う。
一方、 第 1及び第 2保持部材 4 5、 4 6を樹脂や接着剤を利用してパッケージ 4 8に組み立てる。 次に、 フェルール 4 3から延びるとともに適当な傾斜角を設 けた先端にフィルタ F Lを形成した第 1光ファイバ F 1を、 パッケージ 4 8に設 けた第 1保持部材 4 5の一端から挿入する。 そして、 第 1光ファイバ F 1の端面 の傾斜角に対応する傾斜角を設けた第 2光ファイバ F 2を、 第 2保持部材 4 6を 介して第 1保持部材 4 5の他端から挿入し、 両光ファイバ F l、 F 2を第 1保持 部材 4 5等に固定する。 この際、 第 1及び第 2光ファイバ F 1、 F 2間に設けた フィルタ F Lが第 1保持部材 4 5の適所に配置されるように位置決めする。 さら に、 フェルール 4 3も、 パッケージ 4 8に対して固定される。
その後、 パッケージ 4 8に基板 4 7をはめ込んで、 基板 4 7上のレーザ光源部 4 1と光検出部 4 2に形成した V溝を、 パッケージ 4 8上の第 1及び第 2保持部 材 4 5、 4 6に形成した突起に嵌合させ、 これらを相互に位置合わせする。 かか る位置合わせに際して、 シリコーン樹脂やエポキシ樹脂を用いてパッケージ 4 8 と基板 4 7を接着し封止することで、 光モジュール本体を完成する。
最後に、 C L、 MU、 S C等の用途に応じたレセプタクル部品 (図示せず) を 取り付けることによって、 コネクタ接続可能な光モジュールとなる。
(第 3実施形態)
図 7は、 第 3実施形態に係る一芯双方向型の光モジュールの構造を説明する斜 視図である。 この光モジュール 5 0は、 図 6に示す光モジュールを複数チャンネ ノレイ匕したものである。
図 7に示す光モジュール 5 0は、フエルール 5 1と、アレイ型保持部材 5 2と、 アレイ型発光部 5 3と、 アレイ型受光部 5 4とを備え、 別に設けたフエルール 6 0に対して機械的に接続することによって、 このフエルール 6 0との間でアレイ 状のファイバ F A単位で光結合が達成される。 なお、 上記光モジュール 5 0にお いて、 アレイ型保持部材 5 2は概念的にフエルール 5 1とは別のものであるが、 ランスファ成形ゃホットプレスによってフエルール 5 1と一体的に形成される。 アレイ型保持部材 5 2は、 フエルール 5 1に組み込まれたアレイ状のファイバ F Aに対してアレイ型発光部 5 3ゃァレイ型受光部 5 4を一括してァライメント するためのものであり、 図 5に示す第 1及び第 2保持部材 4 5、 4 6を集積して アレイ型にしたものである。
アレイ型発光部 5 3は、 S i基板 5 3 a上に送信用 L Dアレイ 5 3 cとモニタ 用 P Dアレイ 5 3 dとを形成したものである。また、 S i基板 5 3 aの両端には、 ァライメント用の V溝 5 3 e、 5 3 f が形成されている。 なお、 送信用 L Dァレ ィ 5 3 c等は、 フェルール 5 1に組み込まれたアレイ状の光ファイバ F Aと同数 だけ同じ間隔で配列されている。
ァレイ型受光部 5 4は、 S i基板 5 4 a上に受信用 P Dアレイ 5 4 cを形成し たものである。また、 S 1基板5 4 aの両端には、ァライメント用の V溝 5 4 e、 5 4 f が形成されている。 なお、 受信用 P Dアレイ 5 4 cも、 アレイ状の光ファ ィパ F Aと同数だけ同じ間隔で配列されている。
図 8 Aは、図 7に示す光モジュール 5 0の C一 C矢視断面図であり、図 8 Bは、 光モジュール 5 0の D— D矢視断面図である。
図 8 Aに示すように、 C— C矢視断面において、 アレイ型保持部材 5 2の下面 には、 断面形状が Ω状で紙面に垂直な方向に延びるファイバ溝 5 2 bが等間隔で 平行に複数形成されている。 各ファイバ溝 5 2 bには、 光ファイバ F Aが挿入さ れてァライメントされ、 アレイ状に配列された状態で固定される。 アレイ型保持 部材 5 2の左右両端には、 ァライメント用の一対の突起 5 2 c、 5 2 dが形成さ れており、 アレイ型受光部 5 4に形成したァライメント用の V溝 5 4 e、 5 4 f に対して嵌合可能になっている。 ファイバ溝 5 2 bに保持された各光ファイバ F Aは、 図 5に示す第 1及び第 2光ファイバ F 1、 F 2を組み合わせたものに相当 する。 つまり、 各光ファイバ F Aを構成する一対のファイバ部分の接続面には、 波長分割用のフィルタがそれぞれ設けられており、 各フィルタに対向する位置に は、 受信用 P Dアレイ 5 4 cを構成する各フォトダイオード 5 4 gがそれぞれ一 対一の関係で配置される。
図 8 Bに示すように、 D— D矢視断面において、 アレイ型保持部材 5 2は、 フ エルール 5 1側にくり抜かれて窪み 5 2 f となっている。 この窪み 5 2 f には、 アレイ型発光部 5 3に搭載した送信用 L Dアレイ 5 3 cとモニタ用 P Dアレイ 5 3 dとがはまり込む。 この際、 アレイ型保持部材 5 2に形成されている上述の突 起 5 2 c、 5 2 d力 アレイ型発光部 5 3に形成したァライメント用の V溝 5 3 e、 5 3 f に嵌合する。 アレイ型保持部材 5 2の上記窪み 5 2 f側(紙面後方側) の端面に露出する各光ファイノ F Aの端面は、 紙面に垂直に延びるフアイバ溝 5 2 bに案内されて固定され、 送信用 L Dアレイ 5 3 cを構成する各レーザダイォ ード 5 3 gに対してそれぞれ一対一の関係で配置される。
なお、 図示を省略しているが、 光モジュール 5 0には、 アレイ型保持部材 5 2 ゃァレイ型発光部 5 3のほか、 T I A等のチップ部品を搭載しペルチェ素子等に よって冷却される冷却型電気回路基板も組み込まれる。
以下、 図 7等に示す光モジュール 5 0の組立について説明する。 まず、 いずれ かの光ファイバ F Aの長尺部分をフェルール 5 1の端面 4 1 aに設けたファイバ 導入口 5 1 bから内部に挿入し、 アレイ型保持部材 5 2に設けたファイバ溝 5 2 bに揷入して適宜配置する。 なお、 光ファイバ F Aの長尺部分の端面には、 同一 の傾斜角が設けられており、 誘電体多層膜からなるフィルタが形成されている。 次に、 アレイ型保持部材 5 2に設けたファイバ溝 5 2 bの他端 (窪み 5 2 f ) 側 からアレイ状の光ファィパ F Aの短尺部分を揷入して上記長尺部分の端面と突き 合わせて適宜ァライメントする。 その後、 上記短尺部分と長尺部分とを接着剤等 を利用してファイバ溝 5 2 bに固定する。
以上の工程を、 アレイ状の各光ファイバ F Aについて繰り返し、 全ての光ファ ィバ F Aをアレイ型保持部材 5 2に精密にァライメントして固定する。 その後、 ァレイ型発光部 5 3とアレイ型受光部 5 4とを、 アレイ型保持部材 5 2に対して ァライメントし、 フエルール 5 1に固定する。 次に、 フエルール 5 1の端面 4 1 aを研磨して長尺部分の後端面を鏡面状に仕上げる。 最後に、 冷却型電気回路基 板その他のパーツをフエルール 5 1に固定し、 フエルール 5 1をシリコーン樹脂 やエポキシ樹脂により封止することで、 光モジュール 5 0を完成する。
(第 4実施形態)
図 9は、 第 4実施形態に係る光モジュールの構造を説明する側面図である。 こ の光モジュール 7 0は、 第 1実施形態に係るファイバ組立固定部材を変形して組 み込んだものであり、 〇ADM (optical add/drop multiplexer) として機能す る。
光モジュール 7 0の本体香 |5分 7 1は、 フアイバ組立固定部材 7 2と、 3つの光 ファイバ F l、 F 2、 F 3とからなる。 各光ファイバ F l、 F 2、 F 3は、 ファ ィバ組立固定部材 7 2に設けた断面形状が Ω状のファイバ溝 7 2 aに挿入され、 接着剤にて固定される。 第 1の光ファイバ F 1の端面には、 第 1のフィルタ F L 1が形成されており、 波長 1の信号光を反射する。 また、 第 3の光ファイバ F 3の端面には、 第 2のフィルタ F L 2が形成されており、 波長; 1 1の信号光を反 射する。
第 1フィルタ F L 1の位置には、 第 1フィルタ F L 1からの反射光を開口部 2 3を介して取り出すための出射ポート 7 4が設けられている。 また、 第 2フィル タ F L 2の位置には、 開口部 2 3を介して第 2フィルタ F L 2に信号光を入射さ せる入射ポート 7 5が設けられている。 前者の出射ポート 7 4は、 第 1フィルタ F L 1で反射された信号光を集めるレンズ 7 4 aと、 レンズ 7 4 aによる集光点 に光ファイバ 7 4 bの端面を保持するフエルール 7 4 cとを備える。 また、 後者 の入射ポート 7 5は、 光ファイバ 7 5 aを保持するフェルー 5 bと、 光ファ ィバ 7 5 aの端面から出射した信号光を第 2フィルタ F L 2の中心に集光するレ ンズ 7 5 cとを備える。 この光モジュール 5 0の動作について説明する。 第 1光ファイバ F 1側から波 長; L 1〜え nの信号光を入射させると、 第 1フィルタ F L 1を通過する際に波長 λ 1の信号光が反射され、 開口部 2 3を通過した後、 出射ポート 7 4に入射して 光ファイノ 7 4 bに分岐される。 これにより、 第 2光ファイバ F 2には、 波長え 2〜; L nの信号光が伝搬する。 さらに、 第 2光ファイノく F 2力 ら第 3光ファイノ F 3に信号光が入射する際には、 入射ポート 7 5から入射する波長; L 1の信号光 が第 2フィルタ F L 2で反射されて合波され、 第 3光ファイバ F 3中を波長; L 1 〜 L nの信号光が伝搬する。
(第 5実施形態)
図 1 0は、 第 5実施形態に係る光モジュールの構造を説明する側方断面図であ る。 この光モジュール 8 0は、 図 5に示す光モジュールの構成を基本としつつ、 光源部から光ファイバに信号光を供給する際にスポットサイズを変換するための スポットサイズ変換部 9 0を組み込んだものである。
図 1 0に示すように、 光モジュー^ ^ 8 0は、 レーザ光源部 4 1と、 光検出部 4 2と、 第 1保持部材 4 5と、 第 2保持部材 4 6とを備えるが、 これら各構成要素 についての基本的な構造及ぴ動作は、図 5の場合と共通するので説明を省略する。 第 5実施形態では、 図 1 0においてレーザ光源部 4 1の近傍にスポットサイズ変 換部 9 0が設けられている点で図 5の場合と異なっている。
レーザ光源、部 4 1は、 半導体レーザ素子 4 1 aとモニタ用フォトダイオード素 子 4 1 bが S i基板上に搭載されるとともに、 そのレーザ光源部 4 1 bに隣接し てスポットサイズ変換部 9 0が配置されている。 このスポットサイズ変換部 9 0 は、スポットサイズ変換素子 9 0 aを S i基板上に搭載したものである。そして、 スポットサイズ変換素子 9 0 aは、 レーザ光源部 4 1 b力、ら出力される波長 1 . 3 μ πιの信号光を受け、 そのスポットサイズを変換して出射し、 第 2保持部材 4 6に固定された第 2光ファイバ F 2の端部に供給する。
ここで、 図 1 1を用いて、 スポットサイズ変換素子 9 0 aの構造及び動作を説 明する。 図 1 1に示すように、 スポットサイズ変換素子 9 0 aは、 所定の材料か らなる矩形状の平面光波回路であり、 その内部に屈折率が異なる所定形状の伝搬 領域 Rが形成されている。 この伝搬領域 Rは、 半導体レーザ素子 4 1 aから出力 された信号光を入射する入射端 R aと、 第 2光ファイバ F 2の端部に向けて信号 光を出射する出射端 R bを有するとともに、 方形断面を有しそのサイズが出射側 に近いほど拡大するように 3つの部分領域 R 1、 R 2、 R 3が連結された構造を 有する。
図 1 1においては、 スポットサイズ変換素子 9 0 aについて、 互いに直交する X方向及び Y方向におけるサイズを示している。 なお、 X方向及び Y方向はいず れも信号光の光軸に垂直であって、 X方向が光モジュール 8 0の横方向 (図 1 0 の紙面垂直方向) であり、 Y方向が光モジュール 8 0の上下方向 (図 1 0の紙面 水平方向) に一致する。
図 1 1に示すように、 伝搬領域尺のうち、 入射端 R aはサイズ X 1、 Y 1の方 形状であり、 出射端 R bはサイズ X 2、 Y 2の方形状であるものとする。 また、 入射端 R a側の部分領域 R 1は、 一定のサイズ X 1、 Y 1の方形断面で長さ L 1 の形状を有し、 出射端 R b側の部分領域 R 3は、 一定のサイズ X 2、 Y 2の方形 断面で長さ L 3の形状を有している。 一方、 中間の部分領域 R 2は、 その方形断 面がサイズ X I、 丫1からサィズ 2、 Y 2に徐々に広がる長さ L 2の形状を有 している。
一般に、 半導体レーザ素子 4 1 bにおける光信号のスポットサイズは、 第 2光 ファイバ F 2の端部における光信号のスポットサイズと比べ、 かなり小さくなつ ている。 そのため、 スポットサイズ変換素子 9 0 aは、 入射端 R aを介して部分 領域 R l、 R 2、 R 3を伝搬される光信号のスポットサイズを次第に拡大させ、 出射端 R b力 ら出射される光信号が第 2光ファイバ F 2の端部に適合するスポッ トサイズとなるような変換を行う。 これにより、 半導体レーザ素子 4 1 bと第 2 光ファイバ F 2との間でスポットサイズが異なることに起因する結合損失を減少 させることができる。
ここで、 表 1にスポットサイズ変換素子 9 0 aにおける伝搬領域 Rの具体的な 寸法条件の一例を示す。 表 1に示す寸法条件においては、 伝搬領域 Rが Y方向で 同一サイズを保つとともに X方向でサイズが拡大するような構成に対応している。 通常、 半導体レーザ素子 4 1 bにおけるスポットサイズは、 第 2光ファイバ F 2 と比べて横方向 (X方向) で小さくなるので、 表 1に示す寸法条件によって主に スポットサイズを X方向で拡大する構成をとっている c
(表 1 )
Figure imgf000021_0001
以下、 表 1に示す寸法条件を適用したスポットサイズ変換素子 9 0 aを用いる 場合の光モジュール 8 0の特性について、 図 1 2〜図 1 4を用いて説明する。 図 1 2は、 表 1の寸法条件を適用したスポットサイズ変換素子 9 0 aの伝搬領域 R の大きさ (X方向) と伝搬光のスポットサイズの大きさの関係を表す図である。 図 1 2に示すように、 伝搬領域 Rが X方向に大きくなるにつれて伝搬光のスポッ トサイズも一律に大きくなることがわかる。
図 1 3は、 半導体レーザ素子 4 1 b及び第 2光ファイバ F 2のそれぞれの結合 損失と伝搬領域 Rの寸法の関係を示す図である。 図 1 3においては、 半導体レー ザ素子 4 1 bからスポットサイズ変換素子 9 0 aに光信号を結合するときの結合 損失と、 スポットサイズ変換素子 4 1 bから第 2光ファイバ F 2に光信号を結合 するときの結合損失を示しており、 それぞれ伝搬領域 Rの入射端 R a又は出射端 R bの各 X方向の幅を変化させた場合の変化をプロットしている。
図 1 3に示すように、半導体レーザ素子 4 1 bの側では、 X方向の幅がほぼ 4 . 5 μ πιのときに最小の結合損失 3 . 4 d Bが得られる。 また、 第 2光ファイバ F 2の側では、 X方向の幅がほぼ 1 0 mのときに最小の結合損失 0 . 6 d Bが得 られる。 従って、 表 1の寸法条件は、 図 1 3に示す特 1"生に対して最適化されたも のであるとともに、 図 1 3の結果に基づく トータルの結合損失は、 0 . 6 d B + 3 . 4 d B = 4 . 0 d Bと算出される。 一般に、 半導体レーザ素子 4 1 bと第 2 光ファイバ F 2を直結する構成では、 9〜1 0 d B程度の結合損失が生じること から、 スポットサイズ変換素子 9 0 aを介在させる構成によつて結合損失を 5〜 6 d B改善可能であることが確認された。
図 1 4は、 上述のスポットサイズ変換素子 9 0 aを用いて構成される光モジュ ール 8 0 (図 1 0を参照) の出力パワーの温度特性を表す図である。 図 1 4にお いては、 半導体レーザ素子 4 1 bの駆動電流に対する光モジュール 8 0の出力パ ヮ一の関係について、 温度範囲一 4 0〜8 5度にわたる変化を示している。 第 5 実施形態では、 上述したようにスポットサイズ変換素子 9 0 aによつて結合損失 を低減させることができるため、 十分な出力パワーを確保することができる。 な お、 3つの光モジュール 8 0を対象にして同様の実験を行った結果、 スポットサ ィズ変換素子 9 0 aによる結合損失は、 4 d B程度 ( 3 . 7 4 d B〜4. 4 6 d B) となることが It認された。
以上のように第 5実施形態では、 スポットサイズ変換素子 9 0 aを設ける構成 としたことにより、 半導体レーザ素子 4 1 aから第 2光ファイバ F 2の端面に信 号光を供給するときの結合損失を低減することができるので、 光モジュール 8 0 の出力パワーを十分に確保可能となる。 この場合、 スポットサイズを変換するた めのレンズ等で構成した空間光学系や、 スポットサイズ変換機能を持つ半導体レ 一ザ素子は用いる必要がなく、 導波路技術等の一般的な製造技術に基づく簡単な 構造を採用するため、 簡単な構成で低コスト化を図ることができる。
次に、 図 1 5は、 第 2保持部材 4 6に対するスポットサイズ変換部 9 0の位置 合わせを説明する断面図である。 スポットサイズ変換部 9 0の S i基板には、 中 央に載置されたスポットサイズ変換素子 9 0 aの両側に 2つの V溝 9 1、 9 2が 形成されている。 一方、 第 2保持部材 4 6には、 上述の V溝 9 1、 9 2に対応す る位置に 2つの突起 9 3、 9 4が形成されている。 よって、 2つの V溝 9 1、 9 2と 2つの突起 9 3、 9 4を嵌合させる際、 スポットサイズ変換部 9 0上に一定 の圧力で第 2保持部材 4 6を押し付けることにより、 両者を精密に位置合わせす ることができる。
なお、 スポットサイズ変換部 9 0とレーザ光源部 4 1は、 別基板で構成されて いるので、 レーザ光源部 4 1についても図 1 5と同様に構成することにより、 両 者を独立に位置合わせすることが可能となる。 このようにスポットサイズ変換部 9 0とレーザ光源部 4 1をそれぞれ位置合わせした状態で、 パッケージ 8 8と基 板 8 7を封止することにより光モジュール 8 0が完成する。
次に、 第 5実施形態に係る光モジュール 8 0の変形例について説明する。 この 変形例は、 第 3実施形態と同様に光モジュール 8 0を複数チャンネルィ匕する構成 に対応する。
図 1 6は、 本変形例におけるスポットサイズ変換素子 9 0 aの上面図である。 図 1 6に示すスポットサイズ変換素子 9 0 aには、 同一形状の 8本の伝搬領域 R が並列に配置され、 それぞれの伝搬領域を光信号が伝送可能に構成されている。 この場合、 半導体レーザ素子 4 1 と第 2光ファイバ F 2をそれぞれアレイ型に 構成し、 スポットサイズ変換素子 9 0 aの各伝搬領域 Rの位置と適合するように 配置すれば、 8チャンネルの光モジュール 8 0を構成することができる。 なお、 図 1 6では、 8本の伝搬領域 Rの間隔が均等になる例を示しているが、 異なる間 隔で並列配置する構成にしてもよい。
以上の第 5実施形態においては、 スポットサイズ変換素子 9 0 aを平面光波回 路により形成する場合を説明したが、 これに限らず、 スポットサイズ変換素子 9 0 aを光ファイバで形成してもよい。 この場合、 二乗型屈折率分布ファイバ G I F (graded- index fiber)、 もしくは熱拡散技術により光ファイバの MF D (モー ドフィールド径) を局所的に拡大させたファイバである T E C
(thermally-diffused expanded core) ファイノ を用レヽること力 sで、きる。
なお、 スポットサイズ変換素子 9 0 aに光ファイバを利用する場合は、 半導体 レーザ素子 4 l bと第 2光ファイバ F 2との光結合効率を考慮してその長さを決 定する。 つまり、 光ファイバの長さは、 半導体レーザ素子 4 1 bからの出力光が 第 2光ファイバ F 2に最も効率よく (挿入損失が最小になるように) 結合可能な スポットサイズに変換される長さに設定する。 また、 スポットサイズ変換素子 9 0 aに利用する光ファイバは、 S MFと融着させて使用してもよい。 このように 光ファイバを利用してスポットサイズ変換素子 9 0 aを構成することにより、 半 導体レーザ素子 4 1 bと第 2光ファイバ F 2を低損失で光学的に結合させること が可能となる。
以上、 第 1乃至第 5実施形態に即して本発明を説明したが、 本発明は、 上記各 実施形態に限定されるものではない。 例えば、 上記各実施形態において、 フアイ パ溝 20、 45 a、 52 bの断面形状は、 概ね Ω状である限りサイズや形状を適 宜変更することができる。 ただし、 ファイバ溝 20、 45 a、 52 bの横断面が 厳密な意味での半円より浅くなると、 光ファイバの保持が不確実になる。 また、 ファイバ溝 20、 45 a、 52 bの横断面が円に近くなると、 取り出し窓として 機能する開口部 23を十分なサイズとすることができなくなる。 具体的には、 フ アイパ溝 20、 45 a、 52 bに固定される光ファイバの直径すなわち外径が例 えば 125 μιηである場合、 ファイバ'溝 20、 45 a、 52 bの内面に接する円 (断面円) の中心が 10〜60 の深さになるようにすることで、 光ファイバ の好適な保持を確保しつつ、十分なサイズの開口部 23を形成することができる。 また、 第 2及ぴ第 3実施形態では、 V溝 42 c、 42 d、 54 e、 54 f と、 突起 45 c、 45 d、 52 c、 52 dとをァライメント手段として用いて、 フィ ルタ FLや光ファイバと、 フォトダイオードやレーザダイオードの入出射面との ァライメントを行っているが、 一対の V溝とこれらの間に挟まれるロッド状のフ アイバとを用いてこれらのァライメントを達成することもできる。
また、 上記各実施形態では、 第 1光ファイバ F 1等の端面に誘電体多層膜から なるフィルタ FLを形成しているが、 このフィルタ FLの特性は、 目的に応じて 適宜変更することができ、 さらにハーフミラー、 ミラー、 FBG (Fiber Bragg Grating) 等の光学素子 (広義のフィルタ) に置き換えることもできる。
また、 上記実各施形態では、 光ファイバをァライメントして固定するためのフ アイバ組立固定部材について説明したが、 同様の原理によって、 導波路ロッド等 を含む他の種類の光導波路を固定することもできる。 産業上の利用可能性
以上の説明で明らかなように、 本発明に係る光部品によれば、 所定の軸方向に 沿って延びる保持面に沿って光導波路を挿入するだけで光導波路の簡易な保持や ァライメントが可能になる。 また、 開口部を利用することで、 導波路用溝に位置 決めされた光導波路の離脱を防止しつつ、外部から光導波路中に光を導入したり、 開口部を介して光導波路中から必要な光を取り出したりすることができる。
さらに、 光導波路の導波路用溝への取付けに際して開口部を観察することによ り、 光導波路端部のァラィメントが比較的簡単なものとなり組立精度を高めるこ とができる。

Claims

請 求 の 範 囲
1 所定の軸方向に沿って延びる面形状を有し、 少なくとも 1つの光導波路を、 当該少なくとも一つの光導波路の側面の少なくとも一部で位置決めしつつ保持可 能である導波路保持面と、
前記導波路保持面に略対向して延在するとともに、 前記所定の軸方向に垂直な 所定の幅方向において、 前記少なくとも一つの光導波路の外径よりも狭い幅を有 する開口部と、
を有するガイド用の導波路用溝を備えた光部品。
2 . 前記導波路用溝において、 前記導波路保持面は、 中心角が 1 8 0 ° よりも所 定角度以上に大きな円弧を当該円弧の面に垂直な前記所定の軸方向に延ばすこと によって得られる半筒形状を有し、 前記開口部は、 半筒形状の前記導波路持面に ついて周方向の一対の対向する周端部間に延在することを特徴とする請求項 1記 載の光部品。
3 .前記光導波路には、所定の特性を持つフィルタが備えられ、当該フィルタは、 前記開口部に対応して位置するように固定されることを特徴とする請求項 1又は 請求項 2に記載の光部品。
4 . 前記フィルタは、 前記光導波路を伝搬される伝搬光の光軸に対し所定の傾斜 角を有することを特徴とする請求項 3に記載の光部品。
5 . 前記フィルタは、 光導波路の端面に設けられたことを特徴とする請求項 3に 記載の光部品。
6 . 前記導波路用溝の少なくとも一部の断面形状が Ω状であることを特徴する請 求項 1又は請求項 2に記載の光部品。
7 . 複数の前記導波路用溝が備えられたことを特徴とする請求項 1、 請求項 2、 請求項 6のいずれかに記載の光部品。
8 . 前記光導波路は、 その側面の少なくとも一部が前記導波路用溝に係止されて いることを特徴とする請求項 1、 請求項 2、 請求項 6、 請求項 7のいずれかに記 載の光部品。
9 . 請求項 1、 請求項 2、 請求項 6乃至請求項 8のいずれかに記載の光部品と、 前記光部品と光学的に結合される光学素子とを備え、
前記光部品と前記光学素子とは、 前記光部品の開口部を介して光学的に結合さ れることを特徴とする光モジュール。
1 0 . 前記光部品がァライメント手段をさらに備え、 当該ァライメント手段によ り前記光部品が位置決めされることを特徴とする請求項 9に記載の光モジュール。
1 1 . 請求項 1乃至請求項 8のいずれかに記載の光部品と、
前記光部品に導かれる信号光を出力する光源部と、
前記光源部から出力された信号光のスポットサイズを変換し、 前記光部品の前 記少なくとも一つの光導波路の端部に適合するスポットサイズで結合するスポッ トサイズ変換部と、
を備えることを特徴とする光モジュール。
1 2 . 前記スポットサイズ変換部は、 基板上に載置された平面光波回路により形 成されることを特徴とする請求項 1 1に記載の光モジュール。
1 3 . 前記スポットサイズ変換部が形成される基板と前記光源部が形成される基 板は別体で構成され、 それぞれ独立に位置決め可能であることを特徴とする請求 項 1 2に記載の光モジュール。
1 4 .前記スポットサイズが形成される基板と前記光源部が形成される基板には、 それぞれ V溝が形成されるとともに、 前記光部品を保持する保持部材に突起が形 成され、 前記各々の V溝と前記突起を嵌合することにより位置決め可能であるこ とを特徴とする請求項 1 3に記載の光モジュール。
PCT/JP2003/013305 2002-10-17 2003-10-17 光部品及び光モジュール WO2004036280A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2003301466A AU2003301466A1 (en) 2002-10-17 2003-10-17 Optical component and optical module
JP2004544979A JPWO2004036280A1 (ja) 2002-10-17 2003-10-17 光部品及び光モジュール
US10/531,709 US7412148B2 (en) 2002-10-17 2003-10-17 Optical module including an optical component and an optical device
US12/170,209 US20090032984A1 (en) 2002-10-17 2008-07-09 Method for manufacturing an optical fiber with filter and method for batch manufacturing optical fibers with filter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-302734 2002-10-17
JP2002302734 2002-10-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/170,209 Continuation-In-Part US20090032984A1 (en) 2002-10-17 2008-07-09 Method for manufacturing an optical fiber with filter and method for batch manufacturing optical fibers with filter

Publications (1)

Publication Number Publication Date
WO2004036280A1 true WO2004036280A1 (ja) 2004-04-29

Family

ID=32105051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/013305 WO2004036280A1 (ja) 2002-10-17 2003-10-17 光部品及び光モジュール

Country Status (5)

Country Link
US (1) US7412148B2 (ja)
JP (1) JPWO2004036280A1 (ja)
CN (1) CN1688911A (ja)
AU (1) AU2003301466A1 (ja)
WO (1) WO2004036280A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4879317B2 (ja) * 2007-03-09 2012-02-22 三菱電機株式会社 光ファイバセンサ
JP2014510313A (ja) * 2011-04-05 2014-04-24 ナノプレシジョン プロダクツ インコーポレイテッド ファイバクランプ開溝を有する光ファイバコネクタフェルール
KR20140140639A (ko) * 2012-04-05 2014-12-09 나노프리시젼 프로덕츠 인코포레이션 광파이버 커넥터용 고밀도 다중-파이버 페룰

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7477828B2 (en) * 2006-01-06 2009-01-13 Lockheed Martin Corporation Optical waveguide
JP4981950B2 (ja) * 2010-05-19 2012-07-25 古河電気工業株式会社 ファイバスタブおよびこれを用いた光モジュール
CN102385121A (zh) * 2011-11-04 2012-03-21 潮州三环(集团)股份有限公司 一种高性能光纤快速成端组件
KR101307249B1 (ko) * 2011-12-27 2013-09-11 주식회사 한택 양방향 광모듈
TW201400893A (zh) * 2012-06-25 2014-01-01 Hon Hai Prec Ind Co Ltd 光纖裝置
DE102014221728A1 (de) * 2014-10-24 2016-04-28 Technische Universität Dresden Anordnung elektro-optischer Bauelemente zur optischen Daten- und/oder Energieübertragung in einem Gehäuse
JP6568698B2 (ja) * 2015-03-25 2019-08-28 株式会社フジクラ 光モジュールの製造方法、光モジュール用レセプタクル及び光モジュール
US20170063464A1 (en) 2015-08-27 2017-03-02 Applied Optoelectronics, Inc. Multi-channel transmitter optical subassembly (tosa) with opposing placement of transistor outline (to) can laser packages
US9810850B1 (en) * 2016-08-15 2017-11-07 Te Connectivity Corporation Fiber gripper assembly for optical connectors
GB2563929A (en) * 2017-06-30 2019-01-02 Oclaro Tech Ltd Spatial filter
CN114373806A (zh) * 2020-10-14 2022-04-19 华为技术有限公司 光电器件及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04161908A (ja) * 1990-10-24 1992-06-05 Honda Motor Co Ltd 光ic結合装置
JPH07104152A (ja) * 1993-10-08 1995-04-21 Nippon Telegr & Teleph Corp <Ntt> 光結合装置
JPH07120638A (ja) * 1993-10-22 1995-05-12 Matsushita Electric Ind Co Ltd 光接続素子およびその製造方法
EP0844503A1 (en) * 1995-08-03 1998-05-27 Matsushita Electric Industrial Co., Ltd. Optical device and method of manufacturing it
JP2002062459A (ja) * 2000-08-21 2002-02-28 Toshiba Corp 光モジュール装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63228102A (ja) 1987-03-17 1988-09-22 Matsushita Electric Ind Co Ltd 光フアイバ固定用ブロツク体の製造方法
DE3919262A1 (de) 1989-06-13 1990-12-20 Hoechst Ag Verfahren zur herstellung eines planaren optischen kopplers
JPH0372305A (ja) 1989-08-11 1991-03-27 Japan Aviation Electron Ind Ltd 光ファイバと光導波路の接続構造の製造方法
JP2001066473A (ja) 1995-08-03 2001-03-16 Matsushita Electric Ind Co Ltd 光デバイスおよびその製造方法
US6985666B2 (en) * 2001-02-28 2006-01-10 Asahi Glass Company, Limited Method for coupling plastic optical fibers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04161908A (ja) * 1990-10-24 1992-06-05 Honda Motor Co Ltd 光ic結合装置
JPH07104152A (ja) * 1993-10-08 1995-04-21 Nippon Telegr & Teleph Corp <Ntt> 光結合装置
JPH07120638A (ja) * 1993-10-22 1995-05-12 Matsushita Electric Ind Co Ltd 光接続素子およびその製造方法
EP0844503A1 (en) * 1995-08-03 1998-05-27 Matsushita Electric Industrial Co., Ltd. Optical device and method of manufacturing it
JP2002062459A (ja) * 2000-08-21 2002-02-28 Toshiba Corp 光モジュール装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4879317B2 (ja) * 2007-03-09 2012-02-22 三菱電機株式会社 光ファイバセンサ
US8285086B2 (en) 2007-03-09 2012-10-09 Mitsubishi Electric Corporation Optical fiber sensor
JP2014510313A (ja) * 2011-04-05 2014-04-24 ナノプレシジョン プロダクツ インコーポレイテッド ファイバクランプ開溝を有する光ファイバコネクタフェルール
JP2017102471A (ja) * 2011-04-05 2017-06-08 ナノプレシジョン プロダクツ インコーポレイテッドNanoprecision Products, Inc. ファイバクランプ開溝を有する光ファイバコネクタフェルール
KR20140140639A (ko) * 2012-04-05 2014-12-09 나노프리시젼 프로덕츠 인코포레이션 광파이버 커넥터용 고밀도 다중-파이버 페룰

Also Published As

Publication number Publication date
CN1688911A (zh) 2005-10-26
US7412148B2 (en) 2008-08-12
US20060188211A1 (en) 2006-08-24
AU2003301466A1 (en) 2004-05-04
JPWO2004036280A1 (ja) 2006-02-16

Similar Documents

Publication Publication Date Title
EP1553433B1 (en) Parallel multiwavelength optical subassembly
US8380075B2 (en) Optical transceiver module
JP4012785B2 (ja) 光接続装置
US7218806B2 (en) Multi-wavelength optical transceiver module, and multiplexer/demultiplexer using thin film filter
CN109597169B (zh) 组装光接收器模块的方法
US7373063B2 (en) Optical waveguide, optical waveguide module, and a method for fabricating optical waveguide module
TWI309313B (en) Micro-optical device
JP2010540991A (ja) 2基板パラレル方式の光学サブアセンブリ
TW200540481A (en) Light transmitting and receiving module
WO2004036280A1 (ja) 光部品及び光モジュール
TW442678B (en) Connector-type optical transceiver using SOI optical waveguide
TW200428057A (en) Photo module
JP2004354752A (ja) 一心双方向光モジュールのジョイントフォルダ
JP2004233484A (ja) 光モジュール
JP2017194565A (ja) 光通信モジュール及びその製造方法
JP4433730B2 (ja) 光フィルタ保持部材及び光送受信モジュール
JP2006345474A (ja) 光トランシーバモジュール
JP2005122084A (ja) 光素子モジュール
US20090032984A1 (en) Method for manufacturing an optical fiber with filter and method for batch manufacturing optical fibers with filter
US9804346B2 (en) Receptacle-collimator assembly and multi-wavelength optical receiver module
US7177506B2 (en) Method for forming an aligned optical sub-assembly
US20220390676A1 (en) Integrated optical wavelength division multiplexing devices
JP2003131083A (ja) 双方向光モジュール
KR101931602B1 (ko) 결합형 다채널 광파장 모듈
JP2000009953A (ja) 波長分波器とこの波長分波器を備えた光送受信モジュール

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004544979

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2003824375X

Country of ref document: CN

122 Ep: pct application non-entry in european phase
WWE Wipo information: entry into national phase

Ref document number: 2006188211

Country of ref document: US

Ref document number: 10531709

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10531709

Country of ref document: US