WO2004036045A1 - Variable inner volume ratio-type inverter screw compressor - Google Patents

Variable inner volume ratio-type inverter screw compressor Download PDF

Info

Publication number
WO2004036045A1
WO2004036045A1 PCT/JP2003/013117 JP0313117W WO2004036045A1 WO 2004036045 A1 WO2004036045 A1 WO 2004036045A1 JP 0313117 W JP0313117 W JP 0313117W WO 2004036045 A1 WO2004036045 A1 WO 2004036045A1
Authority
WO
WIPO (PCT)
Prior art keywords
volume ratio
internal volume
compression
valve
variable
Prior art date
Application number
PCT/JP2003/013117
Other languages
French (fr)
Japanese (ja)
Inventor
Nozomi Gotou
Kaname Ohtsuka
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to EP03751474.2A priority Critical patent/EP1553300B1/en
Priority to ES03751474.2T priority patent/ES2503716T3/en
Priority to AU2003271184A priority patent/AU2003271184A1/en
Priority to US10/531,294 priority patent/US20060039805A1/en
Publication of WO2004036045A1 publication Critical patent/WO2004036045A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/10Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by changing the positions of the inlet or outlet openings with respect to the working chamber
    • F04C28/12Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by changing the positions of the inlet or outlet openings with respect to the working chamber using sliding valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/08Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by varying the rotational speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/40Electric motor
    • F04C2240/403Electric motor with inverter for speed control

Definitions

  • the present invention relates to a variable internal volume ratio type inverter task compressor in which an internal volume ratio which is a ratio between a suction volume and a discharge volume of a screw compressor is made variable.
  • variable internal volume ratio type screw-type compressor in which the internal volume ratio is made variable as shown in FIG. 7 (for example, see Japanese Patent No. 3159762).
  • variable internal volume ratio type screw compressor when it is necessary to change the internal volume ratio, the rod 2 is rotated by the step motor 1 to retreat the variable VI valve 3, for example. At that time, the displacement control valve 4 retreats with the retraction of the variable VI valve 3, and when the variable VI valve 3 is fixed to a new set position, it is fixed again in contact with the variable VI valve 3. . In this way, the tip of the displacement control valve 4 retreats to a position corresponding to the changed internal volume ratio, and newly defines the opening degree of the discharge port 5.
  • the internal volume ratio is determined by detecting the pressure P dl immediately before the space formed by the rotor and the inner wall of the casing 7 communicates with the discharge space during operation, and calculating the difference between the detected pressure P dl and the discharge pressure. Specified by giving a signal to step motor 1 to minimize ⁇ P.
  • the optimal internal volume ratio is predicted by performing a trend analysis of parameters such as the suction pressure and the discharge pressure during operation with the control device 10, and a signal representing the value of the optimal internal volume ratio is given to the step motor 1.
  • the fluid sucked from the suction hole 6 is compressed by the female rotor (not shown) in the casing 7 and then discharged to the discharge hole 8 through the discharge port 5.
  • the internal volume ratio of the compressed gas discharged from the displacement control valve 4 is made variable so as to achieve the highest compressor efficiency in accordance with the high and low pressure conditions during operation at 0% load).
  • variable internal volume ratio type screw-type compressor disclosed in the above-mentioned conventional Japanese Patent No. 3159762 has the following problems.
  • variable internal volume ratio technology in the above-mentioned conventional variable internal volume ratio type screw-type compressor uses the compressed gas discharged from the discharge port 5 so that the maximum compressor efficiency is obtained in accordance with the high and low pressure conditions during operation.
  • the internal volume ratio is variable, it is set to match the full load capacity (100% load).
  • capacity adjustment (unload control) is performed by bypassing the fluid during compression from the gap between the variable VI valve 3 and the capacity control valve 4 to the suction side. There is a problem that the efficiency is low because of this.
  • variable VI valve 3 that changes the internal volume ratio
  • capacity control valve 4 that performs capacity control
  • an object of the present invention is to provide a variable internal volume ratio type screw-type compressor capable of always operating at maximum efficiency according to the load (operating condition).
  • a variable internal volume ratio type inverter task compressor of the present invention has a variable internal volume in which the internal volume ratio is made variable by changing the end point of the compression process in the screw compression section.
  • a ratio valve, a motor for driving the screw compression section in rotation, and an inverter for controlling the rotation frequency of the motor in accordance with the load is characterized by having.
  • the rotation frequency of the electric motor is controlled by the inverter.
  • the capacity adjustment is performed without performing the unload control.
  • the opening of the variable internal volume ratio valve is controlled so that the maximum compressor efficiency according to the adjusted rotation frequency of the electric motor is obtained, and the end point of the compression process in the screw compression unit is set. .
  • maximum efficiency operation is always possible according to the load.
  • variable internal volume ratio type inverter screw compressor is characterized in that the opening degree of the variable internal volume ratio valve is determined based on the suction side pressure and the discharge side pressure in the screw compression section and the rotation frequency of the electric motor. It is characterized by having a control unit for controlling
  • the opening of the variable internal volume ratio valve is controlled by the control unit based on the suction side pressure and the discharge side pressure in the screw compression unit and the rotation frequency of the electric motor. Is controlled. Therefore, by using a predetermined relationship between the compression ratio, the rotation frequency of the motor, and the optimum internal volume ratio, the internal volume ratio is adjusted according to the rotation frequency of the motor adjusted by the inverter. It is controlled accurately and easily to achieve the highest compressor efficiency.
  • FIGS. 1A and 1B are main part configuration diagrams of a variable internal volume ratio type inverter task compressor of the present invention.
  • FIG. 2 is a diagram showing a capacity-internal volume ratio control system in the variable internal volume ratio type Inverter Task Compressor shown in FIG.
  • FIG. 3 is a diagram showing a capacity / internal volume ratio control system different from FIG.
  • FIG. 4 is a diagram showing the relationship between the compression ratio and the optimum internal volume ratio for each operating frequency.
  • FIG. 5 is a diagram showing the relationship between the refrigeration capacity and the compressor efficiency for each compression ratio.
  • FIGS. 6A and 6B are diagrams showing the relationship between the internal volume and the pressure in the screw compressor.
  • FIG. 7 is a cross-sectional view of a conventional variable internal volume ratio type screw-type compressor. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a schematic configuration diagram of a variable internal volume ratio type impeller task compressor of the present embodiment.
  • 1A shows a low internal volume ratio
  • FIG. 1B shows a high internal volume ratio.
  • reference numeral 11 denotes an electric motor, which includes a stator 12 fixed to a casing (not shown) and a rotor 13 fixed to one end of a main shaft 14 and rotating.
  • the motor 11 is inverter-driven by an inverter 15. Both ends of the main shaft 14 are supported by bearings 16 and 17, and a screw rotor 18 is attached to the other end of the main shaft 14. Then, when the main shaft 14 is rotated by the electric motor 11, the screw rotor 18 is rotated, and the suction gas is compressed by a screw groove (not shown) on the outer peripheral surface. It has a discharge port 20 of a predetermined length in the axial direction, and a cylindrical slide valve 19 facing the outer peripheral surface of the screw rotor 18.
  • the gas compressed by the screw rotor 18 is supplied to the discharge port 2. Discharged from 0.
  • One end of a plurality of rods 22 slidably supported by a support plate 21 is attached to an end surface of the slide valve 19 on the side opposite to the electric motor 11.
  • the other end of each rod 22 is attached to one connecting plate 23.
  • a cylinder 24 is provided at the center of the surface of the support plate 21 on the anti-screw rotor 18 side, and a biston rod 26 attached to the anti-screw rotor 18 side of the biston 25 stored in the cylinder 24
  • the connecting plate 23 is attached to the tip of the.
  • the working fluid supplied to and discharged from the working chambers on both sides of the piston 25 in the cylinder 24 is controlled by the fluid control device 28 based on a control signal from the compression section controller 27.
  • the specific configuration of the fluid control device 28 is such that when the internal volume ratio is reduced, the piston 25 is moved toward the screw rotor 18 as shown in FIG. In the case of raising, it is particularly limited as long as the configuration is such that the biston 25 is moved to the side opposite to the screw rotor 18 as shown in FIG. 1B. It is not specified.
  • the capacity adjustment for the load is performed by controlling the number of revolutions of the electric motor 11 by the inverter 15. By doing so, there is no need to perform unload control at the time of capacity adjustment, and a decrease in operating efficiency can be suppressed. Furthermore, the capacity control valve for controlling the capacity can be eliminated, and the valve control mechanism can be simplified.
  • the position of the slide valve 19 is controlled by the compression section controller 27 so that the above-mentioned variable internal volume ratio has the highest efficiency according to the operation state.
  • the slide valve 19 that is, the start position of the discharge port 20
  • the slide valve 19 is moved to the axial motor 11 side, so that the end point of the compression process in the compression section is accelerated. Discharge gas quickly.
  • the slide valve 19 that is, the start position of the discharge port 20
  • the slide valve 19 is moved to the axial piston 25 side to delay the end of the compression process in the compression section and perform compression.
  • the gas is discharged late. That is, in the present embodiment, the variable internal volume ratio valve is configured by the slide valve 19.
  • the suction gas sucked from the suction port is Then, it passes through the motor 11 and is guided to the screw port 18. Then, the fluid is compressed by the screw groove formed on the outer peripheral surface of the screw rotor 18 and is discharged from the discharge port 20 of the slide valve 19.
  • FIG. 2 is a diagram illustrating a capacity / internal volume ratio control system in the variable internal volume ratio type Inverter Task compressor.
  • a screw compressor 31 mounted on a refrigerator to compress and heat a refrigerant will be described as an example.
  • the refrigerator includes a screw compressor 31, a condenser 32, an expansion valve 33, and an evaporator 34, which are sequentially connected in a ring shape.
  • the high-temperature and high-pressure refrigerant discharged from the screw compressor 31 is subjected to heat exchange with cooling water or air in the condenser 32. It is condensed and supplied to the expansion valve 33 as a low-temperature and high-pressure liquid refrigerant. Then, the low-temperature and low-pressure liquid refrigerant decompressed by the expansion valve 33 evaporates by heat exchange with water in the evaporator 34 and returns to the screw compressor 31 as a low-pressure gas. Then, the cold water cooled by the evaporator 34 is used for cooling.
  • a temperature sensor 35 is attached to the refrigerant pipe of the evaporator 34.
  • a detection signal representing the cooling water temperature Tw of 35 is input to the rotation speed output unit 37 of the control device 36. Then, the rotation speed output unit 37 uses the cooling water temperature Tw based on the input detection signal as information on the load side, for example, based on the difference from the set temperature, for the motor 11 for obtaining the required refrigerating capacity.
  • the rotation frequency Hz is calculated and output to the optimum internal volume ratio output section 38 and the inverter 15 of the control device 36.
  • the inverter 15 controls the rotation speed of the electric motor 11 based on the rotation frequency Hz received above. In this way, the capacity is adjusted for the load.
  • a low pressure side pressure sensor 40 is mounted on the suction side of the screw compression section 39 including the screw rotor 18 and the slide valve 19, and a high pressure side pressure sensor 41 is mounted on the discharge side. Then, a detection signal indicating the low pressure LP from the low pressure side pressure sensor 40 and a detection signal indicating the high pressure HP from the high pressure side pressure sensor 41 are input to the optimum internal volume ratio output unit 38. Then, the optimum internal volume ratio output unit 38 detects the operation status after setting the rotation speed of the motor 11 based on the low pressure LP on the suction side and the high pressure HP on the discharge side based on the input detection signal. You.
  • the compression unit controller 27 controls the operation of the fluid control device 28 based on the received internal volume ratio.
  • the internal volume ratio control according to the operating condition is performed.
  • the configuration of the fluid control device 28 includes an element (such as an external drive motor for operating a pilot valve) that performs an operation proportional to the axial movement of the slide valve 19, Can detect the position of the slide valve 19 based on the operation position of the above element.
  • the detection signal indicating the position SV of the slide valve 19 from the fluid control device 28 is transmitted to the optimal internal volume ratio via the compression unit controller 27 or directly.
  • Input to output section 38 Then, the optimum internal volume ratio output section 38 obtains the current internal volume ratio value based on the received position SV of the slide valve 19, and performs feedback control of the optimum internal volume ratio. By doing so, variable internal volume ratio control can be performed with high accuracy.
  • the optimal internal volume ratio output unit 38 is The output internal volume ratio value from the start is integrated. Then, feedback control can be performed by calculating the control amount ⁇ I to the optimum internal volume ratio value using the integrated ⁇ partial volume ratio value as the current internal volume ratio value.
  • FIG. 3 is a diagram showing a capacity / internal volume ratio control system different from FIG.
  • the screw compressor 31 is also mounted on the refrigerator.
  • the control device 51 and the inverter 54 have different configurations from those in FIG.
  • the same members as those in FIG. 2 are denoted by the same reference numerals, and the operation of the control device 51 and the inverter 54 will be mainly described.
  • the detection signal indicating the cooling water temperature from the temperature sensor 35 is input to the rotation speed output unit 52 of the control device 51.
  • the detection signal indicating the low pressure LP from the low pressure side pressure sensor 40 and the detection signal indicating the high pressure HP from the high pressure side pressure sensor 41 are output to the optimum internal volume ratio output section 53 of the controller 51. Is entered. Then, the rotation frequency output section 52 calculates the rotation frequency Hz of the motor 11 for obtaining the required refrigerating capacity based on the cooling water temperature Tw, and the inverter 54 controls the rotation number of the motor 11. . Thus, the capacity adjustment for the load is performed.
  • the inverter 54 in the present embodiment is capable of detecting the drive voltage V and the drive current A (or the drive power W) of the motor 11, and detects the detected drive voltage V and drive current A. Or the drive power W) is returned to the rotation speed output unit 52. Then, the rotation frequency output unit 52 converts the calculated rotation frequency Hz and the received drive voltage V and drive current A (or the drive power W) into the optimum internal volume ratio output unit 53. Sent out.
  • the optimum internal volume ratio output section 53 is connected to the low pressure LP and high pressure HP from the pressure sensors 40 and 41 and the rotation from the rotation speed output section 52, as in the case of FIG. Calculation processing is performed based on the rotation frequency Hz and the position SV of the slide valve 19 from the fluid control device 28 to calculate the control amount ⁇ VI to the optimal internal volume ratio, and the compression controller 27 Output to
  • the change in the drive voltage V and the drive current A (or drive power W) from the rotation speed output unit 52 is stored by the optimum external volume ratio output unit 53. Then, while repeating the above-described internal volume ratio operation, the internal volume ratio control is performed so that the drive voltage V and the drive current A or the drive power W) are minimized.
  • the operation of the fluid control device 28 is controlled by the compression unit controller 27 based on the received control amount ⁇ VI, and the internal volume ratio according to the operating condition is reduced. Feedback controlled.
  • the optimum internal volume ratio output section 53 is The control amount ⁇ VI of the optimum internal volume ratio value is calculated using the integrated internal volume ratio value obtained by integrating the output internal volume ratio values from the time of startup as the current internal volume ratio value.
  • FIG. 4 shows the compression ratio represented by the ratio ( ⁇ ⁇ / L ⁇ ) between the high pressure ⁇ ⁇ ⁇ from the high pressure side pressure sensor 41 and the low pressure L ⁇ ⁇ from the low pressure side pressure sensor 40, and the optimal internal volume ratio.
  • the relationship between the compression ratio, the optimal internal volume ratio, and the operating frequency Hz is determined for each refrigerant, and the arithmetic expression for performing the arithmetic processing by the optimal internal volume ratio output units 38, 53 shown in FIGS. 2 and 3 is used. Incorporate the above relationship into
  • control amount ⁇ I to the optimal internal volume ratio at the current rotation frequency Hz can be accurately calculated by the arithmetic processing by the optimal internal volume ratio output sections 38, 53.
  • the electric motor 1 in the screw compressor is used.
  • the axial position of the slide valve 19 that defines the discharge start position is supplied to and discharged from the working chamber in the cylinder 24 by the fluid control device 28 based on a control signal from the compression unit controller 27. Control by controlling the working fluid.
  • the capacity adjustment for the load is performed by the rotation frequency output units 37, 52 constituting the control devices 36, 51, by the rotation frequency for obtaining the refrigerating capacity that requires the cooling water temperature T as information on the load side.
  • Hz is calculated, and the inverters 15 and 54 control the rotation speed of the electric motor 11 so as to be at this rotation frequency Hz. Therefore, it is possible to eliminate the necessity of the unload control at the time of capacity adjustment, and to suppress a decrease in operation efficiency.
  • the valve control mechanism can be simplified by eliminating the capacity control valve for performing the capacity control.
  • variable internal volume ratio is adjusted by the optimum internal volume ratio output sections 38, 53 of the control devices 36, 51 to the low pressure LP on the suction side, the high pressure HP on the discharge side, and the rotational frequency Hz.
  • Figure 5 shows the relationship between refrigeration capacity and compressor efficiency.
  • the horizontal axis shows the refrigerating capacity Q, expressed as a percentage with the refrigerating capacity at 60 Hz in a variable internal volume ratio type screw compressor using both the conventional variable internal volume ratio and unload control as 100%. hand I have.
  • the vertical axis shows compressor efficiency. Further, the compression ratio is changed to 2.1, 3.9, 5.5, 7.9.
  • variable internal volume ratio type inverter task-type compressor using the variable internal volume ratio and inverter control in this embodiment in combination
  • a conventional variable internal volume ratio and unload control are used together.
  • the compressor efficiency can be increased at any compression ratio at a refrigerating capacity Q of 100% or less.
  • the lower the refrigerating capacity the greater the compressor efficiency can be increased, and a greater effect can be obtained.
  • capacity adjustment with respect to load is performed by inverter control. Therefore, the ability adjustment of 100% or more can be performed.
  • the capacity adjustment of 100% or more cannot be performed naturally.
  • Figure 6 shows the relationship between the internal volume and the pressure at a frequency of 30 Hz ( Figure 6A) and at a frequency of 90 Hz ( Figure 6B).
  • the dotted line in the figure is a curve showing the relationship between the internal volume and the pressure when the internal volume ratio is fixed to the optimum internal volume ratio at a frequency of 60 Hz.
  • the one-point line is a curve showing the relationship between the internal volume and the pressure during theoretical adiabatic compression.
  • variable internal volume ratio as shown by the solid line, compression insufficiency that occurred at a frequency of 30 Hz at a fixed internal volume ratio is eliminated, and pressure fluctuations are reduced.
  • the width can be reduced.
  • the frequency is 90 Hz at the time of the fixed volume ratio
  • the width of the pressure fluctuation can be reduced by eliminating the over-compression that has occurred.
  • the description of the capacity / internal volume ratio control system in the variable internal volume ratio type impeller screw compressor is applied to a refrigerator as an example. It is not limited to this.
  • the detection signals input to the rotation speed output units 37 and 52 of the control devices 36 and 51 only need to be signals indicating the state of the load.

Abstract

Regulating compression capability to a load is performed by a inverter (15) that regulates the revolution number of an electric motor (11). This makes unload control in the capability regulation unnecessary, preventing operational efficiency from lowering. Further, a capacity control valve for capacity control is eliminated for a simplified valve controlling mechanism. Regulating a variable inner volume ratio achieves the highest compressor efficiency corresponding to operating condition (capability). When a low inner volume ratio command is issued, a slide valve (19) is moved by a compression portion controller (27) in an axial direction toward the electric motor (11). This advances the completion time of a compression step to advance the discharge of a compressed gas. When a high inner volume ratio command is issued, the slide valve (19) is moved in an axial direction toward a piston (25), which delays the time of completion of the compression step to delay the discharge of a compression gas.

Description

明 細 書 可変内部容積比式ィンバータスクリユー圧縮機 技術分野  Description Variable Internal Volume Ratio Type Inverter Cry Compressor Technical Field
この発明は、 スクリユー圧縮機の吸入容積と吐出容積との比である内部容積比 を可変にした可変内部容積比式ィンバータスクリユー圧縮機に関するものである。 背景技術  BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a variable internal volume ratio type inverter task compressor in which an internal volume ratio which is a ratio between a suction volume and a discharge volume of a screw compressor is made variable. Background art
従来より、 上記内部容積比を可変にした可変内部容積比式スクリユー型圧縮機 として、 図 7に示すようなものがある(例えば、 特許第 3 1 5 9 7 6 2号公報参 照)。  Conventionally, there is a variable internal volume ratio type screw-type compressor in which the internal volume ratio is made variable as shown in FIG. 7 (for example, see Japanese Patent No. 3159762).
この可変内部容積比式スクリュー型圧縮機では、 上記内部容積比を変更する必 要がある場合には、 ステップモータ 1によってロッド 2を回転させて可変 V I弁 3を例えば後退させる。 その際に、 容量制御弁 4は、 可変 V I弁 3の後退と共に 後退し、 可変 V I弁 3が新たな設定位置に固定された場合には可変 V I弁 3に接 触した状態で再び固定される。 こうして、 上記容量制御弁 4の先端は、 変動後の 内部容積比に対応した位置まで後退して、 新たに吐出ポート 5の開口度を規定す る。  In the variable internal volume ratio type screw compressor, when it is necessary to change the internal volume ratio, the rod 2 is rotated by the step motor 1 to retreat the variable VI valve 3, for example. At that time, the displacement control valve 4 retreats with the retraction of the variable VI valve 3, and when the variable VI valve 3 is fixed to a new set position, it is fixed again in contact with the variable VI valve 3. . In this way, the tip of the displacement control valve 4 retreats to a position corresponding to the changed internal volume ratio, and newly defines the opening degree of the discharge port 5.
この場合、 上記内部容積比は、 運転時のロータとケーシング 7内壁とで形成さ れる空間が吐出空間に連通する直前の圧力 P dlを検出し、 この検出圧力 P dlと吐 出圧力 との差 Δ Pを最小にするようにステップモータ 1に信号を与えること によって指定される。 あるいは、 運転時の吸入圧九吐出圧力等のパラメータを 制御装置 1 0で傾向解析することによって最適内部容積比を予測し、 この最適内 部容積比の値を表わす信号をステップモータ 1に与えることによって指定される。 上記構成において、 吸入孔 6から吸入された流体は、 ケーシング 7内において ォスメスロータ(図示せず)によつて圧縮された後に、 吐出ポート 5を経て吐出孔 8に吐出される。 In this case, the internal volume ratio is determined by detecting the pressure P dl immediately before the space formed by the rotor and the inner wall of the casing 7 communicates with the discharge space during operation, and calculating the difference between the detected pressure P dl and the discharge pressure. Specified by giving a signal to step motor 1 to minimize ΔP. Alternatively, the optimal internal volume ratio is predicted by performing a trend analysis of parameters such as the suction pressure and the discharge pressure during operation with the control device 10, and a signal representing the value of the optimal internal volume ratio is given to the step motor 1. Specified by In the above configuration, the fluid sucked from the suction hole 6 is compressed by the female rotor (not shown) in the casing 7 and then discharged to the discharge hole 8 through the discharge port 5.
この状態で、 可変内部容積比式スクリュー型圧縮機に掛る負荷が変動し、 容量 制御が必要となつた場合には、 その制御指令に基づいて油圧ピストン 9が前進動 作して容量制御弁 4を必要量だけ前進させるので、 可変 V I弁 3と容量制御弁 4 との間には隙間が生ずる。 そして、 圧縮途中の流体は可変 V I弁 3と容量制御弁 4との隙間から吸 則にバイパスされるのである。 In this state, the load on the variable internal volume ratio type screw compressor fluctuates, When control becomes necessary, the hydraulic piston 9 moves forward based on the control command to advance the capacity control valve 4 by the required amount, so that the variable VI valve 3 and the capacity control valve 4 Creates a gap. Then, the fluid in the middle of compression is bypassed in a suction manner from the gap between the variable VI valve 3 and the capacity control valve 4.
すなわち、 上記特許第 3 1 5 9 7 6 2号公報においては、 全負荷能力( 1 0 That is, in the above-mentioned Patent No. 31599762, the full load capacity (10 0
0 %ロード)時における運転時の高低圧力条件に合わせて最高の圧縮機効率にな るように、 容量制御弁 4から吐出する圧縮ガスの内部容積比を可変にしているの である。 The internal volume ratio of the compressed gas discharged from the displacement control valve 4 is made variable so as to achieve the highest compressor efficiency in accordance with the high and low pressure conditions during operation at 0% load).
しかしながら、 上記従来の特許第 3 1 5 9 7 6 2号公報に開示された可変内部 容積比式スクリユー型圧縮機においては、 以下のような問題がある。  However, the variable internal volume ratio type screw-type compressor disclosed in the above-mentioned conventional Japanese Patent No. 3159762 has the following problems.
すなわち、 上記従来の可変内部容積比式スクリユー型圧縮機における可変内部 容積比技術は、 運転時の高低圧力条件に合わせて最高の圧縮機効率になるように 吐出ポート 5から吐出される圧縮ガスの内部容積比を可変にしているが、 全負荷 能力( 1 0 0 %ロード)時に合わせた設定となっている。 そして、 部分負荷能力時 (パートロード時)においては、 圧縮途中の流体を可変 V I弁 3と容量制御弁 4と の隙間から吸入側にバイパスすることによつて、 能力調整 (アンロード制御)を行 つているために効率が悪 、と言う問題がある。  In other words, the variable internal volume ratio technology in the above-mentioned conventional variable internal volume ratio type screw-type compressor uses the compressed gas discharged from the discharge port 5 so that the maximum compressor efficiency is obtained in accordance with the high and low pressure conditions during operation. Although the internal volume ratio is variable, it is set to match the full load capacity (100% load). At the time of partial load capacity (part load), capacity adjustment (unload control) is performed by bypassing the fluid during compression from the gap between the variable VI valve 3 and the capacity control valve 4 to the suction side. There is a problem that the efficiency is low because of this.
また、 内部容積比を変更する可変 V I弁 3と容量制御を行う容量制御弁 4とを 備えているため、 内部容積比変更時の可変 V I弁 3制御機構と容量制御時の容量 制御弁 4制御機構とを個別に備える必要があり、 弁制御機構が複雑であると言う 問題もある。 発明の開示  In addition, since it has a variable VI valve 3 that changes the internal volume ratio and a capacity control valve 4 that performs capacity control, the variable VI valve 3 control mechanism when the internal volume ratio changes and the capacity control valve 4 control when the capacity is controlled There is a problem that the valve control mechanism must be provided separately and the valve control mechanism is complicated. Disclosure of the invention
そこで、 この発明の目的は、 負荷 (運転条件)に応じて常時最大効率運転が可能 な可変内部容積比式スクリユー型圧縮機を提供することにある。  Therefore, an object of the present invention is to provide a variable internal volume ratio type screw-type compressor capable of always operating at maximum efficiency according to the load (operating condition).
上記目的を達成するため、 この発明の可変内部容積比式ィンバータスクリユー 圧縮機は、 スクリュー圧縮部における圧縮工程の終了時点を変更することによつ て内部容積比を可変にする可変内部容積比弁と、 上記スクリユー圧縮部を回転駆 動する電動機と、 上記電動機の回転周波数を負荷に応じて制御するィンバータを 備えたことを特徴としている。 In order to achieve the above object, a variable internal volume ratio type inverter task compressor of the present invention has a variable internal volume in which the internal volume ratio is made variable by changing the end point of the compression process in the screw compression section. A ratio valve, a motor for driving the screw compression section in rotation, and an inverter for controlling the rotation frequency of the motor in accordance with the load. It is characterized by having.
上記構成によれば、 負荷に応じて圧縮能力を調整する場合には、 インバータに よって電動機の回転周波数が制御される。 こうして、 アンロード制御を行うこと なく能力調整が行われる。 そして、 調整された上記電動機の回転周波数に応じた 最高の圧縮機効率になるように、 可変内部容積比弁の開度が制御されて、 スクリ ユー圧縮部における圧縮工程の終了時点が設定される。 その結果、 負荷に応じて 常時最大効率運転が可能になる。  According to the above configuration, when adjusting the compression capacity according to the load, the rotation frequency of the electric motor is controlled by the inverter. Thus, the capacity adjustment is performed without performing the unload control. Then, the opening of the variable internal volume ratio valve is controlled so that the maximum compressor efficiency according to the adjusted rotation frequency of the electric motor is obtained, and the end point of the compression process in the screw compression unit is set. . As a result, maximum efficiency operation is always possible according to the load.
また、 この発明の可変内部容積比式インバータスクリュー圧縮機は、 上記スク リュ一圧縮部における吸入側圧力および吐出側圧力と上記電動機の回転周波数と に基づいて、 上記可変内部容積比弁の開度を制御する制御部を備えたことを特徴 としている。  Further, the variable internal volume ratio type inverter screw compressor according to the present invention is characterized in that the opening degree of the variable internal volume ratio valve is determined based on the suction side pressure and the discharge side pressure in the screw compression section and the rotation frequency of the electric motor. It is characterized by having a control unit for controlling
上記構成によれば、 上記可変内部容積比時には、 制御部によって、 上記スクリ ユー圧縮部における吸入側圧力および吐出側圧力と上記電動機の回転周波数とに 基づいて、 上記可変内部容積比弁の開度が制御される。 したがって、 予め定めら れた圧縮比と電動機の回転周波数と最適内部容積比との関係を用いることによつ て、 上記内部容積比が、 上記インバータによって調整された上記電動機の回転周 波数に応じた最高の圧縮機効率になるように、 的確且つ容易に制御される。 図面の簡単な説明  According to the above configuration, at the time of the variable internal volume ratio, the opening of the variable internal volume ratio valve is controlled by the control unit based on the suction side pressure and the discharge side pressure in the screw compression unit and the rotation frequency of the electric motor. Is controlled. Therefore, by using a predetermined relationship between the compression ratio, the rotation frequency of the motor, and the optimum internal volume ratio, the internal volume ratio is adjusted according to the rotation frequency of the motor adjusted by the inverter. It is controlled accurately and easily to achieve the highest compressor efficiency. BRIEF DESCRIPTION OF THE FIGURES
図 1 A, 1 Bは、 この発明の可変内部容積比式ィンバータスクリユー圧縮機に おける要部構成図である。  FIGS. 1A and 1B are main part configuration diagrams of a variable internal volume ratio type inverter task compressor of the present invention.
図 2は、 図 1に示す可変内部容積比式ィンバータスクリユー圧縮機における能 力 -内部容積比制御系を示す図である。  FIG. 2 is a diagram showing a capacity-internal volume ratio control system in the variable internal volume ratio type Inverter Task Compressor shown in FIG.
図 3は、 図 2とは異なる能力 ·内部容積比制御系を示す図である。  FIG. 3 is a diagram showing a capacity / internal volume ratio control system different from FIG.
図 4は、 圧縮比と最適内部容積比との各運転周波数毎の関係を示す図である。 図 5は、 冷凍能力と圧縮機効率との各圧縮比毎の関係を示す図である。  FIG. 4 is a diagram showing the relationship between the compression ratio and the optimum internal volume ratio for each operating frequency. FIG. 5 is a diagram showing the relationship between the refrigeration capacity and the compressor efficiency for each compression ratio.
図 6 A, 6 Bは、 スクリュー型圧縮機における内容積と圧力との関係を示す図 である。  FIGS. 6A and 6B are diagrams showing the relationship between the internal volume and the pressure in the screw compressor.
図 7は、 従来の可変内部容積比式スクリユー型圧縮機の断面図である。 発明を実施するための最良の形態 FIG. 7 is a cross-sectional view of a conventional variable internal volume ratio type screw-type compressor. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 この発明を図示の実施の形態により詳細に説明する。 図 1は、 本実施の 形態の可変内部容積比式ィンパータスクリユー圧縮機における概略構成図である。 尚、 図 1 Aは低内部容積比時を示しており、 図 1 Bは高內部容積比時を示してい る。  Hereinafter, the present invention will be described in detail with reference to the illustrated embodiments. FIG. 1 is a schematic configuration diagram of a variable internal volume ratio type impeller task compressor of the present embodiment. 1A shows a low internal volume ratio, and FIG. 1B shows a high internal volume ratio.
図 1において、 1 1は電動機であり、 ケーシング(図示せず)に対して固定され たステータ 1 2と主軸 1 4の一端側に固定されて回転するロータ 1 3とを有して いる。 電動機 1 1は、 インバータ 1 5によってインバータ駆動される。 上記主軸 1 4の両端は軸受 1 6, 1 7で支持されており、 主軸 1 4の他端側にはスクリュ 一ロータ 1 8が取り付けられている。 そして、 電動機 1 1によって主軸 1 4が回 転されるとスクリューロータ 1 8が回転して、 外周面のスクリュー溝(図示せず) によって吸入ガスが圧縮される。 軸方向に所定長の吐出口 2 0を有すると共に、 スクリューロータ 1 8の外周面に対向した円筒状のスライド弁 1 9が設けられて おり、 スクリューロータ 1 8で圧縮されたガスは吐出口 2 0から吐出される。 上記スライド弁 1 9の反電動機 1 1側の端面には支持板 2 1によって摺動自在 に支持された複数のロッド 2 2の一端が取り付けられている。 そして、 各ロッド 2 2の他端は 1枚の連結板 2 3に取り付けられている。 支持板 2 1における反ス クリユーロータ 1 8側の表面中央にはシリンダ 2 4が設けられ、 このシリンダ 2 4に収納されたビストン 2 5の反スクリユーロータ 1 8側に取り付けられたビス トンロッド 2 6の先端には、 連結板 2 3が取り付けられている。 こうして、 ビス トン 2 5の軸方向への移動に連れてビストンロッド 2 6,連結板 2 3および口ッ ド 2 2を介してスライド弁 1 9が軸方向へ移動するようになっている。  In FIG. 1, reference numeral 11 denotes an electric motor, which includes a stator 12 fixed to a casing (not shown) and a rotor 13 fixed to one end of a main shaft 14 and rotating. The motor 11 is inverter-driven by an inverter 15. Both ends of the main shaft 14 are supported by bearings 16 and 17, and a screw rotor 18 is attached to the other end of the main shaft 14. Then, when the main shaft 14 is rotated by the electric motor 11, the screw rotor 18 is rotated, and the suction gas is compressed by a screw groove (not shown) on the outer peripheral surface. It has a discharge port 20 of a predetermined length in the axial direction, and a cylindrical slide valve 19 facing the outer peripheral surface of the screw rotor 18. The gas compressed by the screw rotor 18 is supplied to the discharge port 2. Discharged from 0. One end of a plurality of rods 22 slidably supported by a support plate 21 is attached to an end surface of the slide valve 19 on the side opposite to the electric motor 11. The other end of each rod 22 is attached to one connecting plate 23. A cylinder 24 is provided at the center of the surface of the support plate 21 on the anti-screw rotor 18 side, and a biston rod 26 attached to the anti-screw rotor 18 side of the biston 25 stored in the cylinder 24 The connecting plate 23 is attached to the tip of the. Thus, as the biston 25 moves in the axial direction, the slide valve 19 moves in the axial direction via the piston rod 26, the connecting plate 23, and the port 22.
上記シリンダ 2 4内におけるピストン 2 5の両側の作動室に給排される作動流 体は、 圧縮部コントローラ 2 7からの制御信号に基づいて、 流体制御装置 2 8に よって制御される。 尚、 上記流体制御装置 2 8の具体的構成は、 内部容積比を低 下させる場合には、 図 1 Aに示すごとくピストン 2 5をスクリユーロータ 1 8側 に移動させる一方、 内部容積比を上昇させる場合には、 図 1 Bに示すごとくビス トン 2 5を反スクリューロータ 1 8側に移動させる構成を有していれば、 特に限 定するものではない。 The working fluid supplied to and discharged from the working chambers on both sides of the piston 25 in the cylinder 24 is controlled by the fluid control device 28 based on a control signal from the compression section controller 27. The specific configuration of the fluid control device 28 is such that when the internal volume ratio is reduced, the piston 25 is moved toward the screw rotor 18 as shown in FIG. In the case of raising, it is particularly limited as long as the configuration is such that the biston 25 is moved to the side opposite to the screw rotor 18 as shown in FIG. 1B. It is not specified.
上記構成の可変内部容積比式インバータスクリユー圧縮機においては、 負荷に 対する能力調整は、 インバータ 1 5による電動機 1 1の回転数制御によって行う。 こうすることによって、 能力調整時にアンロード制御を行う必要が無く、 運転効 率の低下を抑制できる。 さらに、 容量制御を行う容量制御弁を無くすことができ、 弁制御機構を簡素化することができるのである。  In the variable internal volume ratio type inverter screw compressor having the above configuration, the capacity adjustment for the load is performed by controlling the number of revolutions of the electric motor 11 by the inverter 15. By doing so, there is no need to perform unload control at the time of capacity adjustment, and a decrease in operating efficiency can be suppressed. Furthermore, the capacity control valve for controlling the capacity can be eliminated, and the valve control mechanism can be simplified.
これに対して、 上記可変内部容積比は、 運転状態に応じた最高の効率になるよ うに、 スライド弁 1 9の位置を圧縮部コントローラ 2 7によって制御するのであ る。 そして、 低内部容積比指令時には、 スライド弁 1 9 (つまり、 吐出口 2 0の 開始位置)を軸方向電動機 1 1側に移動させることによって、 圧縮部における圧 縮工程の終了時点を速めて圧縮ガスを早く吐出させる。 一方、 高内部容積比指令 時には、 スライド弁 1 9 (つまり、 吐出口 2 0の開始位置)を軸方向ピストン 2 5 側に移動させることによって、 圧縮部における圧縮工程の終了時点を遅めて圧縮 ガスを遅く吐出させるのである。 すなわち、 本実施の形態においては、 上記可変 内部容積比弁をスライド弁 1 9によって構成するのである。  On the other hand, the position of the slide valve 19 is controlled by the compression section controller 27 so that the above-mentioned variable internal volume ratio has the highest efficiency according to the operation state. At the time of the low internal volume ratio command, the slide valve 19 (that is, the start position of the discharge port 20) is moved to the axial motor 11 side, so that the end point of the compression process in the compression section is accelerated. Discharge gas quickly. On the other hand, at the time of the high internal volume ratio command, the slide valve 19 (that is, the start position of the discharge port 20) is moved to the axial piston 25 side to delay the end of the compression process in the compression section and perform compression. The gas is discharged late. That is, in the present embodiment, the variable internal volume ratio valve is configured by the slide valve 19.
そして、 上述のようにして、 上記インバータ 1 5によって電動機 1 1の回転数 が設定され、 圧縮部コントローラ 2 7によってスライド弁 1 9の位置が設定され ると、 吸入口から吸入された吸入ガスは、 電動機 1 1内を通過してスクリュー口 ータ 1 8に導かれる。 そして、 スクリューロータ 1 8の外周面に形成された上記 スクリュー溝によって圧縮され、 スライド弁 1 9の吐出口 2 0から吐出されるの である。  As described above, when the rotation speed of the electric motor 11 is set by the inverter 15 and the position of the slide valve 19 is set by the compression unit controller 27, the suction gas sucked from the suction port is Then, it passes through the motor 11 and is guided to the screw port 18. Then, the fluid is compressed by the screw groove formed on the outer peripheral surface of the screw rotor 18 and is discharged from the discharge port 20 of the slide valve 19.
以下、 本実施の形態における電動機 1 1の回転数制御およびスライド弁 1 9の 位置制御について述べる。  Hereinafter, the rotation speed control of the electric motor 11 and the position control of the slide valve 19 in the present embodiment will be described.
図 2は、 本可変内部容積比式ィンバータスクリユー圧縮機における能力 '内部 容積比制御系を示す図である。 図 2においては、 冷凍機に搭載されて冷媒を圧縮 加熱するスクリユー圧縮機 3 1を例に説明する。  FIG. 2 is a diagram illustrating a capacity / internal volume ratio control system in the variable internal volume ratio type Inverter Task compressor. In FIG. 2, a screw compressor 31 mounted on a refrigerator to compress and heat a refrigerant will be described as an example.
上記冷凍機は、 スクリュ一圧縮機 3 1 ,凝縮器 3 2 ,膨張弁 3 3および蒸発器 3 4が順次環状に接続されて構成されている。 そして、 スクリュー圧縮機 3 1から 吐出された高温高圧の冷媒は凝縮器 3 2で冷却水または空気との熱交換によって 凝縮され、 低温高圧の液冷媒となって膨張弁 3 3に供給される。 そして、 膨張弁 3 3で減圧された低温低圧の液冷媒は、 蒸発器 3 4で水との熱交換によつて蒸発 し、 低圧の気体となってスクリュー圧縮機 3 1に戻る。 そして、 蒸発器 3 4で冷 却された冷水が冷房に用いられる。 The refrigerator includes a screw compressor 31, a condenser 32, an expansion valve 33, and an evaporator 34, which are sequentially connected in a ring shape. The high-temperature and high-pressure refrigerant discharged from the screw compressor 31 is subjected to heat exchange with cooling water or air in the condenser 32. It is condensed and supplied to the expansion valve 33 as a low-temperature and high-pressure liquid refrigerant. Then, the low-temperature and low-pressure liquid refrigerant decompressed by the expansion valve 33 evaporates by heat exchange with water in the evaporator 34 and returns to the screw compressor 31 as a low-pressure gas. Then, the cold water cooled by the evaporator 34 is used for cooling.
上記蒸発器 3 4の冷媒管には温度センサ 3 5が取り付けられ、 この温度センサ A temperature sensor 35 is attached to the refrigerant pipe of the evaporator 34.
3 5カゝらの冷却水温 Twを表す検出信号が制御装置 3 6の回転数出力部 3 7に入 力される。 そうすると、 回転数出力部 3 7は、 入力された検出信号に基づく冷却 水温 Twを負荷側の情報として、 例えば設定温度との差に基づいて、 必要とする 冷凍能力を得るための電動機 1 1の回転周波数 Hzを算出し、 制御装置 3 6の最 適内部容積比出力部 3 8とィンバータ 1 5とに出力する。 ィンバータ 1 5は、 上 記受け取った回転周波数 Hzに基づいて電動機 1 1の回転数を制御する。 こうし て、 負荷に対する能力調整が行われるのである。 A detection signal representing the cooling water temperature Tw of 35 is input to the rotation speed output unit 37 of the control device 36. Then, the rotation speed output unit 37 uses the cooling water temperature Tw based on the input detection signal as information on the load side, for example, based on the difference from the set temperature, for the motor 11 for obtaining the required refrigerating capacity. The rotation frequency Hz is calculated and output to the optimum internal volume ratio output section 38 and the inverter 15 of the control device 36. The inverter 15 controls the rotation speed of the electric motor 11 based on the rotation frequency Hz received above. In this way, the capacity is adjusted for the load.
一方、 上記スクリューロータ 1 8およびスライド弁 1 9を含むスクリュー圧縮 部 3 9の吸込み側には低圧側圧カセンサ 4 0が取り付けられ、 吐出側には高圧側 圧力センサ 4 1が取り付けられている。 そして、 低圧側圧力センサ 4 0からの低 圧力 L Pを表す検出信号と、 高圧側圧力センサ 4 1からの高圧力 H Pを表す検出 信号とが、 最適内部容積比出力部 3 8に入力される。 そうすると、 最適内部容積 比出力部 3 8は、 入力された検出信号に基づく吸込み側の低圧力 L Pと吐出側の 高圧力 H Pとに基づいて、 電動機 1 1の回転数設定後における運転状況を検知す る。 そして、 低圧力 L Pと高圧力 H Pと回転数出力部 3 7からの回転周波数 Hz とに基づいて演算処理を行い、 現在の回転周波数 Hzにおける最適内部容積比を 算出して圧縮部コントローラ 2 7に出力する。 そうすると、 圧縮部コントローラ 2 7は、 上記受け取った内部容積比に基づいて流体制御装置 2 8の動作を制御す る。 こうして、 運転状況に応じた内部容積比制御が行われるのである。  On the other hand, a low pressure side pressure sensor 40 is mounted on the suction side of the screw compression section 39 including the screw rotor 18 and the slide valve 19, and a high pressure side pressure sensor 41 is mounted on the discharge side. Then, a detection signal indicating the low pressure LP from the low pressure side pressure sensor 40 and a detection signal indicating the high pressure HP from the high pressure side pressure sensor 41 are input to the optimum internal volume ratio output unit 38. Then, the optimum internal volume ratio output unit 38 detects the operation status after setting the rotation speed of the motor 11 based on the low pressure LP on the suction side and the high pressure HP on the discharge side based on the input detection signal. You. Then, a calculation process is performed based on the low pressure LP, the high pressure HP, and the rotation frequency Hz from the rotation speed output unit 37, and an optimum internal volume ratio at the current rotation frequency Hz is calculated. Output. Then, the compression unit controller 27 controls the operation of the fluid control device 28 based on the received internal volume ratio. Thus, the internal volume ratio control according to the operating condition is performed.
ところで、 上記流体制御装置 2 8の構成が、 スライド弁 1 9の軸方向への移動 に比例した動作を行う要素 (パイ口ット弁を操作する外部駆動モータ等)を有して いる場合には、 上記要素の動作位置によってスライド弁 1 9の位置を検知するこ とができる。 その場合には、 流体制御装置 2 8からのスライド弁 1 9の位置 S V を表す検出信号を、 圧縮部コントローラ 2 7を介してまたは直接最適内部容積比 出力部 3 8に入力する。 そして、 最適内部容積比出力部 3 8では、 上記受け取つ たスライド弁 1 9の位置 S Vに基づいて現在の内部容積比値を求めて、 最適内部 容積比 をフィードバック制御するのである。 こうすることによって、 精度良く 可変内部容積比制御を行うことができるのである。 By the way, when the configuration of the fluid control device 28 includes an element (such as an external drive motor for operating a pilot valve) that performs an operation proportional to the axial movement of the slide valve 19, Can detect the position of the slide valve 19 based on the operation position of the above element. In this case, the detection signal indicating the position SV of the slide valve 19 from the fluid control device 28 is transmitted to the optimal internal volume ratio via the compression unit controller 27 or directly. Input to output section 38. Then, the optimum internal volume ratio output section 38 obtains the current internal volume ratio value based on the received position SV of the slide valve 19, and performs feedback control of the optimum internal volume ratio. By doing so, variable internal volume ratio control can be performed with high accuracy.
尚、 上記流体制御装置 2 8の構成が、 スライド弁 1 9の位置を検知できない構 成 (例えば、 配管と電磁弁とで構成)である場合には、 最適内部容積比出力部 3 8 は、 起動時からの出力内部容積比値を積算しておく。 そして、 この積算內部容積 比値を現在の内部容積比値として最適内部容積比値への制御量 Δ ν Iを算出する ことによって、 フィードバック制御を行うことができる。  When the configuration of the fluid control device 28 is a configuration that cannot detect the position of the slide valve 19 (for example, a configuration including a pipe and a solenoid valve), the optimal internal volume ratio output unit 38 is The output internal volume ratio value from the start is integrated. Then, feedback control can be performed by calculating the control amount ΔνI to the optimum internal volume ratio value using the integrated 內 partial volume ratio value as the current internal volume ratio value.
図 3は、 図 2とは異なる能力 ·内部容積比制御系を示す図である。 図 3におい てもスクリュー圧縮機 3 1を冷凍機に搭載している。 また、 制御装置 5 1および インバータ 5 4は図 2とは異なる構成を有している。 以下、 図 2と同じ部材には 同じ番号を付して制御装置 5 1およびィンバータ 5 4の動作について主に説明す る。  FIG. 3 is a diagram showing a capacity / internal volume ratio control system different from FIG. In FIG. 3, the screw compressor 31 is also mounted on the refrigerator. The control device 51 and the inverter 54 have different configurations from those in FIG. Hereinafter, the same members as those in FIG. 2 are denoted by the same reference numerals, and the operation of the control device 51 and the inverter 54 will be mainly described.
図 2の場合と同様に、 温度センサ 3 5からの冷却水温 を表す検出信号が制 御装置 5 1の回転数出力部 5 2に入力される。 また、 低圧側圧力センサ 4 0から の低圧力 L Pを表す検出信号と高圧側圧カセンサ 4 1からの高圧力 H Pを表す検 出信号とが、 制御装置 5 1の最適内部容積比出力部 5 3に入力される。 そして、 回転数出力部 5 2によって、 冷却水温 Twに基づいて必要とする冷凍能力を得る ための電動機 1 1の回転周波数 Hzが算出され、 インバータ 5 4によって電動機 1 1の回転数が制御される。 こうして、 負荷に対する能力調整が行われる。 本実施の形態におけるィンバータ 5 4は、 上記電動機 1 1の駆動電圧 Vおよび 駆動電流 Aを(または駆動電力 Wを)検出可能になっており、 この検出した駆動電 圧 Vおよび駆動電流 Aをほたは駆動電力 Wを)回転数出力部 5 2に返送する。 そ して、 回転数出力部 5 2によって、 上記算出された回転周波数 Hzと上記受け取 つた駆動電圧 Vおよび駆動電流 Aとが(または駆動電力 Wとが)、 最適内部容積比 出力部 5 3に送出される。  As in the case of FIG. 2, the detection signal indicating the cooling water temperature from the temperature sensor 35 is input to the rotation speed output unit 52 of the control device 51. In addition, the detection signal indicating the low pressure LP from the low pressure side pressure sensor 40 and the detection signal indicating the high pressure HP from the high pressure side pressure sensor 41 are output to the optimum internal volume ratio output section 53 of the controller 51. Is entered. Then, the rotation frequency output section 52 calculates the rotation frequency Hz of the motor 11 for obtaining the required refrigerating capacity based on the cooling water temperature Tw, and the inverter 54 controls the rotation number of the motor 11. . Thus, the capacity adjustment for the load is performed. The inverter 54 in the present embodiment is capable of detecting the drive voltage V and the drive current A (or the drive power W) of the motor 11, and detects the detected drive voltage V and drive current A. Or the drive power W) is returned to the rotation speed output unit 52. Then, the rotation frequency output unit 52 converts the calculated rotation frequency Hz and the received drive voltage V and drive current A (or the drive power W) into the optimum internal volume ratio output unit 53. Sent out.
そうすると、 上記最適内部容積比出力部 5 3は、 図 2の場合と同様に、 圧力セ ンサ 4 0, 4 1からの低圧力 L Pおよび高圧力 H Pと回転数出力部 5 2からの回 転周波数 Hzと流体制御装置 2 8からのスライド弁 1 9の位置 S Vとに基づいて 演算処理を行い、 最適内部容積比への制御量 Δ V Iを算出して、 圧縮部コント口 ーラ 2 7に出力する。 Then, the optimum internal volume ratio output section 53 is connected to the low pressure LP and high pressure HP from the pressure sensors 40 and 41 and the rotation from the rotation speed output section 52, as in the case of FIG. Calculation processing is performed based on the rotation frequency Hz and the position SV of the slide valve 19 from the fluid control device 28 to calculate the control amount ΔVI to the optimal internal volume ratio, and the compression controller 27 Output to
さらに、 本実施の形態においては、 上記最適內部容積比出力部 5 3によって、 回転数出力部 5 2からの駆動電圧 Vおよび駆動電流 A (または駆動電力 W)の変化 推移が記憶される。 そして、 上述した内部容積比動作を繰り返しながら、 駆動電 圧 Vおよび駆動電流 Aほたは駆動電力 W)が最小になるように内部容積比制御を 行うのである。  Further, in the present embodiment, the change in the drive voltage V and the drive current A (or drive power W) from the rotation speed output unit 52 is stored by the optimum external volume ratio output unit 53. Then, while repeating the above-described internal volume ratio operation, the internal volume ratio control is performed so that the drive voltage V and the drive current A or the drive power W) are minimized.
以後、 図 2の場合と同様に、 上記圧縮部コントローラ 2 7によって、 上記受け 取つた制御量 Δ V Iに基づいて流体制御装置 2 8の動作が制御されて、 運転状況 に応じた内部容積比がフィードバック制御される。  Thereafter, as in the case of FIG. 2, the operation of the fluid control device 28 is controlled by the compression unit controller 27 based on the received control amount ΔVI, and the internal volume ratio according to the operating condition is reduced. Feedback controlled.
尚、 その場合に、 図 2の場合と同様に、 上記流体制御装置 2 8の構成がスライ ド弁 1 9の位置を検知できない構成である場合には、 最適内部容積比出力部 5 3 は、 起動時からの出力内部容積比値を積算した積算内部容積比値を現在の内部容 積比値として、 最適内部容積比値の制御量 Δ V Iを算出するのである。  In this case, as in the case of FIG. 2, if the configuration of the fluid control device 28 cannot detect the position of the slide valve 19, the optimum internal volume ratio output section 53 is The control amount ΔVI of the optimum internal volume ratio value is calculated using the integrated internal volume ratio value obtained by integrating the output internal volume ratio values from the time of startup as the current internal volume ratio value.
ところで、 図 2および図 3に示す制御装置 3 6 , 5 1の最適内部容積比出力部 3 8 , 5 3においては、 演算処理を行って最適内部容積比への制御量 A V Iを算 出するようにしている。 し力、しな力 ら、 低圧側圧力センサ 4 0からの低圧力 L P と、 高圧側圧力センサ 4 1からの高圧力 H Pと、 回転数出力部 3 7 , 5 2力、らの 回転周波数 Hzとを、 順次メモリに格納しておく。 そして、 低圧力 L Pと高圧力 H Pと回転周波数 Hzとを前回の内部容積比動作時の低圧力 L Pと高圧力 H Pと 回転周波数 Hzと比較し、 それらの変化の推移に基づいて最適内部容積比への制 御量 Δ ν Iを求めるようにすることも可能である。  By the way, in the optimum internal volume ratio output sections 38, 53 of the control devices 36, 51 shown in FIGS. 2 and 3, arithmetic processing is performed to calculate the control amount AVI to the optimum internal volume ratio. I have to. Low pressure LP from the low pressure side pressure sensor 40, high pressure HP from the high pressure side pressure sensor 41, and rotation frequency output section 37, 52 And are sequentially stored in the memory. Then, the low pressure LP, the high pressure HP, and the rotation frequency Hz are compared with the low pressure LP, the high pressure HP, and the rotation frequency Hz during the previous operation of the internal volume ratio. It is also possible to obtain the control amount Δν I for
図 4は、 上記高圧側圧カセンサ 4 1からの高圧力 Η Ρと低圧側圧カセンサ 4 0 からの低圧力 L Ρとの比(Η Ρ / L Ρ )で表わされる圧縮比と、 最適内部容積比と の、 運転周波数 Hz (= 3 O Hz, 6 O Hz, 9 O Hz)毎の関係を示す。 図 4中直線は、 V I = (H P/L P) 1/k ( k :冷媒比熱比) で示される理論値である。 このような 圧縮比と最適内部容積比と運転周波数 Hzとの関係を冷媒毎に求め、 図 2および 図 3に示す最適内部容積比出力部 3 8 , 5 3によって演算処理を行う際の演算式 に上記関係を盛り込むのである。 FIG. 4 shows the compression ratio represented by the ratio (Η Ρ / L Ρ) between the high pressure Η か ら from the high pressure side pressure sensor 41 and the low pressure L か ら from the low pressure side pressure sensor 40, and the optimal internal volume ratio. The following shows the relationship for each operating frequency Hz (= 3 O Hz, 6 O Hz, 9 O Hz). The straight line in FIG. 4 is a theoretical value represented by VI = (HP / LP) 1 / k (k: refrigerant specific heat ratio). The relationship between the compression ratio, the optimal internal volume ratio, and the operating frequency Hz is determined for each refrigerant, and the arithmetic expression for performing the arithmetic processing by the optimal internal volume ratio output units 38, 53 shown in FIGS. 2 and 3 is used. Incorporate the above relationship into
こうすることによって、 上記最適内部容積比出力部 3 8, 5 3による演算処理 によって現在の回転周波数 Hzにおける最適内部容積比への制御量 Δ ν Iを的確 に算出することができるのである。  By doing so, the control amount ΔνI to the optimal internal volume ratio at the current rotation frequency Hz can be accurately calculated by the arithmetic processing by the optimal internal volume ratio output sections 38, 53.
以上のごとく、 本実施の形態においては、 スクリユー圧縮機における電動機 1 As described above, in the present embodiment, the electric motor 1 in the screw compressor is used.
1を、 インバータ 1 5によってインバータ駆動するようにしている。 また、 吐出 の開始位置を規定するスライド弁 1 9の軸方向位置を、 圧縮部コントローラ 2 7 力 らの制御信号に基づいて流体制御装置 2 8によってシリンダ 2 4内の作動室に 給排される作動流体を制御することによって、 制御するようにして ヽる。 1 is driven by an inverter by an inverter 15. Further, the axial position of the slide valve 19 that defines the discharge start position is supplied to and discharged from the working chamber in the cylinder 24 by the fluid control device 28 based on a control signal from the compression unit controller 27. Control by controlling the working fluid.
そして、 負荷に対する能力調整は、 制御装置 3 6 , 5 1を構成する回転数出力 部 3 7 , 5 2によって、 令却水温 T を負荷側の情報として必要とする冷凍能力を 得るための回転周波数 Hzを算出し、 インバータ 1 5 , 5 4によって電動機 1 1の 回転数をこの回転周波数 Hzになるように制御することによって行うようにして いる。 したがって、 能力調整時におけるアンロード制御の必要性を無くして、 運 転効率の低下を抑制することができる。 さらに、 容量制御を行う容量制御弁を無 くして、 弁制御機構を簡素化することができるのである。  Then, the capacity adjustment for the load is performed by the rotation frequency output units 37, 52 constituting the control devices 36, 51, by the rotation frequency for obtaining the refrigerating capacity that requires the cooling water temperature T as information on the load side. Hz is calculated, and the inverters 15 and 54 control the rotation speed of the electric motor 11 so as to be at this rotation frequency Hz. Therefore, it is possible to eliminate the necessity of the unload control at the time of capacity adjustment, and to suppress a decrease in operation efficiency. Furthermore, the valve control mechanism can be simplified by eliminating the capacity control valve for performing the capacity control.
さらに、 上記可変内部容積比は、 上記制御装置 3 6 , 5 1の最適内部容積比出 力部 3 8, 5 3によって、 吸込み側の低圧力 L Pと吐出側の高圧力 H Pと回転周 波数 Hzとに基づいて演算処理を行って現在の回転周波数 Hzにおける最適内部容 積比(または Δ V I )を算出し、 圧縮部コントローラ 2 7および流体制御装置 2 8 でスライド弁 1 9の軸方向位置を設定して吐出の開始位置を規定することによつ て行うようにしている。 したがって、 電動機 1 1の回転周波数 Hzに応じた最高 の圧縮機効率になるように、 内部容積比を設定することができる。  Further, the above-mentioned variable internal volume ratio is adjusted by the optimum internal volume ratio output sections 38, 53 of the control devices 36, 51 to the low pressure LP on the suction side, the high pressure HP on the discharge side, and the rotational frequency Hz. Calculate the optimum internal volume ratio (or Δ VI) at the current rotation frequency Hz based on the above formula, and calculate the axial position of the slide valve 19 by the compression unit controller 27 and the fluid control device 28. This is done by setting and defining the start position of the ejection. Therefore, the internal volume ratio can be set so that the highest compressor efficiency according to the rotation frequency Hz of the motor 11 is obtained.
したがって、 この実施の形態によれば、 負荷に対する能力調整を行うためにス タリユー圧縮機 3 1の回転周波数 Hzを制御した場合における圧縮機効率の低下 を、 最小限に抑えることができるのである。  Therefore, according to the present embodiment, it is possible to minimize a decrease in compressor efficiency when controlling the rotation frequency Hz of the starry compressor 31 in order to adjust the capacity with respect to the load.
図 5は、 冷凍能力と圧縮機効率との関係を示す。 横軸は冷凍能力 Qを示し、 従 来の可変内部容積比とアンロード制御とを併用した可変内部容積比式スクリユー 圧縮機における 6 0 Hz時における冷凍能力を 1 0 0 %とした百分率で表わして いる。 一方、 縦軸は圧縮機効率を示している。 さらに、 上記圧縮比を 2 . 1 , 3 . 9, 5 . 5, 7. 9に変ィ匕させている。 Figure 5 shows the relationship between refrigeration capacity and compressor efficiency. The horizontal axis shows the refrigerating capacity Q, expressed as a percentage with the refrigerating capacity at 60 Hz in a variable internal volume ratio type screw compressor using both the conventional variable internal volume ratio and unload control as 100%. hand I have. On the other hand, the vertical axis shows compressor efficiency. Further, the compression ratio is changed to 2.1, 3.9, 5.5, 7.9.
図によれば、 本実施の形態における可変内部容積比とィンバータ制御とを併用 した可変内部容積比式ィンバータスクリユー圧縮機の場合は、 可変内部容積比と アンロード制御とを併用した従来の可変内部容積比式スクリユー圧縮機の場合に 比較して、 1 0 0 %以下の冷凍能力 Qにおいて、 何れの圧縮比の場合であっても 圧縮機効率を高めることができる。 然も、 低冷凍能力である程より大きく圧縮機 効率を高めることができ、 より大きな効果を得ることができる。 また、 本可変内 部容積比式ィンバータスクリユー圧縮機の場合には、 負荷に対する能力調整をィ ンバータ制御によって行っている。 したがって、 1 0 0 %以上の能力調整を行う ことができるのである。 尚、 負荷に対する能力調整をアンロード制御によって行 う従来のスクリユー圧縮機の場合には、 当然ながら 1 0 0 %以上の能力調整を行 うことはできない。  According to the figure, in the case of the variable internal volume ratio type inverter task-type compressor using the variable internal volume ratio and inverter control in this embodiment in combination, a conventional variable internal volume ratio and unload control are used together. Compared to the variable internal volume ratio type screw compressor, the compressor efficiency can be increased at any compression ratio at a refrigerating capacity Q of 100% or less. Of course, the lower the refrigerating capacity, the greater the compressor efficiency can be increased, and a greater effect can be obtained. Also, in the case of the variable internal volume ratio type inverter task compressor, capacity adjustment with respect to load is performed by inverter control. Therefore, the ability adjustment of 100% or more can be performed. In the case of a conventional screw compressor in which the capacity adjustment for the load is performed by the unload control, the capacity adjustment of 100% or more cannot be performed naturally.
ところで、 スクリュー圧縮機の場合には、 同じ圧力条件下においても回転周波 数によって内圧に差が生ずるために、 各周波数に応じた最適な内部容積比の値が 存在することになる。 図 6に、 周波数 3 0 Hzの場合(図 6 A)と周波数 9 0 Hzの 場合 (図 6 B)とにおける内容積と圧力との関係を示す。 図中点線は、 内部容積比 を周波数 6 0 Hzにおける最適内部容積比値に固定した固定内部容積比の場合に おける内容積と圧力との関係を示す曲線である。 尚、 一点鎮線は、 理論断熱圧縮 時における内容積と圧力との関係を示す曲線である。 上記固定内部容積比におい ては、 周波数 3 0 Hzの場合には、 時点 (A)で圧縮不足が発生して圧力が急激に 減少している。 また、 周波数 9 0 Hzの場合には、 時点(B)で過圧縮が発生して 圧力が理論値よりもかなり増大している。 以上のことから、 単純にスクリュー圧 縮機の容量制御にィンバータを適用することはできないのである。  By the way, in the case of a screw compressor, even under the same pressure condition, there is a difference in the internal pressure depending on the rotation frequency, so that there is an optimum internal volume ratio value corresponding to each frequency. Figure 6 shows the relationship between the internal volume and the pressure at a frequency of 30 Hz (Figure 6A) and at a frequency of 90 Hz (Figure 6B). The dotted line in the figure is a curve showing the relationship between the internal volume and the pressure when the internal volume ratio is fixed to the optimum internal volume ratio at a frequency of 60 Hz. The one-point line is a curve showing the relationship between the internal volume and the pressure during theoretical adiabatic compression. In the above fixed internal volume ratio, when the frequency is 30 Hz, insufficient compression occurs at the time (A), and the pressure decreases rapidly. When the frequency is 90 Hz, overcompression occurs at the point (B), and the pressure is much higher than the theoretical value. From the above, it is not possible to simply apply an inverter to the capacity control of a screw compressor.
ところが、 本実施の形態のごとく、 可変内部容積比にすることによって、 実線 で示すように、 固定内部容積比時に周波数 3 0 Hzの場合に発生していた圧縮不 足を無くすと共に、 圧力変動の幅を小さくすることができる。 また、 固定內部容 積比時に周波数 9 0 Hzの場合に、 発生していた過圧縮を無くして圧力変動の幅 を小さくすることができるのである。 尚、 上記実施の形態においては、 本可変内部容積比式インパータスクリュー圧 縮機における能力 ·内部容積比制御系の説明を冷凍機に適用された場合を例に行 つているが、 この発明はこれに限定されるものではない。 要は、 図 2および図 3 において、 制御装置 3 6 , 5 1の回転数出力部 3 7 , 5 2に入力される検出信号が、 負荷の状態を表す信号であればよいのである。 However, as shown in the present embodiment, by using a variable internal volume ratio, as shown by the solid line, compression insufficiency that occurred at a frequency of 30 Hz at a fixed internal volume ratio is eliminated, and pressure fluctuations are reduced. The width can be reduced. In addition, when the frequency is 90 Hz at the time of the fixed volume ratio, the width of the pressure fluctuation can be reduced by eliminating the over-compression that has occurred. In the above-described embodiment, the description of the capacity / internal volume ratio control system in the variable internal volume ratio type impeller screw compressor is applied to a refrigerator as an example. It is not limited to this. In short, in FIGS. 2 and 3, the detection signals input to the rotation speed output units 37 and 52 of the control devices 36 and 51 only need to be signals indicating the state of the load.

Claims

請 求 の 範 囲 The scope of the claims
1. スクリュー圧縮部(39)における圧縮工程の終了時点を変更することによ つて、 内部容積比を可変にする可変内部容積比弁(19)と、 1. A variable internal volume ratio valve (19) that changes the internal volume ratio by changing the end point of the compression process in the screw compression section (39);
上記スクリュー圧縮部(39)を回転駆動する電動機(11)と、  An electric motor (11) that rotationally drives the screw compression section (39);
上記電動機(11)の回転周波数を負荷に応じて制御するインバータ(15) を備えたことを特徴とする可変内部容積比式ィンバータスクリユー圧縮機。  A variable internal volume ratio type inverter task compressor comprising an inverter (15) for controlling a rotation frequency of the electric motor (11) according to a load.
2. 請求項 1に記載の可変内部容積比式ィンバータスクリユー圧縮機において、 上記スクリユー圧縮部(39)における吸入側圧力および吐出側圧力と、 上記電 動機(11)の回転周波数とに基づいて、 上記可変内部容積比弁(19)の開度を制 御する制御部(36, 51, 27, 28)を備えたことを特徴とする可変内部容積比 式ィンバータスクリユー圧縮機。 2. The variable internal volume ratio type inverter task compressor according to claim 1, wherein a suction side pressure and a discharge side pressure in the screw compression unit (39) and a rotation frequency of the motor (11) are used. And a controller (36, 51, 27, 28) for controlling the opening of the variable internal volume ratio valve (19).
PCT/JP2003/013117 2002-10-16 2003-10-14 Variable inner volume ratio-type inverter screw compressor WO2004036045A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP03751474.2A EP1553300B1 (en) 2002-10-16 2003-10-14 Variable inner volume ratio-type screw compressor controlled by a frequency converter
ES03751474.2T ES2503716T3 (en) 2002-10-16 2003-10-14 Screw compressor of variable internal volume ratio type controlled by a frequency converter
AU2003271184A AU2003271184A1 (en) 2002-10-16 2003-10-14 Variable inner volume ratio-type inverter screw compressor
US10/531,294 US20060039805A1 (en) 2002-10-16 2003-10-14 Variable inner volume ratio-type inverter screw compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002301870A JP4147891B2 (en) 2002-10-16 2002-10-16 Variable VI inverter screw compressor
JP2002-301870 2002-10-16

Publications (1)

Publication Number Publication Date
WO2004036045A1 true WO2004036045A1 (en) 2004-04-29

Family

ID=32105031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/013117 WO2004036045A1 (en) 2002-10-16 2003-10-14 Variable inner volume ratio-type inverter screw compressor

Country Status (8)

Country Link
US (1) US20060039805A1 (en)
EP (1) EP1553300B1 (en)
JP (1) JP4147891B2 (en)
CN (1) CN100406738C (en)
AU (1) AU2003271184A1 (en)
ES (1) ES2503716T3 (en)
TW (1) TWI230761B (en)
WO (1) WO2004036045A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013124600A (en) * 2011-12-15 2013-06-24 Mitsubishi Electric Corp Screw compressor
US20220082099A1 (en) * 2019-03-01 2022-03-17 Mitsubishi Electric Corporation Screw compressor

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4702639B2 (en) * 2005-10-31 2011-06-15 株式会社前川製作所 Liquid jet screw compressor
WO2007068246A1 (en) * 2005-12-12 2007-06-21 Johnson Controls Denmark Aps A screw compressor
JP4949768B2 (en) * 2006-08-10 2012-06-13 日立アプライアンス株式会社 Screw compressor
JP4183021B1 (en) * 2007-06-11 2008-11-19 ダイキン工業株式会社 Compressor and refrigeration equipment
WO2009048447A1 (en) 2007-10-10 2009-04-16 Carrier Corporation Slide valve system for a screw compressor
ITPR20090054A1 (en) * 2009-07-10 2011-01-11 Robuschi S P A DRY SCREW COMPRESSOR
EP2287444A1 (en) * 2009-08-19 2011-02-23 Hanbell Precise Machinery Co., Ltd. Rotary screw compressor with improved volume ratio regulation means
CN101726135B (en) * 2009-11-15 2013-05-08 广东工业大学 Air-conditioning system with two working modes and control method thereof
ES2721149T3 (en) * 2009-12-22 2019-07-29 Daikin Ind Ltd Single screw compressor
JP4735757B2 (en) * 2009-12-22 2011-07-27 ダイキン工業株式会社 Single screw compressor
JP2011196223A (en) * 2010-03-18 2011-10-06 Daikin Industries Ltd Single screw compressor
JP4947174B2 (en) * 2010-03-18 2012-06-06 ダイキン工業株式会社 Single screw compressor
EP2616686B1 (en) * 2010-09-14 2017-01-04 Johnson Controls Technology Company Volume ratio control system and method
BR112013006770A2 (en) * 2010-09-30 2020-12-15 Daikin Industries Ltd. THREAD COMPRESSOR
TWI400415B (en) * 2010-12-17 2013-07-01 Ind Tech Res Inst Controlling method of changeable capacity and changeable discharge pressure of a variable speed screw compressor
CN102052316B (en) * 2011-01-20 2013-01-02 上海康可尔压缩机有限公司 Outer rotor vortex permanent magnet frequency conversion screw compressor system
JP5888997B2 (en) * 2012-01-18 2016-03-22 三菱電機株式会社 Screw compressor
US10533556B2 (en) * 2013-10-01 2020-01-14 Trane International Inc. Rotary compressors with variable speed and volume control
DE102013020534A1 (en) 2013-12-12 2015-06-18 Gea Refrigeration Germany Gmbh compressor
CN106232991B (en) * 2014-06-02 2018-11-09 开利公司 Screw compressor
CN104912805B (en) * 2015-06-30 2016-09-21 特灵空调系统(中国)有限公司 Helical-lobe compressor control method
CN106704194B (en) * 2015-07-23 2019-03-22 珠海格力节能环保制冷技术研究中心有限公司 Compressor inner pressure ratio regulating mechanism and single screw compressor
WO2017075555A1 (en) 2015-10-30 2017-05-04 Gardner Denver, Inc. Complex screw rotors
JPWO2017094057A1 (en) * 2015-11-30 2018-07-12 三菱電機株式会社 Single screw compressor and refrigeration cycle equipment
CN107269530A (en) * 2017-06-08 2017-10-20 浙江德拉戈机械有限公司 A kind of permanent-magnetic variable frequency screw two-stage compression air compressor machine
CN107525319B (en) * 2017-09-18 2020-10-02 特灵空调系统(中国)有限公司 Air conditioner control system and air conditioner control method
CN108278208B (en) * 2018-02-08 2024-03-08 珠海格力电器股份有限公司 Screw compressor rotor structure and variable frequency screw compressor with same
CN108332464B (en) * 2018-02-09 2019-12-10 珠海格力电器股份有限公司 compressor control method and device and air conditioning unit
US10844860B2 (en) * 2018-12-21 2020-11-24 Trane International Inc. Method of improved control for variable volume ratio valve
CN111425396B (en) 2019-01-09 2021-09-10 约克(无锡)空调冷冻设备有限公司 Screw compressor and control method thereof
CN110617639B (en) * 2019-10-25 2021-03-16 浙江国祥股份有限公司 Variable-frequency screw water chilling unit with variable internal volume ratio device and control method
WO2021106061A1 (en) * 2019-11-26 2021-06-03 三菱電機株式会社 Screw compressor
CN112325502A (en) * 2020-09-23 2021-02-05 浙江国祥股份有限公司 Evaporative cold air source heat pump adopting variable-frequency variable-internal-volume-ratio compressor and control method
CN114109823B (en) * 2021-09-28 2022-11-22 上海履正能源科技有限公司 Control method for combining frequency conversion and capacity-regulation slide valve of screw compressor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000283071A (en) * 1999-03-31 2000-10-10 Kobe Steel Ltd Screw compressor
JP3159762B2 (en) * 1992-02-20 2001-04-23 株式会社前川製作所 Vi variable screw compressor
JP2001280275A (en) * 1996-02-19 2001-10-10 Hitachi Ltd Method for operating screw compressor and the screw compressor
JP3261430B2 (en) * 1992-08-28 2002-03-04 株式会社日立製作所 Inverter driven screw compressor
US6461112B1 (en) * 2000-06-02 2002-10-08 Hitachi, Ltd. Screw compression apparatus and operation control method thereof
JP3354705B2 (en) * 1994-04-28 2002-12-09 株式会社日立製作所 Inverter driven screw compressor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4351160A (en) * 1980-06-16 1982-09-28 Borg-Warner Corporation Capacity control systems for screw compressor based water chillers
US4412788A (en) * 1981-04-20 1983-11-01 Durham-Bush, Inc. Control system for screw compressor
JPS59211790A (en) * 1983-05-18 1984-11-30 Hitachi Ltd Refrigerating plant
JP2001090684A (en) * 1999-09-22 2001-04-03 Daikin Ind Ltd Screw compressor and freezing device
US6659729B2 (en) * 2001-02-15 2003-12-09 Mayekawa Mfg. Co., Ltd. Screw compressor equipment for accommodating low compression ratio and pressure variation and the operation method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3159762B2 (en) * 1992-02-20 2001-04-23 株式会社前川製作所 Vi variable screw compressor
JP3261430B2 (en) * 1992-08-28 2002-03-04 株式会社日立製作所 Inverter driven screw compressor
JP3354705B2 (en) * 1994-04-28 2002-12-09 株式会社日立製作所 Inverter driven screw compressor
JP2001280275A (en) * 1996-02-19 2001-10-10 Hitachi Ltd Method for operating screw compressor and the screw compressor
JP2000283071A (en) * 1999-03-31 2000-10-10 Kobe Steel Ltd Screw compressor
US6461112B1 (en) * 2000-06-02 2002-10-08 Hitachi, Ltd. Screw compression apparatus and operation control method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1553300A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013124600A (en) * 2011-12-15 2013-06-24 Mitsubishi Electric Corp Screw compressor
US20220082099A1 (en) * 2019-03-01 2022-03-17 Mitsubishi Electric Corporation Screw compressor

Also Published As

Publication number Publication date
EP1553300B1 (en) 2014-09-10
EP1553300A1 (en) 2005-07-13
JP4147891B2 (en) 2008-09-10
TWI230761B (en) 2005-04-11
EP1553300A4 (en) 2009-09-02
AU2003271184A1 (en) 2004-05-04
US20060039805A1 (en) 2006-02-23
JP2004137934A (en) 2004-05-13
CN100406738C (en) 2008-07-30
TW200412397A (en) 2004-07-16
ES2503716T3 (en) 2014-10-07
CN1705826A (en) 2005-12-07

Similar Documents

Publication Publication Date Title
WO2004036045A1 (en) Variable inner volume ratio-type inverter screw compressor
US11852145B2 (en) Rotary compressors with variable speed and volume control
US6619062B1 (en) Scroll compressor and air conditioner
US4351160A (en) Capacity control systems for screw compressor based water chillers
JP4949768B2 (en) Screw compressor
JP4927468B2 (en) Two-stage screw compressor and two-stage compression refrigerator using the same
JP3821721B2 (en) Screw compression apparatus and operation method for low compression ratio and pressure fluctuation
US10101070B2 (en) Axial thrust control for rotary compressors
EP3356681B1 (en) Centrifugal compressor with flow regulation and surge prevention by axially shifting the impeller
WO2017042949A1 (en) Air conditioner provided with failure prognosis/detection means for compressor, and failure prognosis/detection method thereof
WO2019244659A1 (en) Refrigeration device
US6526772B2 (en) Apparatus and method for controlling electric compressor
WO2017094057A1 (en) Single-screw compressor and refrigeration cycle device
JP4744331B2 (en) Heat pump equipment
JP2006234320A (en) Refrigerating machine and its capacity control method
JP2018115643A (en) Capacity control method of multistage oil free screw compressor, and multistage oil free screw compressor
JPH03152353A (en) Cryogenic temperature refrigerator
WO2018146805A1 (en) Refrigerating device
JPH04359759A (en) Method and device of controlling capacity of screw type compressor
WO2018008052A1 (en) Screw compressor and refrigeration cycle device
JP2012098000A (en) Refrigeration cycle apparatus
WO2016130870A1 (en) Gear expander for energy recovery

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003751474

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006039805

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10531294

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20038A1612X

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2003751474

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10531294

Country of ref document: US