WO2018146805A1 - Refrigerating device - Google Patents

Refrigerating device Download PDF

Info

Publication number
WO2018146805A1
WO2018146805A1 PCT/JP2017/005109 JP2017005109W WO2018146805A1 WO 2018146805 A1 WO2018146805 A1 WO 2018146805A1 JP 2017005109 W JP2017005109 W JP 2017005109W WO 2018146805 A1 WO2018146805 A1 WO 2018146805A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
refrigerant
compressor
low
compression chamber
Prior art date
Application number
PCT/JP2017/005109
Other languages
French (fr)
Japanese (ja)
Inventor
雅浩 神田
雅章 上川
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2017/005109 priority Critical patent/WO2018146805A1/en
Publication of WO2018146805A1 publication Critical patent/WO2018146805A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/10Other safety measures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Definitions

  • the present invention relates to a refrigeration apparatus including a compressor used for refrigerant compression, and more particularly to protection of the compressor.
  • General refrigeration equipment includes a refrigerant circuit in which a compressor, a condenser, an expansion valve, and an evaporator are connected in order. Then, the refrigerant is compressed into a high-temperature and high-pressure refrigerant gas by a compressor, and the refrigerant gas is heat-exchanged with outside air from the blower by a condenser to obtain a high-pressure refrigerant liquid.
  • the refrigerant liquid is squeezed and expanded by the expansion valve to become a low-temperature and low-pressure gas-liquid two-phase refrigerant.
  • the refrigerant in the gas-liquid two-phase state evaporates by exchanging heat with the room air in the evaporator and returns to the compressor as a refrigerant in a low-temperature and low-pressure gas state.
  • Patent Document 1 The low-pressure protection measures of Patent Document 1 are targeted at the time of operation mode switching.
  • the decrease in the low pressure of the refrigerant circuit is not limited to the switching of the operation mode, but the amount of refrigerant enclosed in the refrigerant circuit is insufficient, the refrigerant amount is insufficient due to refrigerant leakage, and the opening of the expansion valve catches up with the environmental change. It occurs in the situation that there is no.
  • Patent Document 1 cannot cope with such a situation and is insufficient as a measure for suppressing the seizure of the compressor.
  • the present invention has been made to solve the above-described problems, and an object thereof is to obtain a refrigeration apparatus capable of suppressing the seizure of a compressor.
  • a refrigeration apparatus includes a compressor, a condenser, a decompression device, and an evaporator provided with a compression chamber that sucks and compresses refrigerant, and includes a refrigerant circuit in which the refrigerant circulates and an outlet of the evaporator.
  • a pressure sensor that measures the pressure of the refrigerant up to the refrigerant suction portion of the compression chamber, a prediction calculation device that predicts and calculates a pressure value after a preset time from the pressure history measured by the pressure sensor, and a prediction calculation
  • the apparatus includes a low-pressure protection device that stops the compressor when the predicted value calculated by the apparatus becomes lower than the set value.
  • the compressor is stopped when the predicted value calculated by the prediction calculation device is lower than the set value. For this reason, the compressor can be stopped in advance before the actual low pressure falls below the set value, and the seizure of the compressor can be suppressed.
  • FIG. 3 is a refrigerant circuit diagram of the refrigeration apparatus according to Embodiment 1 of the present invention. It is a figure which shows the compression principle of the compressor with which the freezing apparatus which concerns on Embodiment 1 of this invention was equipped. It is a figure which shows the flowchart of the low voltage
  • FIG. 1 and the following drawings the same reference numerals denote the same or corresponding parts, and are common to the whole text of the embodiments described below.
  • the form of the component represented by the whole specification is an illustration to the last, Comprising: It does not limit to the form described in the specification.
  • the level of temperature, pressure, etc. is not particularly determined in relation to absolute values, but is relatively determined in terms of the state, operation, etc. of the system, apparatus, etc.
  • FIG. 1 is a refrigerant circuit diagram of a refrigeration apparatus according to Embodiment 1 of the present invention.
  • the refrigeration apparatus 100 includes a refrigerant circuit A in which a compressor 101, a condenser 102, a decompression apparatus 103, and an evaporator 104 are sequentially connected by a refrigerant pipe, and the refrigerant circulates.
  • the refrigeration apparatus 100 includes a pressure sensor 105, a prediction calculation device 106, and a low-pressure protection device 107.
  • Compressor 101 sucks refrigerant and compresses the refrigerant to a high temperature and high pressure state.
  • the compressor 101 is driven by supplying electric power from a power supply source (not shown) to the motor 2 via the inverter 108.
  • the condenser 102 cools and condenses the refrigerant gas discharged from the compressor 101.
  • the decompression device 103 decompresses and expands the refrigerant.
  • the decompression device 103 includes an electronic expansion valve or a capillary tube that can variably adjust the opening of the throttle, and throttles and expands the refrigerant liquid from the condenser 102.
  • the evaporator 104 evaporates the refrigerant flowing out from the decompression device 103.
  • the evaporator 104 may be in any form of one provided in a refrigerator arranged indoors or one provided on the facility side arranged outdoors.
  • the pressure sensor 105 is installed between the outlet of the evaporator 104 and the suction portion of the compressor 101, and measures the pressure of the refrigerant at the installation location, that is, the low pressure of the refrigerant circuit A.
  • the prediction calculation device 106 predicts and calculates a low pressure value after a preset time from the history of low pressure measured by the pressure sensor 105.
  • the prediction calculation method is arbitrary, for example, there are the following methods. For example, when pressure measurement in the pressure sensor 105 is performed every second, a pressure value after 1 second is predicted from a linear expression based on a measured value measured at a certain timing and a measured value measured 1 second before. To do.
  • the predictive arithmetic unit 106 can be configured by hardware such as a circuit device that realizes the function, or can be configured by an arithmetic unit such as a microcomputer or a CPU and software executed on the arithmetic unit. .
  • the low-pressure protection device 107 is a device having a function of shutting down the compressor 101 by shutting off the power supply circuit to the motor 2 when the predicted value calculated by the prediction calculation device 106 becomes lower than a preset set value.
  • it is constituted by a microcomputer and a circuit for cutting off a power supply circuit to the motor 2.
  • the refrigeration apparatus 100 includes a control device 109 that can control the entire refrigeration apparatus 100, such as control of the decompression apparatus 103, control of the inverter frequency, and operation control of the low-pressure protection apparatus 107.
  • the control device 109 can be configured by hardware such as a circuit device that realizes the function, or can be configured by an arithmetic device such as a microcomputer or a CPU and software executed thereon.
  • FIG. 1 shows a single screw compressor of a type in which two gate rotors are engaged with one screw rotor.
  • the compressor 101 includes a cylindrical casing 1, a motor 2 accommodated in the casing 1, a screw shaft 3 fixed to the motor 2 and driven to rotate by the motor 2, and a screw rotor fixed to the screw shaft 3. 4 mag.
  • the motor 2 includes a stator 2a that is inscribed and fixed to the casing 1, and a motor rotor 2b that is disposed inside the stator 2a.
  • the motor rotor 2 b is arranged on the same axis as the screw rotor 4 and is fixed to the screw shaft 3.
  • the screw rotor 4 has a cylindrical shape, and a plurality of spiral screw grooves 4a are formed on the outer peripheral surface.
  • the screw rotor 4 is rotationally driven by the motor rotor 2b.
  • a pair of gate rotors 5 are arranged on the side surfaces of the screw rotor 4 so as to be axially symmetric with respect to the screw shaft 3.
  • the gate rotor 5 has a disk shape, and a plurality of teeth 5a are radially provided on the outer peripheral surface along the circumferential direction.
  • the teeth 5 a of the gate rotor are meshed with the screw grooves 4 a of the screw rotor 4, and the compression chamber 6 is formed in a space surrounded by the teeth 5 a of the gate rotor 5, the screw grooves 4 a and the inner cylindrical surface of the casing 1.
  • a strainer 7 is disposed in the refrigerant suction portion of the casing 1 in order to prevent dust from flowing into the compressor 101.
  • the inside of the casing 1 is partitioned by a partition wall 110 into a low-pressure portion 111 where the low-pressure refrigerant is located and a compression chamber 6 and a high-pressure portion 112 where the high-pressure refrigerant is located.
  • a discharge port 8 (see FIG. 2 described later) is formed.
  • FIG. 2 is a diagram illustrating a compression principle of the compressor provided in the refrigeration apparatus according to Embodiment 1 of the present invention.
  • the screw rotor 4 rotates in the direction of the solid arrow as the screw shaft 3 (see FIG. 1) rotates. Since the teeth 5a of the gate rotor 5 are engaged with the screw grooves 4a of the screw rotor 4, when the screw rotor 4 rotates, the teeth 5a of the gate rotor 5 relatively move in the screw grooves 4a. Thereby, the gate rotor 5 rotates in the direction of the thin white arrow.
  • the suction stroke, the compression stroke, and the discharge stroke are set as one cycle, and this cycle is repeated.
  • each stroke will be described focusing on the compression chamber 6 shaded with dots in FIG.
  • FIG. 2 (a) shows the state of the compression chamber 6 in the suction stroke.
  • the screw rotor 4 is driven by the motor 2 and rotates in the direction of the solid arrow.
  • the teeth 5a of the gate rotor 5 are sequentially rotated toward the discharge port 8, whereby the volume of the compression chamber 6 is reduced as shown in FIG. 2B, and the refrigerant gas in the compression chamber 6 is reduced. Is compressed.
  • the compression chamber 6 communicates with the discharge port 8 as shown in FIG. Thereby, the high-pressure refrigerant gas compressed in the compression chamber 6 is discharged from the discharge port 8 to the outside. Then, the same compression is performed again on the back surface of the screw rotor 4.
  • FIG. 3 is a diagram showing a flowchart of low-pressure protection control in the refrigeration apparatus according to Embodiment 1 of the present invention.
  • the processing of the flowchart of FIG. 3 is performed at arbitrarily set control time intervals during operation of the refrigeration apparatus.
  • the low pressure protection device 107 compares the predicted value of the low pressure calculated by the prediction calculation device 106 with the set value (S1), and continues the operation of the compressor 101 if the predicted value is equal to or greater than the set value. On the other hand, if the predicted value is lower than the set value, the low-pressure protection device 107 stops the compressor 101 (S2).
  • the low-pressure protection device 107 is activated and the compressor 101 is stopped.
  • the compressor 101 can be stopped in advance before the actual low-pressure pressure falls below the set value. For this reason, the seizure of the compressor 101 during the operation of the refrigeration apparatus 100 can be suppressed. That is, according to the first embodiment, it is possible to obtain a highly reliable refrigeration apparatus that can suppress seizure of the compressor 101 even when the low-pressure pressure rapidly decreases due to, for example, a failure of the decompression device 103.
  • the evaporator 104 is a so-called chiller that is a cold / hot water generator and is configured to exchange heat between the water-side flow path and the refrigerant flow path, the low-pressure pressure is reduced due to clogging of the water-side flow path with dust and the like. In this case, a highly reliable refrigeration apparatus that can suppress seizure of the compressor 101 can be obtained.
  • the refrigerant circulating in the refrigerant circuit A is not particularly limited, and a low-pressure refrigerant with a low operating pressure such as R134a or R1234yf or a high-pressure refrigerant with a high operating pressure such as R410A can be used.
  • the discharge temperature of the compressor 101 rises excessively, inconvenience such as burn-in of the compressor 101 occurs.
  • the discharge temperature is measured by the discharge temperature sensor 113 (see FIG. 1) so that the discharge temperature does not rise above the set upper limit temperature.
  • the discharge temperature sensor 113 see FIG. 1
  • the density of the low-pressure refrigerant is smaller than that of the high-pressure refrigerant. Therefore, the amount of refrigerant circulation when an event in which the low-pressure pressure is reduced occurs is smaller than when the high-pressure refrigerant is used.
  • the discharge temperature sensor is less likely to detect an abnormality. Therefore, if the configuration of the present embodiment is not adopted, the compressor may be burned before the low-pressure protection device operates. is there.
  • the low-pressure protection device 107 is activated in advance and the compressor 101 before the actual low-pressure pressure falls below the set value. Stop. For this reason, even when a low-pressure refrigerant is used, a highly reliable refrigeration apparatus that can suppress seizure of the compressor 101 can be obtained.
  • the single screw compressor is described as the compressor 101.
  • the compressor applied to the refrigeration apparatus of the present invention is not limited to a single screw compressor.
  • a compressor applied to the refrigeration apparatus of the present invention for example, a twin screw compressor, a reciprocating compressor, and a scroll compressor that include, for example, two screw rotors and meshes groove portions of these screw rotors to form a compression chamber.
  • a turbo compressor and a rotary compressor may be used.
  • the pressure sensor 105 is provided at the outlet of the evaporator 104.
  • the pressure sensor 105 only needs to be able to detect the low pressure of the refrigerant circuit A. From the outlet of the evaporator 104 to the refrigerant suction portion of the compressor 101. It may be provided anywhere between them.
  • Embodiment 2 the pressure between the outlet of the evaporator 104 and the refrigerant suction portion of the compressor 101 is detected as the low pressure of the refrigerant circuit A.
  • the point of detecting the low pressure of the refrigerant circuit A is the same, but the detection position is different from that of the first embodiment.
  • FIG. 4 is a refrigerant circuit diagram of the refrigeration apparatus according to Embodiment 2 of the present invention.
  • the pressure measurement position of the pressure sensor 105 is set to the low pressure part 111 inside the compressor 101.
  • the low pressure portion 111 is a region from the downstream side of the strainer 7 to the front of the refrigerant suction portion of the compression chamber 6, and is a region indicated by dots in FIG.
  • the configuration of the second embodiment other than the pressure measurement position of the pressure sensor 105 is all the same as that of the first embodiment.
  • the compressor 101 can be stopped even when the compressor 101 is operated while a stop valve (not shown) attached to the refrigerant suction portion of the compressor 101 is closed, the low pressure pressure is measured and predicted, The compressor 101 can be stopped. Further, even when the strainer 7 attached to the refrigerant suction portion of the compressor 101 is clogged, the compressor 101 can be stopped by detecting and predicting a decrease in low-pressure pressure. That is, the second embodiment can obtain the compressor 101 and the refrigeration apparatus 100 that are more reliable than the first embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

Provided is a refrigerating device that can prevent compressor galling. A refrigerating device comprises: a refrigerant circuit (A) in which refrigerant is circulated and which comprises a compressor (101) that is provided internally with a compression chamber (6) to take in refrigerant and perform compression, a condenser (102), a pressure reducing device (103), and an evaporator (104); a pressure sensor (105) that measures a refrigerant pressure between the evaporator outlet and the refrigerant intake portion of the compression chamber; a predictive calculation device (106) that, from a history of pressures measured by the pressure sensor, calculates and predicts the pressure for a time point at which a preset time will have elapsed; and a low pressure protection device (107) that stops the compressor when the predicted value calculated and predicted by the predictive calculation device is lower than the set value.

Description

冷凍装置Refrigeration equipment
 本発明は、冷媒圧縮に用いられる圧縮機を備えた冷凍装置に関し、特に、圧縮機の保護に関するものである。 The present invention relates to a refrigeration apparatus including a compressor used for refrigerant compression, and more particularly to protection of the compressor.
 一般的な冷凍装置では、圧縮機、凝縮器、膨張弁及び蒸発器が順に接続された冷媒回路を備えている。そして、圧縮機で冷媒を圧縮して高温且つ高圧の冷媒ガスとし、冷媒ガスを、凝縮器で送風機からの外気と熱交換して高圧の冷媒液とする。冷媒液は、膨張弁で絞られて膨張し、低温且つ低圧の気液二相状態の冷媒となる。気液二相状態の冷媒は、蒸発器で室内空気と熱交換されて蒸発し、低温且つ低圧のガス状態の冷媒となって圧縮機に戻る。 General refrigeration equipment includes a refrigerant circuit in which a compressor, a condenser, an expansion valve, and an evaporator are connected in order. Then, the refrigerant is compressed into a high-temperature and high-pressure refrigerant gas by a compressor, and the refrigerant gas is heat-exchanged with outside air from the blower by a condenser to obtain a high-pressure refrigerant liquid. The refrigerant liquid is squeezed and expanded by the expansion valve to become a low-temperature and low-pressure gas-liquid two-phase refrigerant. The refrigerant in the gas-liquid two-phase state evaporates by exchanging heat with the room air in the evaporator and returns to the compressor as a refrigerant in a low-temperature and low-pressure gas state.
 この種の冷凍装置では、膨張弁の出口から圧縮機の吸入部までの圧力である低圧圧力が下がりすぎると、冷媒循環量が不足して圧縮機の焼付きが生じる。このため、従来より、低圧圧力が設定値以下に低下した時に圧縮機を停止させる低圧保護装置を備える技術が知られている。このような低圧保護対策として、特許文献1では、低圧圧力が設定値以下に下がる可能性のある運転モード切り替え時に、圧縮機の周波数を低く抑えて低圧保護装置が作動しないようにし、圧縮機の運転を継続できるようにしている。 In this type of refrigeration system, if the low-pressure pressure that is the pressure from the outlet of the expansion valve to the suction part of the compressor is too low, the refrigerant circulation amount is insufficient and the compressor is seized. For this reason, conventionally, a technique is known that includes a low-pressure protection device that stops the compressor when the low-pressure pressure drops below a set value. As such a low-pressure protection measure, in Patent Document 1, at the time of operation mode switching that may cause the low-pressure pressure to fall below a set value, the frequency of the compressor is kept low so that the low-pressure protection device does not operate. The operation can be continued.
実開平4-14153号公報Japanese Utility Model Publication No. 4-14153
 特許文献1の低圧保護対策は、運転モードの切り替え時を対象としている。しかし、冷媒回路の低圧圧力の低下は、運転モードの切り替え時以外にも、冷媒回路に封入する冷媒の封入量不足、冷媒漏れによる冷媒量不足、及び膨張弁の開度変化が環境変化に追いつかない、といった状況で発生する。しかしながら、特許文献1ではこのような状況には対処できず、圧縮機の焼付きを抑制する対策として不充分であった。 The low-pressure protection measures of Patent Document 1 are targeted at the time of operation mode switching. However, the decrease in the low pressure of the refrigerant circuit is not limited to the switching of the operation mode, but the amount of refrigerant enclosed in the refrigerant circuit is insufficient, the refrigerant amount is insufficient due to refrigerant leakage, and the opening of the expansion valve catches up with the environmental change. It occurs in the situation that there is no. However, Patent Document 1 cannot cope with such a situation and is insufficient as a measure for suppressing the seizure of the compressor.
 本発明は、上記のような課題を解決するためになされたものであり、圧縮機の焼付きを抑制できる冷凍装置を得ることを目的とする。 The present invention has been made to solve the above-described problems, and an object thereof is to obtain a refrigeration apparatus capable of suppressing the seizure of a compressor.
 本発明に係る冷凍装置は、冷媒を吸入して圧縮を行う圧縮室を内部に備えた圧縮機、凝縮器、減圧装置及び蒸発器を備え、冷媒が循環する冷媒回路と、蒸発器の出口から圧縮室の冷媒吸入部までの間の冷媒の圧力を計測する圧力センサと、圧力センサで計測した圧力の履歴から、予め設定した時間経過後の圧力値を予測演算する予測演算装置と、予測演算装置で予測演算された予測値が設定値よりも低くなると、圧縮機を停止させる低圧保護装置とを備えたものである。 A refrigeration apparatus according to the present invention includes a compressor, a condenser, a decompression device, and an evaporator provided with a compression chamber that sucks and compresses refrigerant, and includes a refrigerant circuit in which the refrigerant circulates and an outlet of the evaporator. A pressure sensor that measures the pressure of the refrigerant up to the refrigerant suction portion of the compression chamber, a prediction calculation device that predicts and calculates a pressure value after a preset time from the pressure history measured by the pressure sensor, and a prediction calculation The apparatus includes a low-pressure protection device that stops the compressor when the predicted value calculated by the apparatus becomes lower than the set value.
 本発明によれば、予測演算装置で予測演算された予測値が設定値よりも低くなった場合に圧縮機を停止させるようにした。このため、実際の低圧圧力が設定値以下に低下する前に事前に圧縮機を停止させることができ、圧縮機の焼付きを抑制できる。 According to the present invention, the compressor is stopped when the predicted value calculated by the prediction calculation device is lower than the set value. For this reason, the compressor can be stopped in advance before the actual low pressure falls below the set value, and the seizure of the compressor can be suppressed.
本発明の実施の形態1に係る冷凍装置の冷媒回路図である。FIG. 3 is a refrigerant circuit diagram of the refrigeration apparatus according to Embodiment 1 of the present invention. 本発明の実施の形態1に係る冷凍装置に備えられた圧縮機の圧縮原理を示す図である。It is a figure which shows the compression principle of the compressor with which the freezing apparatus which concerns on Embodiment 1 of this invention was equipped. 本発明の実施の形態1に係る冷凍装置における低圧保護制御のフローチャートを示す図である。It is a figure which shows the flowchart of the low voltage | pressure protection control in the freezing apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る冷凍装置の冷媒回路図である。It is a refrigerant circuit figure of the freezing apparatus which concerns on Embodiment 2 of this invention.
 以下、発明の実施の形態に係る冷凍装置について図面等を参照しながら説明する。ここで、図1を含め、以下の図面において、同一の符号を付したものは、同一又はこれに相当するものであり、以下に記載する実施の形態の全文において共通することとする。そして、明細書全文に表わされている構成要素の形態は、あくまでも例示であって、明細書に記載された形態に限定するものではない。また、温度、圧力等の高低については、特に絶対的な値との関係で高低等が定まっているものではなく、システム、装置等における状態、動作等において相対的に定まるものとする。 Hereinafter, a refrigeration apparatus according to an embodiment of the invention will be described with reference to the drawings. Here, in FIG. 1 and the following drawings, the same reference numerals denote the same or corresponding parts, and are common to the whole text of the embodiments described below. And the form of the component represented by the whole specification is an illustration to the last, Comprising: It does not limit to the form described in the specification. Further, the level of temperature, pressure, etc. is not particularly determined in relation to absolute values, but is relatively determined in terms of the state, operation, etc. of the system, apparatus, etc.
実施の形態1.
 図1は、本発明の実施の形態1に係る冷凍装置の冷媒回路図である。
 冷凍装置100は、圧縮機101と、凝縮器102と、減圧装置103と、蒸発器104とを順に冷媒配管で接続され、冷媒が循環する冷媒回路Aを備えている。また、冷凍装置100は、圧力センサ105と、予測演算装置106と、低圧保護装置107とを備えている。
Embodiment 1 FIG.
FIG. 1 is a refrigerant circuit diagram of a refrigeration apparatus according to Embodiment 1 of the present invention.
The refrigeration apparatus 100 includes a refrigerant circuit A in which a compressor 101, a condenser 102, a decompression apparatus 103, and an evaporator 104 are sequentially connected by a refrigerant pipe, and the refrigerant circulates. In addition, the refrigeration apparatus 100 includes a pressure sensor 105, a prediction calculation device 106, and a low-pressure protection device 107.
 圧縮機101は、冷媒を吸入し、その冷媒を圧縮して高温且つ高圧の状態にするものである。圧縮機101は、電力供給源(図示せず)からインバータ108を介してモータ2へ電力供給されることにより駆動される。 Compressor 101 sucks refrigerant and compresses the refrigerant to a high temperature and high pressure state. The compressor 101 is driven by supplying electric power from a power supply source (not shown) to the motor 2 via the inverter 108.
 凝縮器102は圧縮機101からの吐出冷媒ガスを冷却して凝縮させる。減圧装置103は、冷媒を減圧して膨張させるものである。減圧装置103は、絞りの開度を可変に調整することが可能な電子膨張弁又はキャピラリーチューブ等で構成され、凝縮器102からの冷媒液を絞り、膨張させる。蒸発器104は減圧装置103から流出した冷媒を蒸発させる。蒸発器104は、室内に配置される冷凍機に備えているもの、室外に配置される設備側に設けているもののいずれの形態でもよい。 The condenser 102 cools and condenses the refrigerant gas discharged from the compressor 101. The decompression device 103 decompresses and expands the refrigerant. The decompression device 103 includes an electronic expansion valve or a capillary tube that can variably adjust the opening of the throttle, and throttles and expands the refrigerant liquid from the condenser 102. The evaporator 104 evaporates the refrigerant flowing out from the decompression device 103. The evaporator 104 may be in any form of one provided in a refrigerator arranged indoors or one provided on the facility side arranged outdoors.
 圧力センサ105は、蒸発器104の出口から圧縮機101の吸入部までの間に設置され、設置箇所の冷媒の圧力、つまり冷媒回路Aの低圧圧力を計測する。 The pressure sensor 105 is installed between the outlet of the evaporator 104 and the suction portion of the compressor 101, and measures the pressure of the refrigerant at the installation location, that is, the low pressure of the refrigerant circuit A.
 予測演算装置106は、圧力センサ105で計測した低圧圧力の履歴から、予め設定した時間経過後の低圧圧力値を予測演算する。予測演算方法は任意であるが、例えば以下の方法がある。圧力センサ105における圧力計測を例えば1秒毎に実施している場合、あるタイミングで計測した計測値と、1秒前に計測した計測値とによる1次式から1秒後の圧力値を予測演算する。予測演算装置106は、その機能を実現する回路デバイスのようなハードウェアで構成することもできるし、マイコンやCPUのような演算装置と、その上で実行されるソフトウェアとにより構成することもできる。 The prediction calculation device 106 predicts and calculates a low pressure value after a preset time from the history of low pressure measured by the pressure sensor 105. Although the prediction calculation method is arbitrary, for example, there are the following methods. For example, when pressure measurement in the pressure sensor 105 is performed every second, a pressure value after 1 second is predicted from a linear expression based on a measured value measured at a certain timing and a measured value measured 1 second before. To do. The predictive arithmetic unit 106 can be configured by hardware such as a circuit device that realizes the function, or can be configured by an arithmetic unit such as a microcomputer or a CPU and software executed on the arithmetic unit. .
 低圧保護装置107は、予測演算装置106で予測演算された予測値が予め設定された設定値よりも低くなると、モータ2への電源回路を遮断して圧縮機101を停止させる機能を有する装置であり、例えばマイコンと、モータ2への電源回路を遮断する回路等とによって構成される。 The low-pressure protection device 107 is a device having a function of shutting down the compressor 101 by shutting off the power supply circuit to the motor 2 when the predicted value calculated by the prediction calculation device 106 becomes lower than a preset set value. For example, it is constituted by a microcomputer and a circuit for cutting off a power supply circuit to the motor 2.
 さらに冷凍装置100には、減圧装置103の制御、インバータ周波数の制御、低圧保護装置107の作動制御など、冷凍装置100全体を制御可能な制御装置109を備えている。制御装置109は、その機能を実現する回路デバイスのようなハードウェアで構成することもできるし、マイコンやCPUのような演算装置と、その上で実行されるソフトウェアとにより構成することもできる。 Furthermore, the refrigeration apparatus 100 includes a control device 109 that can control the entire refrigeration apparatus 100, such as control of the decompression apparatus 103, control of the inverter frequency, and operation control of the low-pressure protection apparatus 107. The control device 109 can be configured by hardware such as a circuit device that realizes the function, or can be configured by an arithmetic device such as a microcomputer or a CPU and software executed thereon.
 以下、圧縮機101について、図1を参照して説明する。図1には、1つのスクリューロータに2つのゲートロータが係合されたタイプのシングルスクリュー圧縮機を示している。 Hereinafter, the compressor 101 will be described with reference to FIG. FIG. 1 shows a single screw compressor of a type in which two gate rotors are engaged with one screw rotor.
 圧縮機101は、筒状のケーシング1と、ケーシング1内に収容されたモータ2と、モータ2に固定され、モータ2によって回転駆動されるスクリュー軸3と、スクリュー軸3に固定されたスクリューロータ4等とを備えている。モータ2はケーシング1に内接固定されたステータ2aとステータ2aの内側に配置されたモータロータ2bとで構成されている。モータロータ2bは、スクリューロータ4と互いに同一軸線上に配置され、スクリュー軸3に固定されている。 The compressor 101 includes a cylindrical casing 1, a motor 2 accommodated in the casing 1, a screw shaft 3 fixed to the motor 2 and driven to rotate by the motor 2, and a screw rotor fixed to the screw shaft 3. 4 mag. The motor 2 includes a stator 2a that is inscribed and fixed to the casing 1, and a motor rotor 2b that is disposed inside the stator 2a. The motor rotor 2 b is arranged on the same axis as the screw rotor 4 and is fixed to the screw shaft 3.
 スクリューロータ4は円柱状であり、外周面に複数の螺旋状のスクリュー溝4aが形成されている。スクリューロータ4はモータロータ2bによって回転駆動される。 The screw rotor 4 has a cylindrical shape, and a plurality of spiral screw grooves 4a are formed on the outer peripheral surface. The screw rotor 4 is rotationally driven by the motor rotor 2b.
 スクリューロータ4の側面には、スクリュー軸3に対して軸対称となるように一対のゲートロータ5が配置されている。 A pair of gate rotors 5 are arranged on the side surfaces of the screw rotor 4 so as to be axially symmetric with respect to the screw shaft 3.
 ゲートロータ5は円板状であり、外周面には周方向に沿って複数の歯5aが放射状に設けられている。そして、ゲートロータの歯5aがスクリューロータ4のスクリュー溝4aに噛み合わされており、ゲートロータ5の歯5a、スクリュー溝4a及びケーシング1の内筒面で囲まれた空間で圧縮室6が形成されている。また、ケーシング1の冷媒吸入部には、圧縮機101内へのダスト流入を防ぐためにストレーナ7が配置されている。 The gate rotor 5 has a disk shape, and a plurality of teeth 5a are radially provided on the outer peripheral surface along the circumferential direction. The teeth 5 a of the gate rotor are meshed with the screw grooves 4 a of the screw rotor 4, and the compression chamber 6 is formed in a space surrounded by the teeth 5 a of the gate rotor 5, the screw grooves 4 a and the inner cylindrical surface of the casing 1. ing. A strainer 7 is disposed in the refrigerant suction portion of the casing 1 in order to prevent dust from flowing into the compressor 101.
 また、ケーシング1内部は、低圧冷媒が位置する低圧部111と、圧縮室6を有し、高圧冷媒が位置する高圧部112とに隔壁110によって区画されており、高圧部112には吐出流路に開口する吐出口8(後述の図2参照)が形成されている。 Further, the inside of the casing 1 is partitioned by a partition wall 110 into a low-pressure portion 111 where the low-pressure refrigerant is located and a compression chamber 6 and a high-pressure portion 112 where the high-pressure refrigerant is located. A discharge port 8 (see FIG. 2 described later) is formed.
 次に、圧縮機101の動作について説明する。
 図2は、本発明の実施の形態1に係る冷凍装置に備えられた圧縮機の圧縮原理を示す図である。
 圧縮機101においてモータ2を起動すると、スクリュー軸3(図1参照)が回転するのに伴ってスクリューロータ4が実線矢印の方向に回転する。スクリューロータ4のスクリュー溝4aにはゲートロータ5の歯5aが噛み合っているため、スクリューロータ4が回転すると、ゲートロータ5の歯5aがスクリュー溝4a内を相対的に移動する。これにより、ゲートロータ5は細白抜き矢印の方向に回転する。これにより、圧縮室6内では吸入行程、圧縮行程及び吐出行程を一サイクルとして、このサイクルを繰り返すようになっている。ここでは、図2においてドットで網がけした圧縮室6に着目して各行程について説明する。
Next, the operation of the compressor 101 will be described.
FIG. 2 is a diagram illustrating a compression principle of the compressor provided in the refrigeration apparatus according to Embodiment 1 of the present invention.
When the motor 2 is started in the compressor 101, the screw rotor 4 rotates in the direction of the solid arrow as the screw shaft 3 (see FIG. 1) rotates. Since the teeth 5a of the gate rotor 5 are engaged with the screw grooves 4a of the screw rotor 4, when the screw rotor 4 rotates, the teeth 5a of the gate rotor 5 relatively move in the screw grooves 4a. Thereby, the gate rotor 5 rotates in the direction of the thin white arrow. Thereby, in the compression chamber 6, the suction stroke, the compression stroke, and the discharge stroke are set as one cycle, and this cycle is repeated. Here, each stroke will be described focusing on the compression chamber 6 shaded with dots in FIG.
 図2(a)は吸入行程における圧縮室6の状態を示している。スクリューロータ4がモータ2により駆動されて実線矢印の方向に回転する。この回転に連動してゲートロータ5の歯5aが順次吐出口8の方へ回転移動し、これにより図2(b)のように圧縮室6の容積が縮小し、圧縮室6内の冷媒ガスが圧縮される。 FIG. 2 (a) shows the state of the compression chamber 6 in the suction stroke. The screw rotor 4 is driven by the motor 2 and rotates in the direction of the solid arrow. In conjunction with this rotation, the teeth 5a of the gate rotor 5 are sequentially rotated toward the discharge port 8, whereby the volume of the compression chamber 6 is reduced as shown in FIG. 2B, and the refrigerant gas in the compression chamber 6 is reduced. Is compressed.
 引き続きスクリューロータ4が回転すると、図2(c)に示すように、圧縮室6が吐出口8に連通する。これにより、圧縮室6内で圧縮された高圧の冷媒ガスが吐出口8より外部へ吐出される。そして、再びスクリューロータ4の背面で同様の圧縮が行われる。 When the screw rotor 4 continues to rotate, the compression chamber 6 communicates with the discharge port 8 as shown in FIG. Thereby, the high-pressure refrigerant gas compressed in the compression chamber 6 is discharged from the discharge port 8 to the outside. Then, the same compression is performed again on the back surface of the screw rotor 4.
 図3は、本発明の実施の形態1に係る冷凍装置における低圧保護制御のフローチャートを示す図である。図3のフローチャートの処理は、冷凍装置の運転中、任意に設定された制御時間間隔毎に実施される。
 低圧保護装置107は、予測演算装置106により演算された低圧圧力の予測値と設定値とを比較し(S1)、予測値が設定値以上であれば、圧縮機101の運転を継続させる。一方、低圧保護装置107は、予測値が設定値よりも低ければ、圧縮機101を停止させる(S2)。
FIG. 3 is a diagram showing a flowchart of low-pressure protection control in the refrigeration apparatus according to Embodiment 1 of the present invention. The processing of the flowchart of FIG. 3 is performed at arbitrarily set control time intervals during operation of the refrigeration apparatus.
The low pressure protection device 107 compares the predicted value of the low pressure calculated by the prediction calculation device 106 with the set value (S1), and continues the operation of the compressor 101 if the predicted value is equal to or greater than the set value. On the other hand, if the predicted value is lower than the set value, the low-pressure protection device 107 stops the compressor 101 (S2).
 以上のように、実施の形態1では、予測演算装置106で予測した低圧圧力の予測値が設定値よりも低ければ、低圧保護装置107が作動して圧縮機101を停止させるようにした。この構成により、実際の低圧圧力が設定値以下に下がる前に事前に、圧縮機101を停止させることができる。このため、冷凍装置100の運転中における圧縮機101の焼付きを抑制することができる。つまり、実施の形態1によれば、例えば減圧装置103の故障などによって低圧圧力が急低下しても、圧縮機101の焼付きを抑制できる信頼性の高い冷凍装置を得ることができる。また、蒸発器104が冷温水発生装置であるいわゆるチラーで、水側流路と冷媒流路とを熱交換する構成である場合に、水側流路にゴミなどが詰まることによる低圧圧力の低下の際にも、圧縮機101の焼付きを抑制できる信頼性の高い冷凍装置を得ることができる。 As described above, in the first embodiment, when the predicted value of the low-pressure pressure predicted by the prediction calculation device 106 is lower than the set value, the low-pressure protection device 107 is activated and the compressor 101 is stopped. With this configuration, the compressor 101 can be stopped in advance before the actual low-pressure pressure falls below the set value. For this reason, the seizure of the compressor 101 during the operation of the refrigeration apparatus 100 can be suppressed. That is, according to the first embodiment, it is possible to obtain a highly reliable refrigeration apparatus that can suppress seizure of the compressor 101 even when the low-pressure pressure rapidly decreases due to, for example, a failure of the decompression device 103. In addition, when the evaporator 104 is a so-called chiller that is a cold / hot water generator and is configured to exchange heat between the water-side flow path and the refrigerant flow path, the low-pressure pressure is reduced due to clogging of the water-side flow path with dust and the like. In this case, a highly reliable refrigeration apparatus that can suppress seizure of the compressor 101 can be obtained.
 なお、冷媒回路Aを循環する冷媒は特に限定するものでなく、R134a又はR1234yfなどの作動圧力の低い低圧冷媒、又は、R410A等の作動圧力の高い高圧冷媒を用いることができる。 The refrigerant circulating in the refrigerant circuit A is not particularly limited, and a low-pressure refrigerant with a low operating pressure such as R134a or R1234yf or a high-pressure refrigerant with a high operating pressure such as R410A can be used.
 ところで、冷凍装置100においては、圧縮機101の吐出温度が過剰に上昇すると、圧縮機101の焼け付き等の不都合が生じる。このため、吐出温度センサ113(図1参照)により吐出温度を計測して、吐出温度が設定上限温度よりも上昇しないようにしている。冷媒として低圧冷媒を用いる場合、低圧冷媒は高圧冷媒と比較して密度が小さいため、低圧圧力が低下する事象が生じた場合の冷媒循環量は、高圧冷媒を用いた場合より少なくなる。このように冷媒循環量が少なくなると、吐出温度センサは異常を検知しにくくなるため、本実施の形態の構成を採用しない場合には低圧保護装置が作動する前に圧縮機が焼付いてしまうことがある。 Incidentally, in the refrigeration apparatus 100, when the discharge temperature of the compressor 101 rises excessively, inconvenience such as burn-in of the compressor 101 occurs. For this reason, the discharge temperature is measured by the discharge temperature sensor 113 (see FIG. 1) so that the discharge temperature does not rise above the set upper limit temperature. When a low-pressure refrigerant is used as the refrigerant, the density of the low-pressure refrigerant is smaller than that of the high-pressure refrigerant. Therefore, the amount of refrigerant circulation when an event in which the low-pressure pressure is reduced occurs is smaller than when the high-pressure refrigerant is used. When the refrigerant circulation amount is reduced in this way, the discharge temperature sensor is less likely to detect an abnormality. Therefore, if the configuration of the present embodiment is not adopted, the compressor may be burned before the low-pressure protection device operates. is there.
 しかし、本実施の形態1では、低圧冷媒を用いて冷媒循環量が少なくなったとしても、実際の低圧圧力が設定値より低下する前に事前に、低圧保護装置107が作動して圧縮機101を停止させる。このため、低圧冷媒を用いた場合でも、圧縮機101の焼付きを抑制できる信頼性の高い冷凍装置を得ることができる。 However, in the first embodiment, even if the refrigerant circulation amount is reduced by using the low-pressure refrigerant, the low-pressure protection device 107 is activated in advance and the compressor 101 before the actual low-pressure pressure falls below the set value. Stop. For this reason, even when a low-pressure refrigerant is used, a highly reliable refrigeration apparatus that can suppress seizure of the compressor 101 can be obtained.
 なお、上記の実施の形態1では、圧縮機101としてシングルスクリュー圧縮機について説明した。しかしながら、本発明の冷凍装置に適用される圧縮機はシングルスクリュー圧縮機に限られない。本発明の冷凍装置に適用される圧縮機としては、他に例えば2つのスクリューロータを備え、これらスクリューロータの溝部を噛み合わせて圧縮室を形成するツインスクリュー圧縮機、レシプロ圧縮機、スクロール圧縮機、ターボ圧縮機及びロータリー圧縮機としてもよい。 In the first embodiment, the single screw compressor is described as the compressor 101. However, the compressor applied to the refrigeration apparatus of the present invention is not limited to a single screw compressor. As a compressor applied to the refrigeration apparatus of the present invention, for example, a twin screw compressor, a reciprocating compressor, and a scroll compressor that include, for example, two screw rotors and meshes groove portions of these screw rotors to form a compression chamber. Further, a turbo compressor and a rotary compressor may be used.
 また、上記の実施の形態1では、圧力センサ105を蒸発器104の出口に設けたが、冷媒回路Aの低圧圧力を検出できればよく、蒸発器104の出口から圧縮機101の冷媒吸入部までの間であればどこへ設けてもよい。 In the first embodiment, the pressure sensor 105 is provided at the outlet of the evaporator 104. However, the pressure sensor 105 only needs to be able to detect the low pressure of the refrigerant circuit A. From the outlet of the evaporator 104 to the refrigerant suction portion of the compressor 101. It may be provided anywhere between them.
実施の形態2.
 上記実施の形態1では、冷媒回路Aの低圧圧力として、蒸発器104の出口から圧縮機101の冷媒吸入部までの間の圧力を検出するようにしていた。実施の形態2では、冷媒回路Aの低圧圧力を検出する点は同様であるが、その検出位置を実施の形態1とは別の位置としたものである。
Embodiment 2. FIG.
In the first embodiment, the pressure between the outlet of the evaporator 104 and the refrigerant suction portion of the compressor 101 is detected as the low pressure of the refrigerant circuit A. In the second embodiment, the point of detecting the low pressure of the refrigerant circuit A is the same, but the detection position is different from that of the first embodiment.
 図4は、本発明の実施の形態2に係る冷凍装置の冷媒回路図である。
 実施の形態2では、圧力センサ105の圧力計測位置を圧縮機101の内部の低圧部111とする。低圧部111とは、ストレーナ7の下流側から圧縮室6の冷媒吸入部前までの間であり、図4においてドットで示した領域である。圧力センサ105の圧力計測位置以外の実施の形態2の構成は、全て前述の実施の形態1と同一である。
FIG. 4 is a refrigerant circuit diagram of the refrigeration apparatus according to Embodiment 2 of the present invention.
In the second embodiment, the pressure measurement position of the pressure sensor 105 is set to the low pressure part 111 inside the compressor 101. The low pressure portion 111 is a region from the downstream side of the strainer 7 to the front of the refrigerant suction portion of the compression chamber 6, and is a region indicated by dots in FIG. The configuration of the second embodiment other than the pressure measurement position of the pressure sensor 105 is all the same as that of the first embodiment.
 上記構成によれば、例えば圧縮機101の冷媒吸入部に取付けられた止弁(図示せず)が閉められたままで圧縮機101を運転させた場合でも、低圧圧力を計測して予測演算し、圧縮機101を停止させることができる。また、圧縮機101の冷媒吸入部に取付けられているストレーナ7の目詰まりが生じた場合でも、低圧圧力の低下を検知して予測演算し、圧縮機101を停止させることができる。つまり、実施の形態2は、実施の形態1よりも信頼性の高い圧縮機101及び冷凍装置100を得ることができる。 According to the above configuration, for example, even when the compressor 101 is operated while a stop valve (not shown) attached to the refrigerant suction portion of the compressor 101 is closed, the low pressure pressure is measured and predicted, The compressor 101 can be stopped. Further, even when the strainer 7 attached to the refrigerant suction portion of the compressor 101 is clogged, the compressor 101 can be stopped by detecting and predicting a decrease in low-pressure pressure. That is, the second embodiment can obtain the compressor 101 and the refrigeration apparatus 100 that are more reliable than the first embodiment.
 1 ケーシング、2 モータ、2a ステータ、2b モータロータ、3 スクリュー軸、4 スクリューロータ、4a スクリュー溝、5 ゲートロータ、5a 歯、6 圧縮室、7 ストレーナ、8 吐出口、100 冷凍装置、101 圧縮機、102 凝縮器、103 減圧装置、104 蒸発器、105 圧力センサ、106 予測演算装置、107 低圧保護装置、108 インバータ、109 制御装置、110 隔壁、111 低圧部、112 高圧部、113 吐出温度センサ、A 冷媒回路。 1 casing, 2 motor, 2a stator, 2b motor rotor, 3 screw shaft, 4 screw rotor, 4a screw groove, 5 gate rotor, 5a teeth, 6 compression chamber, 7 strainer, 8 discharge port, 100 freezer, 101 compressor, 102 Condenser, 103 Depressurizer, 104 Evaporator, 105 Pressure sensor, 106 Prediction calculation device, 107 Low pressure protection device, 108 Inverter, 109 Control device, 110 Bulkhead, 111 Low pressure section, 112 High pressure section, 113 Discharge temperature sensor, A Refrigerant circuit.

Claims (2)

  1.  冷媒を吸入して圧縮を行う圧縮室を内部に備えた圧縮機、凝縮器、減圧装置及び蒸発器を備え、冷媒が循環する冷媒回路と、
     前記蒸発器の出口から前記圧縮室の冷媒吸入部までの間の前記冷媒の圧力を計測する圧力センサと、
     前記圧力センサで計測した圧力の履歴から、予め設定した時間経過後の圧力値を予測演算する予測演算装置と、
     前記予測演算装置で予測演算された予測値が設定値よりも低くなると、前記圧縮機を停止させる低圧保護装置とを備えた冷凍装置。
    A refrigerant circuit that includes a compressor, a condenser, a decompression device, and an evaporator, each having a compression chamber that sucks and compresses the refrigerant;
    A pressure sensor for measuring the pressure of the refrigerant between the outlet of the evaporator and the refrigerant suction part of the compression chamber;
    From a history of pressure measured by the pressure sensor, a prediction calculation device that predicts and calculates a pressure value after a preset time, and
    A refrigeration apparatus comprising: a low-pressure protection device that stops the compressor when a predicted value calculated by the prediction calculation device is lower than a set value.
  2.  前記圧縮機の内部は、低圧部と、前記圧縮室を有する高圧部とに区画されており、前記圧力センサは前記低圧部の圧力を計測する請求項1記載の冷凍装置。 The refrigeration apparatus according to claim 1, wherein the compressor is partitioned into a low pressure section and a high pressure section having the compression chamber, and the pressure sensor measures the pressure of the low pressure section.
PCT/JP2017/005109 2017-02-13 2017-02-13 Refrigerating device WO2018146805A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/005109 WO2018146805A1 (en) 2017-02-13 2017-02-13 Refrigerating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/005109 WO2018146805A1 (en) 2017-02-13 2017-02-13 Refrigerating device

Publications (1)

Publication Number Publication Date
WO2018146805A1 true WO2018146805A1 (en) 2018-08-16

Family

ID=63107355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/005109 WO2018146805A1 (en) 2017-02-13 2017-02-13 Refrigerating device

Country Status (1)

Country Link
WO (1) WO2018146805A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108955006A (en) * 2018-09-03 2018-12-07 珠海格力电器股份有限公司 Control method for evacuating and stopping refrigerating unit and refrigerating unit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10339527A (en) * 1997-06-05 1998-12-22 Carrier Corp Method for predicting overheat of motor of freezer compressor
JP2005207644A (en) * 2004-01-21 2005-08-04 Mitsubishi Electric Corp Apparatus diagnosing device, refrigeration cycle device, fluid circuit diagnosing method, apparatus monitoring system and refrigeration cycle monitoring system
JP2015206518A (en) * 2014-04-18 2015-11-19 ダイキン工業株式会社 Refrigeration device
JP2016090177A (en) * 2014-11-07 2016-05-23 東芝キヤリア株式会社 Refrigeration cycle device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10339527A (en) * 1997-06-05 1998-12-22 Carrier Corp Method for predicting overheat of motor of freezer compressor
JP2005207644A (en) * 2004-01-21 2005-08-04 Mitsubishi Electric Corp Apparatus diagnosing device, refrigeration cycle device, fluid circuit diagnosing method, apparatus monitoring system and refrigeration cycle monitoring system
JP2015206518A (en) * 2014-04-18 2015-11-19 ダイキン工業株式会社 Refrigeration device
JP2016090177A (en) * 2014-11-07 2016-05-23 東芝キヤリア株式会社 Refrigeration cycle device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108955006A (en) * 2018-09-03 2018-12-07 珠海格力电器股份有限公司 Control method for evacuating and stopping refrigerating unit and refrigerating unit

Similar Documents

Publication Publication Date Title
CN103216963B (en) Air-conditioning and its startup control method
EP3859249B1 (en) Refrigerant leakage determination device, freezing device including this refrigerant leakage determination device, and refrigerant leakage determination method
US20180023584A1 (en) Centrifugal compressor and magnetic bearing backup system for centrifugal compressor
US8826680B2 (en) Pressure ratio unload logic for a compressor
US20060042276A1 (en) System and method for detecting decreased performance in a refrigeration system
JP6434634B2 (en) Air conditioner equipped with compressor failure prediction / detection means and failure prediction / detection method thereof
US10563673B2 (en) Centrifugal compressor with liquid injection
US11137179B2 (en) Refrigeration apparatus
JP5943869B2 (en) Air conditioner
US20160298627A1 (en) Compressor temperature control systems and methods
EP3859250B1 (en) Abnormality determination device, freezing device including this abnormality determination device, and abnormality determination method for compressor
WO2018146805A1 (en) Refrigerating device
EP3604970A1 (en) Air-conditioning device, railway vehicle air-conditioning device, and method for controlling air-conditioning device
US10436226B2 (en) Compressor having sound control system
CN111434921B (en) Compressor fault diagnosis device, system and method and compressor equipment
JP6373034B2 (en) refrigerator
JP4738219B2 (en) Refrigeration equipment
US10571177B2 (en) Scroll unloading detection system
US20230014957A1 (en) Refrigerant apparatus
WO2016088207A1 (en) Refrigeration cycle circuit
CN113944977A (en) Control method of air conditioning system
WO2018008052A1 (en) Screw compressor and refrigeration cycle device
JP2005351598A (en) Control method for air conditioning system, its device and air conditioning system
JP2005282935A (en) Cooling device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17896098

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17896098

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP