JP2006234320A - Refrigerating machine and its capacity control method - Google Patents

Refrigerating machine and its capacity control method Download PDF

Info

Publication number
JP2006234320A
JP2006234320A JP2005051418A JP2005051418A JP2006234320A JP 2006234320 A JP2006234320 A JP 2006234320A JP 2005051418 A JP2005051418 A JP 2005051418A JP 2005051418 A JP2005051418 A JP 2005051418A JP 2006234320 A JP2006234320 A JP 2006234320A
Authority
JP
Japan
Prior art keywords
compressor
control
refrigerator
guide vane
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005051418A
Other languages
Japanese (ja)
Inventor
Yasushi Furuya
泰 古谷
Yuichi Sato
裕一 佐藤
Toru Tokumaru
徹 徳丸
Takukan Senda
卓寛 仙田
Takashi Okada
岡田  隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Refrigeration Equipment and Systems Co Ltd
Original Assignee
Ebara Refrigeration Equipment and Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Refrigeration Equipment and Systems Co Ltd filed Critical Ebara Refrigeration Equipment and Systems Co Ltd
Priority to JP2005051418A priority Critical patent/JP2006234320A/en
Publication of JP2006234320A publication Critical patent/JP2006234320A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerating machine and its capacity control method capable of keeping a compressor in an operation state of high efficiency corresponding to load, to achieve an energy saving operation of the refrigerating machine. <P>SOLUTION: As shown in Fig. 2, this vapor compression type refrigerating machine comprises an evaporator 10 producing cold water, a condenser 30 radiating heat to cooling water, a restricting mechanism 40 mounted between the condenser 30 and the evaporator 10, the compressor 20, and a motor 50 for driving the compressor 20. The compressor 20 is a centrifugal compressor comprising a suction guide vane 25, an invertor 80 is mounted for driving and controlling the motor 50, and further a control means 70 is mounted to control a capacity of the compressor 20 by controlling opening and closing of the guide vane 25, and a rotational frequency of the compressor 20 by the invertor 80. A cold water temperature detector 90 is mounted for detecting a cold water outlet temperature of the evaporator 10, and the control means 70 controls the rotational frequency of the compressor 20 and the opening and closing of the suction guide vane 25 to control the cold water outlet temperature detected by the cold water temperature detector 90 to a predetermined target value. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は冷凍機及びその容量制御方法に関するものである。   The present invention relates to a refrigerator and a capacity control method thereof.

従来、冷水を製造する蒸発器、システム内に取り込んだ熱を冷却水に放熱する凝縮器、システムを構成するために必要な昇圧装置である圧縮機、凝縮器から減圧して低温を発生する絞り機構(減圧装置)を基本構成要素とする蒸気圧縮式冷凍機がある。図1はこの種の従来の蒸気圧縮式冷凍機500の一例を示す全体概略構成図である。同図に示すように蒸気圧縮式冷凍機500は、蒸発器510、圧縮機520、凝縮器530、及び減圧装置540を具備し、これら各機器内で冷媒が蒸発、加圧圧縮、凝縮、及び減圧を繰り返して冷凍サイクルを構成している。即ちこの冷凍サイクルは、蒸発器510で得られる冷熱源で冷水を製造して負荷に対応し、一方冷凍システム内に取り込まれた蒸発器510からの熱量及び圧縮機520を駆動する電動機521から供給される圧縮機520の仕事量を凝縮器530に供給される冷却水に放出する。一方前記電動機521には電動機起動手段560を介して直接商用電源570が接続され、一般的には起動時の減電流装置として図示しないコンドルファやリアクトル装置を介して起動するが、電動機521の回転数はほぼ商用電源570の周波数に一致して回転しており、回転数を可変にする手段は設けられていなかった。また負荷の変動を検知する手段として蒸発器510の冷水出口511に冷水温度検出器513を設置してこの測定信号を冷凍機操作手段580に取り込み、冷水出口温度が常時目標値になるように圧縮機520の容量を制御している。その制御方法は、前記冷水出口温度が目標値よりも上昇すれば圧縮機520に設置した吸込みガイドベーン525を開いて圧縮機520の吸込み能力を増大してこの蒸気圧縮式冷凍機500の容量を上昇して冷水出口温度を目標値に近づけ、一方冷水出口温度が目標値よりも下降すれば逆の動作によって冷水出口温度を目標値に近づける単純な制御方法である。   Conventionally, an evaporator that produces cold water, a condenser that dissipates the heat taken into the system to the cooling water, a compressor that is a booster required to configure the system, and a throttle that generates a low temperature by reducing the pressure from the condenser There is a vapor compression refrigerator having a mechanism (pressure reduction device) as a basic component. FIG. 1 is an overall schematic configuration diagram showing an example of a conventional vapor compression refrigerator 500 of this type. As shown in the figure, the vapor compression refrigerator 500 includes an evaporator 510, a compressor 520, a condenser 530, and a decompression device 540. In each of these devices, the refrigerant evaporates, presses and compresses, condenses, and The refrigeration cycle is configured by repeating the decompression. That is, this refrigeration cycle manufactures chilled water with a cold heat source obtained by the evaporator 510 to cope with the load, while supplying heat from the evaporator 510 taken into the refrigeration system and the electric motor 521 that drives the compressor 520. The amount of work performed by the compressor 520 is discharged into the cooling water supplied to the condenser 530. On the other hand, a commercial power source 570 is directly connected to the motor 521 via a motor starting means 560. Generally, the motor 521 is started as a current reducing device at the time of starting via a condorfa or a reactor device (not shown). The number rotates substantially in accordance with the frequency of the commercial power source 570, and no means for changing the number of rotations is provided. In addition, as a means for detecting the fluctuation of the load, a cold water temperature detector 513 is installed at the cold water outlet 511 of the evaporator 510, and this measurement signal is taken into the refrigerator operating means 580 and compressed so that the cold water outlet temperature always becomes a target value. The capacity of the machine 520 is controlled. The control method is such that if the cold water outlet temperature rises above a target value, the suction guide vane 525 installed in the compressor 520 is opened to increase the suction capacity of the compressor 520 to increase the capacity of the vapor compression refrigerator 500. This is a simple control method in which the chilled water outlet temperature is brought close to the target value and, on the other hand, if the chilled water outlet temperature falls below the target value, the chilled water outlet temperature is brought close to the target value by the reverse operation.

圧縮機520の吸込み能力を制御する別の方法として、蒸発器510と圧縮機520を連結する連絡管590に減圧装置を設けて圧力損失を加減する方法もあるが、最も効率の良い圧縮機520の吸込み性能の制御手段として前記吸込みガイドベーン525に優るものは無い。   As another method for controlling the suction capacity of the compressor 520, there is a method in which a pressure reducing device is provided in the connecting pipe 590 connecting the evaporator 510 and the compressor 520 to adjust the pressure loss. There is nothing superior to the suction guide vane 525 as the suction performance control means.

しかしながら圧縮機520は吸込みガイドベーン525が全開の状態で所定の吸込み能力及び仕事が得られるように設計するものであるから、吸込みガイドベーン525によって吸込み能力が減少する方向に動作すれば当然圧縮機520の効率は設計状態の運転に比較して低下し、この結果冷凍機500の省エネルギー運転ができない。   However, since the compressor 520 is designed so that a predetermined suction capacity and work can be obtained with the suction guide vane 525 fully opened, if the suction guide vane 525 operates in a direction in which the suction capacity decreases, the compressor 520 naturally. The efficiency of 520 is reduced as compared with the operation in the designed state. As a result, the energy saving operation of the refrigerator 500 cannot be performed.

本発明は上述の点に鑑みてなされたものでありその目的は、負荷に対応して圧縮機を高効率運転状態に維持できて冷凍機の省エネルギー運転が図れる冷凍機及びその容量制御方法を提供することにある。   The present invention has been made in view of the above points, and an object of the present invention is to provide a refrigerator that can maintain the compressor in a high-efficiency operation state corresponding to a load and can achieve energy-saving operation of the refrigerator, and a capacity control method thereof. There is to do.

蒸発器、遠心式の圧縮機、凝縮器及び減圧装置を基本構成要素とする冷凍機での容量制御は、冷水出口温度を目標値になるように圧縮機の吸込み能力を変化させて冷凍機の容量を変えることである。そこで本発明では、従来のように吸込みガイドベーンを制御するだけでなく、電動機をインバータで駆動して回転数可変にし、圧縮機を高効率運転域に維持することによって冷凍機の省エネルギー運転を可能にできるようにした。この場合、遠心式の圧縮機特有のサージングを避ける手段を講じることが好ましい。即ち負荷の変動や冷却水温度の変動に対して常時圧縮機を高効率運転に維持するために、本発明においては従来の吸込みガイドベーン制御に回転数制御を加えてこれらを併用する制御を行うが、遠心式の圧縮機には特有のサージング現象があるため冷却水温度に無関係に回転数制御を継続することはできず、設計回転数以下で運転中に冷却水温度が上昇し、圧縮機に要求される仕事が増加すればやがてサージング領域に達して圧縮機の安定運転が不可能になる。そしてこのサージングを避けるためには、回転数を上昇させて圧縮機のサージングに達する限界仕事を増加させることになるが、一方増加した回転数を維持すれば冷却水の温度が低下した場合に圧縮機の高効率運転域から外れることになり、冷凍機として省エネルギー運転にはならなくなってしまう。そこで本発明では圧縮機の回転数制御とガイドベーン制御を併用して冷凍機の省エネルギー運転を維持すると共に、さらに遠心式の圧縮機特有のサージングを避けて圧縮機の安定運転を可能にするようにした。   Capacitance control in a refrigerator that has an evaporator, a centrifugal compressor, a condenser, and a decompression device as basic components changes the suction capacity of the compressor so that the chilled water outlet temperature becomes the target value. It is to change the capacity. Therefore, in the present invention, not only the suction guide vane is controlled as in the prior art, but also the electric motor is driven by an inverter to make the rotation speed variable, and the compressor is maintained in a high-efficiency operation region, thereby enabling the energy-saving operation of the refrigerator. I was able to. In this case, it is preferable to take measures to avoid surging specific to a centrifugal compressor. That is, in order to keep the compressor in a highly efficient operation at all times with respect to load fluctuations and cooling water temperature fluctuations, in the present invention, the conventional suction guide vane control is added to the rotational speed control and the control is used in combination. However, since the centrifugal compressor has a unique surging phenomenon, the rotation speed control cannot be continued regardless of the cooling water temperature, and the cooling water temperature rises during operation at the design rotation speed or lower, and the compressor If the required work increases, the surging area will be reached and stable operation of the compressor becomes impossible. And in order to avoid this surging, the limit work to reach the surging of the compressor is increased by increasing the rotation speed. On the other hand, if the increased rotation speed is maintained, the cooling water temperature is reduced. It will be out of the high-efficiency operating range of the machine, and it will not be energy saving operation as a refrigerator. Therefore, in the present invention, the compressor speed control and the guide vane control are used together to maintain the energy saving operation of the refrigerator, and further, the compressor can be stably operated by avoiding the surging peculiar to the centrifugal compressor. I made it.

即ち本願請求項1に記載の発明は、冷水を製造する蒸発器と、冷却水に放熱する凝縮器と、凝縮器と蒸発器間に設ける減圧装置と、圧縮機と、圧縮機を駆動する電動機とを具備して構成される蒸気圧縮式冷凍機において、前記圧縮機を吸込みガイドベーンを備えた遠心式圧縮機で構成すると共に、前記電動機を駆動制御するインバータを設置し、さらに前記ガイドベーンの開閉とインバータによる圧縮機の回転数制御により前記圧縮機の容量制御を行う制御手段を設置したことを特徴とする冷凍機にある。   That is, the invention described in claim 1 includes an evaporator for producing cold water, a condenser for radiating heat to the cooling water, a decompression device provided between the condenser and the evaporator, a compressor, and an electric motor for driving the compressor. The compressor is constituted by a centrifugal compressor provided with a suction guide vane, an inverter for driving and controlling the electric motor is installed, and the guide vane The refrigerator is provided with control means for controlling the capacity of the compressor by opening and closing and controlling the number of revolutions of the compressor by an inverter.

本願請求項2に記載の発明は、前記蒸発器の冷水出口温度を検出する冷水温度検出器を設置すると共に、前記制御手段は、前記冷水温度検出器で検出した冷水出口温度が予め定めた目標値になるように圧縮機の回転数及び吸込みガイドベーンの開閉を制御することを特徴とする請求項1に記載の冷凍機にある。   The invention according to claim 2 of the present application is provided with a chilled water temperature detector for detecting a chilled water outlet temperature of the evaporator, and the control means has a predetermined target for the chilled water outlet temperature detected by the chilled water temperature detector. The refrigerator according to claim 1, wherein the rotation speed of the compressor and the opening / closing of the suction guide vane are controlled so as to be a value.

本願請求項3に記載の発明は、前記冷却水の入口又は出口温度を検出する冷却水温度検出器と、蒸発器圧力又は圧縮機吸込み圧力を検出する低圧側圧力検出器と、凝縮器圧力又は圧縮機吐出圧力を検出する高圧側圧力検出器とを設置し、前記制御手段は、前記冷却水の入口又は出口温度検出値と、低圧側圧力検出値と、高圧側圧力検出値から算出される圧縮機の運転状態が、常に予め定められた運転可能範囲内に入るように、圧縮機の回転数と圧縮機の吸込みガイドベーンを制御することを特徴とする請求項2に記載の冷凍機にある。   The invention according to claim 3 of the present application includes a cooling water temperature detector for detecting the inlet or outlet temperature of the cooling water, a low pressure side pressure detector for detecting an evaporator pressure or a compressor suction pressure, a condenser pressure or A high pressure side pressure detector for detecting the compressor discharge pressure is installed, and the control means is calculated from the detected inlet or outlet temperature of the cooling water, the detected low pressure value, and the detected high pressure value. The refrigerator according to claim 2, wherein the rotation speed of the compressor and the suction guide vane of the compressor are controlled so that the operation state of the compressor always falls within a predetermined operable range. is there.

本願請求項4に記載の発明は、前記電動機を商用電源から前記インバータを介して駆動する場合と、商用電源から直接電動機を駆動する場合とを切り替える切替え装置を設けたことを特徴とする請求項1に記載の冷凍機にある。   The invention according to claim 4 of the present application is characterized in that a switching device is provided for switching between a case where the electric motor is driven from a commercial power source via the inverter and a case where the motor is driven directly from the commercial power source. 1 in the refrigerator.

本願請求項5に記載の発明は、冷水を製造する蒸発器と、冷却水に放熱する凝縮器と、凝縮器と蒸発器間に設ける減圧装置と、遠心式の圧縮機と、圧縮機を駆動する電動機とを具備して構成される蒸気圧縮式冷凍機の制御方法において、前記圧縮機に備えた吸込みガイドベーン制御と、前記電動機を駆動制御するインバータによる圧縮機回転数のインバータ制御とを組み合わせることにより、前記圧縮機の容量制御を行うことを特徴とする冷凍機の制御方法にある。   The invention according to claim 5 of the present invention drives an evaporator for producing cold water, a condenser for radiating heat to the cooling water, a decompression device provided between the condenser and the evaporator, a centrifugal compressor, and a compressor. In a method for controlling a vapor compression refrigerator that includes an electric motor that combines the above, a suction guide vane control provided in the compressor is combined with an inverter control of a compressor rotation speed by an inverter that drives and controls the electric motor. Thus, there is provided a control method for a refrigerator, wherein capacity control of the compressor is performed.

本願請求項6に記載の発明は、前記冷水出口の温度を検出し、この冷水出口温度が予め定めた目標値になるように圧縮機の回転数及び吸込みガイドベーンの開閉を制御することを特徴とする請求項5に記載の冷凍機の制御方法にある。   The invention according to claim 6 of the present application detects the temperature of the cold water outlet, and controls the rotation speed of the compressor and the opening / closing of the suction guide vane so that the cold water outlet temperature becomes a predetermined target value. It exists in the control method of the refrigerator of Claim 5.

本願請求項7に記載の発明は、前記冷却水の凝縮器への入口又は出口温度と、前記蒸発器圧力又は圧縮機吸込み圧力である低圧側圧力と、前記凝縮器圧力又は圧縮機吐出圧力である高圧側圧力とを検出し、これら検出値から算出される圧縮機の運転状態が常に予め定められた運転可能範囲内に入るように、圧縮機の回転数と圧縮機の吸込みガイドベーンを制御することを特徴とする請求項6に記載の冷凍機の制御方法にある。   The invention according to claim 7 of the present invention includes an inlet or outlet temperature to the condenser of the cooling water, a low pressure side pressure that is the evaporator pressure or a compressor suction pressure, and the condenser pressure or the compressor discharge pressure. Detects a certain high-pressure side pressure, and controls the compressor speed and compressor suction guide vane so that the compressor operating state calculated from these detected values always falls within the predetermined operable range. The method of controlling a refrigerator according to claim 6.

本願請求項8に記載の発明は、前記インバータ制御を行っている際に、前記冷却水の入口又は出口温度の検出値から、現状の回転数での圧縮機のサージングを避ける限界仕事を決定し、前記低圧側圧力の検出値と、前記高圧側圧力の検出値から、圧縮機の理論仕事を算出し、前記理論仕事と限界仕事を比較して理論仕事が限界仕事以下ならばインバータ制御を続行し、理論仕事が限界仕事に達すれば現状の回転数を固定あるいは限界回転数を上昇させてガイドベーン制御に移行することを特徴とする請求項7に記載の冷凍機の制御方法にある。   In the invention according to claim 8 of the present application, when performing the inverter control, the limit work for avoiding the surging of the compressor at the current rotational speed is determined from the detected value of the inlet or outlet temperature of the cooling water. Calculate the theoretical work of the compressor from the detected value of the low-pressure side pressure and the detected value of the high-pressure side pressure, compare the theoretical work and the limit work, and continue the inverter control if the theoretical work is less than the limit work 8. The refrigerator control method according to claim 7, wherein when the theoretical work reaches the limit work, the current rotation speed is fixed or the limit rotation speed is increased to shift to guide vane control.

本願請求項9に記載の発明は、冷却水の入口又は出口温度が設計温度以上に高い場合に、インバータを介さず、商用電源から直接電動機を駆動することを特徴とする請求項5に記載の冷凍機の制御方法にある。   The invention described in claim 9 is characterized in that when the cooling water inlet or outlet temperature is higher than the design temperature, the motor is driven directly from a commercial power source without using an inverter. It is in the control method of the refrigerator.

本発明によれば、ガイドベーンで圧縮機の吸込み能力を制御する方法に加えて、電動機を周波数可変のインバータ駆動として圧縮機の回転数を制御可能にすることにより、従来に比較して格段に省エネルギーで容量制御運転を可能にできる。   According to the present invention, in addition to the method of controlling the suction capacity of the compressor with the guide vane, the motor can be controlled by controlling the number of revolutions of the compressor by using a frequency variable inverter drive. Capacity control operation is possible with energy saving.

以下、本発明の実施形態を図面を参照して詳細に説明する。
図2は本発明の第一実施形態にかかる冷凍機(蒸気圧縮式冷凍機)1−1を示す全体概略構成図である。同図に示すように冷凍機1−1は、冷水を製造する蒸発器10と、蒸発器10から凝縮器30まで冷媒を昇温・昇圧する圧縮機(遠心式圧縮機)20と、この冷凍機1−1内に取り込んだ熱を冷却水に放出する凝縮器30と、凝縮器30と蒸発器10間に設けられ凝縮器30から蒸発器10の圧力まで減圧する絞り機構(減圧装置)40と、圧縮機20を駆動する電動機50と、電動機50の起動・停止に使用する電動機起動盤60と、商用電源75から供給される電源の周波数を自在に制御して電動機50に供給するインバータ80と、電動機50に供給される電源の周波数を指示するインバータ制御信号をインバータ80に対して出力して冷凍機1−1の運転を制御する制御手段70と、蒸発器10の冷水出口温度を検出する冷水温度検出器90と、凝縮器30の冷却水入口温度を検出する冷却水温度検出器100と、蒸発器10内の冷媒の圧力(低圧側圧力)を検出する低圧側圧力検出器110と、凝縮器30内の冷媒の圧力(高圧側圧力)を検出する高圧側圧力検出器120と、を具備して構成されている。なお圧縮機20は、ケーシング21内に遠心式の単段又は多段の羽根車23を内蔵し、その吸込み側にガイドベーン25を設置し、また電動機50と羽根車23間に歯車機構等からなる増速装置26を設置して構成されている。圧縮機20の吐出管27は凝縮器30に接続され、圧縮機20の吸込み管29は蒸発器10に接続されている。なお低圧側圧力検出器110は蒸発器10に設置する代りに圧縮機20の吸込み側(吸込み管29)に設置してその吸込み圧力を検出するようにしても良いし、高圧側圧力検出器120は凝縮器30に設置する代わりに圧縮機20の吐出側(吐出管27)に設置してその吐出圧力を検出するようにしてもよい。制御手段70は、前記冷水温度検出器90が検出した冷水出口温度と、冷却水温度検出器100が検出した冷却水入口温度と、低圧側圧力検出器110が検出した低圧側圧力と、高圧側圧力検出器120が検出した高圧側圧力とを入力し、これらの検出信号に基づいてインバータ80にインバータ制御信号を出力するとともに、ガイドベーン25にその開閉用のガイドベーン制御信号を出力する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 2 is an overall schematic configuration diagram showing a refrigerator (vapor compression refrigerator) 1-1 according to the first embodiment of the present invention. As shown in the figure, the refrigerator 1-1 includes an evaporator 10 that produces cold water, a compressor (centrifugal compressor) 20 that raises and raises the temperature of the refrigerant from the evaporator 10 to the condenser 30, and this refrigeration. A condenser 30 for releasing the heat taken into the machine 1-1 to the cooling water, and a throttle mechanism (pressure reduction device) 40 provided between the condenser 30 and the evaporator 10 for reducing the pressure from the condenser 30 to the pressure of the evaporator 10. An electric motor 50 that drives the compressor 20, an electric motor start panel 60 that is used to start and stop the electric motor 50, and an inverter 80 that supplies the electric motor 50 with freely controlled frequency of the power supplied from the commercial power source 75. And a control means 70 for controlling the operation of the refrigerator 1-1 by outputting an inverter control signal indicating the frequency of the power supplied to the electric motor 50 to the inverter 80, and detecting a cold water outlet temperature of the evaporator 10. Cold water temperature sensor , A cooling water temperature detector 100 for detecting the cooling water inlet temperature of the condenser 30, a low pressure side pressure detector 110 for detecting the pressure of the refrigerant (low pressure side pressure) in the evaporator 10, and the condenser 30. And a high pressure side pressure detector 120 for detecting the pressure of the refrigerant inside (high pressure side pressure). The compressor 20 includes a centrifugal single-stage or multi-stage impeller 23 in the casing 21, a guide vane 25 is installed on the suction side, and a gear mechanism or the like is provided between the electric motor 50 and the impeller 23. The speed increasing device 26 is installed. The discharge pipe 27 of the compressor 20 is connected to the condenser 30, and the suction pipe 29 of the compressor 20 is connected to the evaporator 10. The low pressure side pressure detector 110 may be installed on the suction side (suction pipe 29) of the compressor 20 instead of being installed in the evaporator 10, and the suction pressure may be detected, or the high pressure side pressure detector 120. Instead of installing in the condenser 30, it may be installed on the discharge side (discharge pipe 27) of the compressor 20 to detect the discharge pressure. The control means 70 includes a cold water outlet temperature detected by the cold water temperature detector 90, a cooling water inlet temperature detected by the cooling water temperature detector 100, a low pressure side pressure detected by the low pressure side pressure detector 110, and a high pressure side. The high pressure side pressure detected by the pressure detector 120 is input, an inverter control signal is output to the inverter 80 based on these detection signals, and a guide vane control signal for opening and closing is output to the guide vane 25.

以上のように構成された冷凍機1−1においては、蒸発器10と圧縮機20と凝縮器30と減圧装置40内で冷媒が蒸発、加圧圧縮、凝縮、及び減圧を繰り返して冷凍サイクルが構成される。即ちこの冷凍サイクルも前記図1に示す従来例と同様に、蒸発器10で得られる冷熱源で冷水を製造して負荷に対応し、一方冷凍機1−1内に取り込まれた蒸発器10からの熱量及び電動機50から供給される圧縮機20の仕事量を凝縮器30に供給される冷却水に放出する。   In the refrigerator 1-1 configured as described above, the refrigerant is repeatedly evaporated, pressurized, compressed, condensed, and depressurized in the evaporator 10, the compressor 20, the condenser 30, and the decompression device 40. Composed. That is, in this refrigeration cycle, similarly to the conventional example shown in FIG. 1, cold water is produced by a cold heat source obtained by the evaporator 10 to cope with the load, while from the evaporator 10 taken into the refrigerator 1-1. The amount of heat and the work amount of the compressor 20 supplied from the electric motor 50 are discharged to the cooling water supplied to the condenser 30.

そしてこの冷凍機1−1において前記制御手段70は、前記ガイドベーン25の開閉と、インバータ80による電動機50の回転数制御を行い、これによって前記圧縮機20の容量制御を行うこととした。これによって前記図1に示す吸込みガイドベーン525のみによる容量制御に比べて、冷凍機1−1の性能を大幅に向上することができた。即ち前述のように圧縮機20は吸込みガイドベーン25が全開の状態で所定の吸込み能力及び仕事が得られるように設計するものであるから、吸込みガイドベーン25によって吸込み能力が減少する方向に動作すれば当然圧縮機20の効率は設計状態の運転に比較して低下し、この結果冷凍機1−1の省エネルギー運転はできない。図3は前記図1に示すガイドベーン525のみによって容量制御を行った場合の冷凍機500の性能を示す図であり、投入動力に対して得られる冷凍能力(成績係数、即ちCOP)が冷却水温度によってどのように変化するかを示すものである。一方図4は冷凍機1−1を用いて電動機50の回転数制御と、ガイドベーン25の開閉制御を併用した場合の性能を示したものである。両図からわかるように図4に示す冷凍機1−1の制御方法の方が、図3に示す従来の冷凍機500の制御方法に比較して格段に性能が良く、省エネルギーになっていることがわかる。   And in this refrigerator 1-1, the said control means 70 decided to open / close the said guide vane 25, and to control the rotation speed of the electric motor 50 by the inverter 80, and to control the capacity | capacitance of the said compressor 20 by this. As a result, the performance of the refrigerator 1-1 could be greatly improved as compared with the capacity control using only the suction guide vane 525 shown in FIG. That is, as described above, the compressor 20 is designed so that a predetermined suction capacity and work can be obtained when the suction guide vane 25 is fully open, so that the suction capacity is reduced by the suction guide vane 25. Naturally, the efficiency of the compressor 20 is lowered as compared with the operation in the designed state, and as a result, the energy saving operation of the refrigerator 1-1 cannot be performed. FIG. 3 is a diagram showing the performance of the refrigerator 500 when the capacity is controlled only by the guide vane 525 shown in FIG. 1, and the refrigeration capacity (coefficient of performance, that is, COP) obtained with respect to the input power is cooling water. It shows how it changes with temperature. On the other hand, FIG. 4 shows the performance when the rotation speed control of the electric motor 50 and the opening / closing control of the guide vane 25 are used in combination using the refrigerator 1-1. As can be seen from both figures, the control method of the refrigerator 1-1 shown in FIG. 4 is much better in performance and energy saving than the control method of the conventional refrigerator 500 shown in FIG. I understand.

しかしながら、遠心式の圧縮機20には特有のサージング現象があるため回転数制御には限界がある。図5は圧縮機20の回転数を変えて冷凍機1−1の容量を制御した場合の特性(冷却水入口温度と冷凍容量比の関係)を示す図であり、冷却水の温度が低下すれば圧縮機20の回転数を下げて容量制御運転が可能であるが限界値があることも示している。即ち冷却水入口温度一定の条件下で負荷が減少すれば、圧縮機20の回転数減少で対応可能であるが、いずれ図中に示すサージング限界線に達して圧縮機20の安定運転が不可能な領域に入る。安定運転のためにはサージング限界線を堺にガイドベーン制御に移行すれば良いことになるが、この境界を決定する手段として本実施形態では蒸発器10内の圧力(又は圧縮機20の吸込み圧力)、及び凝縮器30内の圧力(又は圧縮機20の吐出圧力)の二点の情報だけで決定するものである。即ち圧縮機20の仕事を等温仕事で表示すれば低圧側、高圧側の圧力をそれぞれP1,P2として仕事Wcは、
Wc=P1×V1×Log(P2/P1) …式(1)
となる。ここでV1は圧縮機吸込みの比容積であり、P1×V1の値は冷凍機1−1の起動時を除き運転中にほとんど変化はない。即ちP1×V1は冷凍機1−1の仕様が決まれば常数として設定可能であり、圧縮機1−1の限界仕事は低圧側と高圧側の二点の圧力P1,P2を検出すれば算出可能である。
However, since the centrifugal compressor 20 has a unique surging phenomenon, the rotational speed control is limited. FIG. 5 is a diagram showing characteristics (relationship between cooling water inlet temperature and refrigeration capacity ratio) when the capacity of the refrigerator 1-1 is controlled by changing the rotation speed of the compressor 20, and the temperature of the cooling water is decreased. For example, the capacity control operation can be performed by reducing the rotation speed of the compressor 20, but there is a limit value. In other words, if the load decreases under the condition that the cooling water inlet temperature is constant, it is possible to cope with the decrease in the rotation speed of the compressor 20, but eventually the surging limit line shown in the figure is reached and the compressor 20 cannot be stably operated. Enter the realm. For stable operation, it is only necessary to shift to the guide vane control based on the surging limit line. In this embodiment, as a means for determining this boundary, the pressure in the evaporator 10 (or the suction pressure of the compressor 20) is determined. ) And the pressure in the condenser 30 (or the discharge pressure of the compressor 20). In other words, if the work of the compressor 20 is displayed by isothermal work, the work Wc is set to P1 and P2 as the pressures on the low pressure side and the high pressure side, respectively.
Wc = P1 × V1 × Log (P2 / P1) Equation (1)
It becomes. Here, V1 is the specific volume of compressor suction, and the value of P1 × V1 hardly changes during operation except when the refrigerator 1-1 is started. That is, P1 × V1 can be set as a constant if the specifications of the refrigerator 1-1 are determined, and the limit work of the compressor 1-1 can be calculated by detecting two pressures P1 and P2 on the low pressure side and the high pressure side. It is.

これによって圧縮機1−1の推奨回転数及びこれに対応するサージング限界線が冷却水の温度(この例では入口温度)によって単純に決定できることを、図6(冷却水入口温度−圧縮機20の回転数の関係及び冷却水入口温度−サージング限界の仕事の関係を示す図)に示している。図中に示す直線関係は、容量制御特性を示す図5中のサージング限界線上の回転数及びこの位置での圧縮機の運転状態から容易に導けるもので、圧力P1,P2の他に冷却水温度を検知すればこれによって冷凍機1−1の安定運転領域を決定できることを示している。   6 that the recommended rotational speed of the compressor 1-1 and the corresponding surging limit line can be simply determined by the cooling water temperature (inlet temperature in this example). The figure shows the relationship between the rotational speed and the relationship between the cooling water inlet temperature and the surging limit work). The linear relationship shown in the figure can be easily derived from the rotational speed on the surging limit line in FIG. 5 showing the capacity control characteristic and the operating state of the compressor at this position. This indicates that the stable operation region of the refrigerator 1-1 can be determined.

以上のことからこの冷凍機1−1において、制御手段70は、負荷の増減を判断して容量制御を行う手法として冷水温度検出器90によって冷水出口温度を検出し、この温度が目標値に近づくようにガイドベーン25を制御して圧縮機20の吸込み能力を制御する。そして圧縮機20の吸込み能力を制御する手段としてガイドベーン制御に加えて圧縮機20の回転数可変による制御を加える。さらに遠心式の圧縮機20特有のサージングを避ける方法として、以下の方法を用いる。即ち前述のようにサージングが発生するのは負荷の減少に対して回転数を落して対応した場合であるから、各回転数に対して予めサージング近傍の限界仕事を決定しておき、現在の運転状態がこの限界仕事に対してどの程度余裕があるかを随時調べることによりサージングを容易に避けるようにする。即ち限界仕事に達した時点で回転数を固定し、以後の負荷の減少に対してはガイドベーン制御で対応すれば、安定した運転が可能となる。限界仕事を決定する手段としては、前記式(1)で算出すれば良い。   From the above, in this refrigerator 1-1, the control means 70 detects the chilled water outlet temperature by the chilled water temperature detector 90 as a method of performing capacity control by determining increase / decrease in load, and this temperature approaches the target value. In this way, the suction capacity of the compressor 20 is controlled by controlling the guide vane 25. As a means for controlling the suction capacity of the compressor 20, in addition to guide vane control, control by varying the rotational speed of the compressor 20 is added. Further, as a method for avoiding the surging specific to the centrifugal compressor 20, the following method is used. That is, as described above, surging occurs when the rotational speed is reduced to cope with a decrease in load. Therefore, the limit work in the vicinity of surging is determined in advance for each rotational speed, and the current operation is performed. It is easy to avoid surging by examining at any time how much the state can afford for this marginal work. That is, when the limit work is reached, the rotational speed is fixed, and if the subsequent load reduction is dealt with by the guide vane control, stable operation becomes possible. What is necessary is just to calculate by said Formula (1) as a means to determine a limit work.

一方圧縮機20の限界仕事は回転数によって異なり、冷凍機1−1のシステム(冷却水入口温度又は出口温度でもよい)から決まる限界仕事に一致した状態が圧縮機20の限界回転数になる。即ち冷却水の温度を検知すれば圧縮機20の限界回転数(圧縮機20の最低回転数)が決まりこれを堺に負荷が減少すればガイドベーン制御に移行することになる。本実施形態ではこの制御を可能にすべく従来からの冷水出口温度(冷水温度検出器90による)の検出に加えて、冷却水入口温度(冷却水温度検出器100による)、蒸発器圧力及び凝縮器圧力(低圧側圧力検出器110及び高圧側圧力検出器120による)を検知するシステムで構築したものである。また冷却水入口温度の代りに冷却水出口温度を、蒸発器圧力の代りに圧縮機吸込み圧力を、凝縮器圧力の代りに圧縮機吐出圧力を検知するシステムでも同様に安定した容量制御が可能である。   On the other hand, the limit work of the compressor 20 varies depending on the rotation speed, and the limit rotation speed of the compressor 20 corresponds to the limit work determined from the system (the cooling water inlet temperature or the outlet temperature) of the refrigerator 1-1. That is, if the temperature of the cooling water is detected, the limit rotational speed of the compressor 20 (minimum rotational speed of the compressor 20) is determined, and if the load is reduced, the control proceeds to guide vane control. In this embodiment, in order to enable this control, in addition to the conventional detection of the chilled water outlet temperature (by the chilled water temperature detector 90), the cooling water inlet temperature (by the chilled water temperature detector 100), the evaporator pressure and the condensation. It is constructed by a system for detecting the vessel pressure (by the low pressure side pressure detector 110 and the high pressure side pressure detector 120). Stable capacity control is also possible with a system that detects the cooling water outlet temperature instead of the cooling water inlet temperature, the compressor suction pressure instead of the evaporator pressure, and the compressor discharge pressure instead of the condenser pressure. is there.

図7は制御手段70による冷凍機1−1の制御方法を示す概略制御説明図である。同図においてまず冷凍機1−1を起動した時点(ステップ1A)で、冷却水温度検出器100によって冷却水入口温度を検出し(ステップ2A)、インバータ制御信号によってインバータ80を制御して前述した圧縮機20の回転数を限界回転数に設定する(ステップ3A)。そしてガイドベーン制御信号によって徐々にガイドベーン(GV)25を開き(ステップ4A)、冷水出口温度が所定の温度になるまでガイドベーン25を制御する(ステップ5A)。即ちその際冷水出口温度が低いとガイドベーン25を閉じる方向に制御し(ステップ6A)、また冷水出口温度が高いとガイドベーン25を全開として回転数を上昇するように制御する(ステップ7A)。そしてステップ6A側でガイドベーン25の開度が100%以下で安定すれば負荷が小さいと判断して回転数を固定してガイドベーン25を制御するルーチン(ステップ8A)に入る。そしてこの場合、冷却水温度検出器100から冷却水入口温度を随時検出し(ステップ9A)、冷却水が高くなっていれば冷却水温度に対応する圧縮機20の限界回転数までインバータ80の周波数を上昇させ、負荷に見合うまでガイドベーン25を閉じて(ステップ10A)ガイドベーン制御を継続する(ステップ8A)。一方ステップ9Aにおいて冷却水入口温度が低下しておれば限界回転数まで周波数を下降させ、ガイドベーン25を開いて負荷に対応するが(ステップ11A,12A)、ガイドベーン25の開度が100%に達すればガイドベーン25を100%に固定してインバータ(INV)制御に移行する(ステップ13A)。また冷凍機1−1の起動後設定した限界回転数では冷水出口温度が所定の温度に達せず、ガイドベーン25の開度が100%になれば要求負荷が大きいと判断してガイドベーン25を100%に固定してインバータ80制御のルーチンに入る(ステップ7A,13A)。このルーチンでは蒸発器10と凝縮器30の圧力をそれぞれ前記低圧側圧力検出器110と高圧側圧力検出器120によって検出して(ステップ14A)圧縮機20の運転状態を示す理論仕事を算出し(ステップ15A)、この算出値と冷却水入口温度(ステップ16A)から与えられる現状の回転数での限界仕事を比較して安定運転領域にあるか否かを判断する(ステップ17A)。そして理論仕事が限界仕事以下ならばインバータ制御を続行するが(ステップ13A)、理論仕事が限界仕事に達すれば現状の回転数を固定あるいは限界回転数を上昇させてガイドベーン制御に移行する(ステップ10A)。   FIG. 7 is a schematic control explanatory diagram showing a control method of the refrigerator 1-1 by the control means 70. In the figure, when the refrigerator 1-1 is first started (step 1A), the cooling water inlet temperature is detected by the cooling water temperature detector 100 (step 2A), and the inverter 80 is controlled by the inverter control signal, as described above. The rotation speed of the compressor 20 is set to the limit rotation speed (step 3A). Then, the guide vane (GV) 25 is gradually opened by the guide vane control signal (step 4A), and the guide vane 25 is controlled until the cold water outlet temperature reaches a predetermined temperature (step 5A). That is, when the cold water outlet temperature is low, the guide vane 25 is controlled to close (step 6A), and when the cold water outlet temperature is high, the guide vane 25 is fully opened and the rotational speed is increased (step 7A). Then, if the opening degree of the guide vane 25 is stabilized at 100% or less on the step 6A side, it is determined that the load is small, and a routine (step 8A) for controlling the guide vane 25 with the rotation speed fixed is entered. In this case, the cooling water inlet temperature is detected from the cooling water temperature detector 100 at any time (step 9A), and if the cooling water is high, the frequency of the inverter 80 reaches the limit rotational speed of the compressor 20 corresponding to the cooling water temperature. The guide vane 25 is closed until the load is met (step 10A), and the guide vane control is continued (step 8A). On the other hand, if the cooling water inlet temperature is lowered in step 9A, the frequency is lowered to the limit rotational speed and the guide vane 25 is opened to cope with the load (steps 11A and 12A), but the opening degree of the guide vane 25 is 100%. If it reaches, the guide vane 25 is fixed to 100%, and the control shifts to inverter (INV) control (step 13A). Further, if the chilled water outlet temperature does not reach a predetermined temperature at the limit rotational speed set after the start of the refrigerator 1-1 and the opening degree of the guide vane 25 reaches 100%, it is determined that the required load is large and the guide vane 25 is moved. The routine is fixed to 100% and the inverter 80 control routine is entered (steps 7A and 13A). In this routine, the pressures of the evaporator 10 and the condenser 30 are detected by the low-pressure side pressure detector 110 and the high-pressure side pressure detector 120, respectively (Step 14A), and the theoretical work indicating the operation state of the compressor 20 is calculated ( Step 15A) compares this calculated value with the limit work at the current rotational speed given from the cooling water inlet temperature (Step 16A) to determine whether or not it is in the stable operation region (Step 17A). If the theoretical work is less than the limit work, the inverter control is continued (step 13A). If the theoretical work reaches the limit work, the current rotational speed is fixed or the critical rotational speed is increased and the control shifts to guide vane control (step 13A). 10A).

図8は本発明の第二実施形態にかかる冷凍機(蒸気圧縮式冷凍機)1−2を示す全体概略構成図である。前記第一実施形態のようにインバータ80で周波数を可変にし、冷凍機1−1の負荷変動に対して従来のガイドベーン25の制御と圧縮機20の回転数制御とを併用すれば省エネルギー容量制御システムを構築できることは明白であるが、インバータ80を介して電動機50を駆動すれば当然インバータ80の電気損失がシステムに加わることになる。システムとしてはインバータ80の損失を補っても余りある省エネルギー効果が得られるものであるが、冷却水の温度が設計条件に近くまた冷凍機1−1の負荷が大きく圧縮機20の回転数が100%に近い運転を継続する場合にはインバータ80を介するメリットは得られない。つまりそのような場合はインバータ80を介さずに電動機50を電動機起動盤60から直接駆動するシステムに切り替えればより省エネルギーが図れる。   FIG. 8 is an overall schematic configuration diagram showing a refrigerator (vapor compression refrigerator) 1-2 according to the second embodiment of the present invention. If the frequency is varied by the inverter 80 as in the first embodiment and the conventional control of the guide vane 25 and the rotation speed control of the compressor 20 are used in combination with the load fluctuation of the refrigerator 1-1, the energy saving capacity control is performed. Although it is obvious that a system can be constructed, if the electric motor 50 is driven through the inverter 80, the electric loss of the inverter 80 is naturally added to the system. As a system, even if the loss of the inverter 80 is compensated, an excessive energy saving effect can be obtained. However, the temperature of the cooling water is close to the design condition, the load of the refrigerator 1-1 is large, and the rotational speed of the compressor 20 is 100. When the operation close to% is continued, no merit through the inverter 80 is obtained. That is, in such a case, energy saving can be achieved by switching to a system in which the electric motor 50 is directly driven from the electric motor starting panel 60 without using the inverter 80.

そこでこの冷凍機1−2は、電動機50の駆動をインバータ80を介する場合と直接電動機起動盤60から駆動する場合を任意に切り替えることができるように構成している。同図において前記冷凍機1−1と同一部分には同一符号を付してその詳細な説明は省略する。この実施形態において第一実施形態と相違する点は、電動機起動盤60と電動機50の間に、インバータ80とインバータ80をバイパスする回路を切替える切替え装置85を設置し、この切り替え装置85を駆動する切替え信号を制御手段70から送信するように構成した点である。   Therefore, the refrigerator 1-2 is configured such that the driving of the electric motor 50 can be arbitrarily switched between the case where the electric motor 50 is driven via the inverter 80 and the case where the electric motor is driven directly from the electric motor starting panel 60. In the figure, the same parts as those of the refrigerator 1-1 are designated by the same reference numerals, and detailed description thereof is omitted. In this embodiment, the difference from the first embodiment is that an inverter 80 and a switching device 85 that switches a circuit that bypasses the inverter 80 are installed between the motor starting board 60 and the motor 50, and this switching device 85 is driven. The switching signal is transmitted from the control means 70.

そして電動機50の駆動方法の切替えは、冷却水入口温度(又は冷却水出口温度)によって行なっている。即ち冷却水入口温度が設計条件に近い場合にはガイドベーン制御に移行する限界回転数が高いため回転数制御による容量制御範囲が狭く、また省エネルギー性の観点からもこの範囲ではガイドベーン制御と比較して回転数制御の優位性は認められなくなる。逆にこのような場合は電動機起動盤60から直接電動機50を駆動する方がインバータ80の損失を削減できることにより、より省エネルギー運転が可能となる。   Switching of the driving method of the electric motor 50 is performed by the cooling water inlet temperature (or the cooling water outlet temperature). In other words, when the cooling water inlet temperature is close to the design conditions, the limit rotational speed for shifting to guide vane control is high, so the capacity control range by rotational speed control is narrow, and this range is also compared with guide vane control from the viewpoint of energy saving. Therefore, the superiority of the rotational speed control is not recognized. Conversely, in such a case, driving the electric motor 50 directly from the electric motor starting board 60 can reduce the loss of the inverter 80, thereby enabling more energy saving operation.

図9は制御手段70による冷凍機1−2の制御方法を示す概略制御説明図である。この制御方法は、前述のように電動機50の駆動方法の切替えを判断する基準として、冷却水入口温度が設計温度に対して低いか高いかによって決定するものである。即ちこの制御方法は、冷凍機1−2を起動した時点(ステップ1B)で冷却水入口温度を検知し(ステップ2B)、検知した冷却水温度が設計温度よりも高い場合は以後従来のガイドベーン25のみの単純なモードで運転制御を行い、一方冷却水温度が設計温度よりも低い場合は以後第一実施形態と同じ制御方法、即ちガイドベーン25の制御とインバータ80による回転数制御を併用した運転制御を行い、冷凍機1−2の停止までいずれか一方のモードのみで運転を継続する制御方法である。具体的に、冷却水入口温度が設計温度よりも高い場合は、まず制御手段70が回転数を100%に設定して(ステップ3B)、切替え装置85によって電動機50を電動機起動盤60によって直接駆動するようにし(ステップ4B)、冷水温度検出器90によって検出した冷水出口温度に応じてガイドベーン25の開度を制御する(ステップ5B,6B)。従って起動直後に冷却水入口温度が設計温度以上の場合は電動機1−2が停止するまで電動機50を直接駆動し、設計温度以下の場合は冷凍機1−2が停止するまで電動機50をインバータを介して運転する。この実施形態の場合、冷凍機1−2の起動(ステップ1B)はインバータ80を介して行っているが、電動機起動盤60から直接電動機50を起動することも可能である。しかし直接起動の場合は起動電流が大きくなるため大きな電源設備を備える必要があり、直接駆動のメリットはない。一般的に冷却水温度は外気湿球温度によって決まるため、気象条件の変動が小さければこの制御システムで十分省エネルギー運転が可能である。   FIG. 9 is a schematic control explanatory diagram showing a control method of the refrigerator 1-2 by the control means 70. This control method is determined based on whether the cooling water inlet temperature is lower or higher than the design temperature as a reference for determining switching of the driving method of the electric motor 50 as described above. That is, this control method detects the cooling water inlet temperature at the time of starting the refrigerator 1-2 (step 1B) (step 2B), and if the detected cooling water temperature is higher than the design temperature, the conventional guide vane is used thereafter. Operation control is performed in a simple mode of only 25, and when the cooling water temperature is lower than the design temperature, the same control method as in the first embodiment, that is, the control of the guide vane 25 and the rotational speed control by the inverter 80 are used in combination. This is a control method in which operation control is performed and operation is continued only in one of the modes until the refrigerator 1-2 is stopped. Specifically, when the cooling water inlet temperature is higher than the design temperature, first, the control means 70 sets the rotation speed to 100% (step 3B), and the motor 50 is directly driven by the motor starting board 60 by the switching device 85. Then, the opening degree of the guide vane 25 is controlled according to the cold water outlet temperature detected by the cold water temperature detector 90 (steps 5B and 6B). Therefore, if the cooling water inlet temperature is equal to or higher than the design temperature immediately after startup, the electric motor 50 is directly driven until the electric motor 1-2 stops. If the cooling water inlet temperature is lower than the design temperature, the inverter is connected to the electric motor 50 until the refrigerator 1-2 stops. Drive through. In the case of this embodiment, the start-up of the refrigerator 1-2 (step 1B) is performed via the inverter 80, but it is also possible to start the motor 50 directly from the motor start panel 60. However, in the case of direct starting, since the starting current becomes large, it is necessary to provide a large power supply facility, and there is no merit of direct driving. In general, since the cooling water temperature is determined by the outside wet bulb temperature, this control system can sufficiently perform energy-saving operation if the change in weather conditions is small.

冷凍機1−2の起動・停止の頻度が低く、連続運転が多い場合には冷凍機1−2の運転中にインバータ駆動と起動盤直接駆動とを切替える場合も想定され、この場合の制御方法を第三実施形態として図10にその概略制御説明図を示す。なおこの実施形態に用いる冷凍機の構成は、前記第二実施形態の冷凍機1−2と同一の構成でよい。即ちこの実施形態の場合、冷却水入口温度が設計温度以上の場合には回転数を100%に設定して(ステップ3C)、切替え装置85によって電動機50を電動機起動盤60で直接駆動するようにする(ステップ4C)。この点までは第二実施形態と同様であるが、その後第一実施形態で説明したのと同様のガイドベーン制御と回転数制御を併用した運転制御に入り(ステップ5C)、冷水出口温度を所定の値に近づける制御動作を行う。なおステップ2Cにおいて設計温度以上の場合はステップ5Cでは電動機50は電動機起動盤60で直接駆動されており、ステップ2Cにおいて設計温度以下の場合はステップ5Cでは電動機50はインバータを介して駆動されている。ステップ5C以下の制御方法において、この実施形態の場合、冷却水入口温度が高くて直接駆動のガイドベーン制御ルーチンで運転していたシステムが、冷却水入口温度の低下を検知した場合回転数を下げる動作に入ることとなるが(ステップ6C,7C)、この段階で回転数をチェックし、100%であることを確認すれば問題なくインバータ駆動に切り替えてインバータ制御に移行することができる(ステップ8C)。一方インバータ制御ルーチンで運転しており、理論仕事が限界仕事以上になることを判断した場合には(ステップ9C)、図7のステップ17Aと同様に、ガイドベーン制御に移行すべく回転数を上昇させる動作を行うが(ステップ10C)、ここで回転数が100%に達していることを確認すれば(ステップ11C)、直接駆動に切り替える(ステップ12C)ルーチンを構成している。   When the frequency of starting and stopping of the refrigerator 1-2 is low and there are many continuous operations, it is assumed that the inverter drive and the start panel direct drive are switched during the operation of the refrigerator 1-2, and the control method in this case As a third embodiment, FIG. 10 is a schematic control explanatory diagram. In addition, the structure of the refrigerator used for this embodiment may be the same structure as the refrigerator 1-2 of said 2nd embodiment. That is, in this embodiment, when the cooling water inlet temperature is equal to or higher than the design temperature, the rotational speed is set to 100% (step 3C), and the motor 50 is directly driven by the motor starter panel 60 by the switching device 85. (Step 4C). The operation up to this point is the same as in the second embodiment, but thereafter, the operation control using the same guide vane control and rotation speed control as described in the first embodiment is entered (step 5C), and the cold water outlet temperature is set to a predetermined value. A control operation is performed so as to approach the value of. In step 2C, when the temperature is equal to or higher than the design temperature, in step 5C, the motor 50 is directly driven by the motor start panel 60. In step 2C, if the temperature is lower than the design temperature, the motor 50 is driven via an inverter in step 5C. . In the control method of step 5C and subsequent steps, in the case of this embodiment, when the cooling water inlet temperature is high and the system operated in the direct drive guide vane control routine detects a decrease in the cooling water inlet temperature, the rotational speed is lowered. Although the operation is started (steps 6C and 7C), the rotational speed is checked at this stage, and if it is confirmed that it is 100%, it is possible to switch to inverter driving without any problem and shift to inverter control (step 8C). ). On the other hand, when the inverter control routine is operated and it is determined that the theoretical work exceeds the limit work (step 9C), the rotational speed is increased to shift to the guide vane control as in step 17A of FIG. If it is confirmed that the rotational speed has reached 100% (step 11C), a routine for switching to direct driving (step 12C) is constructed.

従来の蒸気圧縮式冷凍機500の一例を示す全体概略構成図である。It is a whole schematic block diagram which shows an example of the conventional vapor compression refrigerator 500. 本発明の第一実施形態にかかる冷凍機(蒸気圧縮式冷凍機)1−1を示す全体概略構成図である。1 is an overall schematic configuration diagram showing a refrigerator (vapor compression refrigerator) 1-1 according to a first embodiment of the present invention. 図1に示すガイドベーン525のみによって容量制御を行った場合の冷凍機500の性能を示す図である。It is a figure which shows the performance of the refrigerator 500 at the time of performing capacity | capacitance control only with the guide vane 525 shown in FIG. 冷凍機1−1を用いて電動機50の回転数制御とガイドベーン25の開閉制御を併用した場合の性能を示す図である。It is a figure which shows the performance at the time of using together rotation speed control of the electric motor 50, and opening / closing control of the guide vane 25 using the refrigerator 1-1. 圧縮機20の回転数を変えて冷凍機1−1の容量を制御した場合の特性(冷却水入口温度と冷凍容量比の関係)を示す図である。It is a figure which shows the characteristic at the time of changing the rotation speed of the compressor 20, and controlling the capacity | capacitance of the refrigerator 1-1 (relationship between a cooling water inlet temperature and a refrigerating capacity ratio). 冷却水入口温度−圧縮機20の回転数の関係及び冷却水入口温度−サージング限界の仕事の関係を示す図である。It is a figure which shows the relationship between a cooling water inlet temperature-rotational speed of the compressor 20, and a cooling water inlet temperature-surging limit work. 制御手段70による冷凍機1−1の制御方法を示す概略制御説明図である。FIG. 4 is a schematic control explanatory diagram illustrating a control method of the refrigerator 1-1 by the control means 70. 本発明の第二,第三実施形態にかかる冷凍機(蒸気圧縮式冷凍機)1−2を示す全体概略構成図である。It is a whole schematic block diagram which shows the refrigerator (vapor compression type refrigerator) 1-2 concerning 2nd, 3rd embodiment of this invention. 第二実施形態による冷凍機1−2の制御方法を示す概略制御説明図である。It is a schematic control explanatory drawing which shows the control method of the refrigerator 1-2 by 2nd embodiment. 第三実施形態による冷凍機1−2の制御方法を示す概略制御説明図である。It is schematic control explanatory drawing which shows the control method of the refrigerator 1-2 by 3rd embodiment.

符号の説明Explanation of symbols

1−1 冷凍機(蒸気圧縮式冷凍機)
10 蒸発器
20 圧縮機(遠心式圧縮機)
21 ケーシング
23 羽根車
25 ガイドベーン
26 増速装置
27 吐出管
29 吸込み管
30 凝縮器
40 絞り機構(減圧装置)
50 電動機
60 電動機起動盤
70 制御手段
75 商用電源
80 インバータ
85 切替え装置
90 冷水温度検出器
100 冷却水温度検出器
110 低圧側圧力検出器
120 高圧側圧力検出器
1−2 冷凍機(蒸気圧縮式冷凍機)
1-1 Refrigerator (vapor compression refrigerator)
10 Evaporator 20 Compressor (centrifugal compressor)
21 casing 23 impeller 25 guide vane 26 speed increasing device 27 discharge pipe 29 suction pipe 30 condenser 40 throttling mechanism (decompression device)
DESCRIPTION OF SYMBOLS 50 Electric motor 60 Electric motor starting board 70 Control means 75 Commercial power supply 80 Inverter 85 Switching apparatus 90 Cold water temperature detector 100 Cooling water temperature detector 110 Low pressure side pressure detector 120 High pressure side pressure detector 1-2 Refrigerator (vapor compression refrigeration Machine)

Claims (9)

冷水を製造する蒸発器と、冷却水に放熱する凝縮器と、凝縮器と蒸発器間に設ける減圧装置と、圧縮機と、圧縮機を駆動する電動機とを具備して構成される蒸気圧縮式冷凍機において、
前記圧縮機を吸込みガイドベーンを備えた遠心式圧縮機で構成すると共に、前記電動機を駆動制御するインバータを設置し、
さらに前記ガイドベーンの開閉とインバータによる圧縮機の回転数制御により前記圧縮機の容量制御を行う制御手段を設置したことを特徴とする冷凍機。
A vapor compression type comprising an evaporator for producing cold water, a condenser for radiating heat to the cooling water, a decompression device provided between the condenser and the evaporator, a compressor, and an electric motor for driving the compressor. In the refrigerator,
The compressor is constituted by a centrifugal compressor provided with a suction guide vane, and an inverter for driving and controlling the electric motor is installed.
Furthermore, the refrigerator which installed the control means which controls the capacity | capacitance of the said compressor by opening and closing of the said guide vane and the rotation speed control of the compressor by an inverter.
前記蒸発器の冷水出口温度を検出する冷水温度検出器を設置すると共に、
前記制御手段は、前記冷水温度検出器で検出した冷水出口温度が予め定めた目標値になるように圧縮機の回転数及び吸込みガイドベーンの開閉を制御することを特徴とする請求項1に記載の冷凍機。
While installing a cold water temperature detector that detects the cold water outlet temperature of the evaporator,
The said control means controls the rotation speed of a compressor and opening / closing of a suction guide vane so that the cold water exit temperature detected with the said cold water temperature detector may become a predetermined target value. Refrigerator.
前記冷却水の入口又は出口温度を検出する冷却水温度検出器と、蒸発器圧力又は圧縮機吸込み圧力を検出する低圧側圧力検出器と、凝縮器圧力又は圧縮機吐出圧力を検出する高圧側圧力検出器とを設置し、
前記制御手段は、前記冷却水の入口又は出口温度検出値と、低圧側圧力検出値と、高圧側圧力検出値から算出される圧縮機の運転状態が、常に予め定められた運転可能範囲内に入るように、圧縮機の回転数と圧縮機の吸込みガイドベーンを制御することを特徴とする請求項2に記載の冷凍機。
A cooling water temperature detector for detecting the inlet or outlet temperature of the cooling water, a low pressure side pressure detector for detecting an evaporator pressure or a compressor suction pressure, and a high pressure side pressure for detecting a condenser pressure or a compressor discharge pressure. Install the detector and
The control means is such that the operation state of the compressor calculated from the detected inlet or outlet temperature value of the cooling water, the detected low pressure value, and the detected high pressure value is always within a predetermined operable range. The refrigerator according to claim 2, wherein the rotation speed of the compressor and the suction guide vane of the compressor are controlled so as to enter.
前記電動機を商用電源から前記インバータを介して駆動する場合と、商用電源から直接電動機を駆動する場合とを切り替える切替え装置を設けたことを特徴とする請求項1に記載の冷凍機。   The refrigerator according to claim 1, further comprising a switching device that switches between a case where the electric motor is driven from a commercial power source via the inverter and a case where the motor is directly driven from the commercial power source. 冷水を製造する蒸発器と、冷却水に放熱する凝縮器と、凝縮器と蒸発器間に設ける減圧装置と、遠心式の圧縮機と、圧縮機を駆動する電動機とを具備して構成される蒸気圧縮式冷凍機の制御方法において、
前記圧縮機に備えた吸込みガイドベーン制御と、前記電動機を駆動制御するインバータによる圧縮機回転数のインバータ制御とを組み合わせることにより、前記圧縮機の容量制御を行うことを特徴とする冷凍機の制御方法。
An evaporator that produces cold water, a condenser that radiates heat to the cooling water, a decompression device provided between the condenser and the evaporator, a centrifugal compressor, and an electric motor that drives the compressor are configured. In the control method of the vapor compression refrigerator,
Control of a refrigerator that controls the capacity of the compressor by combining suction guide vane control provided in the compressor and inverter control of compressor rotation speed by an inverter that drives and controls the electric motor. Method.
前記冷水出口の温度を検出し、この冷水出口温度が予め定めた目標値になるように圧縮機の回転数及び吸込みガイドベーンの開閉を制御することを特徴とする請求項5に記載の冷凍機の制御方法。   6. The refrigerator according to claim 5, wherein the temperature of the cold water outlet is detected, and the rotation speed of the compressor and the opening and closing of the suction guide vane are controlled so that the cold water outlet temperature becomes a predetermined target value. Control method. 前記冷却水の凝縮器への入口又は出口温度と、前記蒸発器圧力又は圧縮機吸込み圧力である低圧側圧力と、前記凝縮器圧力又は圧縮機吐出圧力である高圧側圧力とを検出し、これら検出値から算出される圧縮機の運転状態が常に予め定められた運転可能範囲内に入るように、圧縮機の回転数と圧縮機の吸込みガイドベーンを制御することを特徴とする請求項6に記載の冷凍機の制御方法。   Detecting the inlet or outlet temperature to the condenser of the cooling water, the low pressure side pressure that is the evaporator pressure or compressor suction pressure, and the high pressure side pressure that is the condenser pressure or compressor discharge pressure, and The compressor speed and the suction guide vane of the compressor are controlled so that the operation state of the compressor calculated from the detected value is always within a predetermined operable range. The refrigerator control method as described. 前記インバータ制御を行っている際に、
前記冷却水の入口又は出口温度の検出値から、現状の回転数での圧縮機のサージングを避ける限界仕事を決定し、
前記低圧側圧力の検出値と、前記高圧側圧力の検出値から、圧縮機の理論仕事を算出し、
前記理論仕事と限界仕事を比較して理論仕事が限界仕事以下ならばインバータ制御を続行し、理論仕事が限界仕事に達すれば現状の回転数を固定あるいは限界回転数を上昇させてガイドベーン制御に移行することを特徴とする請求項7に記載の冷凍機の制御方法。
When performing the inverter control,
From the detected value of the cooling water inlet or outlet temperature, determine the limit work to avoid the surging of the compressor at the current rotational speed,
From the detected value of the low-pressure side pressure and the detected value of the high-pressure side pressure, calculate the theoretical work of the compressor,
Compare the theoretical work with the limit work and if the theoretical work is below the limit work, continue the inverter control, and if the theoretical work reaches the limit work, fix the current speed or increase the speed limit to guide vane control. The method of controlling a refrigerator according to claim 7, wherein the control is performed.
冷却水の入口又は出口温度が設計温度以上に高い場合に、インバータを介さず、商用電源から直接電動機を駆動することを特徴とする請求項5に記載の冷凍機の制御方法。
6. The method of controlling a refrigerator according to claim 5, wherein when the cooling water inlet or outlet temperature is higher than the design temperature, the electric motor is driven directly from a commercial power source without using an inverter.
JP2005051418A 2005-02-25 2005-02-25 Refrigerating machine and its capacity control method Pending JP2006234320A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005051418A JP2006234320A (en) 2005-02-25 2005-02-25 Refrigerating machine and its capacity control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005051418A JP2006234320A (en) 2005-02-25 2005-02-25 Refrigerating machine and its capacity control method

Publications (1)

Publication Number Publication Date
JP2006234320A true JP2006234320A (en) 2006-09-07

Family

ID=37042178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005051418A Pending JP2006234320A (en) 2005-02-25 2005-02-25 Refrigerating machine and its capacity control method

Country Status (1)

Country Link
JP (1) JP2006234320A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012052719A (en) * 2010-08-31 2012-03-15 Ebara Refrigeration Equipment & Systems Co Ltd Turbo freezing machine
JP2012063066A (en) * 2010-09-15 2012-03-29 Mitsubishi Heavy Ind Ltd Vapor compression type heat pump and method of controlling the same
JP2019138619A (en) * 2018-02-08 2019-08-22 キャリア コーポレイションCarrier Corporation Transport refrigeration system and method of fault tolerant power distribution for transport refrigeration system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012052719A (en) * 2010-08-31 2012-03-15 Ebara Refrigeration Equipment & Systems Co Ltd Turbo freezing machine
JP2012063066A (en) * 2010-09-15 2012-03-29 Mitsubishi Heavy Ind Ltd Vapor compression type heat pump and method of controlling the same
JP2019138619A (en) * 2018-02-08 2019-08-22 キャリア コーポレイションCarrier Corporation Transport refrigeration system and method of fault tolerant power distribution for transport refrigeration system
JP7165069B2 (en) 2018-02-08 2022-11-02 キャリア コーポレイション Transportation refrigeration system and fault tolerant power distribution method for transportation refrigeration system

Similar Documents

Publication Publication Date Title
KR950009396B1 (en) Heat exchanger control system in refrgerator cycle
JP4053082B2 (en) Refrigeration cycle equipment
JP6454564B2 (en) Turbo refrigerator
KR101280155B1 (en) Heat pump device, two-stage compressor, and method of operating heat pump device
JP5981180B2 (en) Turbo refrigerator and control method thereof
JP2010196975A (en) Refrigerating cycle apparatus
JP2012072920A (en) Refrigeration apparatus
JP5239897B2 (en) refrigerator
JP4976970B2 (en) Refrigeration cycle equipment
JP2006234320A (en) Refrigerating machine and its capacity control method
JP6656801B2 (en) Two-stage compression refrigeration cycle device, control device thereof, and control method
JP2007170765A (en) Operation method of refrigerating cycle device
JP7080801B2 (en) Centrifugal chiller
JP6443557B2 (en) Multistage compression refrigeration cycle equipment
KR100395920B1 (en) Control system for starting of air conditioner and control method thereof
JP2011208893A (en) Cooling device
JP2004286329A (en) Refrigerant cycle device
JP2017122556A (en) Two-stage compression type refrigeration cycle device, control device/method thereof, and control program
JP2011058774A (en) Heat pump device
JP2006118788A (en) Air conditioner
JP2010112682A (en) Heat pump cycle device
JP2003042585A (en) Air conditioner
JP6184156B2 (en) Refrigeration cycle equipment
WO2021229770A1 (en) Refrigeration device
JP4726657B2 (en) Refrigeration system