JP6184156B2 - Refrigeration cycle equipment - Google Patents

Refrigeration cycle equipment Download PDF

Info

Publication number
JP6184156B2
JP6184156B2 JP2013090649A JP2013090649A JP6184156B2 JP 6184156 B2 JP6184156 B2 JP 6184156B2 JP 2013090649 A JP2013090649 A JP 2013090649A JP 2013090649 A JP2013090649 A JP 2013090649A JP 6184156 B2 JP6184156 B2 JP 6184156B2
Authority
JP
Japan
Prior art keywords
refrigerant
compressor
temperature
oil
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013090649A
Other languages
Japanese (ja)
Other versions
JP2014214912A (en
Inventor
拓也 伊藤
拓也 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2013090649A priority Critical patent/JP6184156B2/en
Publication of JP2014214912A publication Critical patent/JP2014214912A/en
Application granted granted Critical
Publication of JP6184156B2 publication Critical patent/JP6184156B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)

Description

本発明は、冷凍サイクル装置に関する。   The present invention relates to a refrigeration cycle apparatus.

冷凍サイクル装置の効率を向上させるためには、熱交換器の熱交換能力を向上させることが必要である。熱交換器の熱交換能力を向上させる最も簡易な方法は、熱交換器の熱交換面積を大きくすることである。ところが、熱交換器の熱交換面積を大きくすると、熱交換器が大型化するため、冷凍サイクル装置が大きくなってしまい、また、冷凍サイクル装置の価格が上昇してしまうという問題が生じ得る。このため、熱交換器の熱交換能力を向上させる方法として、熱交換器の熱交換効率を向上させることが従来から提案されている。熱交換器の熱交換効率を向上させることにより、冷凍サイクル装置の高効率化及び小型化の双方を実現することが可能となる。   In order to improve the efficiency of the refrigeration cycle apparatus, it is necessary to improve the heat exchange capacity of the heat exchanger. The simplest method for improving the heat exchange capacity of the heat exchanger is to increase the heat exchange area of the heat exchanger. However, when the heat exchange area of the heat exchanger is increased, the size of the heat exchanger increases, so that the refrigeration cycle apparatus becomes larger and the price of the refrigeration cycle apparatus increases. For this reason, improving the heat exchange efficiency of a heat exchanger as a method for improving the heat exchange capacity of the heat exchanger has been conventionally proposed. By improving the heat exchange efficiency of the heat exchanger, it is possible to achieve both high efficiency and downsizing of the refrigeration cycle apparatus.

特許文献1には、低圧の冷媒ガスを高圧に変換する圧縮機と、圧縮機からの冷媒ガスを高圧の冷媒液に変換する凝縮器と、凝縮器からの冷媒液を過冷却するサブクールコイルと、サブクールコイルを通過した冷媒液の通過量を調節する電子膨張弁と、電子膨張弁を通過した冷媒液を蒸発させる蒸発器と、サブクールコイルを内蔵し、蒸発器で蒸発した冷媒を過熱するアキュムレータと、蒸発器出口を常に二相状態に保つように電子膨張弁を制御する制御装置と、を備えた冷凍空調装置が開示されている。   Patent Document 1 discloses a compressor that converts low-pressure refrigerant gas to high pressure, a condenser that converts refrigerant gas from the compressor into high-pressure refrigerant liquid, and a subcool coil that supercools the refrigerant liquid from the condenser. An electronic expansion valve that adjusts the amount of refrigerant liquid that has passed through the subcool coil, an evaporator that evaporates the refrigerant liquid that has passed through the electronic expansion valve, and an accumulator that incorporates the subcool coil and overheats the refrigerant evaporated in the evaporator And a control device for controlling the electronic expansion valve so that the outlet of the evaporator is always kept in a two-phase state is disclosed.

特開平2−75858号公報JP-A-2-75858

上記の冷凍空調装置では、蒸発器出口を常に二相状態に保つことにより蒸発器の熱交換効率が向上している。しかしながら、蒸発器出口の過熱度を低く維持する場合、圧縮機に冷媒液が戻ることを防止する必要がある。このため、上記の冷凍空調装置では、圧縮機に吸入される冷媒を過熱ガス化するための熱交換器(サブクールコイルを内蔵したアキュムレータ)が蒸発器の出口側に設けられている。したがって、上記の冷凍空調装置では、構造が複雑になるとともに装置が大型化してしまうという問題点があった。   In the above refrigeration air conditioner, the heat exchange efficiency of the evaporator is improved by always keeping the evaporator outlet in a two-phase state. However, when the degree of superheat at the evaporator outlet is kept low, it is necessary to prevent the refrigerant liquid from returning to the compressor. For this reason, in the above-described refrigerating and air-conditioning apparatus, a heat exchanger (accumulator with a built-in subcool coil) for superheating the refrigerant sucked into the compressor is provided on the outlet side of the evaporator. Therefore, the above-described refrigeration and air-conditioning apparatus has a problem that the structure becomes complicated and the apparatus becomes large.

本発明は、上述のような問題点を解決するためになされたものであり、構造の複雑化及び装置の大型化を回避しつつ、効率を向上させることができる冷凍サイクル装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and provides a refrigeration cycle apparatus capable of improving efficiency while avoiding the complexity of the structure and the enlargement of the apparatus. Objective.

本発明に係る冷凍サイクル装置は、圧縮機、凝縮器、電子膨張弁及び蒸発器がこの順に環状に接続され、冷媒を循環させる冷媒回路と、前記圧縮機よりも下流側で前記凝縮器よりも上流側に設けられ、前記圧縮機から吐出された油を冷媒から分離する油分離器と、前記油分離器と前記蒸発器よりも下流側で前記圧縮機よりも上流側に設けられた合流部との間を接続し、前記油分離器で分離された油を前記合流部で冷媒と合流させて前記圧縮機に戻す油戻し回路と、前記合流部で油と合流して前記圧縮機に吸入される吸入冷媒の過熱度に基づいて、前記電子膨張弁を制御する制御部と、前記合流部よりも下流側で前記圧縮機よりも上流側に設けられ、前記吸入冷媒の圧力を検出する吸入圧力センサと、前記合流部よりも下流側で前記圧縮機よりも上流側に設けられ、前記吸入冷媒の温度を検出する吸入温度センサと、前記圧縮機よりも下流側に設けられ、前記圧縮機から吐出される吐出冷媒の圧力を検出する吐出圧力センサと、前記圧縮機よりも下流側に設けられ、前記吐出冷媒の温度を検出する吐出温度センサと、を有し、前記制御部は、前記吸入冷媒の圧力及び温度と、前記吐出冷媒の圧力及び温度と、前記圧縮機の圧縮容量とに基づいて、前記合流部での合流前後の冷媒の温度上昇幅を推算し、前記温度上昇幅に基づいて、前記蒸発器の出口側の冷媒が飽和ガス状態となる前記吸入冷媒の過熱度目標値を設定し、前記吸入冷媒の過熱度を前記過熱度目標値に近づけるように前記電子膨張弁を制御することを特徴とするものである。 In the refrigeration cycle apparatus according to the present invention, a compressor, a condenser, an electronic expansion valve, and an evaporator are annularly connected in this order, a refrigerant circuit that circulates refrigerant, and a downstream side of the compressor than the condenser. An oil separator that is provided on the upstream side and separates the oil discharged from the compressor from the refrigerant, and a merging portion that is provided on the downstream side of the oil separator and the evaporator and on the upstream side of the compressor And an oil return circuit that joins the oil separated by the oil separator with the refrigerant at the junction and returns it to the compressor, and joins the oil at the junction and sucks it into the compressor And a control unit that controls the electronic expansion valve based on the degree of superheat of the suction refrigerant, and a suction unit that is provided downstream of the junction and upstream of the compressor, and detects the pressure of the suction refrigerant From the compressor on the downstream side of the pressure sensor and the junction An intake temperature sensor provided on the upstream side for detecting the temperature of the intake refrigerant; a discharge pressure sensor provided on the downstream side of the compressor for detecting the pressure of the discharge refrigerant discharged from the compressor; than the compressor provided on the downstream side, it has a, a discharge temperature sensor for detecting the temperature of the discharge refrigerant, the control unit includes a pressure and temperature of the suction refrigerant, the pressure and temperature of the discharged refrigerant, Based on the compression capacity of the compressor, the temperature rise width of the refrigerant before and after the merge at the merge portion is estimated, and based on the temperature rise width, the refrigerant on the outlet side of the evaporator is in a saturated gas state. The superheat degree target value of the suction refrigerant is set, and the electronic expansion valve is controlled so that the superheat degree of the suction refrigerant approaches the superheat degree target value .

本発明によれば、蒸発器から流出した冷媒は、合流部で合流する高温の油によって過熱された後に圧縮機に吸入される。このため、蒸発器の出口側の冷媒を飽和ガス状態としたとしても、蒸発器の下流側に熱交換器を別途設けることなく、圧縮機に吸入される冷媒をより確実に過熱ガス化することができる。したがって、冷凍サイクル装置の構造の複雑化及び装置の大型化を回避しつつ、冷凍サイクル装置の効率を向上させることができる。   According to the present invention, the refrigerant that has flowed out of the evaporator is superheated by the high-temperature oil that joins at the joining portion, and is then sucked into the compressor. For this reason, even if the refrigerant on the outlet side of the evaporator is in a saturated gas state, the refrigerant sucked into the compressor can be more reliably superheated without providing a separate heat exchanger on the downstream side of the evaporator. Can do. Therefore, the efficiency of the refrigeration cycle apparatus can be improved while avoiding the complexity of the structure of the refrigeration cycle apparatus and the enlargement of the apparatus.

本発明の実施の形態1に係る冷凍サイクル装置1の概略構成を示す冷媒回路図である。It is a refrigerant circuit diagram which shows schematic structure of the refrigerating-cycle apparatus 1 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷凍サイクル装置1の制御部60で実行される電子膨張弁40の開度制御処理の流れの一例を示すフローチャートである。It is a flowchart which shows an example of the flow of the opening degree control process of the electronic expansion valve 40 performed by the control part 60 of the refrigerating-cycle apparatus 1 which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る冷凍サイクル装置2の概略構成を示す冷媒回路図である。It is a refrigerant circuit diagram which shows schematic structure of the refrigerating-cycle apparatus 2 which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る冷凍サイクル装置2の制御部60で実行される電子膨張弁40の開度制御処理の流れの一例を示すフローチャートである。It is a flowchart which shows an example of the flow of the opening degree control process of the electronic expansion valve 40 performed by the control part 60 of the refrigerating-cycle apparatus 2 which concerns on Embodiment 2 of this invention.

実施の形態1.
本発明の実施の形態1に係る冷凍サイクル装置について説明する。図1は、本実施の形態に係る冷凍サイクル装置1の概略構成を示す冷媒回路図である。本実施の形態に係る冷凍サイクル装置1は、例えば、冷蔵庫、冷凍庫、空気調和装置、冷凍装置、自動販売機、給湯器等の各種産業機械に用いられるものである。図1に示すように、冷凍サイクル装置1は、冷媒を循環させる冷媒回路100を有している。冷媒回路100は、圧縮機10、凝縮器30、電子膨張弁40及び蒸発器50が冷媒配管によってこの順に環状に接続された構成を備えている。圧縮機10は、低温低圧の冷媒を吸入して圧縮し、高温高圧の冷媒にして吐出する流体機械である。圧縮機10は、冷媒を圧縮する圧縮機構部と、外部から電力が供給されることにより圧縮機構部を駆動する駆動機構部とを有している。本例では、圧縮機10の駆動機構部に電力を供給する電源として、後述する制御部60の制御によって駆動周波数を変化させることができるインバータ電源が用いられている。なお、圧縮機10の駆動機構部に電力を供給する電源としては、周波数50Hz又は60Hzの一般商用電源を用いることもできる。
Embodiment 1 FIG.
A refrigeration cycle apparatus according to Embodiment 1 of the present invention will be described. FIG. 1 is a refrigerant circuit diagram showing a schematic configuration of a refrigeration cycle apparatus 1 according to the present embodiment. The refrigeration cycle apparatus 1 according to the present embodiment is used for various industrial machines such as a refrigerator, a freezer, an air conditioner, a refrigeration apparatus, a vending machine, and a water heater. As shown in FIG. 1, the refrigeration cycle apparatus 1 has a refrigerant circuit 100 that circulates refrigerant. The refrigerant circuit 100 has a configuration in which the compressor 10, the condenser 30, the electronic expansion valve 40, and the evaporator 50 are annularly connected in this order by refrigerant piping. The compressor 10 is a fluid machine that sucks and compresses a low-temperature and low-pressure refrigerant and discharges it as a high-temperature and high-pressure refrigerant. The compressor 10 includes a compression mechanism unit that compresses the refrigerant and a drive mechanism unit that drives the compression mechanism unit when electric power is supplied from the outside. In this example, an inverter power source that can change the driving frequency under the control of the control unit 60 described later is used as a power source that supplies power to the drive mechanism unit of the compressor 10. In addition, as a power supply which supplies electric power to the drive mechanism part of the compressor 10, a general commercial power supply with a frequency of 50 Hz or 60 Hz can also be used.

凝縮器30は、圧縮機10から吐出された冷媒を、外部流体(例えば空気)との熱交換により凝縮させる熱交換器である。電子膨張弁40は、凝縮器30で凝縮した冷媒を絞り作用により減圧膨張させ、低温低圧の気液二相冷媒として流出させるものである。電子膨張弁40は、後述する制御部60により制御される。蒸発器50は、電子膨張弁40から流出した気液二相冷媒を、外部流体(例えば空気)との熱交換により蒸発させる熱交換器である。   The condenser 30 is a heat exchanger that condenses the refrigerant discharged from the compressor 10 by heat exchange with an external fluid (for example, air). The electronic expansion valve 40 decompresses and expands the refrigerant condensed in the condenser 30 by a throttling action, and causes the refrigerant to flow out as a low-temperature and low-pressure gas-liquid two-phase refrigerant. The electronic expansion valve 40 is controlled by a control unit 60 described later. The evaporator 50 is a heat exchanger that evaporates the gas-liquid two-phase refrigerant flowing out from the electronic expansion valve 40 by heat exchange with an external fluid (for example, air).

冷媒回路100のうち圧縮機10よりも下流側で凝縮器30よりも上流側には、圧縮機10から冷媒と共に吐出された油(冷凍機油)を冷媒から分離する油分離器20が設けられている。油分離器20と、冷媒回路100のうち蒸発器50よりも下流側で圧縮機10よりも上流側に設けられた合流部71との間は、油戻し回路70により接続されている。油戻し回路70は、油分離器20で分離された油を流通させて合流部71で冷媒と合流させることにより、当該油を圧縮機10の吸入側に戻すようになっている。油分離器20で分離された油は温度が高いため、合流部71で油と合流した冷媒の温度は、油と合流する前の冷媒の温度(すなわち、蒸発器50の出口側の冷媒温度)よりも上昇する。圧縮機10には、油との合流によって温度の上昇した冷媒が吸入される。   An oil separator 20 that separates oil (refrigeration oil) discharged from the compressor 10 together with the refrigerant from the refrigerant is provided downstream of the compressor 10 and upstream of the condenser 30 in the refrigerant circuit 100. Yes. An oil return circuit 70 connects between the oil separator 20 and a merging portion 71 provided downstream of the evaporator 50 and upstream of the compressor 10 in the refrigerant circuit 100. The oil return circuit 70 is configured to return the oil to the suction side of the compressor 10 by circulating the oil separated by the oil separator 20 and causing the oil to join the refrigerant at the junction 71. Since the temperature of the oil separated by the oil separator 20 is high, the temperature of the refrigerant combined with the oil at the merging portion 71 is the temperature of the refrigerant before merging with the oil (that is, the refrigerant temperature on the outlet side of the evaporator 50). Than to rise. The compressor 10 sucks refrigerant whose temperature has increased due to the merge with oil.

合流部71よりも下流側で圧縮機10よりも上流側(圧縮機10の吸入側)には、圧縮機10に吸入される吸入冷媒の圧力(以下、「吸入圧力」という場合がある)を検出する吸入圧力センサ(低圧側圧力センサ)61と、圧縮機10に吸入される吸入冷媒の温度(以下、「吸入温度」という場合がある)を検出する吸入温度センサ62と、が設けられている。また、圧縮機10よりも下流側(圧縮機10の吐出側)には、当該圧縮機10から吐出される吐出冷媒の圧力(以下、「吐出圧力」という場合がある)を検出する吐出圧力センサ(高圧側圧力センサ)63と、当該圧縮機10から吐出される吐出冷媒の温度(以下、「吐出温度」という場合がある)を検出する吐出温度センサ64と、が設けられている。吸入圧力センサ61、吸入温度センサ62、吐出圧力センサ63及び吐出温度センサ64は、それぞれ検出した圧力又は温度の情報を後述する制御部60に出力するようになっている。   The pressure of the refrigerant sucked into the compressor 10 (hereinafter sometimes referred to as “suction pressure”) is downstream of the junction 71 and upstream of the compressor 10 (suction side of the compressor 10). A suction pressure sensor (low-pressure side pressure sensor) 61 for detecting, and a suction temperature sensor 62 for detecting the temperature of refrigerant sucked into the compressor 10 (hereinafter sometimes referred to as “suction temperature”) are provided. Yes. A discharge pressure sensor that detects the pressure of refrigerant discharged from the compressor 10 (hereinafter sometimes referred to as “discharge pressure”) downstream of the compressor 10 (on the discharge side of the compressor 10). A (high pressure side pressure sensor) 63 and a discharge temperature sensor 64 for detecting the temperature of the discharge refrigerant discharged from the compressor 10 (hereinafter sometimes referred to as “discharge temperature”) are provided. The suction pressure sensor 61, the suction temperature sensor 62, the discharge pressure sensor 63, and the discharge temperature sensor 64 are configured to output detected pressure or temperature information to the control unit 60 described later.

冷凍サイクル装置1は、冷媒回路100の圧縮機10及び電子膨張弁40等を制御する制御部60を有している。制御部60は、CPU、ROM、RAM、入出力ポート等を備えている。制御部60は、凝縮器30又は蒸発器50の負荷に基づいて圧縮機10の駆動周波数を変化させ、これにより圧縮容量を制御する。また制御部60は、合流部71で油と合流して圧縮機10に吸入される吸入冷媒の過熱度に基づいて、電子膨張弁40の開度を制御する。吸入冷媒の過熱度は、吸入圧力センサ61で検出された吸入圧力と、吸入温度センサ62で検出された吸入温度と、に基づいて演算される。   The refrigeration cycle apparatus 1 includes a control unit 60 that controls the compressor 10 and the electronic expansion valve 40 of the refrigerant circuit 100. The control unit 60 includes a CPU, a ROM, a RAM, an input / output port, and the like. The controller 60 changes the driving frequency of the compressor 10 based on the load of the condenser 30 or the evaporator 50, thereby controlling the compression capacity. In addition, the control unit 60 controls the opening degree of the electronic expansion valve 40 based on the degree of superheat of the suction refrigerant that joins the oil at the joining unit 71 and is sucked into the compressor 10. The degree of superheat of the suction refrigerant is calculated based on the suction pressure detected by the suction pressure sensor 61 and the suction temperature detected by the suction temperature sensor 62.

図2は、冷凍サイクル装置1の制御部60で実行される電子膨張弁40の開度制御処理の流れの一例を示すフローチャートである。図2に示すように、まずステップS1では、吸入圧力センサ61から出力された吸入圧力の情報と、吸入温度センサ62から出力された吸入温度の情報と、吐出圧力センサ63から出力された吐出圧力の情報と、吐出温度センサ64から出力された吐出温度の情報と、制御部60自身が設定する圧縮機10の圧縮容量(例えば駆動周波数)の情報と、を取得する。   FIG. 2 is a flowchart illustrating an example of a flow of opening degree control processing of the electronic expansion valve 40 that is executed by the control unit 60 of the refrigeration cycle apparatus 1. As shown in FIG. 2, first, in step S <b> 1, the suction pressure information output from the suction pressure sensor 61, the suction temperature information output from the suction temperature sensor 62, and the discharge pressure output from the discharge pressure sensor 63. , Information on the discharge temperature output from the discharge temperature sensor 64, and information on the compression capacity (for example, drive frequency) of the compressor 10 set by the control unit 60 itself.

次に、ステップS2では、吸入圧力、吸入温度、吐出圧力、吐出温度及び圧縮容量に基づいて、合流部71での合流前後の冷媒の温度上昇幅(過熱度上昇幅)を推算する。合流前後の温度上昇幅は、蒸発器50の出口側から合流部71までの間を流れる合流前の冷媒の温度と、合流部71で油と合流することにより温度が上昇した合流後の冷媒(合流した油が混入した冷媒)の温度との間の温度差である。合流前後の冷媒の温度上昇幅の算出には、例えば、合流前の油の温度と、合流前の油の流量と、合流後の冷媒の温度と、合流後の冷媒の流量と、の各情報が必要になる。   Next, in step S2, the temperature rise width (superheat degree rise width) of the refrigerant before and after joining at the joining portion 71 is estimated based on the suction pressure, suction temperature, discharge pressure, discharge temperature, and compression capacity. The temperature rise width before and after the merging includes the temperature of the refrigerant before merging flowing from the outlet side of the evaporator 50 to the merging part 71 and the refrigerant after merging whose temperature has increased by merging with oil at the merging part 71 ( It is a temperature difference with the temperature of the refrigerant | coolant which the mixed oil mixed. For calculating the temperature rise width of the refrigerant before and after merging, for example, information on the temperature of the oil before merging, the flow rate of the oil before merging, the temperature of the refrigerant after merging, and the flow rate of the refrigerant after merging Is required.

合流前の油の温度は、圧縮機10から吐出される冷媒の吐出温度とほぼ同温度である。したがって、合流前の油の温度は、吐出温度センサ64で検出される吐出温度に基づいて推算できる。   The temperature of the oil before joining is approximately the same temperature as the discharge temperature of the refrigerant discharged from the compressor 10. Therefore, the temperature of the oil before joining can be estimated based on the discharge temperature detected by the discharge temperature sensor 64.

合流前の油の流量(油の戻り量)は、油分離器20と合流部71との圧力差により推算できる。油分離器20の圧力は、圧縮機10から吐出される冷媒の吐出圧力(高圧側圧力)と同圧力である。合流部71の圧力は、圧縮機10に吸入される冷媒の吸入圧力(低圧側圧力)と同圧力である。したがって、合流前の油の流量は、吐出圧力センサ63で検出される吐出圧力と、吸入圧力センサ61で検出される吸入圧力と、に基づいて推算できる。   The oil flow rate (oil return amount) before merging can be estimated from the pressure difference between the oil separator 20 and the merging portion 71. The pressure of the oil separator 20 is the same as the discharge pressure (high-pressure side pressure) of the refrigerant discharged from the compressor 10. The pressure of the junction 71 is the same as the suction pressure (low pressure side pressure) of the refrigerant sucked into the compressor 10. Therefore, the flow rate of the oil before joining can be estimated based on the discharge pressure detected by the discharge pressure sensor 63 and the suction pressure detected by the suction pressure sensor 61.

合流後の冷媒の温度は、圧縮機10に吸入される冷媒の吸入温度と同温度である。したがって、吸入温度センサ62で検出される吸入温度を合流後の冷媒の温度として取り扱うことができる。   The temperature of the refrigerant after merging is the same temperature as the refrigerant sucked into the compressor 10. Therefore, the suction temperature detected by the suction temperature sensor 62 can be handled as the temperature of the refrigerant after merging.

合流後の冷媒の流量(冷媒回路100を循環する冷媒の循環量)は、圧縮機10から吐出される冷媒の吐出圧力と、圧縮機10に吸入される冷媒の吸入圧力と、圧縮機10の圧縮容量と、により推算できる。したがって、合流後の冷媒の流量は、吐出圧力センサ63で検出される吐出圧力と、吸入圧力センサ61で検出される吸入圧力と、制御部60自身が設定する圧縮機10の圧縮容量と、に基づいて推算できる。   The flow rate of the refrigerant after merging (the circulation amount of the refrigerant circulating in the refrigerant circuit 100) is the discharge pressure of the refrigerant discharged from the compressor 10, the suction pressure of the refrigerant sucked into the compressor 10, and the It can be estimated by the compression capacity. Therefore, the flow rate of the refrigerant after merging includes the discharge pressure detected by the discharge pressure sensor 63, the suction pressure detected by the suction pressure sensor 61, and the compression capacity of the compressor 10 set by the control unit 60 itself. Can be estimated.

以上のように、制御部60は、ステップS1で取得した吸入圧力、吸入温度、吐出圧力、吐出温度及び圧縮容量の各情報に基づいて、合流前後の冷媒の温度上昇幅を推算できる。   As described above, the control unit 60 can estimate the temperature rise width of the refrigerant before and after merging based on each information of the suction pressure, suction temperature, discharge pressure, discharge temperature, and compression capacity acquired in step S1.

次に、ステップS3では、ステップS2で推算した温度上昇幅に基づいて、圧縮機10に吸入される吸入冷媒の過熱度目標値を設定する。本例では、吸入冷媒の過熱度目標値は、蒸発器50の出口側の冷媒が飽和ガス状態(乾燥飽和状態)となるように設定される。圧縮機10に吸入される吸入冷媒の過熱度は、蒸発器50の出口側の冷媒の過熱度よりも上記の温度上昇幅の分だけ高くなる。したがって、例えば、蒸発器50の出口側の冷媒の過熱度をT(例えば0℃)とし、上記の温度上昇幅をΔtとすると、吸入冷媒の過熱度目標値はT+Δtに設定される。   Next, in step S3, the superheat degree target value of the refrigerant sucked into the compressor 10 is set based on the temperature rise range estimated in step S2. In this example, the superheat degree target value of the suction refrigerant is set so that the refrigerant on the outlet side of the evaporator 50 is in a saturated gas state (dry saturated state). The degree of superheat of the refrigerant sucked into the compressor 10 is higher than the degree of superheat of the refrigerant on the outlet side of the evaporator 50 by the above temperature increase width. Therefore, for example, assuming that the superheat degree of the refrigerant on the outlet side of the evaporator 50 is T (for example, 0 ° C.) and the above temperature rise is Δt, the superheat degree target value of the suction refrigerant is set to T + Δt.

次に、ステップS4では、圧縮機10に吸入される吸入冷媒の過熱度を過熱度目標値に近づけるように、電子膨張弁40の開度を制御する。ここで、吸入冷媒の過熱度は、ステップS1で取得した吸入圧力及び吸入温度の情報に基づき演算される。これにより、電子膨張弁40は、結果として、蒸発器50の出口側の冷媒が飽和ガス状態に近づくように制御される。   Next, in step S4, the opening degree of the electronic expansion valve 40 is controlled so that the superheat degree of the refrigerant sucked into the compressor 10 approaches the superheat degree target value. Here, the superheat degree of the suction refrigerant is calculated based on the suction pressure and suction temperature information acquired in step S1. As a result, the electronic expansion valve 40 is controlled so that the refrigerant on the outlet side of the evaporator 50 approaches the saturated gas state.

上記ステップS1〜S4の処理は、冷凍サイクル装置1が起動してから停止するまで所定の周期で繰り返し実行される(ステップS5)。   The processes in steps S1 to S4 are repeatedly executed at a predetermined cycle from the start of the refrigeration cycle apparatus 1 to the stop (step S5).

以上説明したように、本実施の形態に係る冷凍サイクル装置1は、圧縮機10、凝縮器30、電子膨張弁40及び蒸発器50がこの順に環状に接続され、冷媒を循環させる冷媒回路100と、圧縮機10よりも下流側で凝縮器30よりも上流側に設けられ、圧縮機10から吐出された油を冷媒から分離する油分離器20と、油分離器20と蒸発器50よりも下流側で圧縮機10よりも上流側に設けられた合流部71との間を接続し、油分離器20で分離された油を流通させ、合流部71で冷媒と合流させて圧縮機10に戻す油戻し回路70と、合流部71で油と合流して圧縮機10に吸入される吸入冷媒の過熱度に基づいて、電子膨張弁40を制御する制御部60と、を有することを特徴とするものである。   As described above, the refrigeration cycle apparatus 1 according to the present embodiment includes the refrigerant circuit 100 in which the compressor 10, the condenser 30, the electronic expansion valve 40, and the evaporator 50 are annularly connected in this order to circulate the refrigerant. The oil separator 20 is provided downstream of the compressor 10 and upstream of the condenser 30 and separates the oil discharged from the compressor 10 from the refrigerant, and downstream of the oil separator 20 and the evaporator 50. Between the merging section 71 provided on the upstream side of the compressor 10 on the side, circulates the oil separated by the oil separator 20, merges with the refrigerant at the merging section 71, and returns to the compressor 10. It has an oil return circuit 70 and a control unit 60 that controls the electronic expansion valve 40 based on the degree of superheat of the refrigerant sucked into the compressor 10 after joining the oil at the junction 71. Is.

この構成によれば、蒸発器50から流出した冷媒は、合流部71で合流する高温の油によって過熱された後に圧縮機10に吸入される。このため、蒸発器50の出口側の冷媒を飽和ガス状態としたとしても、蒸発器50の下流側に熱交換器を別途設けることなく、圧縮機10に吸入される冷媒をより確実に過熱ガス化することができる。また、電子膨張弁40は、合流部71で合流する高温の油によって過熱された後の冷媒の過熱度に基づいて制御される。このため、冷媒の過熱度に基づく電子膨張弁40の制御を可能としつつ、蒸発器50出口の冷媒を飽和ガス状態とすることができる。これにより、蒸発器50内部の冷媒を気液二相状態に保つことができるため、蒸発器50の熱交換効率を向上させることができる。したがって、本実施の形態によれば、冷凍サイクル装置1の構造の複雑化及び装置の大型化を回避しつつ、冷凍サイクル装置1の効率を向上させることができる。また、冷凍サイクル装置1の効率を向上させることにより、冷凍サイクル装置1のエネルギー消費量を削減することができる。これにより、少なくとも冷凍サイクル装置1の使用時において、環境負荷を低減することができる。   According to this configuration, the refrigerant that has flowed out of the evaporator 50 is sucked into the compressor 10 after being superheated by the high-temperature oil that merges at the merge portion 71. For this reason, even if the refrigerant on the outlet side of the evaporator 50 is in a saturated gas state, the refrigerant sucked into the compressor 10 is more reliably superheated gas without separately providing a heat exchanger on the downstream side of the evaporator 50. Can be Further, the electronic expansion valve 40 is controlled based on the degree of superheat of the refrigerant after being superheated by high-temperature oil that joins at the junction 71. For this reason, it is possible to control the electronic expansion valve 40 based on the degree of superheat of the refrigerant, and to make the refrigerant at the outlet of the evaporator 50 into a saturated gas state. Thereby, since the refrigerant | coolant inside the evaporator 50 can be maintained in a gas-liquid two-phase state, the heat exchange efficiency of the evaporator 50 can be improved. Therefore, according to this Embodiment, the efficiency of the refrigerating cycle apparatus 1 can be improved, avoiding the complexity of the structure of the refrigerating cycle apparatus 1, and the enlargement of an apparatus. Moreover, the energy consumption of the refrigeration cycle apparatus 1 can be reduced by improving the efficiency of the refrigeration cycle apparatus 1. Thereby, an environmental load can be reduced at least when the refrigeration cycle apparatus 1 is used.

また、本実施の形態に係る冷凍サイクル装置1は、合流部71よりも下流側で圧縮機10よりも上流側に設けられ、吸入冷媒の圧力を検出する吸入圧力センサ61と、合流部71よりも下流側で圧縮機10よりも上流側に設けられ、吸入冷媒の温度を検出する吸入温度センサ62と、圧縮機10よりも下流側に設けられ、圧縮機10から吐出される吐出冷媒の圧力を検出する吐出圧力センサ63と、圧縮機10よりも下流側で凝縮器30よりも上流側に設けられ、吐出冷媒の温度を検出する吐出温度センサ64と、をさらに有し、制御部60は、吸入冷媒の圧力及び温度と、吐出冷媒の圧力及び温度と、圧縮機10の圧縮容量とに基づいて、合流部71における油との合流前後の冷媒の温度上昇幅を推算し、温度上昇幅に基づいて、蒸発器50の出口側の冷媒が飽和ガス状態となる吸入冷媒の過熱度目標値を設定し、吸入冷媒の過熱度を過熱度目標値に近づけるように電子膨張弁40を制御することを特徴とするものである。   In addition, the refrigeration cycle apparatus 1 according to the present embodiment includes a suction pressure sensor 61 that is provided on the downstream side of the merging portion 71 and upstream of the compressor 10 and detects the pressure of the suction refrigerant, and the merging portion 71. Also, a suction temperature sensor 62 that detects the temperature of the suction refrigerant is provided downstream of the compressor 10 on the downstream side, and a pressure of the discharge refrigerant that is provided downstream of the compressor 10 and discharged from the compressor 10. A discharge pressure sensor 63 that detects the temperature of the refrigerant, and a discharge temperature sensor 64 that is provided downstream of the compressor 10 and upstream of the condenser 30 and detects the temperature of the discharged refrigerant. Based on the pressure and temperature of the suction refrigerant, the pressure and temperature of the discharge refrigerant, and the compression capacity of the compressor 10, the temperature rise width of the refrigerant before and after joining the oil in the joining portion 71 is estimated, and the temperature rise width On the basis of the evaporator 5 The superheat degree target value of the suction refrigerant in which the refrigerant on the outlet side of the refrigerant is in a saturated gas state is set, and the electronic expansion valve 40 is controlled so that the superheat degree of the suction refrigerant approaches the superheat degree target value. is there.

また、本実施の形態に係る冷凍サイクル装置1は、制御部60は、吐出冷媒の温度に基づいて、合流部71における冷媒との合流前の油の温度を推算し、吐出冷媒の圧力と、吸入冷媒の圧力とに基づいて、合流部71における冷媒との合流前の油の流量を推算し、吐出冷媒の圧力と、吸入冷媒の圧力と、圧縮機10の圧縮容量とに基づいて、合流部71での合流後の冷媒の流量を推算し、合流前の油の温度及び流量と、合流後の冷媒の流量と、吸入温度とに基づいて、温度上昇幅を推算することを特徴とするものである。   Further, in the refrigeration cycle apparatus 1 according to the present embodiment, the control unit 60 estimates the temperature of oil before joining with the refrigerant in the joining unit 71 based on the temperature of the discharged refrigerant, and the pressure of the discharged refrigerant, Based on the pressure of the suction refrigerant, the flow rate of the oil before joining with the refrigerant in the joining portion 71 is estimated, and based on the pressure of the discharge refrigerant, the pressure of the suction refrigerant, and the compression capacity of the compressor 10, The flow rate of the refrigerant after merging in the unit 71 is estimated, and the temperature rise width is estimated based on the temperature and flow rate of the oil before merging, the flow rate of the refrigerant after merging, and the suction temperature. Is.

これらの構成によれば、センサを必要以上に増加させることなく、蒸発器50出口の冷媒を飽和ガス状態とするための過熱度目標値を設定することができる。したがって、蒸発器50出口の冷媒を飽和ガス状態とすることができるとともに、圧縮機10に吸入される冷媒をより確実に過熱ガス化することができる。   According to these configurations, it is possible to set a superheat degree target value for setting the refrigerant at the outlet of the evaporator 50 to a saturated gas state without increasing the number of sensors more than necessary. Therefore, the refrigerant at the outlet of the evaporator 50 can be brought into a saturated gas state, and the refrigerant sucked into the compressor 10 can be more reliably superheated.

実施の形態2.
本発明の実施の形態2に係る冷凍サイクル装置について説明する。図3は、本実施の形態に係る冷凍サイクル装置2の概略構成を示す冷媒回路図である。なお、実施の形態1に係る冷凍サイクル装置1と同一の機能及び作用を有する構成要素については、同一の符号を付してその説明を省略する。図3に示すように、冷凍サイクル装置2は、冷凍サイクル装置1と比較すると、蒸発器50よりも下流側で合流部71よりも上流側に設けられたアキュムレータ80をさらに有する点に特徴を有している。アキュムレータ80は、流入した冷媒を気液分離してガス冷媒を流出させ、圧縮機10への液バックを防ぐ気液分離器である。
Embodiment 2. FIG.
A refrigeration cycle apparatus according to Embodiment 2 of the present invention will be described. FIG. 3 is a refrigerant circuit diagram illustrating a schematic configuration of the refrigeration cycle apparatus 2 according to the present embodiment. In addition, about the component which has the same function and effect | action as the refrigerating-cycle apparatus 1 which concerns on Embodiment 1, the same code | symbol is attached | subjected and the description is abbreviate | omitted. As shown in FIG. 3, the refrigeration cycle apparatus 2 is characterized in that the refrigeration cycle apparatus 2 further includes an accumulator 80 provided on the downstream side of the evaporator 50 and the upstream side of the merging portion 71 as compared with the refrigeration cycle apparatus 1. doing. The accumulator 80 is a gas-liquid separator that gas-liquid separates the inflowing refrigerant and causes the gas refrigerant to flow out to prevent liquid back to the compressor 10.

蒸発器50よりも下流側でアキュムレータ80よりも上流側には、アキュムレータ80の入口側(蒸発器50の出口側)の冷媒の温度を検出するアキュムレータ入口温度センサ81が設けられている。凝縮器30よりも下流側で電子膨張弁40よりも上流側には、凝縮器30の出口側の冷媒の温度を検出する凝縮器出口温度センサ31が設けられている。アキュムレータ入口温度センサ81及び凝縮器出口温度センサ31は、それぞれ検出した温度の情報を制御部60に出力するようになっている。   An accumulator inlet temperature sensor 81 that detects the temperature of the refrigerant on the inlet side of the accumulator 80 (the outlet side of the evaporator 50) is provided downstream of the evaporator 50 and upstream of the accumulator 80. A condenser outlet temperature sensor 31 that detects the temperature of the refrigerant on the outlet side of the condenser 30 is provided downstream of the condenser 30 and upstream of the electronic expansion valve 40. The accumulator inlet temperature sensor 81 and the condenser outlet temperature sensor 31 are configured to output detected temperature information to the control unit 60.

図4は、冷凍サイクル装置2の制御部60で実行される電子膨張弁40の開度制御処理の流れの一例を示すフローチャートである。図4に示すように、まずステップS11では、凝縮器30の出口側の冷媒の過冷却度が、予め設定された基準値以上であるか否かを判定する。凝縮器30の出口側の冷媒の過冷却度が基準値以上である場合には、ステップS12に進む。ここで、凝縮器30の出口側の冷媒の過冷却度は、凝縮器出口温度センサ31で検出される凝縮器出口温度と、吐出圧力センサ63で検出される吐出圧力(高圧側圧力)とに基づいて演算される。ステップS12及びその後に実行されるステップS13〜S15では、実施の形態1と同様に、圧縮機10に吸入される吸入冷媒の過熱度に基づいて電子膨張弁40を制御する。ステップS12〜S15の各処理は、図2のステップS1〜S4の各処理と同様であるため説明を省略する。   FIG. 4 is a flowchart illustrating an example of a flow of opening degree control processing of the electronic expansion valve 40 that is executed by the control unit 60 of the refrigeration cycle apparatus 2. As shown in FIG. 4, first, in step S11, it is determined whether or not the degree of supercooling of the refrigerant on the outlet side of the condenser 30 is equal to or greater than a preset reference value. If the degree of supercooling of the refrigerant on the outlet side of the condenser 30 is greater than or equal to the reference value, the process proceeds to step S12. Here, the degree of supercooling of the refrigerant on the outlet side of the condenser 30 depends on the condenser outlet temperature detected by the condenser outlet temperature sensor 31 and the discharge pressure (high pressure side pressure) detected by the discharge pressure sensor 63. Calculated based on In step S12 and steps S13 to S15 executed thereafter, the electronic expansion valve 40 is controlled based on the degree of superheat of the suction refrigerant sucked into the compressor 10 as in the first embodiment. Since each process of step S12-S15 is the same as each process of step S1-S4 of FIG. 2, description is abbreviate | omitted.

一方、凝縮器30の出口側の冷媒の過冷却度が基準値未満である場合には、ステップS16に進む。ステップS16では、アキュムレータ80の入口側の冷媒の過熱度に基づいて、電子膨張弁40を制御する。本例では、電子膨張弁40は、アキュムレータ80の入口側の冷媒が過熱ガスとなるように制御される。ここで、アキュムレータ80の入口側の冷媒の過熱度は、アキュムレータ入口温度センサ81で検出されるアキュムレータ入口温度と、吸入圧力センサ61で検出される吸入圧力(低圧側圧力)とに基づいて演算される。   On the other hand, when the degree of supercooling of the refrigerant on the outlet side of the condenser 30 is less than the reference value, the process proceeds to step S16. In step S16, the electronic expansion valve 40 is controlled based on the degree of superheat of the refrigerant on the inlet side of the accumulator 80. In this example, the electronic expansion valve 40 is controlled so that the refrigerant on the inlet side of the accumulator 80 becomes superheated gas. Here, the superheat degree of the refrigerant on the inlet side of the accumulator 80 is calculated based on the accumulator inlet temperature detected by the accumulator inlet temperature sensor 81 and the suction pressure (low pressure side pressure) detected by the suction pressure sensor 61. The

上記のステップS11〜S16の処理(ステップS12〜S15の処理又はステップS16の処理)は、冷凍サイクル装置2が起動してから停止するまで所定の周期で繰り返し実行される(ステップS17)。   The processing of steps S11 to S16 (the processing of steps S12 to S15 or the processing of step S16) is repeatedly executed at a predetermined cycle until the refrigeration cycle apparatus 2 is started and stopped (step S17).

以上説明したように、本実施の形態に係る冷凍サイクル装置2は、蒸発器50よりも下流側で合流部71よりも上流側に設けられたアキュムレータ80をさらに有することを特徴とするものである。   As described above, the refrigeration cycle apparatus 2 according to the present embodiment further includes the accumulator 80 provided downstream of the evaporator 50 and upstream of the junction 71. .

また、本実施の形態に係る冷凍サイクル装置2は、凝縮器30よりも下流側で電子膨張弁40よりも上流側に設けられ、凝縮器30の出口側の冷媒の温度を検出する凝縮器出口温度センサ31と、蒸発器50よりも下流側でアキュムレータ80よりも上流側に設けられ、アキュムレータ80の入口側の冷媒の温度を検出するアキュムレータ入口温度センサ81と、をさらに有し、制御部60は、凝縮器30の出口側の冷媒の過冷却度が基準値以上の場合には、圧縮機10に吸入される吸入冷媒の過熱度に基づいて電子膨張弁40を制御し(ステップS12〜S15)、凝縮器30の出口側の冷媒の過冷却度が基準値未満の場合には、アキュムレータ80の入口側の冷媒の過熱度に基づいて電子膨張弁40を制御する(ステップS16)ことを特徴とするものである。   The refrigeration cycle apparatus 2 according to the present embodiment is provided downstream of the condenser 30 and upstream of the electronic expansion valve 40, and detects the temperature of the refrigerant on the outlet side of the condenser 30. The controller 60 further includes a temperature sensor 31 and an accumulator inlet temperature sensor 81 that is provided downstream of the evaporator 50 and upstream of the accumulator 80 and detects the temperature of the refrigerant on the inlet side of the accumulator 80. If the degree of supercooling of the refrigerant on the outlet side of the condenser 30 is equal to or higher than the reference value, the electronic expansion valve 40 is controlled based on the degree of superheat of the refrigerant sucked into the compressor 10 (steps S12 to S15). ) If the degree of supercooling of the refrigerant on the outlet side of the condenser 30 is less than the reference value, the electronic expansion valve 40 is controlled based on the degree of superheating of the refrigerant on the inlet side of the accumulator 80 (step S16). It is an butterfly.

本実施の形態では、凝縮器30の出口側の冷媒の過冷却度が基準値以上の場合には、実施の形態1と同様に、圧縮機10に吸入される吸入冷媒の過熱度に基づいて電子膨張弁40が制御される。したがって、本実施の形態によれば、実施の形態1と同様の効果を得ることができる。   In the present embodiment, when the degree of supercooling of the refrigerant on the outlet side of the condenser 30 is greater than or equal to a reference value, the degree of superheating of the refrigerant sucked into the compressor 10 is based on the degree of superheating of the refrigerant sucked into the compressor 10 as in the first embodiment. The electronic expansion valve 40 is controlled. Therefore, according to the present embodiment, the same effect as in the first embodiment can be obtained.

ただし、本実施の形態のような構成において、各センサの検知誤差や冷凍サイクルの運転状況の変化等に起因して、蒸発器50の出口側の冷媒が常に飽和ガス状態とはならず、二相状態となることがある。蒸発器50の出口側にアキュムレータ80が設置されている場合、アキュムレータ80に二相状態の冷媒が流入すると、アキュムレータ80内に滞留する冷媒量が大きくなることがある。この場合、凝縮器30内に滞留する冷媒量が減少するため、冷凍サイクル装置2の性能が低下してしまうことがある。   However, in the configuration as in the present embodiment, the refrigerant on the outlet side of the evaporator 50 is not always in a saturated gas state due to detection errors of each sensor, changes in the operating state of the refrigeration cycle, and the like. May be in a phase state. When the accumulator 80 is installed on the outlet side of the evaporator 50, when the two-phase refrigerant flows into the accumulator 80, the amount of refrigerant that stays in the accumulator 80 may increase. In this case, since the amount of refrigerant staying in the condenser 30 decreases, the performance of the refrigeration cycle apparatus 2 may be deteriorated.

本実施の形態では、凝縮器30の出口側の冷媒の過冷却度が基準値未満に低下した場合には、アキュムレータ80の入口側の冷媒が過熱ガス状態となるように電子膨張弁40が制御される。この制御を行うことによって、アキュムレータ80内に滞留している液冷媒は、アキュムレータ80に流入する過熱ガス状態の冷媒により追い出される。したがって、本実施の形態によれば、凝縮器30内に滞留する冷媒量の減少を防ぐことができるため、冷凍サイクル装置2の性能を向上させることができる。   In the present embodiment, when the degree of supercooling of the refrigerant on the outlet side of the condenser 30 falls below a reference value, the electronic expansion valve 40 is controlled so that the refrigerant on the inlet side of the accumulator 80 is in a superheated gas state. Is done. By performing this control, the liquid refrigerant staying in the accumulator 80 is driven out by the superheated refrigerant flowing into the accumulator 80. Therefore, according to this Embodiment, since the fall of the refrigerant | coolant amount which retains in the condenser 30 can be prevented, the performance of the refrigerating-cycle apparatus 2 can be improved.

アキュムレータ80内に滞留している液冷媒が追い出されることにより、凝縮器30の出口側の冷媒の過冷却度が基準値以上に上昇した場合には、再び、圧縮機10に吸入される吸入冷媒の過熱度に基づいて電子膨張弁40が制御される。   When the liquid refrigerant staying in the accumulator 80 is expelled and the degree of supercooling of the refrigerant on the outlet side of the condenser 30 increases to a reference value or more, the suction refrigerant sucked into the compressor 10 again. The electronic expansion valve 40 is controlled based on the degree of superheat.

その他の実施の形態.
本発明は、上記実施の形態に限らず種々の変形が可能である。
例えば、上記実施の形態では、吸入冷媒の過熱度目標値が、蒸発器50の出口側の冷媒が飽和ガス状態となるように設定されているが、吸入冷媒の過熱度目標値は、蒸発器50の出口側の冷媒が、飽和ガス状態に近い高乾き度の二相状態、又は飽和ガス状態に近い低過熱度の過熱ガス状態となるように設定されていてもよい。
Other embodiments.
The present invention is not limited to the above embodiment, and various modifications can be made.
For example, in the above embodiment, the superheat target value of the suction refrigerant is set so that the refrigerant on the outlet side of the evaporator 50 is in a saturated gas state. The refrigerant on the outlet side of 50 may be set so as to be in a two-phase state with a high dryness close to a saturated gas state or a superheated gas state with a low superheat degree close to a saturated gas state.

また、上記の各実施の形態や変形例は、互いに組み合わせて実施することが可能である。   In addition, the above embodiments and modifications can be implemented in combination with each other.

1、2 冷凍サイクル装置、10 圧縮機、20 油分離器、30 凝縮器、31 凝縮器出口温度センサ、40 電子膨張弁、50 蒸発器、60 制御部、61 吸入圧力センサ、62 吸入温度センサ、63 吐出圧力センサ、64 吐出温度センサ、70 油戻し回路、71 合流部、80 アキュムレータ、81 アキュムレータ入口温度センサ、100 冷媒回路。   1, 2, refrigeration cycle apparatus, 10 compressor, 20 oil separator, 30 condenser, 31 condenser outlet temperature sensor, 40 electronic expansion valve, 50 evaporator, 60 control unit, 61 suction pressure sensor, 62 suction temperature sensor, 63 discharge pressure sensor, 64 discharge temperature sensor, 70 oil return circuit, 71 junction, 80 accumulator, 81 accumulator inlet temperature sensor, 100 refrigerant circuit.

Claims (3)

圧縮機、凝縮器、電子膨張弁及び蒸発器がこの順に環状に接続され、冷媒を循環させる冷媒回路と、
前記圧縮機よりも下流側で前記凝縮器よりも上流側に設けられ、前記圧縮機から吐出された油を冷媒から分離する油分離器と、
前記油分離器と前記蒸発器よりも下流側で前記圧縮機よりも上流側に設けられた合流部との間を接続し、前記油分離器で分離された油を前記合流部で冷媒と合流させて前記圧縮機に戻す油戻し回路と、
前記合流部で油と合流して前記圧縮機に吸入される吸入冷媒の過熱度に基づいて、前記電子膨張弁を制御する制御部と、
前記合流部よりも下流側で前記圧縮機よりも上流側に設けられ、前記吸入冷媒の圧力を検出する吸入圧力センサと、
前記合流部よりも下流側で前記圧縮機よりも上流側に設けられ、前記吸入冷媒の温度を検出する吸入温度センサと、
前記圧縮機よりも下流側に設けられ、前記圧縮機から吐出される吐出冷媒の圧力を検出する吐出圧力センサと、
前記圧縮機よりも下流側に設けられ、前記吐出冷媒の温度を検出する吐出温度センサと、
を有し、
前記制御部は、
前記吸入冷媒の圧力及び温度と、前記吐出冷媒の圧力及び温度と、前記圧縮機の圧縮容量とに基づいて、前記合流部での合流前後の冷媒の温度上昇幅を推算し、
前記温度上昇幅に基づいて、前記蒸発器の出口側の冷媒が飽和ガス状態となる前記吸入冷媒の過熱度目標値を設定し、
前記吸入冷媒の過熱度を前記過熱度目標値に近づけるように前記電子膨張弁を制御すること
を特徴とする冷凍サイクル装置。
A refrigerant circuit in which a compressor, a condenser, an electronic expansion valve, and an evaporator are annularly connected in this order to circulate the refrigerant;
An oil separator that is provided downstream of the compressor and upstream of the condenser, and separates oil discharged from the compressor from the refrigerant;
The oil separator is connected downstream of the evaporator and a merging portion provided upstream of the compressor, and the oil separated by the oil separator is merged with the refrigerant at the merging portion. An oil return circuit for returning to the compressor;
A control unit that controls the electronic expansion valve based on the degree of superheat of the refrigerant that is sucked into the compressor after joining the oil in the joining unit;
A suction pressure sensor that is provided downstream of the merging portion and upstream of the compressor, and that detects the pressure of the suction refrigerant;
An intake temperature sensor that is provided downstream of the junction and upstream of the compressor, and detects the temperature of the intake refrigerant;
A discharge pressure sensor that is provided on the downstream side of the compressor and detects a pressure of a discharge refrigerant discharged from the compressor;
A discharge temperature sensor that is provided downstream of the compressor and detects a temperature of the discharge refrigerant;
I have a,
The controller is
Based on the pressure and temperature of the suction refrigerant, the pressure and temperature of the discharge refrigerant, and the compression capacity of the compressor, the temperature increase width of the refrigerant before and after merging in the merging portion is estimated,
Based on the temperature rise width, set the superheat degree target value of the suction refrigerant in which the refrigerant on the outlet side of the evaporator is in a saturated gas state,
The refrigeration cycle apparatus , wherein the electronic expansion valve is controlled so that the superheat degree of the suction refrigerant approaches the superheat degree target value .
前記制御部は、
前記吐出冷媒の温度に基づいて、前記合流部での合流前の油の温度を推算し、
前記吐出冷媒の圧力と、前記吸入冷媒の圧力とに基づいて、前記合流部での合流前の油の流量を推算し、
前記吐出冷媒の圧力と、前記吸入冷媒の圧力と、前記圧縮機の圧縮容量とに基づいて、前記合流部での合流後の冷媒の流量を推算し、
前記合流前の油の温度及び流量と、前記合流後の冷媒の流量と、前記吸入冷媒の温度とに基づいて、前記温度上昇幅を推算すること
を特徴とする請求項に記載の冷凍サイクル装置。
The controller is
Based on the temperature of the discharged refrigerant, the temperature of the oil before merging at the merging portion is estimated,
Based on the pressure of the discharged refrigerant and the pressure of the suction refrigerant, the flow rate of the oil before joining at the joining portion is estimated,
Based on the pressure of the discharged refrigerant, the pressure of the suction refrigerant, and the compression capacity of the compressor, the flow rate of the refrigerant after merging in the merging portion is estimated,
Temperature and flow rate of the oil before the merging, and the flow rate of the refrigerant after the merging, on the basis of the temperature of the suction refrigerant, the refrigeration cycle according to claim 1, characterized in that to estimate the temperature rise apparatus.
圧縮機、凝縮器、電子膨張弁及び蒸発器がこの順に環状に接続され、冷媒を循環させる冷媒回路と、
前記圧縮機よりも下流側で前記凝縮器よりも上流側に設けられ、前記圧縮機から吐出された油を冷媒から分離する油分離器と、
前記油分離器と前記蒸発器よりも下流側で前記圧縮機よりも上流側に設けられた合流部との間を接続し、前記油分離器で分離された油を前記合流部で冷媒と合流させて前記圧縮機に戻す油戻し回路と、
前記蒸発器よりも下流側で前記合流部よりも上流側に設けられたアキュムレータと、
前記凝縮器よりも下流側で前記電子膨張弁よりも上流側に設けられ、前記凝縮器の出口側の冷媒の温度を検出する凝縮器出口温度センサと、
前記蒸発器よりも下流側で前記アキュムレータよりも上流側に設けられ、前記アキュムレータの入口側の冷媒の温度を検出するアキュムレータ入口温度センサと、
前記合流部で油と合流して前記圧縮機に吸入される吸入冷媒の過熱度に基づいて、前記電子膨張弁を制御する制御部と、
を有し、
前記制御部は、
前記凝縮器の出口側の冷媒の過冷却度が基準値以上の場合には、前記吸入冷媒の過熱度に基づいて前記電子膨張弁を制御し、
前記過冷却度が前記基準値未満の場合には、前記アキュムレータの入口側の冷媒の過熱度に基づいて前記電子膨張弁を制御すること
を特徴とする冷凍サイクル装置。
A refrigerant circuit in which a compressor, a condenser, an electronic expansion valve, and an evaporator are annularly connected in this order to circulate the refrigerant;
An oil separator that is provided downstream of the compressor and upstream of the condenser, and separates oil discharged from the compressor from the refrigerant;
The oil separator is connected downstream of the evaporator and a merging portion provided upstream of the compressor, and the oil separated by the oil separator is merged with the refrigerant at the merging portion. An oil return circuit for returning to the compressor;
An accumulator provided downstream of the evaporator and upstream of the junction; and
A condenser outlet temperature sensor which is provided downstream of the condenser and upstream of the electronic expansion valve, and detects the temperature of the refrigerant on the outlet side of the condenser;
An accumulator inlet temperature sensor that is provided downstream of the evaporator and upstream of the accumulator to detect the temperature of the refrigerant on the inlet side of the accumulator;
A control unit that controls the electronic expansion valve based on the degree of superheat of the refrigerant that is sucked into the compressor after joining the oil in the joining unit;
I have a,
The controller is
When the degree of supercooling of the refrigerant on the outlet side of the condenser is greater than or equal to a reference value, the electronic expansion valve is controlled based on the degree of superheating of the suction refrigerant,
When the degree of supercooling is less than the reference value, the electronic expansion valve is controlled based on the degree of superheat of the refrigerant on the inlet side of the accumulator .
JP2013090649A 2013-04-23 2013-04-23 Refrigeration cycle equipment Active JP6184156B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013090649A JP6184156B2 (en) 2013-04-23 2013-04-23 Refrigeration cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013090649A JP6184156B2 (en) 2013-04-23 2013-04-23 Refrigeration cycle equipment

Publications (2)

Publication Number Publication Date
JP2014214912A JP2014214912A (en) 2014-11-17
JP6184156B2 true JP6184156B2 (en) 2017-08-23

Family

ID=51940850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013090649A Active JP6184156B2 (en) 2013-04-23 2013-04-23 Refrigeration cycle equipment

Country Status (1)

Country Link
JP (1) JP6184156B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021149150A1 (en) * 2020-01-21 2021-07-29 三菱電機株式会社 Cold heat source unit and refrigeration cycle device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4597404B2 (en) * 2001-03-08 2010-12-15 株式会社日本クライメイトシステムズ Air conditioner for vehicles
JP3788360B2 (en) * 2001-08-01 2006-06-21 ダイキン工業株式会社 Refrigeration equipment
JP4110818B2 (en) * 2002-04-09 2008-07-02 ダイキン工業株式会社 Refrigeration equipment
JP4726600B2 (en) * 2005-10-06 2011-07-20 三菱電機株式会社 Refrigeration air conditioner
JP2011047525A (en) * 2009-08-25 2011-03-10 Panasonic Corp Air conditioner
ES2747998T3 (en) * 2010-03-29 2020-03-12 Mitsubishi Electric Corp Air conditioning apparatus

Also Published As

Publication number Publication date
JP2014214912A (en) 2014-11-17

Similar Documents

Publication Publication Date Title
US9822994B2 (en) Refrigeration cycle system with internal heat exchanger
US10724777B2 (en) Refrigeration cycle apparatus capable of performing refrigerant recovery operation and controlling blower
EP2693136A1 (en) Expansion valve control device, heat source machine, and expansion valve control method
US10753645B2 (en) Refrigeration cycle apparatus
JP2014031981A (en) Binary refrigeration device
WO2017037771A1 (en) Refrigeration cycle device
JP2017044454A (en) Refrigeration cycle device and control method for the same
JPWO2017006452A1 (en) Air conditioner
JP2015064169A (en) Hot water generation device
JP6545448B2 (en) Two-stage compression type refrigeration cycle apparatus, control apparatus and control method therefor
JP2008014602A (en) Refrigeration cycle device
JP6498299B2 (en) Refrigeration cycle equipment
JP2012180945A (en) Water heater system
JP2018084376A (en) Refrigeration unit
JP2011185507A (en) Refrigerating cycle device and hot water heating device including the same
JP6272365B2 (en) Refrigeration cycle equipment
JP6184156B2 (en) Refrigeration cycle equipment
JP6272364B2 (en) Refrigeration cycle equipment
JP2017150689A (en) Air conditioner
JP6780518B2 (en) Refrigeration equipment
JP2012149834A (en) Heat pump
JP2014142158A (en) Refrigeration cycle device
JP6286844B2 (en) Air conditioner
WO2021124499A1 (en) Air conditioning device
JP6091077B2 (en) Refrigeration equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170725

R150 Certificate of patent or registration of utility model

Ref document number: 6184156

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250