JP2018115643A - Capacity control method of multistage oil free screw compressor, and multistage oil free screw compressor - Google Patents

Capacity control method of multistage oil free screw compressor, and multistage oil free screw compressor Download PDF

Info

Publication number
JP2018115643A
JP2018115643A JP2017008841A JP2017008841A JP2018115643A JP 2018115643 A JP2018115643 A JP 2018115643A JP 2017008841 A JP2017008841 A JP 2017008841A JP 2017008841 A JP2017008841 A JP 2017008841A JP 2018115643 A JP2018115643 A JP 2018115643A
Authority
JP
Japan
Prior art keywords
discharge
compressor
temperature
low
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017008841A
Other languages
Japanese (ja)
Other versions
JP6812248B2 (en
Inventor
幸司 竹内
Koji Takeuchi
幸司 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokuetsu Industries Co Ltd
Original Assignee
Hokuetsu Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokuetsu Industries Co Ltd filed Critical Hokuetsu Industries Co Ltd
Priority to JP2017008841A priority Critical patent/JP6812248B2/en
Publication of JP2018115643A publication Critical patent/JP2018115643A/en
Application granted granted Critical
Publication of JP6812248B2 publication Critical patent/JP6812248B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To decrease a lower limit rotational speed in speed control, without increasing a discharge temperature of a multistage oil free screw compressor.SOLUTION: A high-pressure stage compressor 11 is formed smaller than a low-pressure stage compressor 10. In an intermediate stage flow passage 20 communicating between a discharge port of the low-pressure stage compressor 10 and a suction port of the high-pressure stage compressor 11, intermediate air releasing means 21 is provided. In execution of capacity control with speed control, when a discharge temperature T1 of the low-pressure stage compressor 10 increases to become equal to or higher than a preset air leasing start temperature Ts (e.g. 230°C) lower than an emergency stop temperature Tmax (e.g. 250°C) by a predetermined temperature, air in the intermediate stage flow passage 20 is released to the atmosphere by the intermediate air releasing means 21, to suppress increase of the discharge temperature T1 of the low-pressure stage compressor 10.SELECTED DRAWING: Figure 1

Description

本発明は,多段オイルフリースクリュ圧縮機の容量制御方法及び多段オイルフリースクリュ圧縮機に関し,より詳細には,圧縮作用空間の冷却及び密封に潤滑油を使用しないオイルフリー式のスクリュ圧縮機を直列に連通して,低圧段圧縮機が吐出した圧縮気体を,高圧段圧縮機で更に圧縮する多段オイルフリースクリュ圧縮機において,容量制御を主として回転速度を変化させることにより行う場合の容量制御方法,及び前記容量制御方法を実行する多段オイルフリースクリュ圧縮機に関する。   The present invention relates to a capacity control method for a multi-stage oil-free screw compressor and a multi-stage oil-free screw compressor, and more specifically, an oil-free screw compressor that does not use lubricating oil for cooling and sealing a compression working space in series. In a multistage oil-free screw compressor that further compresses the compressed gas discharged from the low-pressure stage compressor by the high-pressure stage compressor, the capacity control method is mainly performed by changing the rotational speed. And a multi-stage oil-free screw compressor that executes the capacity control method.

空気,燃料ガス,その他の各種気体を圧縮して所定の圧力に圧縮された圧縮気体を得るためにスクリュ圧縮機が広く使用されている。   Screw compressors are widely used to obtain compressed gas compressed to a predetermined pressure by compressing air, fuel gas, and other various gases.

このうち,圧縮作用空間の冷却及び密封に潤滑油を使用することなく,雄,雌一対のスクリュロータ間,及び各スクリュロータの歯先とシリンダ内壁間に微小な間隙を介した非接触の状態でロータを高速回転させることにより被圧縮気体の圧縮を行うオイルフリー式のスクリュ圧縮機では,前述した微小間隙を介した圧縮気体の逆流等により1台の圧縮機によっては最終目標とする圧力まで被圧縮気体の圧力を高めることが困難な場合がある。   Of these, without using lubricating oil to cool and seal the compression working space, a non-contact state between a pair of male and female screw rotors and between the tooth tip of each screw rotor and the cylinder inner wall via a minute gap In an oil-free screw compressor that compresses the gas to be compressed by rotating the rotor at a high speed, the final target pressure may be reached depending on one compressor due to the backflow of the compressed gas through the minute gap described above. It may be difficult to increase the pressure of the compressed gas.

そのため,複数の圧縮機を直列に連通し,低圧段圧縮機が圧縮した圧縮気体を高圧段圧縮機に導入して更に圧縮する(二段以上の場合には更により高圧段の圧縮機で圧縮する)ことで最終目標とする圧力の圧縮気体を得る,多段構造とした圧縮機も提供されている。   For this reason, a plurality of compressors are connected in series, and the compressed gas compressed by the low-pressure stage compressor is introduced into the high-pressure stage compressor for further compression (in the case of two or more stages, the compressor is further compressed with a higher-pressure stage compressor). A compressor having a multi-stage structure is also provided which obtains a compressed gas having a final target pressure.

なお,以下の説明では低圧段と高圧段から成る二台のオイルフリースクリュ圧縮機を直列に接続した二段構成の場合を例として説明するが,本発明の多段オイルフリースクリュ圧縮機には,三段以上の多段とした構成も含み得る。   In the following description, the case of a two-stage configuration in which two oil-free screw compressors composed of a low-pressure stage and a high-pressure stage are connected in series will be described as an example, but the multi-stage oil-free screw compressor of the present invention includes A multi-stage configuration of three or more stages may also be included.

前述した高圧段,低圧段の圧縮機を備える多段オイルフリースクリュ圧縮機では,各圧縮機の入力軸に増速ギヤ等を介してモータを連結し,消費側に供給される圧縮気体の圧力,従って,消費側における圧縮気体の消費量に応じて,インバータ等によりモータの回転速度を変化させる,回転速度制御型の容量制御が一般に行われている。   In a multi-stage oil-free screw compressor equipped with the high-pressure stage and low-pressure stage compressors described above, a motor is connected to the input shaft of each compressor via a speed increasing gear, etc., and the pressure of the compressed gas supplied to the consumer side, Therefore, a rotational speed control type capacity control is generally performed in which the rotational speed of the motor is changed by an inverter or the like according to the amount of compressed gas consumed on the consumption side.

そして,このような回転速度制御型の容量制御を行う多段オイルフリースクリュ圧縮機において,消費電力を低減できるようにした容量制御方法も各種提案されている。   Various types of capacity control methods have been proposed that can reduce power consumption in a multi-stage oil-free screw compressor that performs such rotational speed control type capacity control.

このような容量制御方法の一例として,後掲の特許文献1には,高圧段圧縮機の吐出流路に放気弁を設け,負荷運転時には該放気弁を閉じた状態で消費側に供給する圧縮気体の圧力変化に応じて低圧段圧縮機及び高圧段圧縮機の回転速度を制御し,無負荷運転時には低圧段,高圧段の圧縮機をいずれも最低回転速度に維持すると共に,上記放気弁を開放することで,無負荷運転時における消費電力を低減できるようにすることが提案されている(特許文献1[0032]欄)。   As an example of such a capacity control method, in Patent Document 1 described later, an air discharge valve is provided in the discharge flow path of the high-pressure compressor, and the air supply valve is closed and supplied to the consumer side during load operation. The rotational speeds of the low-pressure stage compressor and the high-pressure stage compressor are controlled in accordance with the pressure change of the compressed gas, and the low-pressure stage compressor and the high-pressure stage compressor are both maintained at the minimum rotational speed during no-load operation. It has been proposed to reduce the power consumption during no-load operation by opening the air valve (Patent Document 1 [0032] column).

また,後掲の特許文献2には,前掲の特許文献1に記載の発明に対し,更なる消費電力の低減を目的として,高圧段圧縮機の吐出流路に設けた放気弁(高圧側放気弁)の他,低圧段圧縮機の吐出口と高圧段圧縮機の吸気口を連通する中間流路中にも放気弁(低圧側放気弁)を設け,無負荷運転時には,高圧段及び低圧段の圧縮機をいずれも最低回転速度に維持すると共に,高圧側放気弁を開放するだけでなく,更に,低圧側放気弁についても開放して高圧段圧縮機の吸気量を減らすことで,高圧段圧縮機で圧縮に費やされる動力を低減することで無負荷運転時における消費電力を更に低減させることが提案されている。   In addition, in Patent Document 2 described later, an air release valve (high-pressure side) provided in the discharge flow path of the high-pressure compressor for the purpose of further reducing power consumption compared to the invention described in Patent Document 1 described above. An air release valve (low pressure side air release valve) is also provided in the intermediate flow path that connects the discharge port of the low pressure stage compressor and the intake port of the high pressure stage compressor. Both the stage and low-pressure stage compressors are maintained at the minimum rotational speed, and not only the high-pressure side vent valve is opened, but the low-pressure side vent valve is also opened to reduce the intake amount of the high-pressure stage compressor. It has been proposed to further reduce the power consumption during no-load operation by reducing the power consumed for compression by the high-pressure stage compressor.

特開平10−82391号公報Japanese Patent Laid-Open No. 10-82391 特開2002−138977号公報JP 2002-138777 A

前述した多段オイルフリースクリュ圧縮機では,回転速度を低下させて吐出気体量を減少させる減量運転を行う場合,吐出温度が上昇するという問題がある(前掲の特許文献1[0008]欄参照)。   In the above-described multi-stage oil-free screw compressor, there is a problem that the discharge temperature rises when performing a weight-reducing operation in which the rotation speed is reduced to reduce the discharge gas amount (see the above-mentioned Patent Document 1 [0008] column).

この温度は,回転速度の低下と共に上昇するため,多段オイルフリースクリュ圧縮機の回転速度を大幅に減速すると,吐出温度の上昇に伴う熱膨張により低圧段,高圧段いずれか,または双方の圧縮機の各部間(例えばスクリュロータ間やスクリュロータの先端とシリンダ内壁間)が接触するおそれがあり,圧縮機に焼き付き等の重大な故障を生じさせる原因となる。   Since this temperature rises as the rotational speed decreases, if the rotational speed of the multi-stage oil-free screw compressor is significantly reduced, the compressor of either the low-pressure stage, the high-pressure stage, or both of them is caused by thermal expansion accompanying the rise in discharge temperature. (For example, between the screw rotor or between the tip of the screw rotor and the inner wall of the cylinder) may cause a serious failure such as seizure of the compressor.

このことから,多段オイルフリースクリュ圧縮機では,故障が生じる危険のある吐出温度と,この吐出温度が生じる回転速度の関係を予め実験的に求めておき,この回転速度に対し必要な余裕分を上乗せした回転速度を,速度制御時における回転速度範囲の下限値(設定下限回転速度)として設定しており,この設定下限回転速度とモータの定格回転速度を上限とする回転速度範囲内において容量制御(回転速度制御)が行われ,設定下限回転速度よりも回転速度を下げる容量制御(回転速度制御)が行えないようになっている。   For this reason, in a multi-stage oil-free screw compressor, the relationship between the discharge temperature at which there is a risk of failure and the rotational speed at which this discharge temperature occurs is experimentally determined in advance, and a necessary margin for this rotational speed is obtained. The added rotation speed is set as the lower limit value (setting lower limit rotation speed) of the rotation speed range during speed control, and capacity control is performed within the rotation speed range with this setting lower limit rotation speed and the rated rotation speed of the motor as the upper limit. (Rotational speed control) is performed, and capacity control (rotational speed control) that lowers the rotational speed below the set lower limit rotational speed cannot be performed.

このような設定下限回転速度は,定格回転速度100%に対し50%よりも大きな回転速度となり得ることから,低負荷での運転時,あるいは無負荷運転時であってもモータは必要以上に高い回転速度で運転され,余分な電力消費が行われている。   Such a set lower limit rotational speed can be higher than 50% of the rated rotational speed of 100%, so the motor is higher than necessary even during low-load operation or no-load operation. It is operated at a rotational speed, and extra power is consumed.

そのため,吐出温度の上昇を抑制しつつ,速度制御(容量制御)時における回転速度範囲の下限値(設定下限回転速度)をより低い回転速度とすることができれば,多段オイルフリースクリュ圧縮機の消費電力の低減が可能となる。   Therefore, if the lower limit of the rotation speed range (setting lower limit rotation speed) during speed control (capacity control) can be set to a lower rotation speed while suppressing an increase in discharge temperature, the consumption of the multistage oil-free screw compressor will be reduced. Electric power can be reduced.

このような吐出温度の上昇を抑制しつつ,速度制御(容量制御)時の回転速度をより低速にできるようにするために,前掲の特許文献1では,低圧段圧縮機と高圧段圧縮機とをそれぞれ独立して可変速駆動できるようにし,減量運転時に低圧段圧縮機と高圧段圧縮機それぞれの吐出温度に基づき,その吐出温度に応じて高圧段と低圧段のモータの回転速度をそれぞれ独立して制御することで,各圧縮機の回転速度をより低速にすることを可能としている(特許文献1[0015]欄)。   In order to make it possible to reduce the rotational speed during speed control (capacity control) while suppressing such an increase in discharge temperature, the above-mentioned Patent Document 1 discloses a low-pressure stage compressor, a high-pressure stage compressor, Can be driven independently at variable speeds, and based on the discharge temperatures of the low-pressure compressor and the high-pressure compressor at the time of weight reduction operation, the rotation speeds of the motors of the high-pressure and low-pressure stages are independent according to the discharge temperature. Thus, it is possible to make the rotation speed of each compressor slower (Patent Document 1 [0015] column).

しかし,特許文献1に記載されている上記の容量制御を行うためには,低圧段圧縮機と高圧段圧縮機の回転速度をそれぞれ別個に制御する必要があり,単一のモータで高圧段圧縮機と低圧段圧縮機を一定の固定された増速比で運転する一般的な多段オイルフリースクリュ圧縮機に対して適用することができない。   However, in order to perform the capacity control described in Patent Document 1, it is necessary to control the rotational speeds of the low-pressure stage compressor and the high-pressure stage compressor separately. It cannot be applied to a general multi-stage oil-free screw compressor that operates the compressor and the low-pressure stage compressor at a constant fixed speed increasing ratio.

また,低圧段圧縮機と高圧段圧縮機をそれぞれ独立して回転速度制御することから,制御自体が複雑となるだけでなく,圧縮機を駆動するモータやインバータを,圧縮機毎に設ける必要があると共に,制御装置(電子制御装置)が行う処理量も大幅に増えるため,処理能力の高い制御装置を採用する必要があるなど,装置自体の構成も複雑かつ高価となる。   In addition, since the rotation speed control of the low-pressure stage compressor and the high-pressure stage compressor is independently performed, not only the control itself becomes complicated, but also a motor and an inverter for driving the compressor need to be provided for each compressor. At the same time, the amount of processing performed by the control device (electronic control device) is greatly increased, so that it is necessary to adopt a control device with high processing capacity, and the configuration of the device itself is complicated and expensive.

そこで,本発明の発明者は,より簡単な構成で,吐出温度を上昇させることなく設定下限回転速度を低下させることができないかを検討した。   Therefore, the inventor of the present invention examined whether or not the set lower limit rotational speed could be reduced without increasing the discharge temperature with a simpler configuration.

ここで,オイルフリースクリュ圧縮機では,圧縮作用空間の冷却と密封に潤滑油を使用しておらず,スクリュロータ間及びスクリュロータの歯先とシリンダ内壁間に微小な間隙が形成されており,スクリュロータを高速回転させることで圧縮を可能としていることは前述した通りであり,そのため,低流量(低回転速度)になると上記間隙を介した内部漏れ量が増加し,一度圧縮した空気を再度圧縮するため,圧縮に伴う発熱量が増加して吐出温度が上昇する。   Here, in the oil-free screw compressor, no lubricating oil is used for cooling and sealing the compression working space, and minute gaps are formed between the screw rotors and between the screw rotor teeth and the cylinder inner wall. As described above, it is possible to compress the screw rotor by rotating it at a high speed. As a result, when the flow rate is low (low rotational speed), the amount of internal leakage through the gap increases, and once compressed air is compressed again. Because of compression, the amount of heat generated by compression increases and the discharge temperature rises.

そして,検討に使用した多段オイルフリースクリュ圧縮機は,低圧段圧縮機に比較して小型の高圧段圧縮機を採用しているが,圧縮機の工作精度は,圧縮機の大きさが小さくなってもこれに比例して向上させることができないため,低圧段圧縮機と高圧段圧縮機で前述の間隙の大きさにはさほどの違いがなく,その結果,小型である高圧段圧縮機の方が,相対的に大きな間隙が形成されていることになり,回転速度を低下させた際に生じる内部漏れ量の増加は,低圧段圧縮機よりも高圧段圧縮機においてより顕著に生じる。   The multi-stage oil-free screw compressor used in the study adopts a high-pressure compressor that is smaller than the low-pressure compressor, but the working accuracy of the compressor is reduced by the size of the compressor. However, there is no significant difference in the size of the gap between the low-pressure compressor and the high-pressure compressor, and as a result, the smaller high-pressure compressor However, a relatively large gap is formed, and the increase in the amount of internal leakage that occurs when the rotational speed is reduced occurs more significantly in the high-pressure stage compressor than in the low-pressure stage compressor.

従って,内部漏れ量の増加を直接の原因とする吐出温度上昇は,高圧段圧縮機の方が顕著であると予想される。   Therefore, the discharge temperature rise directly caused by the increase in internal leakage is expected to be more remarkable in the high-pressure compressor.

しかし,検討に使用した多段オイルフリースクリュ圧縮機において低圧段圧縮機の吐出温度と高圧段圧縮機の吐出温度を測定すると,回転速度を低下させた際の温度上昇は,低圧段圧縮機の吐出温度において顕著な上昇を見せており,高圧段圧縮機の吐出温度は,低圧段圧縮機の吐出温度ほどの顕著な上昇を見せていなかった。   However, when the discharge temperature of the low-pressure stage compressor and the discharge temperature of the high-pressure stage compressor are measured in the multi-stage oil-free screw compressor used in the study, the temperature rise when the rotational speed is reduced is the discharge pressure of the low-pressure stage compressor. There was a marked increase in temperature, and the discharge temperature of the high-pressure stage compressor did not show as much as the discharge temperature of the low-pressure stage compressor.

以上の結果から,回転速度の低下時,高圧段圧縮機に比較して低圧段圧縮機の吐出温度の方が顕著に上昇する原因を,高圧段圧縮機の内部漏れ量が低圧段圧縮機に比較して大きく,高圧段圧縮機の体積効率(理論空気量に対する実空気量の比)と低圧段圧縮機の体積効率のバランスが回転速度の低下に伴って変化することが原因であると予測した。すなわち,多段式オイルフリースクリュ圧縮機において,低圧段圧縮機の吸入側圧力(空気であれば大気圧:ゲージ圧0MPa)と高圧段圧縮機の吐出側圧力(消費側に供給する圧縮気体の圧力として設定した目標圧力:一例として0.70MPa)は略一定であり,2台の圧縮機が協働して大気圧(ゲージ圧0MPa)の空気を目標圧力(0.70MPa)まで圧縮する。   From the above results, when the rotational speed decreases, the reason why the discharge temperature of the low-pressure compressor is significantly higher than that of the high-pressure compressor is that the internal leakage of the high-pressure compressor is due to the low-pressure compressor. Presumably, this is due to the fact that the balance between the volumetric efficiency of the high-pressure stage compressor (the ratio of the actual air volume to the theoretical air volume) and the volumetric efficiency of the low-pressure stage compressor changes as the rotational speed decreases. did. That is, in a multi-stage oil-free screw compressor, the suction side pressure of the low pressure stage compressor (atmospheric pressure: gauge pressure 0 MPa if air) and the discharge side pressure of the high pressure stage compressor (pressure of the compressed gas supplied to the consumption side) The target pressure set as: 0.70 MPa as an example is substantially constant, and the two compressors cooperate to compress air at atmospheric pressure (gauge pressure 0 MPa) to the target pressure (0.70 MPa).

そのため,高圧段圧縮機側において大幅な体積効率の低下が生じ,2つの圧縮機の体積効率のバランスが変化すると,低圧段圧縮機の吐出口と高圧段圧縮機の吸気口をつなぐ中間段流路内の圧力が回転速度を低下させる前に比較して上昇し,その結果,低圧段圧縮機の圧縮比が高まり吐出温度において顕著な上昇が見られたものと考えられる。   Therefore, if the volumetric efficiency of the high-pressure compressor is significantly reduced and the balance of the volumetric efficiency of the two compressors changes, the intermediate-stage flow connecting the discharge port of the low-pressure compressor and the intake port of the high-pressure compressor is changed. It is considered that the pressure in the passage rose compared to before the rotational speed was lowered, and as a result, the compression ratio of the low-pressure compressor was increased and the discharge temperature was significantly increased.

その一方で,中間段流路内の圧力の上昇は,高圧段圧縮機にとっては吸気の圧力が上昇することになるから,高圧段圧縮機の圧縮比が低下するため,低圧段に比較して内部漏れ量が増加し,一度圧縮した空気を再度圧縮するための発熱量が増加するに拘わらず,高圧段圧縮機の吐出温度は大幅には上昇しなかったものと考えられる。   On the other hand, an increase in the pressure in the intermediate stage flow path results in an increase in the intake pressure for the high-pressure stage compressor, and therefore the compression ratio of the high-pressure stage compressor decreases. It is considered that the discharge temperature of the high-pressure compressor did not rise significantly, even though the amount of internal leakage increased and the amount of heat generated to compress the compressed air once again increased.

上記予想に従えば,高圧段圧縮機として,低圧段圧縮機に比較して小型の圧縮機を採用する多段オイルフリースクリュ圧縮機では,低圧段圧縮機と高圧段圧縮機の回転速度を各圧縮機の吐出温度に応じてそれぞれ独立して制御するといった複雑な制御を行わなくとも,減量運転時に低圧段圧縮機の吐出側圧力を下げてやることができれば,低圧段圧縮機の吐出温度の上昇を抑制しつつ,より低回転速度まで高圧段,低圧段いずれの圧縮機の設定下限回転速度共に低下させることができることになる。   According to the above prediction, in a multi-stage oil-free screw compressor that employs a smaller compressor than the low-pressure stage compressor as the high-pressure stage compressor, the rotational speeds of the low-pressure stage compressor and the high-pressure stage compressor are each compressed. If the discharge-side pressure of the low-pressure compressor can be reduced during weight reduction operation without the need for complicated control such as independent control according to the discharge temperature of the compressor, the discharge temperature of the low-pressure compressor will increase. It is possible to reduce both the set lower limit rotational speeds of the high-pressure stage and low-pressure stage compressors to a lower rotational speed while suppressing the above.

本発明は,上記予測の下,従来の容量制御(特許文献1)とは全く異なる方法により,より簡単な構成で,かつ,低圧段と高圧段を一定の増速比で運転する多段オイルフリースクリュ圧縮機においても設定下限回転速度をより低い回転速度に設定することが可能な容量制御方法を提供することを目的とする。   Under the above prediction, the present invention is a multi-stage oil-free operation in which the low-pressure stage and the high-pressure stage are operated at a constant speed increase ratio by a completely different method from the conventional capacity control (Patent Document 1). It aims at providing the capacity | capacitance control method which can set a setting minimum rotational speed to a lower rotational speed also in a screw compressor.

以下に,課題を解決するための手段を,発明を実施するための形態で使用する符号と共に記載する。この符号は,特許請求の範囲の記載と,発明を実施するための形態の記載との対応を明らかにするためのものであり,言うまでもなく,本願発明の技術的範囲の解釈に制限的に用いられるものではない。   Hereinafter, means for solving the problem will be described together with reference numerals used in the embodiment for carrying out the invention. This code is used to clarify the correspondence between the description of the claims and the description of the mode for carrying out the invention. Needless to say, it is used in a limited manner to interpret the technical scope of the present invention. It is not something that can be done.

上記目的を達成するために,本発明の多段オイルフリースクリュ圧縮機の容量制御方法は,
複数の圧縮機10,11を直列に連通して多段に構成し,低圧段圧縮機10で圧縮された圧縮気体を高圧段圧縮機11に導入して更に圧縮する多段オイルフリースクリュ圧縮機1において,
前記低圧段圧縮機10に対し,前記高圧段圧縮機11を小型のものとすると共に,
前記低圧段圧縮機10の吐出口と,前記高圧段圧縮機11の吸気口を連通する中間段流路20内の気体を大気放出可能とし,
前記低圧段圧縮機10の吸気口10aを開いた状態で,前記各圧縮機10,11の回転速度を消費側に供給する圧縮気体の圧力変化に対応して変化させることにより行う容量制御時,前記低圧段圧縮機10の吐出温度T1が予め設定した放気開始温度Ts(一例として230℃)以上に上昇したとき,又は,前記低圧段圧縮機10の回転速度が予め設定した放気開始回転速度Ns(一例として定格回転速度の55%の回転速度)以下に下降したときに,前記中間段流路20内の気体の大気放出を行いつつ前記容量制御を継続することを特徴とする(請求項1)。
In order to achieve the above object, the capacity control method for a multi-stage oil-free screw compressor according to the present invention comprises:
In a multistage oil-free screw compressor 1 in which a plurality of compressors 10 and 11 are connected in series to form a multistage structure, and compressed gas compressed by the low pressure stage compressor 10 is introduced into the high pressure stage compressor 11 and further compressed. ,
The high-pressure stage compressor 11 is made smaller than the low-pressure stage compressor 10, and
Allowing the gas in the intermediate stage flow path 20 communicating with the discharge port of the low-pressure stage compressor 10 and the intake port of the high-pressure stage compressor 11 to be released into the atmosphere;
During capacity control performed by changing the rotational speed of each of the compressors 10 and 11 corresponding to the pressure change of the compressed gas supplied to the consumption side with the intake port 10a of the low-pressure stage compressor 10 open. When the discharge temperature T1 of the low-pressure compressor 10 rises to a preset release start temperature Ts (for example, 230 ° C.) or when the rotation speed of the low-pressure compressor 10 is set to a preset release start rotation When the speed falls below a speed Ns (for example, a rotational speed of 55% of the rated rotational speed), the capacity control is continued while releasing the gas in the intermediate-stage flow path 20 to the atmosphere. Item 1).

上記構成の容量制御方法において,
前記多段オイルフリースクリュ圧縮機1を非常停止させる前記低圧段圧縮機10の吐出温度T1である非常停止温度Tmax(一例として250℃)と,この非常停止温度Tmaxに対し所定の低い吐出温度T1である前記放気開始温度Ts(一例として230℃)とを設定し,
前記低圧段圧縮機10の吐出温度T1が予め設定した前記放気開始温度Ts以上に上昇したとき前記中間段流路20内の気体の大気放出を行うものとすることができる(請求項2)。
In the capacity control method configured as described above,
An emergency stop temperature Tmax (as an example, 250 ° C.) that is a discharge temperature T1 of the low-pressure stage compressor 10 that causes the multistage oil-free screw compressor 1 to perform an emergency stop, and a discharge temperature T1 that is lower than the emergency stop temperature Tmax by a predetermined value. A certain release start temperature Ts (230 ° C. as an example) is set,
When the discharge temperature T1 of the low-pressure compressor 10 rises to the preset release temperature Ts or higher, the gas in the intermediate-stage flow path 20 is released into the atmosphere (Claim 2). .

又は,上記構成の容量制御方法において,
前記中間段流路20内の気体の大気放出を停止した前記容量制御時における前記低圧段圧縮機10の吸気温度Ta,回転速度,及び吐出温度T1の対応関係を予め求めておくと共に,多段オイルフリースクリュ圧縮機1を非常停止させる前記低圧段圧縮機10の吐出温度T1である非常停止温度Tmax(一例として250℃)を設定しておき,
前記吸気温度Taを測定し,前記対応関係に基づいて前記測定した吸気温度Taにおいて前記低圧段圧縮機10の吐出温度T1が前記非常停止温度Tmaxに対し所定の低い吐出温度(一例として放気開始温度Ts:230℃)となる前記低圧段圧縮機10の回転速度を算出して放気開始回転速度Nsとして設定し,前記低圧段圧縮機10の回転速度が前記放気開始回転速度Ns以下に低下したとき前記中間段流路20内の気体の大気放出を行うものとすることができる(請求項3)。
Alternatively, in the capacity control method having the above configuration,
A correspondence relationship between the intake air temperature Ta, the rotational speed, and the discharge temperature T1 of the low-pressure compressor 10 at the time of the capacity control in which the release of the gas in the intermediate flow passage 20 is stopped is obtained in advance, and multistage oil is obtained. An emergency stop temperature Tmax (as an example, 250 ° C.) that is the discharge temperature T1 of the low-pressure compressor 10 that makes the free screw compressor 1 emergency stop is set.
The intake air temperature Ta is measured, and the discharge temperature T1 of the low-pressure compressor 10 is lower than the emergency stop temperature Tmax by the measured intake air temperature Ta based on the correspondence relationship. The rotation speed of the low-pressure stage compressor 10 at which the temperature Ts is 230 ° C. is calculated and set as the discharge start rotation speed Ns, and the rotation speed of the low-pressure stage compressor 10 is equal to or less than the discharge start rotation speed Ns. When lowered, the gas in the intermediate stage flow path 20 can be released into the atmosphere (claim 3).

上記中間段流路20内の気体の大気放出の停止は,以下のいずれかの場合に行うものとしても良い。   The stop of the release of the gas in the intermediate flow path 20 to the atmosphere may be performed in any of the following cases.

前記中間段流路20内の気体の大気放出を開始した時点の前記低圧段圧縮機10の吐出温度(実施例において放気開始温度Ts:230℃)に対し所定の低い温度(一例として210℃)を放気停止温度Teとして設定し,
前記低圧段圧縮機10の吐出温度T1が前記放気停止温度Te以下に下降したとき前記中間段流路20内の気体の大気放出を停止する(請求項4)。
A predetermined low temperature (210 ° C. as an example) with respect to the discharge temperature of the low-pressure stage compressor 10 (in the embodiment, the air release start temperature Ts: 230 ° C.) at the time when the release of the gas in the intermediate stage flow path 20 is started. ) Is set as the air discharge stop temperature Te,
When the discharge temperature T1 of the low-pressure stage compressor 10 falls below the discharge stop temperature Te, the atmospheric discharge of the gas in the intermediate stage flow path 20 is stopped (Claim 4).

又は,前記中間段流路20内の気体の大気放出を開始した時点の前記低圧段圧縮機10の回転速度(実施例において前記放気開始回転速度Ns:定格回転速度の55%の回転速度)に対し所定の高い回転速度(一例として定格回転速度の60%の回転速度)を放気停止回転速度Neとして設定し,
前記低圧段圧縮機10の回転速度が前記放気停止回転速度Ne以上に上昇したとき前記中間段流路20内の気体の大気放出を停止する(請求項5)。
Alternatively, the rotation speed of the low-pressure compressor 10 at the time when the gas in the intermediate-stage flow path 20 starts to be released into the atmosphere (in the embodiment, the discharge start rotation speed Ns: a rotation speed of 55% of the rated rotation speed). A predetermined high rotational speed (for example, a rotational speed of 60% of the rated rotational speed) is set as the deaeration stop rotational speed Ne,
When the rotational speed of the low-pressure stage compressor 10 rises above the degassing stop rotational speed Ne, the atmospheric discharge of the gas in the intermediate stage flow path 20 is stopped (Claim 5).

又は,前記中間段流路20内の気体の大気放出を停止した前記容量制御時における前記低圧段圧縮機10の吸気温度Ta,回転速度,及び吐出温度T1の対応関係を予め求めておき,
前記吸気温度Taを測定し,前記対応関係に基づいて前記測定された吸気温度Ta(実施例において30℃)において前記中間段流路20内の気体の大気放出を開始した時点の前記低圧段圧縮機の吐出温度(実施例において放気開始温度Ts:230℃)に対し所定の低い温度(一例として210℃)となる回転速度を算出して放気停止回転速度Neとして設定し,
前記低圧段圧縮機10の回転速度が前記放気停止回転速度Ne以上に上昇したとき前記中間段流路20内の気体の大気放出を停止する(請求項6)。
Alternatively, a correspondence relationship between the intake air temperature Ta, the rotational speed, and the discharge temperature T1 of the low-pressure compressor 10 at the time of the capacity control in which the release of the gas in the intermediate-stage channel 20 is stopped is obtained in advance.
The low-pressure stage compression at the time when the intake air temperature Ta is measured and the release of gas in the intermediate-stage flow path 20 is started at the measured intake air temperature Ta (30 ° C. in the embodiment) based on the correspondence. A rotation speed that is a predetermined low temperature (210 ° C. as an example) with respect to the discharge temperature of the machine (air release start temperature Ts: 230 ° C. in the embodiment) is calculated and set as the air discharge stop rotation speed Ne;
When the rotational speed of the low-pressure stage compressor 10 rises above the deaeration stop rotational speed Ne, the atmospheric discharge of the gas in the intermediate stage flow path 20 is stopped (Claim 6).

なお,上記いずれの制御方法においても,前記容量制御を,前記低圧段圧縮機10の回転速度と前記高圧段圧縮機11の回転速度の比を一定に固定して行うことができる(請求項7)。   In any of the above control methods, the capacity control can be performed with the ratio between the rotational speed of the low-pressure stage compressor 10 and the rotational speed of the high-pressure stage compressor 11 fixed at a constant level. ).

前記中間段流路20内の気体の大気放出を開始した直後の前記低圧段圧縮機10の吐出温度T1と前記高圧段圧縮機11の吐出温度T2が,略同一の温度(実施例においていずれも215℃)となるように前記中間段流路20内の気体の放出量を調整することが好ましい(請求項8)。   The discharge temperature T1 of the low-pressure stage compressor 10 and the discharge temperature T2 of the high-pressure stage compressor 11 immediately after starting the release of the gas in the intermediate stage flow path 20 to the atmosphere are substantially the same temperature (both in the embodiment). It is preferable to adjust the release amount of the gas in the intermediate stage flow path 20 so as to be 215 ° C. (Claim 8).

また,前記中間段流路20内の気体の大気放出を行っている前記容量制御時に,前記低圧段圧縮機10の吐出温度T1が多段オイルフリースクリュ圧縮機を非常停止させる前記低圧段圧縮機10の吐出温度である非常停止温度Tmax(一例として250℃)に対し所定の低い温度(一例として230℃)となる前記低圧段圧縮機10の回転速度を予め測定しておき,この測定した回転速度を前記容量制御時における低圧段圧縮機10の回転速度範囲の下限値(設定下限回転速度Nmin)に設定する(請求項9)。   In addition, the discharge pressure T1 of the low-pressure compressor 10 causes the multi-stage oil-free screw compressor to be stopped at an emergency during the capacity control in which the gas in the intermediate-stage channel 20 is released into the atmosphere. The rotational speed of the low-pressure compressor 10 that is a predetermined low temperature (230 ° C. as an example) with respect to the emergency stop temperature Tmax (250 ° C. as an example) is measured in advance, and the measured rotational speed is measured in advance. Is set to the lower limit value (set lower limit rotational speed Nmin) of the rotational speed range of the low-pressure compressor 10 during the capacity control.

更に,
前記中間段流路20内の気体の大気放出を行っている前記容量制御時において,前記低圧段圧縮機10の吐出温度T1が多段オイルフリースクリュ圧縮機1を非常停止させる非常停止温度Tmax(一例として250℃)に対し,所定の低い吐出温度(一例として230℃)となる前記低圧段圧縮機10の吸気温度Taと回転速度との対応関係を予め求めておき,
前記吸気温度Taを測定し,測定した吸気温度Ta(実施例において30℃)から前記対応関係に基づいて前記所定の低い吐出温度(一例として230℃)に対応する回転速度を算出し,この算出した回転速度を前記容量制御時における前記低圧段圧縮機10の回転速度範囲の下限値(設定下限回転速度Nmin:一例として定格回転速度の45%の回転速度)に設定する(請求項10)。
In addition,
During the capacity control in which the gas in the intermediate stage flow path 20 is released into the atmosphere, the discharge temperature T1 of the low-pressure stage compressor 10 makes an emergency stop temperature Tmax that causes the multistage oil-free screw compressor 1 to stop emergency (an example) 250 ° C. as a predetermined low discharge temperature (230 ° C. as an example), a correspondence relationship between the intake air temperature Ta of the low-pressure compressor 10 and the rotational speed is obtained in advance.
The intake air temperature Ta is measured, and the rotation speed corresponding to the predetermined low discharge temperature (230 ° C. as an example) is calculated from the measured intake air temperature Ta (30 ° C. in the embodiment) based on the correspondence relationship. The rotation speed thus set is set to the lower limit value of the rotation speed range of the low-pressure compressor 10 during the capacity control (set lower limit rotation speed Nmin: as an example, 45% of the rated rotation speed).

また,上記容量制御方法を実行する本発明の多段オイルフリースクリュ圧縮機1は,
低圧段圧縮機10と,該低圧段圧縮機10で圧縮された圧縮気体を導入して更に圧縮する高圧段圧縮機11を備え,前記低圧段圧縮機10の吸気口10aを開いた状態で,前記各圧縮機10,11の回転速度を,消費側に供給する圧縮気体の圧力変化に対応して変化させる容量制御を行う容量制御装置(圧力検出手段44,インバータ31,吸入弁13,制御装置30等)を備えた多段オイルフリースクリュ圧縮機1において,
前記低圧段圧縮機10に対し,前記高圧段圧縮機11を小型のものとすると共に,
前記低圧段圧縮機10の吐出口10bと前記高圧段圧縮機11の吸気口11aを連通する中間段流路20内の気体を大気放出する中間放気手段21を設け,
前記容量制御装置に,前記低圧段圧縮機10の吐出温度T1が予め設定した放気開始温度Ts(実施例において230℃)以上に上昇したとき,又は,前記低圧段圧縮機10の回転速度が予め設定した放気開始回転速度Ns以下に下降したときに,前記中間放気手段21に大気放出を行わせる制御装置30を設けたことを特徴とする(請求項11)。
Moreover, the multistage oil-free screw compressor 1 of the present invention for executing the capacity control method is as follows.
A low-pressure stage compressor 10 and a high-pressure stage compressor 11 for introducing and compressing the compressed gas compressed by the low-pressure stage compressor 10, and with the intake port 10 a of the low-pressure stage compressor 10 opened, A capacity control device (a pressure detection means 44, an inverter 31, an intake valve 13, a control device) that performs capacity control for changing the rotational speed of each of the compressors 10 and 11 in accordance with a change in pressure of compressed gas supplied to the consumption side. 30 etc.) in a multi-stage oil-free screw compressor 1
The high-pressure stage compressor 11 is made smaller than the low-pressure stage compressor 10, and
An intermediate air discharge means 21 for releasing the gas in the intermediate stage flow path 20 communicating with the discharge port 10b of the low pressure stage compressor 10 and the intake port 11a of the high pressure stage compressor 11 to the atmosphere;
When the discharge temperature T1 of the low-pressure stage compressor 10 rises above the preset discharge start temperature Ts (230 ° C. in the embodiment) or when the rotational speed of the low-pressure stage compressor 10 is A control device 30 is provided for causing the intermediate air release means 21 to release the air when the air discharge speed decreases below a preset air release start rotational speed Ns (claim 11).

上記構成の多段オイルフリースクリュ圧縮機において,
前記制御装置30が,
前記多段オイルフリースクリュ圧縮機1を非常停止させる前記低圧段圧縮機10の吐出温度T1である非常停止温度Tmax(一例として250℃)と,この非常停止温度Tmaxに対し所定の低い吐出温度T1である前記放気開始温度Ts(一例として230℃)とを記憶した記憶領域(図示せず)を備え,
前記低圧段圧縮機10の吐出温度T1が予め設定した前記放気開始温度Ts以上に上昇したとき,前記中間放気手段21に大気放出を行わせるよう構成しても良い(請求項12)。
In the multistage oil-free screw compressor having the above configuration,
The control device 30 is
An emergency stop temperature Tmax (as an example, 250 ° C.) that is a discharge temperature T1 of the low-pressure stage compressor 10 that causes the multistage oil-free screw compressor 1 to perform an emergency stop, and a discharge temperature T1 that is lower than the emergency stop temperature Tmax by a predetermined value. A storage area (not shown) for storing a certain release start temperature Ts (230 ° C. as an example),
When the discharge temperature T1 of the low-pressure compressor 10 rises to the preset release temperature Ts or higher, the intermediate discharge means 21 may be configured to release the atmosphere (claim 12).

又は,上記構成の多段オイルフリースクリュ圧縮機において,
前記制御装置30が,
前記中間放気手段21による大気放出を停止した前記容量制御時における前記低圧段圧縮機10の吸気温度Ta,回転速度,及び吐出温度T1の変化の対応関係を記憶すると共に,多段オイルフリースクリュ圧縮機1を非常停止させる前記低圧段圧縮機10の吐出温度である非常停止温度Tmaxを記憶した記憶領域(図示せず)を備え,
前記対応関係に基づいて,測定された前記吸気温度Taから,該吸気温度Taにおいて前記非常停止温度Tmaxに対し所定の低い温度(一例として230℃)となる回転速度を算出して前記放気開始回転速度Nsとして設定し,
前記低圧段圧縮機10の回転速度が前記放気開始回転速度Ns以下に低下したとき,前記中間放気手段21に前記大気放出を行わせるよう構成しても良い(請求項13)。
Or, in the multi-stage oil-free screw compressor configured as described above,
The control device 30 is
The correspondence relationship of changes in the intake air temperature Ta, the rotational speed, and the discharge temperature T1 of the low-pressure compressor 10 during the capacity control when the atmospheric discharge by the intermediate air release means 21 is stopped is stored, and the multi-stage oil-free screw compression is stored. A storage area (not shown) that stores an emergency stop temperature Tmax that is a discharge temperature of the low-pressure compressor 10 that causes the machine 1 to stop emergency;
Based on the correspondence relationship, a rotation speed at which the intake air temperature Ta becomes a predetermined low temperature (for example, 230 ° C.) with respect to the emergency stop temperature Tmax at the intake air temperature Ta is calculated to start the discharge. Set as rotation speed Ns,
When the rotational speed of the low-pressure stage compressor 10 is reduced to the air release start rotational speed Ns or less, the intermediate air release means 21 may be configured to perform the atmospheric discharge (claim 13).

前記制御装置30は,前記中間放気手段21による大気放出開始時点の前記低圧段圧縮機の吐出温度(一例として放気開始温度Ts:230℃)に対し所定の低い温度(一例として210℃)を放気停止温度Teとして設定し,
前記低圧段圧縮機10の吐出温度T1が前記放気停止温度Te以下に下降したとき前記中間放気手段21に大気放出を停止させるように構成するものとしても良い(請求項14)。
The control device 30 has a predetermined low temperature (210 ° C. as an example) with respect to the discharge temperature of the low-pressure stage compressor (for example, the air start temperature Ts: 230 ° C. as an example) at the time of starting the atmospheric discharge by the intermediate air release means 21. Is set as the venting stop temperature Te,
The intermediate air release means 21 may be configured to stop atmospheric discharge when the discharge temperature T1 of the low-pressure compressor 10 falls below the discharge stop temperature Te (claim 14).

又は,前記制御装置30は,前記中間放気手段21による大気放出開始時点の前記低圧段圧縮機10の回転速度(一例として放気開始回転速度Ns:定格回転速度の55%の回転速度)に対し所定の高い回転速度(一例として定格回転速度の60%の回転速度)を放気停止回転速度Neとして設定し,
前記低圧段圧縮機10の回転速度が前記放気停止回転速度Ne以上に上昇したとき前記中間放気手段21による前記大気放出を停止するように構成しても良い(請求項15)。
Alternatively, the control device 30 sets the rotation speed of the low-pressure compressor 10 at the time of starting the atmospheric discharge by the intermediate discharge means 21 (for example, the discharge start rotation speed Ns: a rotation speed of 55% of the rated rotation speed). On the other hand, a predetermined high rotational speed (for example, a rotational speed of 60% of the rated rotational speed) is set as the deaeration stop rotational speed Ne,
You may comprise so that the said atmospheric | air discharge by the said intermediate | middle air vent means 21 may be stopped when the rotational speed of the said low pressure stage compressor 10 rises more than the said air exhaust stop rotational speed Ne (Claim 15).

又は,前記制御装置30が,
前記中間放気手段21による大気放出を停止した前記容量制御時における前記低圧段圧縮機10の吸気温度Ta,回転速度,及び吐出温度T1の対応関係を記憶した記憶領域(図示せず)を備え,
前記対応関係に基づいて,測定された吸気温度Taから該吸気温度Taにおいて前記中間放気手段21による大気放出開始時点の前記低圧段圧縮機の吐出温度(一例として放気開始温度Ts:230℃)に対し所定の低い温度(一例として210℃)となる回転速度を算出して放気停止回転速度Neとして設定し,
前記低圧段圧縮機10の回転速度が前記放気停止回転速度Ne以上に上昇したとき,前記中間放気手段21による前記大気放出を停止させるように構成しても良い(請求項16)。
Alternatively, the control device 30 is
A storage area (not shown) is provided for storing a correspondence relationship between the intake air temperature Ta, the rotational speed, and the discharge temperature T1 of the low-pressure compressor 10 during the capacity control when the air release by the intermediate air release means 21 is stopped. ,
Based on the correspondence, from the measured intake temperature Ta to the intake temperature Ta, the discharge temperature of the low-pressure compressor at the start of the atmospheric discharge by the intermediate exhaust means 21 (exhaust start temperature Ts: 230 ° C. as an example) ) To calculate a rotation speed at a predetermined low temperature (210 ° C. as an example) and set it as the deaeration stop rotation speed Ne,
When the rotational speed of the low-pressure stage compressor 10 increases to the exhaust gas stop rotational speed Ne or higher, the atmospheric discharge by the intermediate air discharge means 21 may be stopped (Claim 16).

前記いずれの多段オイルフリースクリュ圧縮機1共に,前記低圧段圧縮機10と前記高圧段圧縮機11に共通のモータMと,前記モータMの回転を一定の増速比で前記低圧段圧縮機10と前記高圧段圧縮機11に伝達する動力伝達手段(増速ギヤ)32を備える構成とすることができる(請求項17)。   In any of the multi-stage oil-free screw compressors 1, the motor M common to the low-pressure stage compressor 10 and the high-pressure stage compressor 11, and the rotation of the motor M at a constant speed increase ratio is the low-pressure stage compressor 10. And a power transmission means (speed increasing gear) 32 for transmitting to the high-pressure compressor 11 (claim 17).

前記中間放気手段21による放気開始直後の前記低圧段圧縮機10の吐出温度T1と前記高圧段圧縮機11の吐出温度T2が,略同一の温度(一例として215℃)となるよう前記中間放気手段21による放気量を設定することが好ましい(請求項18)。   The intermediate temperature so that the discharge temperature T1 of the low-pressure stage compressor 10 and the discharge temperature T2 of the high-pressure stage compressor 11 immediately after the start of the air release by the intermediate air discharge means 21 become substantially the same temperature (for example, 215 ° C.). It is preferable to set the air release amount by the air release means 21 (claim 18).

なお,前記制御装置30は,
前記中間放気手段21が大気放出を行っている前記容量制御時に,前記低圧段圧縮機10の吐出温度T1が多段オイルフリースクリュ圧縮機1を非常停止させる前低圧段圧縮機10の吐出温度である非常停止温度Tmax(実施例において250℃)に対し所定の低い温度(実施例において230℃)となる前記低圧段圧縮機の回転速度を記憶していると共に,
該回転速度を,前記容量制御時における前記低圧段圧縮機10の回転速度範囲の下限値(設定下限回転速度Nmin)に設定するように構成しても良い(請求項19)。
The control device 30 includes:
During the capacity control when the intermediate air release means 21 is releasing to the atmosphere, the discharge temperature T1 of the low-pressure stage compressor 10 is the discharge temperature of the low-pressure stage compressor 10 before the multi-stage oil-free screw compressor 1 is emergency stopped. Stores the rotational speed of the low-pressure stage compressor that is a predetermined low temperature (230 ° C. in the embodiment) with respect to a certain emergency stop temperature Tmax (250 ° C. in the embodiment);
The rotational speed may be set to a lower limit value (set lower limit rotational speed Nmin) of the rotational speed range of the low-pressure compressor 10 during the capacity control (claim 19).

また,前記制御装置30は,
多段オイルフリースクリュ圧縮機1を非常停止させる低圧段圧縮機10の吐出温度T1である非常停止温度Tmax(一例として250℃)に対し所定の低い吐出温度(実施例において230℃)となる前記低圧段圧縮機10の吸気温度Taと回転速度との対応関係を記憶した記憶領域(図示せず)を備え,
前記対応関係に基づいて,測定された吸気温度Ta(実施例において30℃)から前記所定の低い温度(一例として230℃)に対応する回転速度を算出すると共に,
該回転速度を,前記容量制御時における前記低圧段圧縮機10の回転速度範囲の下限値(設定下限回転速度Nmin;実施例において定格回転速度の45%の回転速度)に設定するように構成しても良い(請求項20)。
The control device 30 includes:
The low pressure that becomes a predetermined low discharge temperature (230 ° C. in the embodiment) with respect to the emergency stop temperature Tmax (250 ° C. as an example) that is the discharge temperature T1 of the low-pressure compressor 10 that makes the multi-stage oil-free screw compressor 1 emergency stop. A storage area (not shown) storing the correspondence between the intake air temperature Ta and the rotational speed of the stage compressor 10;
Based on the correspondence relationship, a rotation speed corresponding to the predetermined low temperature (230 ° C. as an example) is calculated from the measured intake air temperature Ta (30 ° C. in the embodiment),
The rotational speed is configured to be set to a lower limit value of a rotational speed range of the low-pressure compressor 10 at the time of the capacity control (set lower limit rotational speed Nmin; rotational speed of 45% of the rated rotational speed in the embodiment). (Claim 20).

以上で説明した本発明の構成により,本発明の容量制御方法では,吐出温度T1,T2の上昇を抑制して焼き付き等の発生を防止しつつ,容量制御時に使用できる回転速度範囲の下限値(設定下限回転速度Nmin)を,従来の制御方法に比較して低く設定することが可能となり,その結果,従来の容量制御方法を行う場合に比較して,消費電力を低減することが可能となった。   With the configuration of the present invention described above, in the capacity control method of the present invention, the lower limit of the rotation speed range that can be used during capacity control while suppressing the increase in the discharge temperatures T1 and T2 and preventing the occurrence of burn-in or the like ( The lower limit setting speed Nmin) can be set lower than that of the conventional control method, and as a result, power consumption can be reduced as compared with the case of performing the conventional capacity control method. It was.

本発明の多段オイルフリースクリュ圧縮機の説明図。Explanatory drawing of the multistage oil-free screw compressor of this invention. 本発明の多段オイルフリースクリュ圧縮機の基本動作(始動,速度制御,停止)を説明したフロー図。The flowchart explaining the basic operation | movement (starting, speed control, stop) of the multistage oil-free screw compressor of this invention. 本発明の多段オイルフリースクリュ圧縮機の非常停止動作及び中間段流路の放気動作を説明したフロー図(吐出圧力に基づいて中間放気手段を制御する例)。The flow figure explaining the emergency stop operation | movement of the multistage oil-free screw compressor of this invention, and the air discharge | release operation of an intermediate | middle stage flow path (example which controls an intermediate | middle air discharge means based on discharge pressure). 本発明の多段オイルフリースクリュ圧縮機の非常停止動作及び中間段流路の放気動作を説明したフロー図(回転速度に基づいて中間放気手段を制御する例)。The flowchart explaining the emergency stop operation | movement of the multistage oil-free screw compressor of this invention, and the air discharge operation | movement of an intermediate | middle stage flow path (example which controls an intermediate | middle air discharge means based on a rotational speed). 設定下限回転速度Nminを定格値の55%とした場合と定格値の45%とした場合の消費動力の違いを説明したグラフ。The graph explaining the difference in power consumption when setting lower limit rotation speed Nmin is 55% of the rated value and 45% of the rated value.

以下に,本発明の実施例につき添付図面を参照しながら説明するが,本発明の構成は,以下に示す実施例に限定されない。   Embodiments of the present invention will be described below with reference to the accompanying drawings, but the configuration of the present invention is not limited to the embodiments shown below.

〔多段オイルフリースクリュ圧縮機の装置構成〕
図1に,本発明の多段オイルフリースクリュ圧縮機1の構成例を示す。
[Device configuration of multi-stage oil-free screw compressor]
In FIG. 1, the structural example of the multistage oil-free screw compressor 1 of this invention is shown.

なお,図1に示す多段オイルフリースクリュ圧縮機1は,二台の圧縮機10,11を直列に連通して二段型のオイルフリースクリュ圧縮機1としたものであるが,本発明の容量制御方法が適用される多段オイルフリースクリュ圧縮機1は,三台以上の圧縮機を直列に連通したものも含む。   The multi-stage oil-free screw compressor 1 shown in FIG. 1 is a two-stage oil-free screw compressor 1 in which two compressors 10 and 11 are connected in series. The multistage oil-free screw compressor 1 to which the control method is applied includes one in which three or more compressors are connected in series.

図1に示す多段オイルフリースクリュ圧縮機1は,被圧縮気体を空気とするもので,低圧段圧縮機10が空気を吸入できるよう,低圧段圧縮機10の吸気口10aが吸入弁13及び吸入フィルタ14を介して大気開放されている。   The multi-stage oil-free screw compressor 1 shown in FIG. 1 uses compressed gas as air, and the intake port 10a of the low-pressure compressor 10 has an intake valve 13 and an intake so that the low-pressure compressor 10 can suck air. The air is released through the filter 14.

この低圧段圧縮機10の吐出口10bは,インタークーラ22を備えた中間段流路20を介して高圧段圧縮機11の吸気口11aに連通されており,これにより低圧段圧縮機10より吐出された圧縮空気が,インタークーラ22で冷却された後,高圧段圧縮機11に導入されて更に圧縮されるように構成されている。   The discharge port 10b of the low-pressure stage compressor 10 communicates with the intake port 11a of the high-pressure stage compressor 11 via an intermediate-stage flow path 20 provided with an intercooler 22, and thereby discharges from the low-pressure stage compressor 10. The compressed air is cooled by the intercooler 22 and then introduced into the high-pressure compressor 11 to be further compressed.

図1では,便宜上,低圧段圧縮機10と高圧段圧縮機11を同じ大きさに示しているが,高圧段圧縮機11として,前述の低圧段圧縮機10に比較して小型のものを使用している。   In FIG. 1, for convenience, the low-pressure stage compressor 10 and the high-pressure stage compressor 11 are shown to have the same size, but the high-pressure stage compressor 11 is smaller than the low-pressure stage compressor 10 described above. doing.

そして,この高圧段圧縮機11の吐出口11bが,逆止弁41及びアフタクーラ42を備えた吐出流路40に連通され,この吐出流路40を介して図示せざる空気作業機等に連通された消費側に圧縮空気を供給することができるように構成されている。   The discharge port 11b of the high-pressure compressor 11 is communicated with a discharge flow path 40 having a check valve 41 and an aftercooler 42, and is communicated with an air working machine (not shown) via the discharge flow path 40. The compressed air can be supplied to the consumer side.

低圧段圧縮機10と,高圧段圧縮機11をそれぞれ回転駆動するために,これらの入力軸がモータMの出力軸に連結されている。   These input shafts are connected to the output shaft of the motor M in order to rotationally drive the low-pressure compressor 10 and the high-pressure compressor 11 respectively.

低圧段圧縮機10と,高圧段圧縮機11は,これらを駆動するモータMをそれぞれ独立して設けるものとしても良いが,図1に示す実施例では,共通のモータMによって低圧段,高圧段いずれの圧縮機10,11共に駆動することができるよう,低圧段及び高圧段圧縮機10,11のいずれの入力軸共に,増速ギヤから成る動力伝達手段32を介して単一のモータMの出力軸に連結されている。   The low-pressure stage compressor 10 and the high-pressure stage compressor 11 may be provided with motors M for driving them independently, but in the embodiment shown in FIG. In order to be able to drive any of the compressors 10, 11, both the input shafts of the low-pressure stage and high-pressure stage compressors 10, 11 are connected to the single motor M via the power transmission means 32 composed of a speed increasing gear. Connected to the output shaft.

したがって,本実施例では,低圧段圧縮機10の回転速度と高圧段圧縮機11の回転速度は,増速ギヤ32の増速比によって決まる一定の比率を維持した状態で,モータMの回転速度の増減に対応して回転速度が増減するように構成されている。   Therefore, in this embodiment, the rotational speed of the low-pressure compressor 10 and the rotational speed of the high-pressure compressor 11 are maintained at a constant ratio determined by the speed increasing ratio of the speed increasing gear 32, and the speed of the motor M is maintained. The rotational speed is configured to increase / decrease corresponding to the increase / decrease.

このモータMの回転速度Ndは,インバータ31により制御され,吐出流路40に設けた圧力検知手段(圧力センサ)44によって検知された高圧段圧縮機11の吐出圧力Pd,従って,消費側に供給される圧縮空気の圧力に基づいて,制御装置30がインバータ31を制御して,モータMの回転速度を変化させることで,吐出流路40内の圧力が,設定された所定の目標圧力Pt(本実施例では0.70MPa)に近づくよう速度制御による容量制御が行われる。   The rotational speed Nd of the motor M is controlled by the inverter 31 and is supplied to the consumption side according to the discharge pressure Pd of the high-pressure compressor 11 detected by the pressure detection means (pressure sensor) 44 provided in the discharge flow path 40. Based on the pressure of the compressed air, the control device 30 controls the inverter 31 to change the rotation speed of the motor M, so that the pressure in the discharge flow path 40 is set to a predetermined target pressure Pt ( In this embodiment, the capacity control by the speed control is performed so as to approach 0.70 MPa).

本発明の多段オイルフリースクリュ圧縮機1には,更に,中間段流路20内の圧縮空気を放気する中間放気手段21と,吐出流路40内の圧縮空気を放気する高圧段放気手段43を備える。   The multistage oil-free screw compressor 1 of the present invention further includes an intermediate air release means 21 for releasing compressed air in the intermediate stage flow path 20 and a high-pressure stage discharge for discharging compressed air in the discharge flow path 40. An air means 43 is provided.

図示の実施例において中間放気手段21は,一端をインタークーラ22の一次側で前述の中間段流路20に連通し,他端を,サイレンサ21cを介して大気開放した放気流路21bと,この放気流路21bを開閉する,電磁弁である放気弁21aによって構成されており,制御装置30より受信した制御信号によって放気弁21aを開閉することで,中間段流路20内の圧縮空気の放気を開始し及び停止することができるように構成されている。   In the illustrated embodiment, the intermediate air release means 21 has one end communicated with the intermediate stage flow path 20 on the primary side of the intercooler 22 and the other end opened to the atmosphere via the silencer 21c. The discharge valve 21a is an electromagnetic valve that opens and closes the discharge passage 21b. By opening and closing the release valve 21a according to a control signal received from the control device 30, the compression in the intermediate-stage passage 20 is performed. It is comprised so that the discharge of air can be started and stopped.

この中間放気手段21は,例えば前述の放気流路21bの管径の選択により,使用する放気弁21aのサイズ選定により,あるいは別途絞りを設けることにより,放気弁21aを開いた際,中間段流路20内を流れる圧縮空気の一部が適切な流量で放気されるようにその流路面積が絞られている。   This intermediate air release means 21 is, for example, when the air release valve 21a is opened by selecting the diameter of the air release passage 21b described above, by selecting the size of the air release valve 21a to be used, or by providing a separate throttle. The flow passage area is reduced so that a part of the compressed air flowing through the intermediate flow passage 20 is discharged at an appropriate flow rate.

好ましくは,中間放気手段21が中間段流路20を閉じている状態から,低圧段圧縮機10の吐出温度T1が後述する放気開始温度Ts(一例として230℃)となって中間放気手段21による放気を開始した際,放気開始直後における低圧段圧縮機10の吐出温度T1と,高圧段圧縮機11の吐出温度T2が略同一の温度となるように,中間放気手段21による放気量を調整する。   Preferably, from the state in which the intermediate discharge means 21 closes the intermediate stage flow path 20, the discharge temperature T1 of the low-pressure compressor 10 becomes the discharge start temperature Ts (230 ° C. as an example) described later, and the intermediate discharge is performed. When the discharge by means 21 is started, the intermediate discharge means 21 so that the discharge temperature T1 of the low-pressure compressor 10 immediately after the start of discharge and the discharge temperature T2 of the high-pressure compressor 11 are substantially the same. Adjust the amount of air released by.

一方,高圧段放気手段43は,一端をアフタクーラ42及び逆止弁41の一次側で前述の吐出流路40に連通し,他端を,サイレンサ43cを介して大気開放した放気流路43bと,この放気流路43bを開閉する,電磁弁から成る放気弁43aによって構成されており,制御装置30より受信した制御信号によって放気弁43aが開閉することで,吐出流路40内の圧縮空気の放気を開始し,及び停止することができるように構成されている。   On the other hand, the high-pressure stage air release means 43 is connected to the discharge flow path 40 on the primary side of the aftercooler 42 and the check valve 41, and the air discharge flow path 43b opened to the atmosphere via the silencer 43c on the other end. The air discharge valve 43a is composed of an electromagnetic valve that opens and closes the air discharge flow path 43b, and the air discharge valve 43a is opened and closed by a control signal received from the control device 30 to compress the discharge flow path 40. The air can be started and stopped.

なお,本実施例では,この高圧段放気手段43の放気流路43bの開閉を行う放気弁43aを,制御装置30からの制御信号によって動作する電磁弁によって構成したが,この構成に代えて,機械式の開閉弁を放気弁43aとして設け,低圧段圧縮機10の吸気口10aに設けた吸入弁13の開閉動作に連動して,放気弁43aが吸入弁13の閉時に開き,吸入弁13の開時に閉じるように構成するものとしても良い。   In this embodiment, the release valve 43a for opening and closing the release passage 43b of the high-pressure stage release means 43 is configured by an electromagnetic valve that operates in response to a control signal from the control device 30. Thus, a mechanical on-off valve is provided as the air release valve 43 a, and the air release valve 43 a opens when the intake valve 13 is closed in conjunction with the opening and closing operation of the intake valve 13 provided at the air inlet 10 a of the low-pressure compressor 10. The suction valve 13 may be closed when the suction valve 13 is opened.

なお,図1中,符号「23」及び符号「45」は温度検知手段(温度センサ)であり,温度検知手段23は低圧段圧縮機10の吐出温度T1を検出して制御装置30に出力し,温度検知手段45は高圧段圧縮機11の吐出圧力T2を検出して制御装置30に出力する。   In FIG. 1, reference numerals “23” and “45” are temperature detection means (temperature sensors), and the temperature detection means 23 detects the discharge temperature T1 of the low-pressure compressor 10 and outputs it to the control device 30. The temperature detecting means 45 detects the discharge pressure T2 of the high-pressure compressor 11 and outputs it to the control device 30.

制御装置30は,記憶領域内に予め記憶した所定のプログラムに従い,前述した温度検知手段23,45が検知した吐出温度T1,T2,及び圧力検知手段44が検知した吐出圧力Pdに基づいて,インバータ31,中間放気手段21,高圧段放気手段43及び吸入弁13を制御する。   In accordance with a predetermined program stored in advance in the storage area, the control device 30 generates an inverter based on the discharge temperatures T1, T2 detected by the temperature detecting means 23, 45 and the discharge pressure Pd detected by the pressure detecting means 44. 31, the intermediate venting means 21, the high-pressure stage venting means 43 and the suction valve 13 are controlled.

なお,本発明の多段オイルフリースクリュ圧縮機1には,更に,低圧段圧縮機10が吸入する空気の温度(吸気温度Ta)を検知する温度センサである温度検知手段15を設け,この温度検知手段15の検知信号を制御装置30に入力するように構成しても良い。   The multistage oil-free screw compressor 1 of the present invention is further provided with temperature detection means 15 that is a temperature sensor for detecting the temperature of the air sucked by the low-pressure stage compressor 10 (intake air temperature Ta). You may comprise so that the detection signal of the means 15 may be input into the control apparatus 30. FIG.

〔多段オイルフリースクリュ圧縮機の動作説明〕
以上,図1を参照して説明した構成を備えた多段オイルフリースクリュ圧縮機の動作を,図2〜4に示すフローチャートを参照して説明する。
[Description of operation of multi-stage oil-free screw compressor]
The operation of the multistage oil-free screw compressor having the configuration described with reference to FIG. 1 will be described with reference to the flowcharts shown in FIGS.

〈基本動作(始動・容量制御・停止)〉(図2)
本発明の多段オイルフリースクリュ圧縮機1の始動から容量制御及び停止までの基本動作を,図2を参照して説明する。
<Basic operation (start / capacity control / stop)> (Fig. 2)
The basic operation from start to capacity control and stop of the multistage oil-free screw compressor 1 of the present invention will be described with reference to FIG.

主電源をONにして多段オイルフリースクリュ圧縮機を起動し(S1),この状態でオペレータは,操作盤のスイッチ類を操作して所定の始動操作を行う(S2)。   The main power supply is turned on to start the multi-stage oil-free screw compressor (S1). In this state, the operator operates the switches on the operation panel to perform a predetermined starting operation (S2).

多段オイルフリースクリュ圧縮機1が,消費側に供給する圧縮空気の圧力設定(目標圧力Ptの設定)を変更可能なものである場合,オペレータはこの始動操作において目標圧力Ptを設定する。   When the multistage oil-free screw compressor 1 can change the pressure setting (setting of the target pressure Pt) of the compressed air supplied to the consumption side, the operator sets the target pressure Pt in this starting operation.

オペレータによる始動操作により,制御装置30は,予め記憶領域に記憶した対応関係に従い,温度検知手段15が検知した吸気温度Taに基づき設定下限回転速度Nminを設定すると共に,オペレータが入力した目標圧力Ptに対し所定の高い圧力であるアンロード開始圧力Puを設定し,多段オイルフリースクリュ圧縮機1に所定の始動運転を行わせる(S3)。   With the start operation by the operator, the control device 30 sets the set lower limit rotational speed Nmin based on the intake air temperature Ta detected by the temperature detecting means 15 in accordance with the correspondence stored in advance in the storage area, and the target pressure Pt input by the operator The unload start pressure Pu, which is a predetermined high pressure, is set to cause the multistage oil-free screw compressor 1 to perform a predetermined start operation (S3).

制御装置30は,一例としてこの始動運転を,吸入弁13を閉じ,かつ,高圧段放気手段43の放気弁43aを開いた状態でモータMを始動させると共に一定時間,設定下限回転速度Nminで運転することにより行う。   For example, the control device 30 starts this operation by starting the motor M with the intake valve 13 closed and the air release valve 43a of the high-pressure stage air release means 43 open, and for a predetermined time, the set lower limit rotational speed Nmin. This is done by driving at

前述した始動運転(S3)の終了後,制御装置30は吸入弁13を開くと共に高圧段放気手段43による放気を停止し(S4),これにより多段オイルフリースクリュ圧縮機1は通常運転に移行する。   After the start-up operation (S3) is completed, the control device 30 opens the suction valve 13 and stops the air release by the high-pressure stage air release means 43 (S4), whereby the multistage oil-free screw compressor 1 is put into a normal operation. Transition.

通常運転への移行により,制御装置30は高圧段圧縮機11の吐出側に設けた圧力検知手段44からの検知信号に基づいて吐出流路40内の圧力(吐出圧力Pd),すなわち消費側に供給される圧縮機空気の圧力を監視し,検出される吐出圧力Pdが,オペレータにより設定された前述の目標圧力Pt(一例として0.70MPa)に近づくよう,モータMの回転速度を制御すると共に,吸入弁13及び高圧段放気手段43を制御する。   Due to the shift to the normal operation, the control device 30 moves the pressure in the discharge flow path 40 (discharge pressure Pd) based on the detection signal from the pressure detection means 44 provided on the discharge side of the high-pressure compressor 11, that is, on the consumption side. The pressure of the supplied compressor air is monitored, and the rotational speed of the motor M is controlled so that the detected discharge pressure Pd approaches the aforementioned target pressure Pt (for example, 0.70 MPa) set by the operator. The suction valve 13 and the high-pressure stage air release means 43 are controlled.

具体的には,制御装置30は,吐出圧力Pdが前述のアンロード開始圧力Pu(一例として0.75MPa)未満の場合(S5のNO)には,予め記憶している対応関係に従い,検出された吐出圧力Pdと目標圧力Ptの偏差を0(ゼロ)とする目標回転速度Ncを算出し(S9),モータMの回転速度がこの目標回転速度Ncとなるよう,インバータ31に対し出力周波数を変化させる制御信号を出力してモータMの回転速度を制御することで(S10),消費側において行われる圧縮空気の消費量に対応した圧縮空気を生成して供給する。   Specifically, when the discharge pressure Pd is less than the above-described unload start pressure Pu (0.75 MPa as an example) (NO in S5), the control device 30 is detected according to the correspondence stored in advance. The target rotational speed Nc with which the deviation between the discharged pressure Pd and the target pressure Pt is 0 (zero) is calculated (S9), and the output frequency is set to the inverter 31 so that the rotational speed of the motor M becomes the target rotational speed Nc. By outputting a control signal to be changed and controlling the rotational speed of the motor M (S10), compressed air corresponding to the amount of compressed air consumed on the consumption side is generated and supplied.

一方,消費側における圧縮空気の消費が停止する等して吐出圧力Pdがアンロード開始圧力以上になると(S5のYES),制御装置30は吸入弁13を閉じて低圧段圧縮機10に対する吸気を停止すると共に,高圧段放気手段43の放気弁43aを開き,吐出流路40内の圧縮空気を大気放出して吐出圧力Pdを低下させて圧縮機の動力を低減した状態で,モータMの回転速度を設定下限回転速度Nminに低下させた無負荷運転に移行し(S6),吐出圧力Pdがアンロード開始圧力Pu以上である間,この無負荷運転を継続する(S7のNO)。   On the other hand, when the discharge pressure Pd becomes equal to or higher than the unload start pressure because the consumption of compressed air on the consumption side stops or the like (YES in S5), the control device 30 closes the intake valve 13 and intakes the low-pressure compressor 10. While stopping, the air release valve 43a of the high pressure stage air release means 43 is opened, the compressed air in the discharge flow path 40 is released to the atmosphere, the discharge pressure Pd is lowered, and the power of the compressor is reduced. Is shifted to the set lower limit rotational speed Nmin (S6), and the no-load operation is continued while the discharge pressure Pd is equal to or higher than the unload start pressure Pu (NO in S7).

この無負荷運転中,消費側における圧縮空気の消費が再開される等して吐出圧力Pdが再度アンロード開始圧力Pu未満に低下すると(S7のYES),制御装置30は吸入弁13を開くと共に高圧段放気手段43の放気弁43aを閉じて放気を停止し(S8),モータMの回転速度Ndを吐出圧力Pdに基づき算出された目標回転速度Ncに変化させる制御(S9,S10)を行う。   During the no-load operation, when the discharge pressure Pd drops below the unload start pressure Pu again due to the restart of consumption of compressed air on the consumption side (YES in S7), the control device 30 opens the intake valve 13 and Control for changing the rotation speed Nd of the motor M to the target rotation speed Nc calculated based on the discharge pressure Pd (S9, S10) by closing the discharge valve 43a of the high-pressure stage discharge means 43 and stopping the discharge (S8). )I do.

上記の速度制御による容量制御(S5〜S10)は,オペレータが操作盤を操作して停止処理を指令するまで繰り返し行われ(S11のNO),オペレータにより停止処理の指令が入力されると(S11のYES),制御装置30は吸入弁13を閉じ,高圧段放気手段43の放気弁43aを開いて放気を開始し(S12),通常の停止処理ではこの状態で所定時間運転した後,モータを停止して(S13),多段オイルフリースクリュ圧縮機を停止する。   The above-described capacity control (S5 to S10) by speed control is repeated until the operator operates the operation panel to instruct stop processing (NO in S11), and when the stop processing command is input by the operator (S11). YES), the control device 30 closes the suction valve 13 and opens the air release valve 43a of the high pressure stage air release means 43 to start air release (S12). After normal operation, the controller 30 operates in this state for a predetermined time. The motor is stopped (S13), and the multistage oil-free screw compressor is stopped.

〈非常停止/中間放気手段の制御(吐出温度基準型)〉(図3参照)
主電源をONにして多段オイルフリースクリュ圧縮機を起動すると(図2のS1),制御装置30は図3に示すように温度検知手段23,45からの検知信号に基づいて,低圧段圧縮機10の吐出温度T1と,高圧段圧縮機11の吐出温度T2の監視を開始する(図3のS16,S14)。
<Control of emergency stop / intermediate air release means (discharge temperature reference type)> (See Fig. 3)
When the main power supply is turned on and the multi-stage oil-free screw compressor is started (S1 in FIG. 2), the control device 30 performs a low-pressure stage compressor based on detection signals from the temperature detection means 23 and 45 as shown in FIG. Monitoring of the discharge temperature T1 of 10 and the discharge temperature T2 of the high-pressure compressor 11 is started (S16, S14 in FIG. 3).

高圧段圧縮機11の吐出温度T2が予め設定されている所定の非常停止温度Tmax(一例として250℃)未満ではこの吐出温度T2の監視が継続され(S15のNO),非常停止温度Tmax以上になると(S15のYES),制御装置30は,吸入弁13を閉じると共に,高圧段放気手段43の放気弁43aを開き(図2のS12),モータMを停止して(S13),多段オイルフリースクリュ圧縮機1を非常停止させる。   If the discharge temperature T2 of the high-pressure compressor 11 is lower than a predetermined emergency stop temperature Tmax (250 ° C. as an example), the discharge temperature T2 is continuously monitored (NO in S15), and becomes higher than the emergency stop temperature Tmax. Then (YES in S15), the control device 30 closes the intake valve 13 and opens the air release valve 43a of the high pressure stage air release means 43 (S12 in FIG. 2), stops the motor M (S13), and multistage. The oil-free screw compressor 1 is emergency stopped.

なお,前述の通常の停止処理の場合,制御装置30は吸入弁13を閉じると共に高圧段放気手段43の放気弁43aを開き(S12),負荷を低減した状態で一定時間運転を継続した後,モータMの停止処理(S13)を行うものと説明したが,非常停止の場合には,前述した負荷を低減した状態での一定時間の運転を行うことなく,吸入弁13の閉塞と高圧段放気手段43による放気開始と同時にモータMの停止処理を行うように構成しても良い。   In the case of the above-described normal stop process, the control device 30 closes the suction valve 13 and opens the discharge valve 43a of the high-pressure stage discharge means 43 (S12), and continues the operation for a certain time with the load reduced. After that, the motor M is stopped (S13). However, in the case of an emergency stop, the suction valve 13 is blocked and the high pressure is not operated for a certain period of time while the load is reduced. You may comprise so that the stop process of the motor M may be performed simultaneously with the air discharge start by the stage air discharge means 43. FIG.

制御装置30は,更に,温度検知手段23からの検知信号に基づいて低圧段圧縮機10の吐出温度T1についても監視しており(S16),低圧段圧縮機10の吐出温度T1が予め記憶している非常停止温度Tmax(一例として250℃)以上になると(S17のYES),吸入弁13を閉じ,高圧段放気手段43による放気を開始すると共に(図2のS12),モータMを停止して(図2のS13),多段オイルフリースクリュ圧縮機1を非常停止させる。   The control device 30 also monitors the discharge temperature T1 of the low-pressure compressor 10 based on the detection signal from the temperature detector 23 (S16), and the discharge temperature T1 of the low-pressure compressor 10 is stored in advance. If the emergency stop temperature Tmax (as an example, 250 ° C.) or higher is reached (YES in S17), the intake valve 13 is closed, and the high-pressure stage air release means 43 starts air discharge (S12 in FIG. 2). It stops (S13 of FIG. 2), and the multistage oil-free screw compressor 1 is made an emergency stop.

なお,非常停止の場合には,吸入弁13を開いたままモータの停止処理を行うようにしても良く,モータMの停止処理を行った後で高圧段放気弁43aを開放するようにしても良い。   In the case of an emergency stop, the motor stop process may be performed while the suction valve 13 is opened, and the high-pressure stage air release valve 43a is opened after the motor M stop process is performed. Also good.

低圧段圧縮機10の吐出温度T1が非常停止温度Tmax(一例として250℃)未満である場合(図3のS17のNO)であって,この非常停止温度(一例として250℃)に対し所定の低い温度として設定した放気開始温度Ts(一例として230℃)未満の場合(S18のNO),制御装置30は低圧段圧縮機10の吐出温度の監視を継続する(S16へ戻る)。   When the discharge temperature T1 of the low-pressure stage compressor 10 is lower than the emergency stop temperature Tmax (250 ° C. as an example) (NO in S17 of FIG. 3), When the temperature is lower than the discharge start temperature Ts set as a low temperature (230 ° C. as an example) (NO in S18), the control device 30 continues to monitor the discharge temperature of the low-pressure compressor 10 (return to S16).

低圧段圧縮機10の吐出温度T1が放気開始温度Ts(一例として230℃)以上になると(S18のYES),制御装置30は中間放気手段21による中間段流路20の放気を開始し(S19),中間段流路20内の圧力を低下させる。   When the discharge temperature T1 of the low-pressure compressor 10 is equal to or higher than the discharge start temperature Ts (230 ° C. as an example) (YES in S18), the control device 30 starts to discharge the intermediate stage flow path 20 by the intermediate discharge means 21. (S19), the pressure in the intermediate stage flow path 20 is reduced.

このようにして中間段流路20の圧力を低下することで,低圧段圧縮機10の吐出温度T1が低下する。   Thus, the discharge temperature T1 of the low-pressure stage compressor 10 is lowered by lowering the pressure of the intermediate stage flow path 20.

中間放気手段21による放気中,制御装置30は低圧段圧縮機10の吐出温度T1を予め記憶されている所定の放気停止温度Teと比較して,吐出温度T1がこの放気停止温度Te(一例として210℃)以下に低下した場合(S20のYES),中間放気手段21による放気を停止し(S21),制御装置30は低圧段圧縮機10の吐出温度T1の監視を継続する(S16へ戻る)。   During the discharge by the intermediate discharge means 21, the control device 30 compares the discharge temperature T1 of the low-pressure compressor 10 with a predetermined discharge stop temperature Te stored in advance, and the discharge temperature T1 is the discharge stop temperature. When the temperature drops below Te (210 ° C. as an example) (YES in S20), the air release by the intermediate air release means 21 is stopped (S21), and the control device 30 continues to monitor the discharge temperature T1 of the low-pressure compressor 10. (Return to S16)

制御装置30は,吐出温度T1が放気停止温度Teを超えている場合(S20のNO)であって,更に吐出温度T1が非常停止温度Tmax以上となっていれば(S22のYES)非常停止を行い(図2のS12,S13),非常停止温度Tmax未満であれば(S22のNO),中間放気手段21による放気を継続する(S19へ戻る)。   If the discharge temperature T1 exceeds the discharge stop temperature Te (NO in S20) and the discharge temperature T1 is equal to or higher than the emergency stop temperature Tmax (YES in S22), the control device 30 performs an emergency stop. (S12, S13 in FIG. 2). If the temperature is lower than the emergency stop temperature Tmax (NO in S22), the intermediate venting means 21 continues to vent (return to S19).

この放気停止温度Teは,中間放気手段21による放気開始直後の低圧段圧縮機10の吐出温度T1の測定値(本実施例では215℃)よりも低く設定し,例えば予め実験的に上記吐出温度を測定しておいて制御装置30に記憶させておくものとしても良く,あるいは,中間放気手段21による放気開放直後の低圧段圧縮機10の吐出温度T1を温度検知手段23により測定し,制御装置30がこの測定値に基づいて,この測定値よりも所定の低い温度を放気停止温度Teとして設定するようにしても良い。   This discharge stop temperature Te is set lower than the measured value (215 ° C. in this embodiment) of the discharge temperature T1 of the low-pressure compressor 10 immediately after the start of discharge by the intermediate discharge means 21, for example, experimentally in advance. The discharge temperature may be measured and stored in the control device 30, or the discharge temperature T 1 of the low-pressure compressor 10 immediately after the middle air release means 21 is released is released by the temperature detection means 23. Based on the measured value, the control device 30 may set a temperature lower than the measured value as the discharge stop temperature Te.

以上のように構成された多段オイルフリースクリュ圧縮機1では,通常運転時,制御装置30は吐出圧力Pdが目標圧力Pt(一例として0.70MPa)となるようにモータMの回転速度を制御することで(図2のS9,S10),消費側の圧縮空気の消費量が減少して吐出圧力Pdが目標圧力Ptよりも高くなるとモータMの回転速度を低下させる速度制御(容量制御)を行う。   In the multistage oil-free screw compressor 1 configured as described above, during normal operation, the control device 30 controls the rotational speed of the motor M so that the discharge pressure Pd becomes the target pressure Pt (0.70 MPa as an example). Thus (S9, S10 in FIG. 2), when the consumption of compressed air on the consumption side decreases and the discharge pressure Pd becomes higher than the target pressure Pt, speed control (capacity control) is performed to reduce the rotational speed of the motor M. .

従って,消費側における圧縮空気の消費量が減少して,モータMの回転速度が定格値(100%)から減少するに従い,前述した体積効率の変化によって低圧段圧縮機10と高圧段圧縮機11間の中間段流路20内の温度(低圧段圧縮機10の吐出温度T1)が徐々に上昇する。   Therefore, as the consumption of compressed air on the consumption side decreases and the rotational speed of the motor M decreases from the rated value (100%), the low-pressure stage compressor 10 and the high-pressure stage compressor 11 are caused by the change in volumetric efficiency described above. In the meantime, the temperature in the intermediate stage flow path 20 (discharge temperature T1 of the low-pressure stage compressor 10) gradually increases.

一例として,本実施例の多段オイルフリースクリュ圧縮機1では,低圧段圧縮機10の吸気温度Ta(外気温度)が30℃でモータMの回転速度が定格値(100%),吐出圧力Pdが目標圧力Pt(0.70MPa)と略一致した全負荷運転時,中間段流路20内の圧力は0.20MPa,低圧段圧縮機10の吐出温度T1は190℃,高圧段圧縮機11の吐出温度T2は190℃であった。   As an example, in the multi-stage oil-free screw compressor 1 of the present embodiment, the intake temperature Ta (outside air temperature) of the low-pressure stage compressor 10 is 30 ° C., the rotational speed of the motor M is the rated value (100%), and the discharge pressure Pd is During full load operation substantially equal to the target pressure Pt (0.70 MPa), the pressure in the intermediate stage flow path 20 is 0.20 MPa, the discharge temperature T1 of the low pressure compressor 10 is 190 ° C., and the discharge of the high pressure compressor 11 The temperature T2 was 190 ° C.

これに対し,吐出圧力Pdと目標圧力Pt(0.70MPa)が略一致した状態でモータMの回転速度Ndを定格時の55%にまで低下させると,中間段流路20内の圧力は0.23MPa,低圧段圧縮機10の吐出温度T1は230℃,高圧段圧縮機11の吐出温度T2は210℃まで上昇した。   On the other hand, when the rotational speed Nd of the motor M is reduced to 55% of the rated value in a state where the discharge pressure Pd and the target pressure Pt (0.70 MPa) substantially coincide with each other, the pressure in the intermediate-stage flow path 20 is 0. .23 MPa, the discharge temperature T1 of the low-pressure compressor 10 increased to 230 ° C., and the discharge temperature T2 of the high-pressure compressor 11 increased to 210 ° C.

消費側における圧縮空気の消費量が大幅に減少した場合には,モータMの回転速度は予め設定した設定下限回転速度Nmin(本実施例では温度検知手段15が検知した外気温Taに基づいて制御装置30が算出した設定下限回転速度Nmin:一例として定格時の45%の回転速度)まで低下するが,モータMの回転速度が設定下限回転速度Nminまで低下する過程で低圧段圧縮機10の吐出温度が230℃以上になると(図3のS18のYES),制御装置30は中間放気手段21による放気を開始し(S19),中間段通路20内の圧力を低下させる。   When the consumption of compressed air on the consumption side is greatly reduced, the rotational speed of the motor M is controlled based on a preset lower limit rotational speed Nmin (in this embodiment, the outside temperature Ta detected by the temperature detecting means 15). The set lower limit rotational speed Nmin calculated by the device 30 is reduced to 45% of the rated speed as an example), but the discharge of the low-pressure compressor 10 is performed in the process in which the rotational speed of the motor M is reduced to the set lower limit rotational speed Nmin. When the temperature reaches 230 ° C. or higher (YES in S18 of FIG. 3), the control device 30 starts to release air by the intermediate air release means 21 (S19), and reduces the pressure in the intermediate stage passage 20.

これにより低圧段圧縮機10の圧縮比が低下して低圧段圧縮機10の吐出温度T1を放気開始温度Ts(230℃)よりも低い温度に低下させる。   Thereby, the compression ratio of the low-pressure stage compressor 10 is lowered, and the discharge temperature T1 of the low-pressure stage compressor 10 is lowered to a temperature lower than the discharge start temperature Ts (230 ° C.).

一例として本実施例の多段オイルフリースクリュ圧縮機1では,放気開始温度(230℃)となったときの中間段流路20内の圧力は0.23MPaであったが,中間放気手段21による放気により,放気直後の中間段流路20内の圧力を0.20MPa,吐出温度T1を215℃まで低下させることができた。   As an example, in the multi-stage oil-free screw compressor 1 of the present embodiment, the pressure in the intermediate stage flow path 20 when the discharge start temperature (230 ° C.) is reached is 0.23 MPa. As a result, the pressure in the intermediate-stage flow path 20 immediately after the release was reduced to 0.20 MPa, and the discharge temperature T1 was reduced to 215 ° C.

但し,中間放気手段21によって中間段流路20より放気される圧縮空気の量は,絞りによって調整されており,絞りの径が小さすぎると大気放出される圧縮空気の量が少なく中間段通路内の圧力の低下が小さくなって低圧段圧縮機10の吐出温度T1も十分に低下させることができない。   However, the amount of compressed air discharged from the intermediate stage flow path 20 by the intermediate discharge means 21 is adjusted by the throttle, and if the diameter of the throttle is too small, the amount of compressed air released to the atmosphere is small and the intermediate stage is reduced. The pressure drop in the passage is reduced, and the discharge temperature T1 of the low-pressure compressor 10 cannot be lowered sufficiently.

逆に,絞りの径が大き過ぎる場合には,大気へ放出される圧縮空気の量が多くなり,中間段流路20内の圧力を早期に低下させて低圧段圧縮機10の吐出温度T1を大きく降下させることができるが,その反面,中間段流路20内の圧力を下げ過ぎると,高圧段圧縮機11の圧縮比が高まり高圧段圧縮機11の吐出温度T2が上昇して非常停止温度に近づくことになる。   On the other hand, when the diameter of the throttle is too large, the amount of compressed air released to the atmosphere increases, and the pressure in the intermediate stage flow path 20 is quickly reduced to reduce the discharge temperature T1 of the low pressure stage compressor 10. However, if the pressure in the intermediate-stage flow path 20 is lowered too much, the compression ratio of the high-pressure stage compressor 11 increases and the discharge temperature T2 of the high-pressure stage compressor 11 rises, resulting in an emergency stop temperature. Will approach.

従って,中間放気手段21による放気量は,低圧段圧縮機10の吐出温度T1と,高圧段圧縮機11の吐出温度T2がバランスするように決定することが好ましく,より好ましくは,中間放気手段21による放気開始直後の低圧段圧縮機10の吐出温度と高圧段圧縮機11の吐出温度T2がほぼ一致するように放気量を設定し,本実施例では中間放気手段21による放気開始直後の低圧段圧縮機10の吐出温度と高圧段圧縮機11の吐出温度が共に215℃となるように設定した。   Accordingly, the amount of air discharged by the intermediate air discharge means 21 is preferably determined so that the discharge temperature T1 of the low-pressure stage compressor 10 and the discharge temperature T2 of the high-pressure stage compressor 11 are balanced, and more preferably, the intermediate discharge amount. The discharge amount is set so that the discharge temperature of the low-pressure compressor 10 immediately after the start of the discharge by the discharge means 21 and the discharge temperature T2 of the high-pressure compressor 11 substantially coincide with each other. The discharge temperature of the low-pressure compressor 10 and the discharge temperature of the high-pressure compressor 11 immediately after the start of venting were both set to 215 ° C.

また,中間段通路20から大気へ放出される圧縮空気の量は,無負荷運転時に高圧段放気手段43によって放気される圧縮空気量よりも少ない量に設定する。   Further, the amount of compressed air released from the intermediate stage passage 20 to the atmosphere is set to be smaller than the amount of compressed air released by the high pressure stage air release means 43 during no-load operation.

このように,本実施例では中間放気手段21による放気を開始した直後の低圧段圧縮機10の吐出温度T1,及び,高圧段圧縮機11の吐出温度T2はいずれも215℃で,非常停止温度Tmax(一例として250℃)よりも十分に低いことから,中間放気手段21による放気を行った状態でさらに速度制御(容量制御)を継続して低圧段及び高圧段圧縮機10,11の回転速度を低下させることが可能で,その結果,速度制御(容量制御)に使用する回転速度の下限値である設定下限回転速度Nminの低下が可能となる。   Thus, in this embodiment, the discharge temperature T1 of the low-pressure stage compressor 10 and the discharge temperature T2 of the high-pressure stage compressor 11 immediately after the start of the discharge by the intermediate discharge means 21 are both 215 ° C. Since the temperature is sufficiently lower than the stop temperature Tmax (as an example, 250 ° C.), the speed control (capacity control) is further continued in the state where the air is discharged by the intermediate air discharging means 21, and the low pressure stage and the high pressure stage compressor 10, 11 can be reduced, and as a result, the set lower limit rotational speed Nmin, which is the lower limit value of the rotational speed used for speed control (capacity control), can be reduced.

一例として,この設定下限回転速度Nminは,低圧段圧縮機10の吸気口10aに設けた吸入弁13を開き,中間放気手段21による放気を行った状態で低圧段圧縮機10の吐出温度T1が230℃になるモータMの回転速度を実験により求め,求めた回転速度以上の値,好ましくは求めた回転速度を設定下限回転速度Nminとして設定し,本実施例では定格回転速度に対し45%の回転速度を設定下限回転速度Nminとして設定した。   As an example, the lower limit rotational speed Nmin is set such that the discharge temperature of the low-pressure compressor 10 in the state where the intake valve 13 provided at the intake port 10a of the low-pressure compressor 10 is opened and the intermediate air discharge means 21 is discharged. The rotational speed of the motor M at which T1 becomes 230 ° C. is experimentally determined, and a value equal to or higher than the determined rotational speed, preferably the determined rotational speed is set as a set lower limit rotational speed Nmin. % Rotation speed was set as the set lower limit rotation speed Nmin.

これにより,中間段流路20内の圧縮空気を放気しない場合には,低圧段圧縮機10の吐出温度T1を230℃以下にするためには,設定下限回転速度を定格回転速度の55%の回転速度に設定する必要があったが,本発明の構成ではモータの設定下限回転速度Nminを定格回転速度の45%の回転速度まで低下させた場合であっても低圧段圧縮機の吐出温度T1を230℃以下に抑えることができた。   Thus, when the compressed air in the intermediate stage flow path 20 is not discharged, the lower limit rotational speed is set to 55% of the rated rotational speed in order to set the discharge temperature T1 of the low pressure stage compressor 10 to 230 ° C. or lower. However, in the configuration of the present invention, the discharge temperature of the low-pressure compressor is reduced even when the lower limit rotational speed Nmin of the motor is reduced to 45% of the rated rotational speed. T1 could be suppressed to 230 ° C. or lower.

図5に,設定下限回転速度Nminを定格値の55%とした場合と定格値の45%とした場合の空気量比と消費動力比の違いをグラフに示す。図中,実線が設定下限回転速度Nminを定格値の55%とした場合,一点鎖線が45%とした場合である。   FIG. 5 is a graph showing the difference between the air amount ratio and the power consumption ratio when the set lower limit rotational speed Nmin is 55% of the rated value and 45% of the rated value. In the figure, the solid line indicates the case where the set lower limit rotational speed Nmin is 55% of the rated value, and the alternate long and short dash line is 45%.

設定下限回転速度Nminを定格値の55%とした場合,空気量比が55〜100%の間は,吸入弁13を開いて回転速度制御を行い,空気量比が0〜55%の間は,回転速度を定格値の55%一定で吸入弁13を開閉制御を行って,空気量比が0%のときには,回転速度を定格値の55%で吸入弁13を閉じ,高圧段放気手段43を開いている。   When the setting lower limit rotation speed Nmin is 55% of the rated value, when the air amount ratio is 55 to 100%, the intake valve 13 is opened and the rotation speed control is performed, and when the air amount ratio is 0 to 55%. The intake valve 13 is controlled to open and close with the rotation speed constant at 55% of the rated value. When the air amount ratio is 0%, the intake valve 13 is closed at the rotation speed of 55% of the rated value, and the high-pressure stage air discharge means 43 is open.

これに対して,設定下限回転速度Nminを定格値の45%とした場合,空気量比が45〜100%の間は吸入弁13を開いて回転速度制御を行い,空気量比が0〜45%の間は定格値の45%一定の回転速度で吸入弁13を開閉制御を行って,空気量比が0%のときには回転速度を定格値の45%で吸入弁13を閉じ高圧段放気手段43を開いている。   On the other hand, when the setting lower limit rotation speed Nmin is 45% of the rated value, the intake valve 13 is opened and the rotation speed control is performed while the air amount ratio is 45 to 100%, and the air amount ratio is 0 to 45%. Is controlled to open and close the suction valve 13 at a constant rotational speed of 45% of the rated value. When the air amount ratio is 0%, the suction valve 13 is closed at the rotational speed of 45% of the rated value and the high-pressure stage is discharged. The means 43 is open.

設定下限回転速度Nminを定格値の55%から45%に10%低減させることにより,図5中に斜線で示した分の消費動力の低減が得られることとなり,その結果,多段オイルフリースクリュ圧縮機をより小さな消費電力で運転することが可能となる。   By reducing the setting lower limit rotation speed Nmin by 10% from 55% to 45% of the rated value, it is possible to reduce the power consumption as shown by the hatched lines in FIG. 5, and as a result, multistage oil-free screw compression The machine can be operated with less power consumption.

このようにして中間放気手段21による放気が行われている際に,消費側の圧縮空気の消費量が増加して吐出圧力Pdが目標圧力Ptよりも低くなると,制御装置30は吐出圧力Pdが目標圧力Pt(0.70MPa)となるようにモータMの回転速度を上昇させる。   When air is discharged by the intermediate air release means 21 in this way, if the consumption of compressed air on the consumption side increases and the discharge pressure Pd becomes lower than the target pressure Pt, the control device 30 causes the discharge pressure to be reduced. The rotational speed of the motor M is increased so that Pd becomes the target pressure Pt (0.70 MPa).

このモータMの回転速度の上昇により,圧縮機の内部漏れ量が減少して漏れた圧縮空気の再圧縮が抑えられると共に,高圧段圧縮機11の内部漏れ量が減少することで中間段流路20内の圧力が下がり,低圧段圧縮機10の吐出温度T1も低下する。そして,低圧段圧縮機10の吐出温度T1が放気停止温度Te(一例として210℃)以下になると(図3のS20YES)制御装置30は中間放気手段21による放気を停止する(S21)。   By increasing the rotational speed of the motor M, the internal leakage amount of the compressor is reduced and recompression of the leaked compressed air is suppressed, and the internal leakage amount of the high-pressure compressor 11 is reduced, thereby reducing the intermediate stage flow path. The pressure in 20 decreases, and the discharge temperature T1 of the low-pressure compressor 10 also decreases. When the discharge temperature T1 of the low-pressure compressor 10 becomes equal to or lower than the discharge stop temperature Te (210 ° C. as an example) (S20 YES in FIG. 3), the control device 30 stops the discharge by the intermediate discharge means 21 (S21). .

本実施例では,このときの低圧段圧縮機10の吐出温度T1及び高圧段圧縮機11の吐出温度T2はいずれも230℃未満である。   In this embodiment, the discharge temperature T1 of the low-pressure stage compressor 10 and the discharge temperature T2 of the high-pressure stage compressor 11 at this time are both less than 230 ° C.

なお,無負荷運転時は,高圧段放気手段43による放気が行われていることで吐出流路40内の圧力が低下していることから,中間段流路20内の圧力も低く,低圧段圧縮機10の吐出温度T1は放気停止温度Te(210℃)以下となっており,中間放気手段21による放気は行われない。   During no-load operation, since the pressure in the discharge flow path 40 is reduced due to the release of air by the high pressure stage air release means 43, the pressure in the intermediate stage flow path 20 is also low, The discharge temperature T1 of the low-pressure compressor 10 is equal to or lower than the discharge stop temperature Te (210 ° C.), and the intermediate discharge means 21 does not discharge.

但し,この場合であっても,例えば高圧段放気手段43の故障等で吐出流路40内の圧力が低下せずに低圧段圧縮機10の吐出温度T1が上昇した場合等,何等かの理由により低圧段圧縮機10の吐出温度T1が放気開始温度(230℃)以上に上昇した場合には,制御装置30は中間放気手段21による放気を開始するため,低圧段圧縮機10の吐出温度T1が低下する。   However, even in this case, for example, when the discharge temperature T1 of the low-pressure stage compressor 10 rises without the pressure in the discharge flow path 40 being lowered due to a failure of the high-pressure stage air discharge means 43, etc. When the discharge temperature T1 of the low-pressure stage compressor 10 rises to the discharge start temperature (230 ° C.) or higher for the reason, the control device 30 starts the discharge by the intermediate discharge means 21, so the low-pressure compressor 10 The discharge temperature T1 decreases.

〈非常停止/中間放気手段の制御(回転速度基準型)〉(図4参照)
以上,図3を参照して説明した構成では,前述した中間放気手段21の制御を,温度検知手段23が検出した低圧段圧縮機10の吐出温度T1に基づいて行うように構成した。
<Emergency stop / control of intermediate venting means (rotational speed reference type)> (See Fig. 4)
As described above, in the configuration described with reference to FIG. 3, the above-described intermediate air release means 21 is controlled based on the discharge temperature T <b> 1 of the low-pressure compressor 10 detected by the temperature detection means 23.

これに対し,本実施例では,温度検知手段23,45が検出した低圧段圧縮機10と高圧段圧縮機11の吐出温度T1,T2は,非常停止温度Tmaxの検出にのみ使用し,中間放気手段21の開閉制御を,モータMの回転速度Ndに基づいて行うように構成している。   In contrast, in this embodiment, the discharge temperatures T1 and T2 of the low-pressure compressor 10 and the high-pressure compressor 11 detected by the temperature detectors 23 and 45 are used only for detecting the emergency stop temperature Tmax, and are used as intermediate discharges. The opening / closing control of the air means 21 is performed based on the rotational speed Nd of the motor M.

この場合の動作を,図4を参照して説明する。
主電源をONにして多段オイルフリースクリュ圧縮機を起動すると(図2のS1),図4に示すように制御装置30は,温度検知手段23,45からの検知信号に基づいて,高圧段圧縮機11の吐出温度T2及び低圧段圧縮機10の吐出温度T1の監視を開始し(S25及びS23),高圧段圧縮機11の吐出温度T2又は低圧段圧縮機10の吐出温度T1が,非常停止温度Tmax以上になると(S24,S26),吸入弁13を閉じ,高圧段放気手段43による放気を開始すると共に(図2のS12),モータMを停止して(図2のS13)多段オイルフリースクリュ圧縮機1を非常停止させる点は,図3を参照して説明した制御と同様である。
The operation in this case will be described with reference to FIG.
When the main power supply is turned on and the multi-stage oil-free screw compressor is started (S1 in FIG. 2), the control device 30 performs high-pressure stage compression based on detection signals from the temperature detection means 23 and 45 as shown in FIG. Monitoring of the discharge temperature T2 of the compressor 11 and the discharge temperature T1 of the low-pressure compressor 10 is started (S25 and S23), and the discharge temperature T2 of the high-pressure compressor 11 or the discharge temperature T1 of the low-pressure compressor 10 is emergency stopped. When the temperature becomes equal to or higher than Tmax (S24, S26), the intake valve 13 is closed, and the high-pressure stage venting means 43 starts to vent (S12 in FIG. 2), and the motor M is stopped (S13 in FIG. 2). The point where the oil-free screw compressor 1 is brought to an emergency stop is the same as the control described with reference to FIG.

本実施例の構成では,制御装置30の記憶領域には,低圧段圧縮機10の吸気温度Taと,中間放気手段21を開閉動作の基準となるモータMの回転速度の対応関係が記憶されており,制御手段30は,温度検知手段15が検知した吸気温度Taに基づいて,中間放気手段21による放気を開始する放気開始回転速度Nsと,中間放気手段21による放気を停止する放気停止回転速度Neを算出して設定するように構成されている(図4のS27)。   In the configuration of the present embodiment, the correspondence area between the intake air temperature Ta of the low-pressure compressor 10 and the rotational speed of the motor M that serves as a reference for opening / closing the intermediate air discharge means 21 is stored in the storage area of the control device 30. Based on the intake air temperature Ta detected by the temperature detection means 15, the control means 30 determines the release start rotation speed Ns at which the intermediate release means 21 starts releasing and the release by the intermediate release means 21. The air discharge stop rotational speed Ne to be stopped is calculated and set (S27 in FIG. 4).

この放気開始回転速度Nsと放気停止回転速度Neは,予め実験等により中間放気手段21を閉じた状態で吸気温度Ta毎にモータMの回転速度の変化と低圧段圧縮機10の吐出温度T1の変化を測定しておき,この測定結果に基づく演算式を制御装置30に記憶させておくことで,制御装置30が吸気温度Taに基づき前述の非常停止温度Tmax(一例として250℃)に対し所定の低い放気開始温度Ts(一例として230℃)に対応する回転速度を放気開始回転速度Nsとして設定すると共に,前記放気開始温度Ts(230℃)よりも所定の低い放気停止温度(一例として210℃)に対応する回転速度を,前述の放気停止回転速度Neとして設定できるようにしておく。   The air release start rotational speed Ns and the air release stop rotational speed Ne are obtained by changing the rotational speed of the motor M and the discharge of the low-pressure compressor 10 at each intake air temperature Ta in a state where the intermediate air release means 21 is closed in advance by experiments or the like. By measuring the change of the temperature T1 and storing the arithmetic expression based on the measurement result in the control device 30, the control device 30 is based on the intake air temperature Ta and the above-described emergency stop temperature Tmax (250 ° C. as an example). In contrast, a rotation speed corresponding to a predetermined low release start temperature Ts (230 ° C. as an example) is set as the release start rotation speed Ns, and a predetermined lower release than the release start temperature Ts (230 ° C.). The rotational speed corresponding to the stop temperature (210 ° C. as an example) is set so as to be set as the above-described venting stop rotational speed Ne.

一例として,本実施例の装置では,吸気温度Taが30℃,目標圧力の設定値を0.70MPaとしたときの,定格回転速度100%に対する放気開始回転速度は55%,放気停止回転速度は60%であった。   As an example, in the apparatus of this embodiment, when the intake air temperature Ta is 30 ° C. and the target pressure is set to 0.70 MPa, the discharge start rotation speed is 55% relative to the rated rotation speed 100%, and the discharge stop rotation. The speed was 60%.

制御装置30は,前述した放気開始回転速度Nsと放気停止回転速度Neに基づきモータMの回転速度Ndを監視し(S28),モータMの回転速度Ndが放気開始回転速度Ns以下になると(S29のYES)中間放気手段21による放気を開始し(S30),その後,モータMの回転速度Ndが放気停止回転速度Neよりも低い状態(S31のNO)では中間放気手段21による放気を継続し(S30に戻る),放気停止回転速度Ne以上になると(S31のYES),中間放気手段21による放気を停止し(S32),以上で説明したモータMの回転速度Ndの監視を継続する(S28へ戻る)。   The control device 30 monitors the rotation speed Nd of the motor M based on the above-described release start rotation speed Ns and release discharge stop rotation speed Ne (S28), and the rotation speed Nd of the motor M becomes equal to or less than the discharge start rotation speed Ns. Then (YES in S29), the air release by the intermediate air release means 21 is started (S30), and then the intermediate air release means in a state where the rotational speed Nd of the motor M is lower than the air release stop rotational speed Ne (NO in S31). 21 is continued (returns to S30), and when the rotation is over the discharge stop rotation speed Ne (YES in S31), the discharge by the intermediate discharge means 21 is stopped (S32), and the motor M described above is stopped. Monitoring of the rotational speed Nd is continued (return to S28).

上記構成では,通常運転時,吐出圧力Pdが目標圧力Pt(0.70MPa)となるようにモータMの回転速度を制御し,消費側の圧縮空気の消費量が減少して吐出圧力Pdが目標圧力Ptよりも高くなるとモータMの回転速度Ndを低下させる。   In the above configuration, during normal operation, the rotational speed of the motor M is controlled so that the discharge pressure Pd becomes the target pressure Pt (0.70 MPa), the consumption amount of compressed air on the consumption side is reduced, and the discharge pressure Pd becomes the target pressure. When the pressure becomes higher than the pressure Pt, the rotational speed Nd of the motor M is decreased.

消費側の圧縮空気の消費量が大幅に減少した場合には,モータMの回転速度は予め設定した設定下限回転速度Nmin(本実施例では温度検知手段15が検知した外気温Taに基づいて制御装置30が算出した設定下限回転速度Nmin:一例として定格時の45%の回転速度)まで低下するが,モータMの回転速度が設定下限回転速度Nminまで低下する過程で,回転速度Ndが放気開始回転速度Ns(一例として定格回転速度の55%の回転速度)以下に低下すると,中間放気手段21が放気を開始し,これにより中間段流路20内の圧力が低下する結果,低圧段圧縮機10の吐出温度T1を低下させることができる。   When the consumption of compressed air on the consumption side is significantly reduced, the rotational speed of the motor M is controlled based on a preset lower limit rotational speed Nmin (in this embodiment, the outside temperature Ta detected by the temperature detecting means 15). The setting lower limit rotation speed Nmin calculated by the device 30 is reduced to 45% of the rated speed as an example), but the rotation speed Nd is released in the process in which the rotation speed of the motor M is reduced to the setting lower limit rotation speed Nmin. When the rotational speed falls below the starting rotational speed Ns (for example, a rotational speed of 55% of the rated rotational speed), the intermediate venting means 21 starts venting, thereby lowering the pressure in the intermediate stage flow path 20, resulting in a low pressure. The discharge temperature T1 of the stage compressor 10 can be lowered.

本実施例で使用した多段オイルフリースクリュ圧縮機1では,温度検知手段15が検知した外気温Taが30℃でモータMの回転速度が定格値(100%),吐出圧力Pdと目標圧力Pt(0.70MPa)が略一致した全負荷運転のとき,中間段流路20内の圧力は0.20MPa,低圧段圧縮機10の吐出温度T1は190℃,高圧段圧縮機11の吐出温度T2は190℃であるが,吐出圧力Pdが目標圧力Pt(0.70MPa)でモータの回転速度が放気開始回転Ns(定格回転速度の55%の回転速度)に低下すると中間段通路内の圧力は0.23MPa,低圧段圧縮機10の吐出温度T1は230℃,高圧段圧縮機11の吐出温度T2は210℃まで上昇する。   In the multistage oil-free screw compressor 1 used in this embodiment, the outside temperature Ta detected by the temperature detection means 15 is 30 ° C., the rotational speed of the motor M is the rated value (100%), the discharge pressure Pd and the target pressure Pt ( 0.70 MPa), the pressure in the intermediate flow path 20 is 0.20 MPa, the discharge temperature T1 of the low-pressure compressor 10 is 190 ° C., and the discharge temperature T2 of the high-pressure compressor 11 is When the discharge pressure Pd is the target pressure Pt (0.70 MPa) and the rotation speed of the motor decreases to the discharge start rotation Ns (rotation speed 55% of the rated rotation speed), the pressure in the intermediate passage is The discharge temperature T1 of the low-pressure compressor 10 is increased to 230 ° C., and the discharge temperature T2 of the high-pressure compressor 11 is increased to 210 ° C.

しかし,上記放気開始回転速度Ns(定格回転速度の55%の回転速度)で中間放気手段21による放気を開始すると,放気開始直後において低圧段圧縮機10の吐出温度T1,高圧段圧縮の吐出温度T2をいずれも215℃まで低下させることができ,この温度は非常停止温度Tmax(250℃)より十分に低いことから,中間放気手段21で放気を行うことで,回転速度を更に低下させた場合であっても,吐出温度T1,T2を,非常停止温度Tmax(250℃)に対し所定の低い温度(一例として230℃)以下に抑えることが可能となる。   However, if the air release by the intermediate air discharge means 21 is started at the above-described discharge start rotation speed Ns (rotation speed 55% of the rated rotation speed), the discharge temperature T1, the high pressure stage of the low pressure compressor 10 immediately after the start of discharge. Any of the compression discharge temperatures T2 can be lowered to 215 ° C., and this temperature is sufficiently lower than the emergency stop temperature Tmax (250 ° C.). Even when the temperature is further reduced, the discharge temperatures T1 and T2 can be suppressed to a predetermined low temperature (for example, 230 ° C.) or lower than the emergency stop temperature Tmax (250 ° C.).

従って,設定下限回転速度Nminを,中間放気手段21による放気を行った状態で低圧段圧縮機10の吐出温度T1が非常停止温度Tmax(250℃)に対し所定の低い温度(一例として230℃)となるモータの回転速度を実験により得て,この実験で得た回転速度以上の値,好ましくは前記実験で得た回転速度を設定下限回転速度Nminとして設定する。   Accordingly, the discharge temperature T1 of the low-pressure compressor 10 is lower than the emergency stop temperature Tmax (250 ° C.) by a predetermined temperature (for example, 230, with the set lower limit rotational speed Nmin being discharged by the intermediate discharge means 21. The rotation speed of the motor at (° C.) is obtained by experiment, and a value equal to or higher than the rotation speed obtained in this experiment, preferably the rotation speed obtained in the experiment is set as the set lower limit rotation speed Nmin.

本実施例で使用した多段オイルフリースクリュ圧縮機では,低圧段圧縮機10の吸気温度30℃,目標圧力0.70MPaとしたときの前記実験で得た回転速度は定格回転速度の45%の回転速度であり,この回転速度を前記設定下限回転速度Nminとした。   In the multi-stage oil-free screw compressor used in this example, the rotational speed obtained in the above experiment when the intake air temperature of the low-pressure stage compressor 10 is 30 ° C. and the target pressure is 0.70 MPa is 45% of the rated rotational speed. This rotational speed was defined as the set lower limit rotational speed Nmin.

本実施例の多段オイルフリースクリュ圧縮機1において,中間放気手段21による放気を行わない場合に低圧段圧縮機10の吐出温度T1を230℃以下に抑える回転速度は,定格時の回転速度に対し55%の回転速度であり,この回転速度が,従来の多段オイルフリースクリュ圧縮機の速度制御(容量制御)時に使用できる設定下限回転速度Nminである。   In the multistage oil-free screw compressor 1 of the present embodiment, the rotational speed at which the discharge temperature T1 of the low-pressure stage compressor 10 is kept at 230 ° C. or lower when the intermediate air release means 21 is not vented is the rated speed. The rotational speed is 55%, and this rotational speed is a set lower limit rotational speed Nmin that can be used during speed control (capacity control) of a conventional multistage oil-free screw compressor.

本実施例ではこの回転速度(定格回転速度の55%)に対し,設定下限回転速度を定格回転速度の45%の回転速度まで10%も低下させることができ,速度制御(容量制御)に使用することができる回転速度の範囲を,より低速側に拡張することが可能となり,多段オイルフリースクリュ圧縮機の運転時における消費動力を減少させることができる(図5参照)。   In this embodiment, the set lower limit rotational speed can be reduced by 10% to 45% of the rated rotational speed for this rotational speed (55% of the rated rotational speed), which is used for speed control (capacity control). The range of the rotational speed that can be achieved can be expanded to a lower speed side, and the power consumption during the operation of the multistage oil-free screw compressor can be reduced (see FIG. 5).

なお,本実施例ではモータMの回転速度に基づいて中間放気手段21の動作を制御することから,制御装置30がモータMの回転速度を把握することができるようになっている必要があるが,このようなモータMの回転速度Ndは,モータ軸に回転速度センサを設けて検出するものとしても良く,又は,制御装置30がインバータを制御する際に算出する目標回転速度Ncや,インバータ31がモータMに対し出力する周波数信号に基づいてモータMの回転速度Ndを把握するように構成しても良い。   In this embodiment, since the operation of the intermediate air release means 21 is controlled based on the rotation speed of the motor M, the control device 30 needs to be able to grasp the rotation speed of the motor M. However, the rotational speed Nd of the motor M may be detected by providing a rotational speed sensor on the motor shaft, or the target rotational speed Nc calculated when the control device 30 controls the inverter, You may comprise so that the rotational speed Nd of the motor M may be grasped | ascertained based on the frequency signal which 31 outputs with respect to the motor M.

以上のようにして,中間放気手段21による放気を行っている状態で消費側における圧縮空気の消費量が増加して吐出圧力Pdが目標圧力Pt(一例として0.70MPa)よりも低くなると,制御装置30はモータMの回転速度を上昇させて,吐出圧力Pdが目標圧力Pt(0.70MPa)に近づくようにモータMの回転速度を制御する。   As described above, when the amount of compressed air consumed on the consumption side increases while the intermediate air release means 21 is releasing air, the discharge pressure Pd becomes lower than the target pressure Pt (for example, 0.70 MPa). The control device 30 increases the rotation speed of the motor M and controls the rotation speed of the motor M so that the discharge pressure Pd approaches the target pressure Pt (0.70 MPa).

モータMの回転速度の上昇により,低圧段・高圧段の両圧縮機10,11の内部漏れ量が減少して漏れた圧縮空気の再圧縮が抑えられると共に,高圧段圧縮機11の内部漏れ量が減少することで,高圧段圧縮機11の体積効率が改善し,中間段流路20内の圧力が低下し,低圧段圧縮機10の吐出温度T1が下降する。   The increase in the rotational speed of the motor M reduces the internal leakage of both the low-pressure and high-pressure compressors 10 and 11 and suppresses recompression of the leaked compressed air, and the internal leakage of the high-pressure compressor 11. Is reduced, the volumetric efficiency of the high-pressure compressor 11 is improved, the pressure in the intermediate-stage flow path 20 is lowered, and the discharge temperature T1 of the low-pressure compressor 10 is lowered.

そして,モータMの回転速度Ndが放気停止回転速度Ne(定格回転速度の60%の回転速度)以上に上昇すると,制御装置30は中間放気手段21による放気を停止する。このときの低圧段圧縮機10の吐出温度T1及び高圧段圧縮機11吐出温度T2はいずれも230℃未満である。   Then, when the rotational speed Nd of the motor M rises above the degassing stop rotational speed Ne (rotational speed 60% of the rated rotational speed), the control device 30 stops the air venting by the intermediate air vent means 21. At this time, the discharge temperature T1 of the low-pressure compressor 10 and the discharge temperature T2 of the high-pressure compressor 11 are both less than 230 ° C.

なお,本実施例では,放気停止回転速度Neを,低圧段圧縮機10の吸気温度30℃,目標圧力の設定が0.70MPaとして中間放気手段21による放気を停止した状態で運転したときの低圧段吐出温度が210℃になるモータMの回転速度として設定したが,この構成に代え,制御装置30は,例えば放気停止回転速度Neを,放気開始回転速度Ns(55%)に所定の値,例えば5%を加えた値として設定するように構成しても良い。   In the present embodiment, the operation was performed in a state where the air discharge by the intermediate air discharge means 21 was stopped with the air discharge stop rotational speed Ne set to the intake temperature of 30 ° C. of the low pressure compressor 10 and the target pressure set to 0.70 MPa. The rotation speed of the motor M at which the low-pressure stage discharge temperature is 210 ° C. is set. However, instead of this configuration, the control device 30 changes, for example, the discharge stop rotation speed Ne to the discharge start rotation speed Ns (55%). A predetermined value, for example, 5% may be set.

以上で説明した本実施例の構成では,モータMの回転速度に応じて中間放気手段21による放気の開始及び停止を制御することから,モータMの回転速度が設定下限回転速度Nminとなっている無負荷運転時においても,中間放気手段21による放気が行われることとなる。   In the configuration of the present embodiment described above, since the start and stop of the air release by the intermediate air release means 21 are controlled according to the rotation speed of the motor M, the rotation speed of the motor M becomes the set lower limit rotation speed Nmin. Even during no-load operation, the intermediate air release means 21 performs air release.

しかし,無負荷運転時には,高圧段放気手段43による放気が行われることで吐出流路40内の圧力が低下しており,その結果,中間段流路20内の圧力も低く,低圧段圧縮機10の吐出温度T1も放気停止温度Te(一例として210℃)以下となっていることから,中間放気手段21による放気を行う必要はない。   However, during no-load operation, the pressure in the discharge flow path 40 is reduced by the discharge of air from the high pressure stage discharge means 43. As a result, the pressure in the intermediate flow path 20 is low and the low pressure stage Since the discharge temperature T1 of the compressor 10 is also equal to or lower than the discharge stop temperature Te (210 ° C. as an example), it is not necessary to release the air by the intermediate discharge means 21.

一方,無負荷運転時に中間段流路20内が負圧になると,中間放気手段21を介して外気が中間段流路20内に流入する場合があることから,回転速度に基づいて中間放気手段21を制御する本実施例の構成では,制御装置30は,無負荷運転時には,中間放気手段21の放気弁21aを閉じるようにしてもよい。   On the other hand, if there is a negative pressure in the intermediate stage flow path 20 during no-load operation, outside air may flow into the intermediate stage flow path 20 via the intermediate air release means 21, and therefore, intermediate discharge based on the rotational speed may occur. In the configuration of this embodiment for controlling the air means 21, the control device 30 may close the air release valve 21a of the intermediate air release means 21 during no-load operation.

〈その他(変形例)〉
図3を参照して説明した実施例では,低圧段圧縮機10の吐出温度T1に基づいて中間放気手段21による放気を開始し,及び停止する構成を採用し,一方,図4を参照して説明して説明した実施例では,モータMの回転速度によって中間放気手段21による放気を開始し,及び停止させる構成を採用しているが,両者の組み合わせによって中間放気手段21の動作を制御するようにしても良い。
<Other (variation)>
In the embodiment described with reference to FIG. 3, a configuration is adopted in which the discharge by the intermediate discharge means 21 is started and stopped based on the discharge temperature T <b> 1 of the low-pressure compressor 10, while referring to FIG. 4. In the embodiment described and explained above, a configuration is adopted in which the air release by the intermediate air release means 21 is started and stopped according to the rotational speed of the motor M, but the combination of the both is used. The operation may be controlled.

すなわち,中間放気手段21による放気の開始は,低圧段圧縮機10の吐出温度T1に基づいて行い,中間放気手段21による放気の停止については,モータMの回転速度Ndに基づいて行い,又は,これとは逆に,中間放気手段21による放気の開始は,モータMの回転速度Ndに基づいて行い,中間放気手段21による放気の停止については,低圧段圧縮機10の吐出温度T1に基づいて行うようにしても良い。   That is, the start of release by the intermediate release means 21 is performed based on the discharge temperature T1 of the low-pressure compressor 10, and the stop of release by the intermediate release means 21 is based on the rotational speed Nd of the motor M. Or, on the contrary, the start of the release by the intermediate discharge means 21 is performed based on the rotational speed Nd of the motor M, and the stop of the discharge by the intermediate discharge means 21 is a low-pressure compressor. It may be performed based on the discharge temperature T1 of ten.

1 多段オイルフリースクリュ圧縮機
10 低圧段圧縮機
10a 吸気口(低圧段圧縮機の)
10b 吐出口(低圧段圧縮機の)
11 高圧段圧縮機
11a 吸気口(高圧段圧縮機の)
11b 吐出口(高圧段圧縮機の)
13 吸入弁
14 吸入フィルタ
15 温度検知手段(吸気温度Taの)
20 中間段流路
21 中間放気手段
21a 放気弁
21b 放気流路
21c サイレンサ
22 インタークーラ
23 温度検知手段(低圧段圧縮機の吐出温度T1の)
30 制御装置
31 インバータ
32 動力伝達手段(増速ギヤ)
40 吐出流路
41 逆止弁
42 アフタクーラ
43 高圧段放気手段
43a 放気弁
43b 放気流路
43c サイレンサ
44 圧力検知手段(吐出圧力Pdの)
45 温度検知手段(高圧段圧縮機の吐出温度T2の)
M モータ
T1 吐出温度(低圧段圧縮機の)
T2 吐出温度(高圧段圧縮機の)
Tmax 非常停止温度(ex.250℃)
Ts 放気開始温度(ex.230℃)
Te 放気停止温度(ex.210℃)
Ta 吸気温度
Nd 回転速度(測定値)
Nc 目標回転速度(演算値)
Ns 放気開始回転速度(ex.定格回転速度の55%)
Ne 放気停止回転速度(ex.定格回転速度の60%)
Nmin 設定下限回転速度(ex.定格回転速度の45%)
Pd 吐出圧力
Pt 目標圧力(ex.0.70MPa)
Pu アンロード開始圧力(ex.0.75MPa)
1 Multi-stage oil-free screw compressor 10 Low-pressure stage compressor 10a Inlet (for low-pressure stage compressor)
10b Discharge port (for low-pressure compressor)
11 High-pressure stage compressor 11a Inlet (for high-pressure stage compressor)
11b Discharge port (for high-pressure compressor)
13 Suction valve 14 Suction filter 15 Temperature detection means (intake air temperature Ta)
20 Intermediate stage flow path 21 Intermediate air release means 21a Air release valve 21b Air release flow path 21c Silencer 22 Intercooler 23 Temperature detection means (of discharge temperature T1 of the low pressure stage compressor)
30 Control device 31 Inverter 32 Power transmission means (speed-up gear)
40 Discharge flow path 41 Check valve 42 After cooler 43 High pressure stage air release means 43a Air discharge valve 43b Air discharge flow path 43c Silencer 44 Pressure detection means (of discharge pressure Pd)
45 Temperature detection means (for the discharge temperature T2 of the high-pressure compressor)
M Motor T1 Discharge temperature (low pressure stage compressor)
T2 discharge temperature (for high-pressure compressor)
Tmax Emergency stop temperature (ex.250 ℃)
Ts Air release start temperature (ex.230 ℃)
Te air stop temperature (ex.210 ℃)
Ta Intake air temperature Nd Rotational speed (measured value)
Nc Target rotational speed (calculated value)
Ns Air release start rotation speed (ex. 55% of rated rotation speed)
Ne Rotation stop rotation speed (ex. 60% of rated rotation speed)
Nmin setting lower limit rotation speed (ex. 45% of rated rotation speed)
Pd Discharge pressure Pt Target pressure (ex.0.70MPa)
Pu unloading start pressure (ex.0.75MPa)

Claims (20)

複数の圧縮機を直列に連通して多段に構成し,低圧段圧縮機で圧縮された圧縮気体を高圧段圧縮機に導入して更に圧縮する多段オイルフリースクリュ圧縮機において,
前記低圧段圧縮機に対し,前記高圧段圧縮機を小型のものとすると共に,
前記低圧段圧縮機の吐出口と前記高圧段圧縮機の吸気口を連通する中間段流路内の気体を大気放出可能とし,
前記低圧段圧縮機の吸気口を開いた状態で,前記各圧縮機の回転速度を,消費側に供給する圧縮気体の圧力変化に対応して変化させることにより行う容量制御時,前記低圧段圧縮機の吐出温度が予め設定した放気開始温度以上に上昇したとき,又は,前記低圧段圧縮機の回転速度が予め設定した放気開始回転速度以下に下降したときに,前記中間段流路内の気体の大気放出を行いつつ前記容量制御を継続することを特徴とする多段オイルフリースクリュ圧縮機の容量制御方法。
In a multi-stage oil-free screw compressor in which a plurality of compressors are connected in series to form a multi-stage, and the compressed gas compressed by the low-pressure stage compressor is introduced into the high-pressure stage compressor for further compression.
The high-pressure stage compressor is made smaller than the low-pressure stage compressor,
Enabling the gas in the intermediate-stage flow path communicating with the discharge port of the low-pressure stage compressor and the intake port of the high-pressure stage compressor to be released into the atmosphere;
When the capacity control is performed by changing the rotational speed of each compressor corresponding to the pressure change of the compressed gas supplied to the consumer side with the intake port of the low-pressure stage compressor open, the low-pressure stage compression When the discharge temperature of the compressor rises above a preset discharge start temperature, or when the rotation speed of the low-pressure compressor drops below a preset discharge start rotation speed, A capacity control method for a multi-stage oil-free screw compressor, characterized in that the capacity control is continued while discharging the gas to the atmosphere.
前記多段オイルフリースクリュ圧縮機を非常停止させる前記低圧段圧縮機の吐出温度である非常停止温度と,この非常停止温度に対し所定の低い吐出温度である前記放気開始温度とを設定し,
前記低圧段圧縮機の吐出温度が予め設定した前記放気開始温度以上に上昇したとき前記中間段流路内の気体の大気放出を行うことを特徴とする請求項1記載の多段オイルフリースクリュ圧縮機の容量制御方法。
An emergency stop temperature that is a discharge temperature of the low-pressure stage compressor that performs an emergency stop of the multi-stage oil-free screw compressor, and the discharge start temperature that is a predetermined lower discharge temperature than the emergency stop temperature are set,
2. The multistage oil-free screw compression according to claim 1, wherein when the discharge temperature of the low-pressure stage compressor rises above the preset release temperature, the gas in the intermediate stage passage is released into the atmosphere. Capacity control method.
前記中間段流路内の気体の大気放出を停止した前記容量制御時における前記低圧段圧縮機の吸気温度,回転速度,及び吐出温度の対応関係を予め求めておくと共に,多段オイルフリースクリュ圧縮機を非常停止させる前記低圧段圧縮機の吐出温度である非常停止温度を設定し,
前記吸気温度を測定し,前記対応関係に基づいて前記測定した吸気温度において前記低圧段圧縮機の吐出温度が前記非常停止温度に対し所定の低い吐出温度となる前記低圧段圧縮機の回転速度を算出して前記放気開始回転速度として設定し,前記低圧段圧縮機の回転速度が該放気開始回転速度以下に低下したとき前記中間段流路内の気体の大気放出を行うことを特徴とする請求項1記載の多段オイルフリースクリュ圧縮機の容量制御方法。
The correspondence relationship between the intake air temperature, the rotational speed, and the discharge temperature of the low-pressure compressor at the time of the capacity control in which the release of the gas in the intermediate passage is stopped is obtained in advance, and the multi-stage oil-free screw compressor Set the emergency stop temperature, which is the discharge temperature of the low-pressure compressor,
The intake air temperature is measured, and the rotation speed of the low-pressure stage compressor at which the discharge temperature of the low-pressure stage compressor becomes a predetermined lower discharge temperature than the emergency stop temperature at the measured intake air temperature based on the correspondence relationship is determined. Calculated and set as the discharge start rotation speed, and when the rotation speed of the low-pressure stage compressor falls below the discharge start rotation speed, the gas in the intermediate stage flow path is released into the atmosphere. The capacity control method for a multi-stage oil-free screw compressor according to claim 1.
前記中間段流路内の気体の大気放出を開始した時点の前記低圧段圧縮機の吐出温度に対し所定の低い温度を放気停止温度として設定し,
前記低圧段圧縮機の吐出温度が前記放気停止温度以下に下降したとき前記中間段流路内の気体の大気放出を停止することを特徴とする請求項1〜3いずれか1項記載の多段オイルフリースクリュ圧縮機の容量制御方法。
A predetermined low temperature is set as the discharge stop temperature with respect to the discharge temperature of the low-pressure stage compressor at the time when the gas in the intermediate stage passage is started to be released into the atmosphere,
The multi-stage according to any one of claims 1 to 3, wherein when the discharge temperature of the low-pressure stage compressor falls below the discharge stop temperature, the atmospheric discharge of the gas in the intermediate stage flow path is stopped. Capacity control method for oil-free screw compressors.
前記中間段流路内の気体の大気放出を開始した時点の前記低圧段圧縮機の回転速度に対し所定の高い回転速度を放気停止回転速度として設定し,
前記低圧段圧縮機の回転速度が前記放気停止回転速度以上に上昇したとき前記中間段流路内の気体の大気放出を停止することを特徴とする請求項1〜3いずれか1項記載の多段オイルフリースクリュ圧縮機の容量制御方法。
A predetermined high rotational speed is set as the degassing stop rotational speed with respect to the rotational speed of the low-pressure stage compressor at the start of the atmospheric discharge of the gas in the intermediate stage flow path;
The atmospheric discharge of the gas in the intermediate stage flow path is stopped when the rotational speed of the low-pressure stage compressor rises above the degassing stop rotational speed. Capacity control method for multi-stage oil-free screw compressors.
前記中間段流路内の気体の大気放出を停止した前記容量制御時における前記低圧段圧縮機の吸気温度,回転速度,及び吐出温度の対応関係を予め求めておき,
前記吸気温度を測定し,前記対応関係に基づいて前記測定された吸気温度において前記中間段流路内の気体の大気放出を開始した時点の前記低圧段圧縮機の吐出温度に対し所定の低い温度となる回転速度を算出して放気停止回転速度として設定し,
前記低圧段圧縮機の回転速度が前記放気停止回転速度以上に上昇したとき前記中間段流路内の気体の大気放出を停止することを特徴とする請求項1〜3いずれか1項記載の多段オイルフリースクリュ圧縮機の容量制御方法。
The correspondence relationship between the intake air temperature, the rotational speed, and the discharge temperature of the low-pressure compressor at the time of the capacity control in which the release of the gas in the intermediate flow path is stopped is obtained in advance,
The intake air temperature is measured, and a predetermined lower temperature than the discharge temperature of the low-pressure compressor at the time when the atmospheric discharge of the gas in the intermediate stage flow path is started at the measured intake air temperature based on the correspondence relationship Calculate the rotation speed to be set as the degassing stop rotation speed,
The atmospheric discharge of the gas in the intermediate stage flow path is stopped when the rotational speed of the low-pressure stage compressor rises above the degassing stop rotational speed. Capacity control method for multi-stage oil-free screw compressors.
前記容量制御を,前記低圧段圧縮機の回転速度と前記高圧段圧縮機の回転速度の比を一定に固定して行うことを特徴とする請求項1〜6いずれか1項記載の多段オイルフリースクリュ圧縮機の容量制御方法。   The multistage oil-free according to any one of claims 1 to 6, wherein the capacity control is performed with a fixed ratio of a rotation speed of the low-pressure stage compressor and a rotation speed of the high-pressure stage compressor fixed. Screw compressor capacity control method. 前記中間段流路内の気体の大気放出を開始した直後の前記低圧段圧縮機の吐出温度と前記高圧段圧縮機の吐出温度が,略同一の温度となるように前記中間段流路内の気体の放出量を調整することを特徴とする請求項1〜7いずれか1項記載の多段オイルフリースクリュ圧縮機の容量制御方法。   The discharge temperature of the low-pressure compressor and the discharge temperature of the high-pressure compressor immediately after starting the release of the gas in the intermediate channel are substantially the same temperature. The capacity control method for a multi-stage oil-free screw compressor according to any one of claims 1 to 7, wherein the amount of gas released is adjusted. 前記中間段流路内の気体の大気放出を行っている前記容量制御時に,前記低圧段圧縮機の吐出温度が多段オイルフリースクリュ圧縮機を非常停止させる非常停止温度に対し所定の低い温度となる前記低圧段圧縮機の回転速度を予め測定しておき,この測定した回転速度を,前記容量制御時における前記低圧段圧縮機の回転速度範囲の下限値に設定することを特徴とする請求項1〜8いずれか1項記載の多段オイルフリースクリュ圧縮機の容量制御方法。   During the capacity control for discharging the gas in the intermediate stage flow path to the atmosphere, the discharge temperature of the low pressure stage compressor becomes a predetermined lower temperature than the emergency stop temperature at which the multistage oil-free screw compressor is emergency stopped. 2. The rotational speed of the low-pressure stage compressor is measured in advance, and the measured rotational speed is set to a lower limit value of a rotational speed range of the low-pressure stage compressor during the capacity control. The capacity | capacitance control method of the multistage oil-free screw compressor of any one of -8. 前記中間段流路内の気体の大気放出を行っている前記容量制御時において,多段オイルフリースクリュ圧縮機を非常停止させる非常停止温度に対し所定の低い吐出温度となる前記低圧段圧縮機の吸気温度と回転速度との対応関係を予め求めておき,
前記吸気温度を測定し,測定した吸気温度から前記対応関係に基づいて前記所定の低い吐出温度に対応する回転速度を算出し,この算出した回転速度を,前記容量制御時における前記低圧段圧縮機の回転速度範囲の下限値に設定することを特徴とする請求項1〜9いずれか1項記載の多段オイルフリースクリュ圧縮機の容量制御方法。
The intake of the low-pressure compressor, which has a predetermined low discharge temperature with respect to the emergency stop temperature at which the multi-stage oil-free screw compressor is emergency-stopped during the capacity control in which the gas in the intermediate-stage channel is released into the atmosphere. Find the correspondence between temperature and rotational speed in advance,
The intake air temperature is measured, a rotation speed corresponding to the predetermined low discharge temperature is calculated from the measured intake air temperature based on the correspondence relationship, and the calculated rotation speed is used as the low pressure stage compressor at the time of the capacity control. The capacity control method for a multi-stage oil-free screw compressor according to any one of claims 1 to 9, wherein the lower limit value of the rotation speed range is set.
低圧段圧縮機と,該低圧段圧縮機で圧縮された圧縮気体を導入して更に圧縮する高圧段圧縮機を備え,前記低圧段圧縮機の吸気口を開いた状態で,前記各圧縮機の回転速度を,消費側に供給する圧縮気体の圧力変化に対応して変化させる容量制御を行う容量制御装置を備えた多段オイルフリースクリュ圧縮機において,
前記低圧段圧縮機に対し,前記高圧段圧縮機を小型のものとすると共に,
前記低圧段圧縮機の吐出口と前記高圧段圧縮機の吸気口を連通する中間段流路内の気体を大気放出する中間放気手段を設け,
前記容量制御装置に,前記低圧段圧縮機の吐出温度が予め設定した放気開始温度以上に上昇したとき,又は,前記低圧段圧縮機の回転速度が予め設定した放気開始回転速度以下に下降したときに,前記中間放気手段に大気放出を行わせる制御装置を設けたことを特徴とする多段オイルフリースクリュ圧縮機。
A low-pressure stage compressor, and a high-pressure stage compressor that introduces compressed gas compressed by the low-pressure stage compressor and further compresses the compressed gas. In a multi-stage oil-free screw compressor equipped with a capacity control device that performs capacity control for changing the rotational speed corresponding to the pressure change of the compressed gas supplied to the consumer side,
The high-pressure stage compressor is made smaller than the low-pressure stage compressor,
Providing an intermediate air discharge means for releasing the gas in the intermediate stage flow path communicating with the discharge port of the low pressure stage compressor and the intake port of the high pressure stage compressor;
In the capacity control device, when the discharge temperature of the low-pressure stage compressor rises above a preset discharge start temperature, or the rotation speed of the low-pressure stage compressor falls below a preset discharge start rotation speed. A multi-stage oil-free screw compressor is provided, wherein a control device is provided for causing the intermediate air release means to release air to the atmosphere.
前記制御装置が,
前記多段オイルフリースクリュ圧縮機を非常停止させる前記低圧段圧縮機の吐出温度である非常停止温度と,この非常停止温度に対し所定の低い吐出温度である前記放気開始温度とを記憶した記憶領域を備え,
前記低圧段圧縮機の吐出温度が予め設定した前記放気開始温度以上に上昇したとき,前記中間放気手段に大気放出を行わせることを特徴とする請求項11記載の多段オイルフリースクリュ圧縮機。
The control device is
A storage area that stores an emergency stop temperature that is a discharge temperature of the low-pressure stage compressor that makes an emergency stop of the multi-stage oil-free screw compressor, and the discharge start temperature that is a predetermined lower discharge temperature than the emergency stop temperature With
12. The multi-stage oil-free screw compressor according to claim 11, wherein when the discharge temperature of the low-pressure stage compressor rises above the preset discharge start temperature, the intermediate discharge means is released into the atmosphere. .
前記制御装置が,
前記中間段流路内の気体の大気放出を停止した前記容量制御時における前記低圧段圧縮機の吸気温度,回転速度,及び吐出温度の対応関係を記憶すると共に,多段オイルフリースクリュ圧縮機を非常停止させる前記低圧段圧縮機の吐出温度である非常停止温度を記憶した記憶領域を備え,
前記対応関係に基づいて,測定された前記吸気温度から,該吸気温度において前記非常停止温度に対し所定の低い温度となる回転速度を算出して前記放気開始回転速度として設定し,
前記低圧段圧縮機の回転速度が前記放気開始回転速度以下に低下したとき,前記中間放気手段に前記大気放出を行わせることを特徴とする請求項11記載の多段オイルフリースクリュ圧縮機。
The control device is
Stores the correspondence relationship between the intake air temperature, the rotational speed, and the discharge temperature of the low-pressure compressor at the time of the capacity control in which the release of the gas in the intermediate passage is stopped, and the multi-stage oil-free screw compressor is A storage area for storing an emergency stop temperature, which is a discharge temperature of the low-pressure stage compressor to be stopped,
Based on the correspondence relationship, a rotation speed at which the intake air temperature becomes a predetermined lower temperature than the emergency stop temperature is calculated and set as the discharge start rotation speed.
12. The multi-stage oil-free screw compressor according to claim 11, wherein when the rotational speed of the low-pressure stage compressor drops below the air release start rotational speed, the intermediate air release means performs the atmospheric discharge.
前記制御装置が,前記中間放気手段による大気放出開始時点の前記低圧段圧縮機の吐出温度に対し所定の低い温度を放気停止温度として設定し,
前記低圧段圧縮機の吐出温度が前記放気停止温度以下に下降したとき前記中間放気手段に大気放出を停止させることを特徴とする請求項11〜13いずれか1項記載の多段オイルフリースクリュ圧縮機。
The control device sets a predetermined low temperature as the discharge stop temperature with respect to the discharge temperature of the low-pressure compressor at the start of the atmospheric discharge by the intermediate discharge means,
The multistage oil-free screw according to any one of claims 11 to 13, wherein when the discharge temperature of the low-pressure stage compressor drops below the discharge stop temperature, the intermediate discharge unit stops the atmospheric discharge. Compressor.
前記制御装置が,前記中間放気手段による大気放出開始時点の前記低圧段圧縮機の回転速度に対し所定の高い回転速度を放気停止回転速度として設定し,
前記低圧段圧縮機の回転速度が前記放気停止回転速度以上に上昇したとき前記中間放気手段による前記大気放出を停止することを特徴とする請求項11〜13いずれか1項記載の多段オイルフリースクリュ圧縮機。
The control device sets a predetermined high rotation speed as a rotation speed of the low-pressure stage compressor at the time of starting the atmospheric discharge by the intermediate discharge means as a discharge stop rotation speed;
The multistage oil according to any one of claims 11 to 13, wherein when the rotation speed of the low-pressure stage compressor is increased to be equal to or higher than the discharge stop rotation speed, the atmospheric discharge by the intermediate discharge means is stopped. Free screw compressor.
前記制御装置が,
前記中間放気手段による大気放出を停止した前記容量制御時における前記低圧段圧縮機の吸気温度,回転速度,及び吐出温度の対応関係を記憶した記憶領域を備え,
前記対応関係に基づいて,測定された吸気温度から,該吸気温度において前記中間放気手段による大気放出開始時点の前記低圧段圧縮機の吐出温度に対し所定の低い温度となる回転速度を算出して放気停止回転速度として設定し,
前記低圧段圧縮機の回転速度が前記放気停止回転速度以上に上昇したとき,前記中間放気手段による前記大気放出を停止させることを特徴とする請求項11〜13いずれか1項記載の多段オイルフリースクリュ圧縮機。
The control device is
A storage area for storing a correspondence relationship between the intake air temperature, the rotational speed, and the discharge temperature of the low-pressure compressor at the time of the capacity control in which the atmospheric discharge by the intermediate discharge means is stopped;
Based on the correspondence relationship, the rotational speed at which the intake air temperature becomes a predetermined low temperature with respect to the discharge temperature of the low-pressure compressor at the start of atmospheric release by the intermediate air discharge means is calculated from the measured intake air temperature. And set it as the venting stop rotation
The multi-stage according to any one of claims 11 to 13, wherein when the rotational speed of the low-pressure stage compressor is increased to be greater than or equal to the exhaust gas stop rotational speed, the atmospheric discharge by the intermediate exhaust means is stopped. Oil-free screw compressor.
前記低圧段圧縮機と前記高圧段圧縮機に共通のモータと,前記モータの回転を一定の増速比で前記低圧段圧縮機と前記高圧段圧縮機に伝達する動力伝達手段を備えることを特徴とする請求項11〜16いずれか1項記載の多段オイルフリースクリュ圧縮機。   A motor common to the low-pressure stage compressor and the high-pressure stage compressor, and power transmission means for transmitting the rotation of the motor to the low-pressure stage compressor and the high-pressure stage compressor at a constant speed increase ratio. The multistage oil-free screw compressor according to any one of claims 11 to 16. 前記中間放気手段による放気開始直後の前記低圧段圧縮機の吐出温度と前記高圧段圧縮機の吐出温度が,略同一の温度となるよう前記中間放気手段による放気量を設定したことを特徴とする請求項11〜17いずれか1項記載の多段オイルフリースクリュ圧縮機。   The amount of air discharged by the intermediate air discharge means is set so that the discharge temperature of the low pressure stage compressor immediately after the start of air discharge by the intermediate air discharge means and the discharge temperature of the high pressure stage compressor are substantially the same temperature. The multistage oil-free screw compressor according to any one of claims 11 to 17. 前記制御装置が,
前記中間放気手段による大気放出を行っている前記容量制御時に,前記低圧段圧縮機の吐出温度が多段オイルフリースクリュ圧縮機を非常停止させる前記低圧段圧縮機の吐出温度である非常停止温度に対し所定の低い温度となる前記低圧段圧縮機の回転速度を記憶していると共に,
該回転速度を,前記容量制御時における回転速度範囲の下限値に設定することを特徴とする請求項11〜18いずれか1項記載の多段オイルフリースクリュ圧縮機。
The control device is
The discharge temperature of the low-pressure stage compressor is set to an emergency stop temperature that is the discharge temperature of the low-pressure stage compressor that stops the multi-stage oil-free screw compressor at the time of the capacity control in which the air is released by the intermediate air release means. And storing the rotational speed of the low-pressure compressor at a predetermined low temperature,
The multistage oil-free screw compressor according to any one of claims 11 to 18, wherein the rotation speed is set to a lower limit value of a rotation speed range at the time of the capacity control.
前記制御装置が,
前記中間段流路内の気体の大気放出を行っている前記容量制御時において,多段オイルフリースクリュ圧縮機を非常停止させる低圧段圧縮機の吐出温度である非常停止温度に対し所定の低い吐出温度となる前記低圧段圧縮機の吸気温度と回転速度との対応関係を記憶した記憶領域を備え,
前記対応関係に基づいて,測定された吸気温度から前記所定の低い温度に対応する回転速度を算出すると共に,
該回転速度を,前記容量制御時における回転速度範囲の下限値に設定することを特徴とする請求項11〜18いずれか1項記載の多段オイルフリースクリュ圧縮機。
The control device is
A predetermined low discharge temperature with respect to an emergency stop temperature, which is a discharge temperature of a low-pressure stage compressor that performs an emergency stop of the multi-stage oil-free screw compressor, during the capacity control in which the gas in the intermediate stage passage is released into the atmosphere. A storage area storing the correspondence between the intake air temperature and the rotational speed of the low-pressure stage compressor,
Based on the correspondence, the rotational speed corresponding to the predetermined low temperature is calculated from the measured intake air temperature,
The multistage oil-free screw compressor according to any one of claims 11 to 18, wherein the rotation speed is set to a lower limit value of a rotation speed range at the time of the capacity control.
JP2017008841A 2017-01-20 2017-01-20 Capacity control method for multi-stage oil-free screw compressor and multi-stage oil-free screw compressor Active JP6812248B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017008841A JP6812248B2 (en) 2017-01-20 2017-01-20 Capacity control method for multi-stage oil-free screw compressor and multi-stage oil-free screw compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017008841A JP6812248B2 (en) 2017-01-20 2017-01-20 Capacity control method for multi-stage oil-free screw compressor and multi-stage oil-free screw compressor

Publications (2)

Publication Number Publication Date
JP2018115643A true JP2018115643A (en) 2018-07-26
JP6812248B2 JP6812248B2 (en) 2021-01-13

Family

ID=62983612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017008841A Active JP6812248B2 (en) 2017-01-20 2017-01-20 Capacity control method for multi-stage oil-free screw compressor and multi-stage oil-free screw compressor

Country Status (1)

Country Link
JP (1) JP6812248B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020084919A (en) * 2018-11-29 2020-06-04 大陽日酸株式会社 Operating method for multistage high-pressure gas compression device, and multistage high-pressure gas compression device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6240290U (en) * 1985-08-28 1987-03-10
JPH0466796A (en) * 1990-07-06 1992-03-03 Hitachi Ltd Method and device for control in compression equipment
JPH07158576A (en) * 1993-12-03 1995-06-20 Kobe Steel Ltd Two-stage type oil free screw compressor
JP2001123963A (en) * 1999-10-22 2001-05-08 Hitachi Ltd Oilless variable displacement compressor device
JP2002138977A (en) * 2000-10-31 2002-05-17 Hitachi Ltd Rotation speed variable oil-free screw compressor and operation control method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6240290U (en) * 1985-08-28 1987-03-10
JPH0466796A (en) * 1990-07-06 1992-03-03 Hitachi Ltd Method and device for control in compression equipment
JPH07158576A (en) * 1993-12-03 1995-06-20 Kobe Steel Ltd Two-stage type oil free screw compressor
JP2001123963A (en) * 1999-10-22 2001-05-08 Hitachi Ltd Oilless variable displacement compressor device
JP2002138977A (en) * 2000-10-31 2002-05-17 Hitachi Ltd Rotation speed variable oil-free screw compressor and operation control method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020084919A (en) * 2018-11-29 2020-06-04 大陽日酸株式会社 Operating method for multistage high-pressure gas compression device, and multistage high-pressure gas compression device
JP7092649B2 (en) 2018-11-29 2022-06-28 大陽日酸株式会社 How to operate the multi-stage high-pressure gas compressor, multi-stage high-pressure gas compressor

Also Published As

Publication number Publication date
JP6812248B2 (en) 2021-01-13

Similar Documents

Publication Publication Date Title
KR100345843B1 (en) Screw compressor and method for controlling the operation of the same
JP3817420B2 (en) Variable rotational speed oil-free screw compressor and operation control method thereof
WO2004036045A1 (en) Variable inner volume ratio-type inverter screw compressor
JP2008255799A (en) Rotary compressor and its operation control method
AU2019204608A1 (en) Method of pumping in a system of vacuum pumps and system of vacuum pumps
US6881040B2 (en) Multi-stage screw compressor unit accommodating high suction pressure and pressure fluctuations and method of operation thereof
JP2015096731A (en) Oilless compressor and control method for the same
JP6812248B2 (en) Capacity control method for multi-stage oil-free screw compressor and multi-stage oil-free screw compressor
KR102126815B1 (en) Refrigeration apparatus
JP4745208B2 (en) Oil-free screw compressor
JP4659851B2 (en) Oil-free screw compressor
JP5526267B2 (en) air compressor
KR101409578B1 (en) Steam driven compressor
JP4127670B2 (en) Oil-free screw compressor
JP4549825B2 (en) Oil-free compressor speed control method
JP4825573B2 (en) Operation control method of oil-free screw compressor with variable rotation speed
JP2005351169A (en) Screw compressor and its operation control method
JP4608289B2 (en) Operation control method of screw compressor
KR101948648B1 (en) Turbo air compressor test apparatus
JP5386532B2 (en) Compressor
JP5422431B2 (en) Control method of fluid compressor and fluid compressor
JP4463011B2 (en) Capacity control method and capacity control apparatus for fluid compressor
JP6454607B2 (en) Oil-free compressor
WO2022044862A1 (en) Air compressor
JP7461255B2 (en) Compressed gas cooling method and compressed gas cooling device in compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201216

R150 Certificate of patent or registration of utility model

Ref document number: 6812248

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250