JP2005351169A - Screw compressor and its operation control method - Google Patents

Screw compressor and its operation control method Download PDF

Info

Publication number
JP2005351169A
JP2005351169A JP2004172709A JP2004172709A JP2005351169A JP 2005351169 A JP2005351169 A JP 2005351169A JP 2004172709 A JP2004172709 A JP 2004172709A JP 2004172709 A JP2004172709 A JP 2004172709A JP 2005351169 A JP2005351169 A JP 2005351169A
Authority
JP
Japan
Prior art keywords
discharge
air
pressure
suction
screw compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004172709A
Other languages
Japanese (ja)
Inventor
Takashi Saito
隆史 齋藤
Junji Okita
純二 沖田
Seiji Tsuru
誠司 鶴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industries Co Ltd filed Critical Hitachi Industries Co Ltd
Priority to JP2004172709A priority Critical patent/JP2005351169A/en
Publication of JP2005351169A publication Critical patent/JP2005351169A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To automatically expand a control range of suction throttle control operation having high energy efficiency in capacity control of a screw compressor. <P>SOLUTION: This screw compressor adjusts capacity by adjusting delivery pressure substantially constant by performing blow-off control by a blow-off valve 4 arranged on the delivery side in a low load area by performing suction throttle control for keeping delivery air pressure substantially constant by adjusting a delivery air quantity by opening and closing a suction throttle valve 3 arranged on the suction side in a high load area. The screw compressor continues the suction throttle control without performing the blow-off control until the pressure ratio Pd/Ps being the ratio of delivery air pressure to suction air pressure reaches a predetermined pressure ratio value by detecting the suction air pressure Ps and the delivery air pressure Pd of a compressor body 1. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、吐出空気に油分の混入しないオイルフリースクリュー圧縮機に係り、特に、広い負荷領域での吸入絞り制御運転を可能にするスクリュー圧縮機及びスクリュー圧縮機の運転制御方式に関する。   The present invention relates to an oil-free screw compressor that does not mix oil in discharged air, and more particularly to a screw compressor that enables a suction throttle control operation in a wide load region and an operation control system for the screw compressor.

空気圧縮機は各種産業において欠かせない設備となっているが、電子関連、食品、化学などの油分の混入を嫌う産業分野においては、吐出空気に油分が混入しないオイルフリースクリュー圧縮機の需要が高い。   Air compressors are indispensable equipment in various industries, but there is a demand for oil-free screw compressors that do not mix oil in the discharge air in industries that dislike mixing oil, such as electronics, food, and chemicals. high.

一般に空気圧縮機は、設定制御圧力範囲内で運転し、ユーザの空気使用量に応じた吐出空気量制御が必要である。また、空気圧縮機の消費電力費は工場設備における電力費の約25%を占めているため、省エネルギ対応の圧縮機が市場ニーズとなっている。   Generally, an air compressor is operated within a set control pressure range, and discharge air amount control according to a user's air usage is required. In addition, since the power consumption cost of the air compressor accounts for about 25% of the power cost of the factory facilities, compressors that can save energy are in the market.

オイルフリースクリュー圧縮機の一般的な容量制御方式として2ステップ制御方式がある。2ステップ制御方式は、圧縮機の吐出空気圧力Pを検出し、ある設定された上限圧力Pと下限圧力Pに対してP>P>Pとなるように負荷運転と無負荷運転を繰り返すことにより、圧縮空気使用量に合わせて設定圧力幅の中で圧縮機の運転を行う容量制御方式である(回転機を常に一定回転数で回転させ、吸入絞り弁を全閉又は全開させ同時に放風弁を全開又は全閉させる制御である)。 There is a two-step control method as a general capacity control method of an oil-free screw compressor. The two-step control method detects the discharge air pressure P 0 of the compressor and does not perform load operation so that P 1 > P 0 > P 2 with respect to a certain set upper limit pressure P 1 and lower limit pressure P 2 . This is a capacity control system that operates the compressor within the set pressure range according to the amount of compressed air used by repeating the load operation (the rotating throttle is always rotated at a constant speed and the intake throttle valve is fully closed or This is a control that fully opens and simultaneously opens or closes the vent valve).

ここで、負荷運転は、圧縮空気使用量が増加し吐出圧力が設定圧力値より低くなったとき、吸入側に設けた吸入弁を全開し、吐出口に設けた放風弁を閉塞することにより、圧縮空気を連続吐出する運転状態である。また、無負荷運転とは、圧縮空気使用量が減少し吐出空気圧力が設定圧力値に到達したとき、吸入側に設けた吸入弁を閉塞し、吐出側に設けた放風弁を開放することにより、圧縮仕事をせず、圧縮機の動力を低減する運転状態である。   Here, in the load operation, when the amount of compressed air used increases and the discharge pressure becomes lower than the set pressure value, the intake valve provided on the suction side is fully opened and the air discharge valve provided on the discharge port is closed. In this operation state, compressed air is continuously discharged. Also, no-load operation means that when the amount of compressed air used decreases and the discharge air pressure reaches the set pressure value, the intake valve provided on the intake side is closed and the air discharge valve provided on the discharge side is opened. Therefore, it is an operation state in which the compression work is not performed and the power of the compressor is reduced.

しかし、この2ステップ制御方式は、低負荷時でもロータ回転速度は全負荷時と変わらず、圧縮仕事は低減するが機械損失は低減しないため、エネルギ効率が低下している。また、ある一定の圧力幅を確保する必要があり、その分、平均吐出空気圧力が高くなるため消費動力が大きくなる。また、圧力変動があるため圧縮空気の用途によっては使用が困難となる。   However, in this two-step control method, the rotor rotational speed does not change even when the load is low, and the compression work is reduced but the mechanical loss is not reduced, so that the energy efficiency is lowered. In addition, it is necessary to ensure a certain pressure range, and accordingly, the average discharge air pressure is increased, so that the power consumption is increased. Moreover, since there is a pressure fluctuation, it becomes difficult to use depending on the use of compressed air.

一方、2ステップ制御方式に対し、圧縮機の負荷の変動に対応させて高いエネルギ効率を得ることのできる容量制御方式として、インバータ駆動による回転数制御方式がある。圧縮機の吐出空気圧力が一定になるようにインバータによって主電動機の回転数を変化させ、消費動力を低減させることができる。また、吐出空気圧力の一定制御が可能であるため、平均吐出空気圧力を低減させることが可能であり、その分消費動力を低減させることができ、省エネ効果が高い。   On the other hand, as a capacity control method capable of obtaining high energy efficiency in response to fluctuations in the load of the compressor, there is a rotation speed control method by inverter drive, in contrast to the two-step control method. The number of revolutions of the main motor can be changed by the inverter so that the discharge air pressure of the compressor becomes constant, and the power consumption can be reduced. Further, since the discharge air pressure can be controlled constantly, the average discharge air pressure can be reduced, and the power consumption can be reduced correspondingly, resulting in a high energy saving effect.

しかし、インバータ駆動の回転数制御方式を例示した特許文献1記載のように、圧縮機の吐出空気圧力を使用空気圧力に保ちながら回転数制御を行なった場合、低回転領域では押しのけ空気量に対する内部空気漏れ量比が増大し、圧縮作動室内において上流側に漏れた空気を再圧縮することから圧縮空気の温度が上昇し、エネルギ効率も大幅に低下するため、ある回転数以下での運転が困難になる。そこで、低負荷領域である設定消費空気量以下の領域では、吐出側に設けられた放風弁を開放し、吐出空気を放風することにより容量制御を行う必要がある。   However, as described in Patent Document 1 illustrating an inverter-driven rotation speed control method, when the rotation speed control is performed while maintaining the discharge air pressure of the compressor at the operating air pressure, the internal capacity with respect to the displacement air amount is low in the low rotation area. The ratio of air leakage increases, and the air leaked upstream in the compression chamber is recompressed. As a result, the temperature of the compressed air rises and the energy efficiency is greatly reduced. become. In view of this, it is necessary to perform capacity control by opening a discharge valve provided on the discharge side and discharging discharge air in a low load region or less than a set consumption air amount.

インバータによる回転数制御は全体的には省エネ効果が高いと言えるが、インバータロスがあるため高負荷領域では省エネ効果が小さくなってしまう。また、インバータ装置は特に容量の大きいクラスでは非常に高価であり、ユーザの初期投資の負担が大きくなってしまう。   Although it can be said that the rotational speed control by the inverter has a high energy-saving effect as a whole, the energy-saving effect is reduced in a high load region because of inverter loss. Further, the inverter device is very expensive particularly in the class having a large capacity, and the burden of the initial investment of the user is increased.

一方、主に油冷式スクリュー圧縮機の容量制御方式として広く用いられている容量制御方式として吸入絞り制御方式がある(この吸入絞り制御方式では回転機の回転数は一定であり、吸入絞り弁の開度を加減調整して制御するものである。なお、後述するが、本発明はこの吸入絞り制御方式の改良版である)。吸入側に吸入絞り弁を設置し、検出した吐出空気圧力に比例して吸入絞り弁を開閉させて、吸入空気量を制限し、吐出空気圧力を一定に保つ容量制御方式である。オイルフリースクリュー圧縮機の場合には、低負荷領域において吸入絞り弁を絞ることにより、圧縮機本体の吸入空気圧力と吐出空気圧力との圧力比が大きくなる過圧縮状態となり、吐出空気温度が上昇して、圧縮機本体内の1対のロータが熱膨張し接触する危険性がある。   On the other hand, there is a suction throttle control system that is widely used mainly as a capacity control system for oil-cooled screw compressors (in this suction throttle control system, the rotation speed of the rotating machine is constant, and the suction throttle valve (The present invention is an improved version of this suction throttle control system, which will be described later). This is a capacity control system in which a suction throttle valve is installed on the suction side, the suction throttle valve is opened and closed in proportion to the detected discharge air pressure, the intake air amount is limited, and the discharge air pressure is kept constant. In the case of an oil-free screw compressor, by restricting the suction throttle valve in the low load region, the pressure ratio between the intake air pressure and the discharge air pressure in the compressor body becomes large, and the discharge air temperature rises. Thus, there is a risk that the pair of rotors in the compressor main body may thermally expand and come into contact with each other.

この過圧縮状態を避けるために、吸入絞り制御において運転可能な範囲で最も過酷な条件において過圧縮状態となりうる吸入絞り弁の限界開度を設定最小開度として設定し、低負荷となり吸入絞り弁の開度が設定最小開度に達した場合には、吸入絞り制御から、吐出側に設置された放風弁を開放することにより吐出圧力を一定に保つ放風制御に切り替える制御を行う必要がある。例えば、限界開度として設定された絞り弁の絞り開度が80%に達したときには放風弁を開放して放風制御に切り替える制御を行うものである。   In order to avoid this over-compression state, the limit opening of the suction throttle valve that can be over-compressed under the most severe conditions that can be operated in the suction throttle control is set as the set minimum opening, and the suction throttle valve becomes low in load. When the opening of the valve reaches the set minimum opening, it is necessary to perform control to switch from suction throttle control to air discharge control that keeps the discharge pressure constant by opening the air discharge valve installed on the discharge side. is there. For example, when the throttle opening of the throttle valve set as the limit opening reaches 80%, control is performed to open the air discharge valve and switch to air discharge control.

吸入絞り制御方式は、高負荷領域では圧力一定制御にて容量制御を行うことができるため吐出平均圧力を下げることにより消費動力が減少し、省エネ効果が高い。また、高価な装置等が必要無いため比較的安価に抑えることができる。
特開2001−342982
In the suction throttle control method, the capacity control can be performed by the constant pressure control in the high load region, so that the power consumption is reduced by lowering the discharge average pressure, and the energy saving effect is high. In addition, since an expensive device or the like is not necessary, the cost can be kept relatively low.
JP 2001-342982

しかしながら、吸入絞り制御は高負荷領域では省エネ効果が高いが、低負荷領域では放風制御に切り替える必要があるため省エネ効果が小さくなる。吸入絞り制御の吸入絞り弁の設定最小開度は運転可能条件(吸入空気温度、吸入エアフィルタの圧損など)内で最も過酷な条件にて決定しているため、実際に設定最小開度に達した場合でも過圧縮状態に達していない場合が多い。そこで、吸入絞り制御の省エネ効果を高めるためには、実運転状態にて可能な限り吸入絞り制御範囲を自動的に拡大することのできる制御方式が望まれる。   However, the suction throttle control has a high energy saving effect in the high load region, but the energy saving effect becomes small because it is necessary to switch to the air discharge control in the low load region. The minimum opening of the suction throttle valve for suction throttle control is determined under the most severe conditions within the operating conditions (suction air temperature, pressure loss of the suction air filter, etc.). In many cases, the overcompressed state is not reached. Therefore, in order to enhance the energy saving effect of the suction throttle control, a control method that can automatically expand the suction throttle control range as much as possible in the actual operation state is desired.

本発明の目的は、エネルギ効率の高い吸入絞り制御の制御範囲を拡大することのできるスクリュー圧縮機を提供することにある。   The objective of this invention is providing the screw compressor which can expand the control range of the suction throttle control with high energy efficiency.

前記課題を解決するために、本発明は次のような構成を採用する。
高負荷領域では吸入側に設置された吸入絞り弁を開閉させ吐出空気量を調整することにより吐出空気圧力を略一定に保つ吸入絞り制御を行い、低負荷領域では吐出側に設置された放風弁による放風制御を行い吐出圧力を略一定に調整して容量調整を行うスクリュー圧縮機であって、
圧縮機本体の吸入空気圧力Psと吐出空気圧力Pdを検出し、吸入空気圧力と吐出空気圧力との比である圧力比Pd/Psが所定の圧力比値に達するまで前記吸入絞り制御を行う構成とする。
In order to solve the above problems, the present invention adopts the following configuration.
In the high load area, the suction throttle control is performed to keep the discharge air pressure substantially constant by opening and closing the suction throttle valve installed on the suction side and adjusting the discharge air volume. In the low load area, the air discharge is installed on the discharge side. A screw compressor that performs discharge control by a valve and adjusts the discharge pressure to be substantially constant to adjust the capacity,
A configuration in which the intake air pressure Ps and the discharge air pressure Pd of the compressor body are detected, and the suction throttle control is performed until the pressure ratio Pd / Ps, which is the ratio of the intake air pressure and the discharge air pressure, reaches a predetermined pressure ratio value. And

また、高負荷領域では吸入側に設置された吸入絞り弁を開閉させることにより吐出空気量を調整するとともに吐出空気圧力を略一定に保つ吸入絞り制御を行い、低負荷領域では吐出側に設置された放風弁による放風制御を行い吐出圧力を一定に調整して容量調整を行うスクリュー圧縮機であって、
圧縮機本体の吐出空気温度を検出し、前記吐出空気温度が所定の温度に達するまで前記吸入絞り制御を行う構成とする。
Also, in the high load region, the intake air amount is adjusted by opening and closing the suction throttle valve installed on the suction side, and the suction throttle control is performed to keep the discharge air pressure substantially constant. In the low load region, the suction throttle valve is installed on the discharge side. A screw compressor that performs discharge control with a discharge valve and adjusts the discharge pressure to a constant level to adjust the capacity,
The configuration is such that the discharge air temperature of the compressor body is detected and the suction throttle control is performed until the discharge air temperature reaches a predetermined temperature.

本発明によれば、安価で容易に、吐出空気の圧力変動が小さくエネルギ効率の高い吸入絞り制御運転の制御範囲を自動的に拡大させ、広範囲にわたって運転可能とすることができる。   According to the present invention, the control range of the suction throttle control operation in which the discharge air pressure fluctuation is small and the energy efficiency is high can be automatically expanded at low cost and can be operated over a wide range.

本発明の実施形態に係るスクリュー圧縮機の運転制御方式について、図1と図2を参照しながら以下詳細に説明する。図1は本発明の第1の実施形態に係るスクリュー圧縮機の運転制御方式の系統構成図であり、図2は本発明の第2の実施形態に係るスクリュー圧縮機の運転制御方式の系統構成図である。ここで、1は圧縮機本体、2は吸入エアフィルタ、3は吸入絞り弁、4は放風弁、5は放風サイレンサ、6は逆止弁、7は制御装置、8は吐出圧力検出器、9は吸入圧力検出器、10は吐出温度検出器、11は吸入配管、12は吐出配管、13は吐出2次配管、14は放風配管、をそれぞれ表す。本発明の第1及び第2の実施形態として説明するオイルフリースクリュー圧縮機は、説明を簡略化するためにアフタークーラの無い単段機とする。アフタークーラが設置される場合や圧縮機本体が低圧段本体と高圧段本体の2つある2段圧縮機の場合にも適用可能であるが、説明は省略する。   The operation control system of the screw compressor according to the embodiment of the present invention will be described in detail below with reference to FIGS. 1 and 2. FIG. 1 is a system configuration diagram of the operation control system of the screw compressor according to the first embodiment of the present invention, and FIG. 2 is a system configuration of the operation control system of the screw compressor according to the second embodiment of the present invention. FIG. Here, 1 is a compressor main body, 2 is an intake air filter, 3 is an intake throttle valve, 4 is an air release valve, 5 is an air release silencer, 6 is a check valve, 7 is a control device, and 8 is a discharge pressure detector. , 9 is a suction pressure detector, 10 is a discharge temperature detector, 11 is a suction pipe, 12 is a discharge pipe, 13 is a discharge secondary pipe, and 14 is an air discharge pipe. The oil-free screw compressor described as the first and second embodiments of the present invention is a single-stage machine without an aftercooler in order to simplify the description. Although the present invention can be applied to the case where an aftercooler is installed or the compressor main body is a two-stage compressor having two low-pressure stage main bodies and high-pressure stage main bodies, description thereof is omitted.

本実施形態に関するスクリュー圧縮機の設定目標吐出圧力は、圧縮空気の用途や、使用機器までの圧縮空気の圧力損失などによって決定される。圧力比は吐出空気圧力と吸入空気圧力の絶対圧の比(吐出空気圧力/吸入空気圧力)であり、許容圧力比は圧縮機本体の設計条件によって決定され、圧縮機本体内のロータの熱膨張量により決定される。   The set target discharge pressure of the screw compressor related to the present embodiment is determined by the use of compressed air, the pressure loss of compressed air to the equipment used, and the like. The pressure ratio is the ratio of the absolute pressure between the discharge air pressure and the intake air pressure (discharge air pressure / intake air pressure). The allowable pressure ratio is determined by the design conditions of the compressor body, and the thermal expansion of the rotor in the compressor body Determined by quantity.

スクリュー圧縮機は容積型圧縮機であり、理論的には断熱圧縮過程によって空気を圧縮する。吸入空気状態が圧力Ps、容積Vs、温度Tsであり、吐出空気状態が圧力Pd、容積Vd、温度Tdである場合、Ps・Vs=Pd・Vd、Ts/Ps(n−1)/n=Td/Pd(n−1)/nという関係が成立する。ここで、nとはポリトロープ指数であり、断熱圧縮の場合には1.4となる。 The screw compressor is a positive displacement compressor and theoretically compresses air by an adiabatic compression process. When the intake air state is pressure Ps, volume Vs, and temperature Ts, and the discharge air state is pressure Pd, volume Vd, and temperature Td, Ps · Vs n = Pd · Vd n , Ts / Ps (n−1) / The relationship n = Td / Pd (n−1) / n is established. Here, n is a polytropic index, which is 1.4 in the case of adiabatic compression.

吸入状態から吐出状態に移行する圧縮過程において、圧縮機本体内部の1対の噛み合わされたロータが回転することによって吸入空気容積Vが小さくなり、圧縮空気圧力Pが上昇すると共に、空気温度Tが上昇する。空気温度Tが上昇すると圧縮機本体内のロータが加熱されて熱膨張するため2本のロータ間の隙間が小さくなり、ある許容温度を超えるとロータが接触してしまう。吐出空気温度は圧縮機の吐出空気圧力と吸入空気圧力との圧力比に比例して変化するため、この許容温度に対する圧力比が決まる。   In the compression process from the suction state to the discharge state, the pair of meshed rotors inside the compressor body rotate to reduce the intake air volume V, increase the compressed air pressure P, and increase the air temperature T. Rise. When the air temperature T rises, the rotor in the compressor body is heated and thermally expands, so that the gap between the two rotors is reduced. When the air temperature exceeds a certain allowable temperature, the rotor comes into contact. Since the discharge air temperature changes in proportion to the pressure ratio between the discharge air pressure of the compressor and the intake air pressure, the pressure ratio with respect to this allowable temperature is determined.

換言すると、Ts/Ps(n−1)/n=Td/Pd(n−1)/nという関係式からも分かるように、吐出空気温度Tdは、PdとPsの比とTsとによって決まり、Tdが上昇し過ぎるとロータ接触という異常事態が生じ得、また、Psは吸入絞り弁の開度によって決まるので、異常事態が生じないように、吸入絞り弁の最小開度、例えば80%が設定されていて、この最小開度に達したときには放風弁を開けるように一律的に制御するのである。 In other words, as can be seen from the relational expression Ts / Ps (n-1) / n = Td / Pd (n-1) / n , the discharge air temperature Td is determined by the ratio of Pd and Ps and Ts, If Td rises too much, an abnormal situation of rotor contact may occur, and Ps is determined by the opening degree of the suction throttle valve. Therefore, the minimum opening degree of the suction throttle valve, for example, 80% is set so as not to cause an abnormal situation. Therefore, when the minimum opening is reached, the air discharge valve is uniformly controlled to open.

本発明の第1の実施形態における制御方式は、吸入絞り弁の設定された最小開度による一律的な制御を行うことなく、圧力比(Pd/Ps)を監視し、許容圧力比に達するまで吸入絞り制御が可能であると判断し、吸入絞り制御範囲を拡大するもの(放風弁の開閉制御を行わない)である。第1の実施形態は、高負荷領域では吸入側に設置された吸入絞り弁を開閉させることにより吐出空気量を調整し吐出空気圧力を一定(又は一定範囲)に保つ吸入絞り制御を行い、低負荷領域では吐出側に設置された放風弁による放風制御を行い吐出圧力を一定に調整して容量調整を行うスクリュー圧縮機において、圧縮機本体の吸入空気圧力と吐出空気圧力を検出し、吐出空気圧力と吸入空気圧力との比である圧力比が所定の圧力比値に到達するまで吸入絞り制御範囲を自動的に拡大することを特徴とする。即ち、圧力比(Pd/Ps)を検出して所定値に達すると、吸入絞り弁の開度をその時の開度を維持させたままで、放風弁を開動作させるのである。   The control system according to the first embodiment of the present invention monitors the pressure ratio (Pd / Ps) without performing uniform control based on the set minimum opening of the suction throttle valve until the allowable pressure ratio is reached. It is determined that suction throttle control is possible, and the suction throttle control range is expanded (open / close control of the discharge valve is not performed). In the first embodiment, in a high load region, intake throttle control is performed by adjusting a discharge air amount by opening and closing a suction throttle valve installed on the suction side to keep a discharge air pressure constant (or a constant range). In the load area, in the screw compressor that performs discharge control by the discharge valve installed on the discharge side and adjusts the discharge pressure to adjust the capacity constant, the intake air pressure and the discharge air pressure of the compressor body are detected, The suction throttle control range is automatically expanded until the pressure ratio, which is the ratio between the discharge air pressure and the intake air pressure, reaches a predetermined pressure ratio value. That is, when the pressure ratio (Pd / Ps) is detected and reaches a predetermined value, the air discharge valve is opened while the opening of the suction throttle valve is maintained.

次に、本発明の第1の実施形態に係るスクリュー圧縮機の運転制御方式を図1を用いて具体的に説明する。図1において、スクリュー圧縮機は圧縮機本体1と圧縮機本体を駆動する電動機や潤滑油を循環させるオイルポンプ、オイルクーラ等の補機から構成される。圧縮機本体1は、1対の噛み合わされた雄スクリューロータと雌スクリューロータを備えており、これら両ロータはケーシングに形成されいるボアと呼ばれる一部重複する円筒状の2本の穴に収容されている。これら両ロータの両軸端部は軸受で支持されている。雄ロータの外周部には4枚の歯がネジ状に形成されており、雌ロータの外周部には6枚の歯がネジ状に形成されている。ロータの両軸端部の軸受とロータ歯部の間には軸封装置がそれぞれ設けられており、軸受と圧縮作動室間の空気と潤滑油の漏れを防止する。軸受及び軸封装置はそれぞれケーシングに保持されている。   Next, the operation control system of the screw compressor according to the first embodiment of the present invention will be specifically described with reference to FIG. In FIG. 1, the screw compressor is composed of a compressor main body 1, an electric motor for driving the compressor main body, an auxiliary pump such as an oil pump for circulating lubricating oil, and an oil cooler. The compressor body 1 includes a pair of meshed male screw rotor and female screw rotor, and both the rotors are accommodated in two overlapping cylindrical holes called bores formed in the casing. ing. Both shaft ends of these rotors are supported by bearings. Four teeth are formed in a screw shape on the outer peripheral portion of the male rotor, and six teeth are formed in a screw shape on the outer peripheral portion of the female rotor. A shaft seal device is provided between the bearing and the rotor tooth portion at both shaft end portions of the rotor, respectively, to prevent leakage of air and lubricating oil between the bearing and the compression working chamber. The bearing and the shaft seal device are each held in a casing.

圧縮機本体1は電動機によって回転動作し、吸入空気は吸入エアフィルタ2から圧縮機内に吸入し、吸入絞り弁3によって吸入空気量を調整され、吸入配管11を通って圧縮機本体1に吸入される。圧縮機本体1で圧縮された圧縮空気は圧縮機本体1から吐出され、吐出配管12を通り、逆止弁6の1次側に対して2次側の圧力が小さい場合には、逆止弁6が開状態となるため、吐出2次配管13を通って、逆止弁6を通過し、圧縮空気がラインに供給される。   The compressor body 1 is rotated by an electric motor, and the intake air is sucked into the compressor from the suction air filter 2, the amount of intake air is adjusted by the suction throttle valve 3, and is sucked into the compressor body 1 through the suction pipe 11. The Compressed air compressed by the compressor body 1 is discharged from the compressor body 1, passes through the discharge pipe 12, and when the pressure on the secondary side is smaller than the primary side of the check valve 6, the check valve Since 6 is in the open state, it passes through the discharge secondary pipe 13, passes through the check valve 6, and compressed air is supplied to the line.

また、放風弁4が開状態にある場合には、圧縮空気の一部は放風配管14を通って、放風弁4を通過し、放風サイレンサ5から大気開放される。吸入絞り弁3と放風弁4の開閉動作は制御装置7から動作指令信号が発信される。   When the air discharge valve 4 is in an open state, a part of the compressed air passes through the air discharge pipe 14, passes through the air discharge valve 4, and is released to the atmosphere from the air discharge silencer 5. An operation command signal is transmitted from the control device 7 to open and close the intake throttle valve 3 and the discharge valve 4.

吐出配管12内の吐出空気圧力Pdを吐出空気圧力検出器8によって検出し、設定した目標吐出圧力Pに対してPd<Pとなる場合には、吸入絞り弁3に開動作の指令信号を発信し、吸入絞り弁3の弁開度を広げることにより吸入風量を増加させてPdを上げる。また、Pd>Pとなる場合には、吸入絞り弁3に閉動作の指令信号を発信し、吸入絞り弁3の弁開度を絞ることにより吸入風量を減少させてPdを下げる。また、Pd=Pとなる場合には、吸入絞り弁3に開閉動作の指令信号を発信せず、吸入絞り弁3の弁開度を固定することにより、吐出空気圧力Pdが目標吐出圧力Pで一定になるように容量制御する。このとき、放風弁4には閉状態固定の指令信号を継続発信し、放風弁4を全閉状態に保つ。この状態が吸入絞り制御となる。   When the discharge air pressure Pd in the discharge pipe 12 is detected by the discharge air pressure detector 8 and Pd <P with respect to the set target discharge pressure P, an opening operation command signal is transmitted to the suction throttle valve 3. Then, the intake air volume is increased by widening the valve opening of the intake throttle valve 3 to increase Pd. When Pd> P, a closing operation command signal is transmitted to the suction throttle valve 3, and the intake air volume is reduced by reducing the opening degree of the suction throttle valve 3, thereby lowering Pd. When Pd = P, the opening / closing operation command signal is not transmitted to the suction throttle valve 3 and the opening degree of the suction throttle valve 3 is fixed, so that the discharge air pressure Pd becomes the target discharge pressure P. The capacity is controlled to be constant. At this time, a command signal for fixing the closed state is continuously transmitted to the air discharge valve 4 to keep the air release valve 4 in a fully closed state. This state is suction throttle control.

ここで、吸入配管11内の吸入圧力Psを吸入圧力検出器9にて検出し、検出した吐出空気圧力Pdと吸入空気圧力Psとの圧力比、すなわちPd/Psを制御装置7にて計算し、本圧縮機本体の設計条件によって定められた設定許容圧力比以下の条件の場合には上記の吸入絞り制御を継続するが、設定許容圧力比に達した場合には、吸入絞り弁3に弁開度固定信号を継続発信し吸入絞り弁3の開度を保ち、吐出配管12内の吐出空気圧力Pdを吐出空気圧力検出器8によって検出し、目標吐出圧力Pに対してPd<Pとなる場合には放風弁4に閉動作の指令信号を発信し、放風弁4の弁開度を絞ることにより放風風量を減少させてPdを上げる。また、Pd>Pとなる場合には、放風弁4に開動作の指令信号を発信し、放風弁4の弁開度を広げることにより放風風量を増加させてPdを下げ、また、Pd=Pとなる場合には、放風弁4に開閉動作の指令信号を発信せず、放風弁4の弁開度を固定することによりPdを目標吐出圧力Pで一定になるように容量制御する。この状態が放風制御となる。   Here, the suction pressure Ps in the suction pipe 11 is detected by the suction pressure detector 9, and the detected pressure ratio between the discharge air pressure Pd and the suction air pressure Ps, that is, Pd / Ps is calculated by the control device 7. The suction throttle control described above is continued in the case of a condition that is less than or equal to the set allowable pressure ratio determined by the design conditions of the main body of the compressor. A fixed opening signal is continuously transmitted to maintain the opening of the intake throttle valve 3, the discharge air pressure Pd in the discharge pipe 12 is detected by the discharge air pressure detector 8, and Pd <P with respect to the target discharge pressure P. In this case, a closing operation command signal is transmitted to the discharge valve 4, and the amount of the discharge air is reduced by reducing the valve opening of the discharge valve 4, thereby increasing Pd. Further, when Pd> P, an opening operation command signal is transmitted to the air discharge valve 4, and the air opening amount of the air discharge valve 4 is increased to increase the amount of the air discharge, thereby reducing Pd. When Pd = P, the command signal for opening / closing operation is not transmitted to the air discharge valve 4, and the valve opening of the air discharge valve 4 is fixed so that Pd becomes constant at the target discharge pressure P. Control. This state is air discharge control.

次に、本発明の第2の実施形態に係るスクリュー圧縮機の運転制御方式を図2を用いて具体的に説明する。図2において、第1の実施形態と共通する部分については説明を省略する。   Next, the operation control system of the screw compressor according to the second embodiment of the present invention will be specifically described with reference to FIG. In FIG. 2, the description of the parts common to the first embodiment is omitted.

図2において、吸入絞り制御と放風制御範囲の切り替え条件を、吐出空気温度検出器10によって検出された吐出配管12内の吐出空気温度Tdより制御装置7によって判断する。吐出空気温度Tdが圧縮機本体1の設計条件によって定められた許容吐出空気温度Tと比較し、Td<Tとなる場合には吸入絞り制御により容量制御を行い、Td>=Tとなる場合には放風制御により容量制御を行う。   In FIG. 2, the switching condition between the suction throttle control and the discharge control range is determined by the control device 7 from the discharge air temperature Td in the discharge pipe 12 detected by the discharge air temperature detector 10. When the discharge air temperature Td is compared with the allowable discharge air temperature T determined by the design conditions of the compressor body 1 and Td <T, capacity control is performed by suction throttle control, and when Td> = T. Performs capacity control by ventilating control.

以上説明したように、本発明は、高負荷領域では吸込み側に設置された吸入絞り弁を開閉させることにより吐出空気量を調整し吐出空気圧力を一定に保つ吸入絞り制御を行い、低負荷領域では吐出側に設置された放風弁による放風制御を行い容量調整を行うスクリュー圧縮機の運転制御方式において、実運転状態下で省エネ効果の高い吸入絞り制御の運転範囲を可能な限り拡大し、広い負荷領域での吸入絞り制御運転を可能にしたスクリュー圧縮機及びスクリュー圧縮機の運転制御方式に関する。   As described above, in the high load region, the present invention performs the suction throttle control that adjusts the discharge air amount by opening and closing the suction throttle valve installed on the suction side to keep the discharge air pressure constant. In the screw compressor operation control system that adjusts the capacity by controlling the discharge with a discharge valve installed on the discharge side, the operation range of the suction throttle control, which is highly energy-saving under actual operating conditions, is expanded as much as possible. The present invention relates to a screw compressor that enables a suction throttle control operation in a wide load region, and an operation control system of the screw compressor.

そして、具体的には、本発明の実施形態に係るスクリュー圧縮機の運転制御方式は、圧縮機本体の吸入空気圧力と吐出空気圧力との圧力比を検出し、この圧力比が過圧縮状態となる圧力比に達するまで吸入絞り制御範囲を自動的に拡大する制御方式である。吸入空気圧力と吐出空気圧力の圧力比により制御するため、各運転状態及び環境において可能な限り吸入絞り制御範囲を自動的に拡大することができる。また、本発明の他の実施形態に係るスクリュー圧縮機の運転制御方式は、圧縮機本体の吐出空気温度を検出し、圧縮機本体内部のロータ温度が高温となり熱膨張して、圧縮機本体内の1対のロータが接触する危険性のある吐出空気温度に達するまで吸入絞り制御範囲を自動的に拡大する制御方式である。圧縮機の吐出空気温度は吸入空気温度や圧縮機本体の吸入空気圧力と吐出空気圧力との圧力比等により変化するため、吐出空気温度により制御することにより、各運転状態及び環境において可能な限り吸入絞り制御範囲を自動的に拡大することができる。このように、本発明の実施形態によれば、吸入空気温度が低い場合や目標設定吐出圧力が低い場合に、設定等を変更することなく自動的に吸入絞り制御範囲を拡大し、さらなる省エネ効果を得ることができる。   Specifically, the operation control system of the screw compressor according to the embodiment of the present invention detects the pressure ratio between the intake air pressure and the discharge air pressure of the compressor body, and this pressure ratio is determined as an overcompressed state. This is a control system that automatically expands the suction throttle control range until the pressure ratio is reached. Since the control is performed by the pressure ratio between the intake air pressure and the discharge air pressure, the intake throttle control range can be automatically expanded as much as possible in each operation state and environment. Further, the operation control system of the screw compressor according to another embodiment of the present invention detects the discharge air temperature of the compressor main body, the rotor temperature inside the compressor main body becomes high temperature, and the thermal expansion occurs. This control system automatically expands the suction throttle control range until reaching the discharge air temperature at which there is a risk of contact with the pair of rotors. Since the discharge air temperature of the compressor changes depending on the intake air temperature, the pressure ratio between the intake air pressure and the discharge air pressure of the compressor body, etc., by controlling the discharge air temperature as much as possible in each operating state and environment The suction throttle control range can be automatically expanded. As described above, according to the embodiment of the present invention, when the intake air temperature is low or the target set discharge pressure is low, the suction throttle control range is automatically expanded without changing the setting or the like, and further energy saving effect is achieved. Can be obtained.

本発明の第1の実施形態に係るスクリュー圧縮機の運転制御方式の系統構成図である。It is a system configuration | structure figure of the operation control system of the screw compressor which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係るスクリュー圧縮機の運転制御方式の系統構成図である。It is a system configuration | structure figure of the operation control system of the screw compressor which concerns on the 2nd Embodiment of this invention.

符号の説明Explanation of symbols

1 圧縮機本体
2 吸入エアフィルタ
3 吸入絞り弁
4 放風弁
5 放風サイレンサ
6 逆止弁
7 制御装置
8 吐出圧力検出器
9 吸入圧力検出器
10 吐出温度検出器
11 吸入配管
12 吐出配管
13 吐出2次配管
14 放風配管
DESCRIPTION OF SYMBOLS 1 Compressor body 2 Suction air filter 3 Suction throttle valve 4 Breathing valve 5 Breathing silencer 6 Check valve 7 Control device 8 Discharge pressure detector 9 Suction pressure detector 10 Discharge temperature detector 11 Suction piping 12 Discharge piping 13 Discharge Secondary piping 14 Ventilation piping

Claims (4)

高負荷領域では吸入側に設置された吸入絞り弁を開閉させることにより吐出空気量を調整するとともに吐出空気圧力を略一定に保つ吸入絞り制御を行い、低負荷領域では吐出側に設置された放風弁による放風制御を行い吐出圧力を略一定に調整して容量調整を行うスクリュー圧縮機であって、
圧縮機本体の吸入空気圧力Psと吐出空気圧力Pdを検出し、吸入空気圧力と吐出空気圧力との比である圧力比Pd/Psが所定の圧力比値に達するまで前記吸入絞り制御を行う
ことを特徴とするスクリュー圧縮機の運転制御方式。
In the high load range, the intake air amount is adjusted by opening and closing the suction throttle valve installed on the suction side and the discharge air pressure is controlled to keep the discharge air pressure substantially constant. In the low load region, the discharge throttle installed on the discharge side is controlled. A screw compressor that performs discharge control by a wind valve and adjusts a discharge pressure to be substantially constant to adjust a capacity,
The suction air pressure Ps and the discharge air pressure Pd of the compressor body are detected, and the suction throttle control is performed until the pressure ratio Pd / Ps that is the ratio of the intake air pressure and the discharge air pressure reaches a predetermined pressure ratio value. Operation control system of screw compressor characterized by
高負荷領域では吸入側に設置された吸入絞り弁を開閉させることにより吐出空気量を調整するとともに吐出空気圧力を略一定に保つ吸入絞り制御を行い、低負荷領域では吐出側に設置された放風弁による放風制御を行い吐出圧力を略一定に調整して容量調整を行うスクリュー圧縮機であって、
圧縮機本体の吐出空気温度を検出し、前記吐出空気温度が所定の温度に達するまで前記吸入絞り制御を行う
ことを特徴とするスクリュー圧縮機の運転制御方式。
In the high load range, the intake air amount is adjusted by opening and closing the suction throttle valve installed on the suction side and the discharge air pressure is controlled to keep the discharge air pressure substantially constant. In the low load region, the discharge throttle installed on the discharge side is controlled. A screw compressor that performs discharge control by a wind valve and adjusts a discharge pressure to be substantially constant to adjust a capacity,
An operation control system for a screw compressor, characterized in that a discharge air temperature of a compressor body is detected and the suction throttle control is performed until the discharge air temperature reaches a predetermined temperature.
スクリュー圧縮機本体の空気吸入側に設けた吸入絞り弁と、前記スクリュー圧縮機本体の空気吐出側に設けた放風弁と、前記スクリュー圧縮機本体の吸入配管に設けた吸入空気圧力検出器と、前記スクリュー圧縮機本体の吐出配管に設けた吐出空気圧力検出器と、を備えたスクリュー圧縮機において、
前記吸入絞り弁及び/又は前記放風弁を制御して吐出圧力を略一定にするとともに吐出空気量を調整し、
前記吐出圧力検出器からの吐出圧力と前記吸入圧力検出器からの吸入圧力との圧力比が所定値に達するまで放風制御を行わずに吸入絞り制御を行う
ことを特徴とするスクリュー圧縮機。
An intake throttle valve provided on the air intake side of the screw compressor body, an air discharge valve provided on the air discharge side of the screw compressor body, an intake air pressure detector provided on an intake pipe of the screw compressor body; A screw compressor provided with a discharge air pressure detector provided in a discharge pipe of the screw compressor body,
Controlling the suction throttle valve and / or the discharge valve to make the discharge pressure substantially constant and adjusting the discharge air amount;
A screw compressor that performs suction throttling control without air discharge control until a pressure ratio between the discharge pressure from the discharge pressure detector and the suction pressure from the suction pressure detector reaches a predetermined value.
スクリュー圧縮機本体の空気吸入側に設けた吸入絞り弁と、前記スクリュー圧縮機本体の空気吐出側に設けた放風弁と、前記スクリュー圧縮機本体の吐出配管に設けた吐出空気温度検出器と、を備えたスクリュー圧縮機において、
前記吸入絞り弁及び/又は前記放風弁を制御して吐出圧力を略一定にするとともに吐出空気量を調整し、
前記吐出空気温度検出器からの吐出空気温度が所定値に達するまで放風弁制御を行わずに吸入絞り弁制御を行う
ことを特徴とするスクリュー圧縮機。
A suction throttle valve provided on the air suction side of the screw compressor main body, a discharge valve provided on the air discharge side of the screw compressor main body, a discharge air temperature detector provided on a discharge pipe of the screw compressor main body, In a screw compressor equipped with,
Controlling the suction throttle valve and / or the discharge valve to make the discharge pressure substantially constant and adjusting the discharge air amount;
The screw compressor, wherein the suction throttle valve control is performed without performing the air discharge valve control until the temperature of the discharge air from the discharge air temperature detector reaches a predetermined value.
JP2004172709A 2004-06-10 2004-06-10 Screw compressor and its operation control method Pending JP2005351169A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004172709A JP2005351169A (en) 2004-06-10 2004-06-10 Screw compressor and its operation control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004172709A JP2005351169A (en) 2004-06-10 2004-06-10 Screw compressor and its operation control method

Publications (1)

Publication Number Publication Date
JP2005351169A true JP2005351169A (en) 2005-12-22

Family

ID=35585848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004172709A Pending JP2005351169A (en) 2004-06-10 2004-06-10 Screw compressor and its operation control method

Country Status (1)

Country Link
JP (1) JP2005351169A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006138297A (en) * 2004-11-15 2006-06-01 Hokuetsu Kogyo Co Ltd Operation control method for screw compressor
JP2007182779A (en) * 2006-01-05 2007-07-19 Kobe Steel Ltd Unload operation control method for compressor
JP2011226418A (en) * 2010-04-21 2011-11-10 Kobe Steel Ltd Compression device and method of operating the same
CN102840139A (en) * 2011-06-22 2012-12-26 株式会社神户制钢所 Steam drive type compression device
CN102840136A (en) * 2011-06-22 2012-12-26 株式会社神户制钢所 Steam drive type compression device
KR101319055B1 (en) 2011-06-22 2013-10-17 미우라고교 가부시키카이샤 Steam driven compressor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56159589A (en) * 1980-05-14 1981-12-08 Hitachi Ltd Discharge pressure and flow rate control system for screw compressor
JPS62258183A (en) * 1986-05-02 1987-11-10 Hitachi Ltd Method of controlling capacity of screw compressor
JPH06193579A (en) * 1992-12-25 1994-07-12 Hitachi Ltd Variable capacity compressor
JPH1082391A (en) * 1996-07-19 1998-03-31 Ishikawajima Harima Heavy Ind Co Ltd Control device of two-stage screw compressor
JP2001342982A (en) * 2000-06-02 2001-12-14 Hitachi Ltd Screw compressor device and operating and controlling method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56159589A (en) * 1980-05-14 1981-12-08 Hitachi Ltd Discharge pressure and flow rate control system for screw compressor
JPS62258183A (en) * 1986-05-02 1987-11-10 Hitachi Ltd Method of controlling capacity of screw compressor
JPH06193579A (en) * 1992-12-25 1994-07-12 Hitachi Ltd Variable capacity compressor
JPH1082391A (en) * 1996-07-19 1998-03-31 Ishikawajima Harima Heavy Ind Co Ltd Control device of two-stage screw compressor
JP2001342982A (en) * 2000-06-02 2001-12-14 Hitachi Ltd Screw compressor device and operating and controlling method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006138297A (en) * 2004-11-15 2006-06-01 Hokuetsu Kogyo Co Ltd Operation control method for screw compressor
JP4608289B2 (en) * 2004-11-15 2011-01-12 北越工業株式会社 Operation control method of screw compressor
JP2007182779A (en) * 2006-01-05 2007-07-19 Kobe Steel Ltd Unload operation control method for compressor
JP2011226418A (en) * 2010-04-21 2011-11-10 Kobe Steel Ltd Compression device and method of operating the same
CN102840139A (en) * 2011-06-22 2012-12-26 株式会社神户制钢所 Steam drive type compression device
CN102840136A (en) * 2011-06-22 2012-12-26 株式会社神户制钢所 Steam drive type compression device
KR101319192B1 (en) 2011-06-22 2013-10-16 미우라고교 가부시키카이샤 Steam driven compressor
KR101319055B1 (en) 2011-06-22 2013-10-17 미우라고교 가부시키카이샤 Steam driven compressor
KR101409578B1 (en) 2011-06-22 2014-06-20 미우라고교 가부시키카이샤 Steam driven compressor

Similar Documents

Publication Publication Date Title
KR100345843B1 (en) Screw compressor and method for controlling the operation of the same
EP1851438B1 (en) System and method for controlling a variable speed compressor during stopping
JP3837278B2 (en) Compressor operation method
US6561766B2 (en) Oil free screw compressor operating at variable speeds and control method therefor
CN108678930A (en) Cylinder block and compressor with it
JP6272479B2 (en) Gas compressor
JPWO2018179789A1 (en) Gas compressor
JP5989072B2 (en) Oil-free compressor and control method thereof
US6881040B2 (en) Multi-stage screw compressor unit accommodating high suction pressure and pressure fluctuations and method of operation thereof
JP2005351169A (en) Screw compressor and its operation control method
JP6997648B2 (en) Compressor system
JP2016211584A (en) Compressor and control method thereof
JP4745208B2 (en) Oil-free screw compressor
JP4127670B2 (en) Oil-free screw compressor
JP4659851B2 (en) Oil-free screw compressor
JP6812248B2 (en) Capacity control method for multi-stage oil-free screw compressor and multi-stage oil-free screw compressor
JP4038646B2 (en) Variable speed oil-free screw compressor
JP4701200B2 (en) Oil-free screw compressor and its operating method
JP4825573B2 (en) Operation control method of oil-free screw compressor with variable rotation speed
JP2004339994A (en) Screw compressor with balance piston device
WO2022044862A1 (en) Air compressor
JP4325548B2 (en) Screw compressor and operation control method thereof
JP2013241942A (en) Air compressor
JP5386532B2 (en) Compressor
JP4463011B2 (en) Capacity control method and capacity control apparatus for fluid compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060608

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060920

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080311