WO2004035335A1 - Verfahren zur verdampfungstemperaturregelung bei einer klimaanlage - Google Patents

Verfahren zur verdampfungstemperaturregelung bei einer klimaanlage Download PDF

Info

Publication number
WO2004035335A1
WO2004035335A1 PCT/EP2003/009676 EP0309676W WO2004035335A1 WO 2004035335 A1 WO2004035335 A1 WO 2004035335A1 EP 0309676 W EP0309676 W EP 0309676W WO 2004035335 A1 WO2004035335 A1 WO 2004035335A1
Authority
WO
WIPO (PCT)
Prior art keywords
evaporator
temperature
air conditioning
conditioning system
latent
Prior art date
Application number
PCT/EP2003/009676
Other languages
English (en)
French (fr)
Inventor
Cathy Bureau
Stefan Morgensten
Original Assignee
Behr Gmbh & Co.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Behr Gmbh & Co. filed Critical Behr Gmbh & Co.
Priority to EP03808689A priority Critical patent/EP1554142A1/de
Priority to AU2003266338A priority patent/AU2003266338A1/en
Priority to JP2004544016A priority patent/JP2006502903A/ja
Priority to US10/530,760 priority patent/US7251946B2/en
Publication of WO2004035335A1 publication Critical patent/WO2004035335A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00492Heating, cooling or ventilating [HVAC] devices comprising regenerative heating or cooling means, e.g. heat accumulators
    • B60H1/005Regenerative cooling means, e.g. cold accumulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3205Control means therefor
    • B60H1/322Control means therefor for improving the stop or idling operation of the engine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3236Cooling devices information from a variable is obtained
    • B60H2001/3255Cooling devices information from a variable is obtained related to temperature
    • B60H2001/3261Cooling devices information from a variable is obtained related to temperature of the air at an evaporating unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0085Evaporators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the invention relates to a method for evaporative temperature control in an air conditioning system, in particular a vehicle air conditioning system.
  • a method for controlling the evaporator temperature in a vehicle air conditioning system is known for example from DE 199 20 093 C1.
  • the evaporator temperature should be set to a temperature value that takes into account both comfort and safety aspects. Both the humidity and the required cooling capacity are taken into account.
  • Another, outside dew point dependent evaporator temperature control for a motor vehicle air conditioning system is known for example from DE 197 28 578 C2.
  • the evaporator temperature is dependent on the difference between the air temperature and the dew point temperature.
  • a vehicle air conditioning system with a cold accumulator is known for example from DE 101 56 944 A1.
  • a refrigerant evaporator for example, flat tube evaporators, a number of stores filled with a cold storage medium.
  • Decanol and tetradecane are mentioned as cold storage media.
  • the cold storage medium is cooled to a temperature below the melting point of the cold storage medium during operation of the evaporator. In this way, a latent memory is provided, which enables the cooling to be temporarily maintained when the vehicle and the refrigeration circuit are temporarily at a standstill.
  • the invention is based on the object of specifying a method with which an air conditioning system, in particular a vehicle air conditioning system, can be operated particularly economically with a latent cold store.
  • the possibility of evaporative temperature control is provided in an air conditioning system having a latent cold store.
  • the evaporation temperature of the refrigerant of the air conditioning system is varied as required between a minimum temperature and a maximum temperature below a phase transition temperature of the latent medium.
  • the minimum temperature is preferably chosen in such a way that icing of the evaporator is excluded.
  • the melting point of the latent medium contained in the latent cold storage is preferably slightly above 0 ° C. Decanol (melting point 7 ° C) and tetradecane (melting point 6 ° C) as well as mixtures containing at least one of these substances are particularly suitable as latent medium.
  • the maximum temperature of the evaporator is preferably set to a temperature slightly below the melting point of the latent medium.
  • the evaporation temperature is therefore always in a range in which both the full usability of the latent medium is guaranteed and evaporation icing is avoided.
  • the method is particularly suitable for air conditioning systems in vehicles that have the so-called idle stop operating mode.
  • the vehicle engine is automatically switched off when the vehicle comes to a brief standstill, for example when stopping at traffic lights. This also stops the air conditioning compressor.
  • the melting point of the latent medium should be high enough to be able to operate the evaporator in as wide a range as possible with an evaporator temperature control also referred to as ETC (Evaporator Temperature Control).
  • the melting point of the latent medium should be low enough to allow a sufficient cooling effect for a limited time when the cooling circuit is at a standstill.
  • the cold storage media decanol and tetradecane take these competing conditions into account to a particularly high degree.
  • the advantage of the invention is in particular that, by operating an evaporator of a motor vehicle air conditioning system with a controlled evaporation temperature which is limited by the melting point of a latent medium, both a particularly economical operation of the air conditioning system and a temporary maintenance of the cooling operation with the cooling circuit at a standstill are made possible ,
  • FIG. 1a and 1b show an evaporator of a vehicle air conditioning system suitable for carrying out the method according to the invention
  • FIGS. 2a and 2b each show a device for cooling and reheating air in a vehicle air conditioning system in a schematic cross-sectional illustration, and Figure 3 in a diagram different methods for
  • FIGS. 1 a and 1 b show a perspective illustration or a section of an exploded view of an evaporator 1 suitable for carrying out the method according to the invention and designed as a storage evaporator.
  • the basic structure of such a storage evaporator is known, for example, from DE 101 56 944 A1.
  • the evaporator 1 contains, as part of a vehicle air conditioning system, not shown, a number of flat tubes 2, as a cold store 3 and corrugated fins 4, which lie against each other in the order mentioned so that air to be cooled can flow through the corrugated fins 4 through the evaporator 1.
  • Evaporating refrigerant for example R 134a, flows through the flat tubes 2.
  • the cold accumulators 3, each coupled to a flat tube 2, are designed as latent cold accumulators and filled with a latent medium, for example decanol or tetradecane, as a heat storage medium.
  • a latent medium for example decanol or tetradecane
  • the latent media mentioned have the advantage that there is no increase in volume when freezing.
  • any other cold storage filled with a latent medium for example in the form of capsules arranged, in particular clamped, between the tubes 2 of the evaporator 1, can also be provided.
  • the evaporation temperature in the storage evaporator 1 is regulated in such a way that the latent medium always remains frozen and thus its melting thalpie can be used when the refrigeration cycle is temporarily at a standstill, especially in idle stop mode. At the same time, the evaporation temperature is limited downwards to a value just above 0 ° C to prevent evaporation de-icing.
  • a compressor is used in a manner known per se, for example as proposed in DE 199 20 093 C1, the stroke volume of which can be varied.
  • FIGS. 2a and 2b illustrate various methods for cooling and at least partially reheating the air flowing through the evaporator 1.
  • the air which flows through the evaporator in the flow direction 5 indicated by arrows is provided for the temperature control of three ventilation spaces R1, R2, R3 in the vehicle interior.
  • all of the air flowing through the evaporator 1 is fed to a heating element 6a, the heating power of which can be adjusted by means of a valve 7.
  • the valve 7 regulates the flow of liquid, in particular water, through the radiator 6a.
  • the temperature of the air flowing into the vehicle interior is set to a desired value that is suitable for vehicle air conditioning.
  • the evaporator 1 is followed by a heating element 6b, the heating power of which cannot be regulated.
  • the regulation of the air outlet temperature takes place in this case by means of a mixing flap 8, which is arranged between the evaporator 1 and the heating element 6b and enables a heating of any partial flow of the air flowing through the evaporator 1.
  • the air conditioning system is regulated on the air side.
  • FIG. 3 shows in a diagram different methods for temperature control in a motor vehicle air conditioning system. Furthermore, symbolic the silhouette of a vehicle. The temperature profile of the air flowing into the vehicle is shown below this silhouette.
  • the air temperature T is recorded as a function of a flow path s for a first conventional operating method V1, a second conventional operating method V2 and the operating method V3 according to the invention.
  • V1, V2, V3 for all methods V1, V2, V3, for example, the ambient temperature is 24 ° C, the interior temperature in the vehicle is 20 ° C and the air outlet temperature from the air conditioning system is 12 ° C.
  • the air conducted from the outside into the interior of the vehicle first flows through the evaporator 1 and then a heater 6, as shown schematically in FIGS. 2a and b.
  • the evaporation temperature cannot be regulated.
  • the evaporator 1 is always operated at maximum output.
  • the air flowing through the evaporator 1 is cooled to about 0 ° C.
  • the air in the radiator 6 is then heated to 12 ° C again.
  • This first method V1 requires an unnecessarily high energy consumption.
  • the evaporation temperature is adjustable between approx. 0 ° C and approx. 12 ° C.
  • the air in the evaporator 1 is only cooled to 12 ° C.
  • the radiator 6 connected downstream of the evaporator 1 does not function in this case.
  • This second method V2 is characterized by a relatively low energy consumption. With the aid of the second method V2, however, it is not possible to freeze a latent medium, for example decanol or tetradecane, under all operating conditions. The second method V2 is therefore not suitable for a vehicle with an idle stop operating mode.
  • the temperature range in which the evaporation temperature can be regulated is the interval between the minimum temperature T m j n set at approx. 0 ° C and the maximum temperature T max set at 6 ° C.
  • the evaporator 1 cools the air flowing through it to 6 ° C., so that the latent medium in the latent cold store 3 is just frozen.
  • a latent cold store 3 integrated into the evaporator 1 a cold store can also be used, which is arranged between the evaporator 1 and the heating element 6 and is “charged”, ie cooled, by the air stream cooled in the evaporator 1. The air cooled to 6 ° C. is then heated again in the radiator 6 to 12 ° C. This provides economical operation of the air conditioning system, with the latent cold storage 3 remaining charged while the cooling compressor is running.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

Bei einem Verfahren zur Verdampfungstemperaturregelung bei einer Klimaanlage, insbesondere einer Fahrzeug-Klimaanlage, mit einem von einem Verdampfer (1) kühlbaren Latentkältespeicher , wird die Verdampfungstemperatur eines Kältemittels im Verdampfer (1) bedarfsabhängig eingestellt auf einen Wert zwischen einer Minimaltemperatur (T_min) und einer unterhalb einer Phasenübergangstemperatur des Latentmediums liegenden Maximaltemperatur (T_max).

Description

BEHR GmbH & Co. Mauserstraße 3, 70469 Stuttgart
Verfahren zur Verdampfungstemperaturregelung bei einer Klimaanlage
Die Erfindung betrifft ein Verfahren zur Verdampfungstemperaturregelung bei einer Klimaanlage, insbesondere einer Fahrzeug-Klimaanlage.
Ein Verfahren zur Regelung der Verdampfertemperatur bei einer Fahrzeug- Klimaanlage ist beispielsweise aus der DE 199 20 093 C1 bekannt. Die Verdampfertemperatur soll dabei zur Vermeidung eines unnötigen Energieverbrauchs auf einen Temperaturwert eingestellt werden, der sowohl Komfortais Sicherheitsaspekten Rechnung trägt. Hierbei wird sowohl die Luftfeuchte als auch die erforderliche Kühlleistung berücksichtigt.
Eine weitere, außentaupunktabhängige Verdampfertemperatursteuerung für eine Kraftfahrzeug-Klimaanalage ist beispielsweise aus der DE 197 28 578 C2 bekannt. Hierbei ist die Verdampfertemperatur von der Differenz zwi- sehen Lufttemperatur und Taupunkttemperatur abhängig.
Die genannten Verfahren haben jedoch den Nachteil, dass kein Kältespeicher vorgesehen ist und somit die jeweilige Klimaanlage bei Fahrzeugstillstand und damit Stillstand des Kompressors der Klimaanlage nicht nutzbar ist.
Eine Fahrzeug-Klimaanlage mit einem Kältespeicher ist beispielsweise aus der DE 101 56 944 A1 bekannt. Hierbei weist ein Kältemittelverdampfer, bei- spielsweise Flachrohrverdampfer, eine Anzahl mit einem Kältespeichermedium gefüllter Speicher auf. Als Kältespeichermedium sind Decanol und Tetradecan genannt. Das Kältespeichermedium wird beim Betrieb des Verdampfers auf eine Temperatur unterhalb des Schmelzpunktes des Kälte- speichermediums abgekühlt. Auf diese Weise ist ein Latentspeicher gegeben, welcher bei zeitweisem Stillstand des Fahrzeuges sowie des Kältekreislaufes eine vorrübergehende Aufrechterhaltung der Kühlung ermöglicht.
Der Erfindung liegt die Aufgabe zu Grunde, ein Verfahren anzugeben, mit welchem eine Klimaanlage, insbesondere Fahrzeug-Klimaanlage, mit einem Latentkältespeicher besonders wirtschaftlich betrieben werden kann.
Diese Aufgabe wird erfindungsgemäß gelöst durch ein Verfahren mit den Merkmalen des Anspruches 1. Hierbei ist bei einer einen Latentkältespeicher aufweisenden Klimaanlage die Möglichkeit der Verdampfungstemperaturregelung vorgesehen. Die Verdampfungstemperatur des Kältemittels der Klimaanlage wird dabei bedarfsabhängig variiert zwischen einer Minimaltemperatur und einer unterhalb einer Phasenübergangstemperatur des Latentmediums liegenden Maximaltemperatur. Die Minimaltemperatur ist dabei vor- zugsweise derart gewählt, dass eine Vereisung des Verdampfers ausgeschlossen ist. Der Schmelzpunkt des im Latentkältespeicher enthaltenen Latentmediums liegt vorzugsweise etwas über 0 °C. Besonders geeignet als Latentmedium sind Decanol (Schmelzpunkt 7°C) und Tetradecan (Schmelzpunkt 6°C) sowie Stoffgemische, die mindestens einen dieser Stoffe enthal- ten. Die Maximaltemperatur des Verdampfers ist vorzugsweise auf eine Temperatur geringfügig unter dem Schmelzpunkt des Latentmediums eingestellt. Die Verdampfungstemperatur liegt somit stets in einem Bereich, in welchem sowohl die volle Nutzbarkeit des Latentmediums gewährleistet ist, als auch eine Verdampfervereisung vermieden wird. Das Verfahren eignet sich insbesondere für Klimaanlagen in Fahrzeugen, die über den sogenannten Idle-Stop-Betriebsmodus verfügen. Hierbei wird der Fahrzeugmotor bei kurzzeitigem Fahrzeugstillstand, zum Beispiel beim Halten an einer Ampel, automatisch ausgeschaltet. Damit wird auch der Kompressor der Klimaanlage außer Betrieb gesetzt. Der Schmelzpunkt des Latentmediums sollte einerseits hoch genug sein, um in einem möglichst weiten Bereich den Verdampfer mit einer auch als ETC (Evaporator Temperatur Control) bezeichneten Verdampfertemperaturregelung betreiben zu können. Andererseits sollte der Schmelzpunkt des Latentmediums niedrig genug sein, um beim Stillstand des Kältekreislaufs zeitlich begrenzt noch eine ausreichende Kühlwirkung zu ermöglichen. Diesen konkurrierenden Bedingungen tragen die genannten Kältespeichermedien Decanol und Tetradecan in besonders hohem Maße Rechnung.
Der Vorteil der Erfindung liegt insbesondere darin, dass durch, den Betrieb eines Verdampfers einer Kraftfahrzeug-Klimaanlage mit geregelter, durch den Schmelzpunkt eines Latentmediums nach oben begrenzter Verdampfungstemperatur sowohl ein besonders wirtschaftlicher Betrieb der Klimaanlage als auch eine vorübergehende Aufrechterhaltung des Kühlbetriebs bei stillstehendem Kältekreislauf ermöglicht ist.
Nachfolgend wird ein Ausführungsbeispiel der Erfindung anhand einer Zeichnung näher erläutert. Hierin zeigen:
Figur 1a und 1b einen Verdampfer einer zur Durchführung des er- findungsgemäßen Verfahrens geeigneten Fahrzeug-Klimaanlage,
Figur 2a und 2b in schematischer Querschnittsdarstellung jeweils eine Einrichtung zum Abkühlen und Wiederauf- heizen von Luft in einer Fahrzeug-Klimaanlage, und Figur 3 in einem Diagramm verschiedene Verfahren zur
Verdampfertemperaturregelung bei einer Fahrzeug-Klimaanlage
Einander entsprechende Teile beziehungsweise Parameter sind in allen Figuren mit den gleichen Bezugszeichen versehen.
Die Figuren 1a und 1b zeigen in perspektivischer Darstellung beziehungs- weise ausschnittsweise in einer Explosionsdarstellung einen zur Durchführung des erfindungsgemäßen Verfahrens geeigneten, als Speicherverdampfer ausgebildeten Verdampfer 1. Der grundsätzliche Aufbau eines solchen Speicherverdampfers ist beispielsweise aus der DE 101 56 944 A 1 bekannt. Der Verdampfer 1 beinhaltet als Teil einer nicht weiter dargestellten Fahrzeug-Klimaanlage eine Anzahl Flachrohre 2, als Kältespeicher 3 und Wellrippen 4, welche in der genannten Reihenfolge derart aneinander liegen, dass zu kühlende Luft durch die Wellrippen 4 hindurch den Verdampfer 1 durchströmen kann. Die Flachrohre 2 sind dabei von verdampfendem Kältemittel, beispielsweise R 134a durchströmt. Die jeweils an ein Flachrohr 2 angekoppelten Kältespeicher 3 sind als Latentkältespeicher ausgebildet und mit einem Latentmedium, beispielsweise Decanol oder Tetradecan, als Wärmespeichermedium befüllt. Die genannten Latentmedien haben den Vorteil, dass beim Einfrieren keine Volumenvergrößerung erfolgt. Anstelle der im Ausführungsbeispiel nach Fig. 1a, 1b vorgesehenen flachen Latent- kältespeicher 3 können auch beliebige andere, mit einem Latentmedium gefüllte Kältespeicher, beispielsweise in Form von zwischen den Rohren 2 des Verdampfers 1 angeordneten, insbesondere eingeklemmten Kapseln, vorgesehen sein.
Die Verdampfungstemperatur im Speicherverdampfer 1 wird derart geregelt, dass das Latentmedium stets gefroren bleibt und somit dessen Schmelzen- thalpie bei vorübergehendem Stillstand des Kältekreislaufes, insbesondere im Idle-Stop-Betrieb, nutzbar ist. Gleichzeitig ist die Verdampfungstemperatur nach unten auf einen Wert knapp über 0°C begrenzt, um eine Verdamp- fentereisung zu verhindern. Zur Verdampfungstemperaturregelung und Leis- tungsanpassung der Klimaanlage wird in an sich bekannter Weise, wie beispielsweise in der DE 199 20 093 C1 vorgeschlagen, ein Kompressor eingesetzt, dessen Hubvolumen variiert werden kann.
Die Figuren 2a und 2b veranschaulichen verschiedene Verfahren zur Ab- kühlung und zumindest teilweisen Wiederaufheizung der den Verdampfer 1 durchströmenden Luft. Die Luft, welche den Verdampfer in mit Pfeilen gekennzeichneter Strömungsrichtung 5 durchströmt, ist dabei zur Temperierung dreier Belüftungsräume R1 , R2, R3 im Fahrzeuginnenraum vorgese-, hen. Im Ausführungsbeispiel nach Figur 2a wird die gesamte den Verdamp- fer 1 durchströmende Luft einem Heizkörper 6a zugeleitet, dessen Heizleistung mittels eines Ventils 7 einstellbar ist. Das Ventil 7 regelt den Flüssigkeitsstrom, insbesondere Wasserstrom, durch den Heizkörper 6a. Durch diese flüssigkeits- oder wasserseitige Regelung wird die Temperatur der in den Fahrzeuginnenraum einströmenden Luft auf einen zur Fahrzeugklimati- sierung geeigneten Sollwert eingestellt.
Im Ausführungsbeispiel nach Figur 2b ist dem Verdampfer 1 ein Heizkörper 6b nachgeschaltet, dessen Heizleistung nicht regelbar ist. Die Regelung der Luftaustrittstemperatur erfolgt in diesem Fall mittels einer Mischklappe 8, welche zwischen dem Verdampfer 1 und dem Heizkörper 6b angeordnet ist und eine Aufheizung eines beliebigen Teilstroms der den Verdampfer 1 durchströmenden Luft ermöglicht. Die Klimaanlage ist in diesem Fall luftsei- tig geregelt.
Die Figur 3 zeigt in einem Diagramm verschiedene Verfahren zur Temperatursteuerung in einer Kraftfahrzeug-Klimaanlage. Des Weiteren ist symboli- siert die Silhouette eines Fahrzeugs dargestellt. Unterhalb dieser Silhouette ist das Temperaturprofil der in das Fahrzeug einströmenden Luft dargestellt. Die Lufttemperatur T ist dabei in Abhängigkeit von einer Strömungsstrecke s für ein erstes herkömmliches Betriebsverfahren V1 , ein zweites herkömmli- ches Betriebsverfahren V2 sowie das erfindungsgemäße Betriebsverfahren V3 aufgezeichnet. Bei allen Verfahren V1 , V2, V3 beträgt beispielsweise die Umgebungstemperatur 24°C, die Innenraumtemperatur im Fahrzeug 20°C und die Luftaustrittstemperatur aus der Klimaanlage 12°C. Die vom Außenraum in den Innenraum des Fahrzeuges geleitete Luft durchströmt, wie schematisch in Figuren 2a und b dargestellt, zunächst den Verdampfer 1 und anschließend einen Heizkörper 6.
Nach dem ersten herkömmlichen Verfahren V1 ist die Verdampfungstemperatur nicht regelbar. Der Verdampfer 1 wird stets mit maximaler Leistung be- trieben. Die den Verdampfer 1 durchströmende Luft wird dabei auf ca. 0°C abgekühlt. Anschließend wird die Luft im Heizkörper 6 wieder auf 12°C erwärmt. Dieses erste Verfahren V1 bedingt einen unnötigen hohen Energieverbrauch.
Nach dem zweiten herkömmlichen Verfahren V2, dem sogenannten ETC
Verfahren ist die Verdampfungstemperatur zwischen ca. 0°C und ca. 12°C regelbar. Im dargestellten Ausführungsbeispiel wird die Luft im Verdampfer 1 lediglich auf 12°C abgekühlt. Der dem Verdampfer 1 nachgeschaltete Heizkörper 6 tritt in diesem Fall nicht in Funktion. Dieses zweite Verfahren V2 zeichnet sich durch einen relativ geringen Energieverbrauch aus. Mit Hilfe des zweiten Verfahrens V2 ist es jedoch nicht möglich, unter allen Betriebsbedingungen ein Latentmedium, beispielsweise Decanol oder Tetradecan, zu gefrieren. Das zweite Verfahren V2 ist daher für ein Fahrzeug mit Idle- Stop-Betriebsmodus nicht geeignet. Nach dem dritten, erfindungsgemäßen Verfahren V3 ist der Temperaturbereich, in welchem die Verdampfungstemperatur regelbar ist, auf das Intervall zwischen der auf ca. 0°C festgesetzten Minimaltemperatur Tmjn und der auf 6°C eingestellten Maximaltemperatur Tmax begrenzt. Im dargestellten Ausführungsbeispiel kühlt der Verdampfer 1 die diesen durchströmende Luft auf 6°C ab, so dass das Latentmedium im Latentkältespeicher 3 gerade noch gefroren wird. Anstelle eines in den Verdampfer 1 integrierten Latentkältespeichers 3 ist auch ein Kältespeicher nutzbar, welcher zwischen dem Verdampfer 1 und dem Heizkörper 6 angeordnet ist und durch den im Verdampfer 1 gekühlten Luftstrom „aufgeladen", das heißt gekühlt wird. Die auf 6°C abgekühlte Luft wird anschließend im Heizkörper 6 auf 12°C wieder er- wärmt. Auf diese Weise ist ein ökonomischer Betrieb der Klimaanlage gegeben, wobei bei laufendem Kältekompressor der Latentkältespeichers 3 permanent aufgeladen bleibt.
Bezugszeichenliste
1 Verdampfer
2 Flachrohr
3 Latentkältespeicher
4 Wellrippen
5 Strömungsrichtung
6, 6a, 6b Heizkörper
7 Ventil
8 Mischklappe
R1 bis R3 Belüftungsraum s Strömungsstrecke
T Temperatur
■ min Minimaltemperatur
1 max Maximaltemperatur
V1 bis 3 Verfahren

Claims

P a t e n t a n s p r ü c h e
1. Verfahren zur Verdampfungstemperaturregelung bei einer Klimaanlage, insbesondere einer Fahrzeug-Klimaanlage, mit einem von einem Verdampfer (1) kühlbaren Latentkältespeicher (3), wobei die Verdampfungstemperatur eines Kältemittels im Verdampfer (1) bedarfs- abhängig eingestellt wird auf einen Wert zwischen einer Minimaltemperatur (Tmm) und einer unterhalb einer Phasenübergangstemperatur des Latentmediums liegenden Maximaltemperatur (Tmax).
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass der La- tentkältespeicher (3) Decanol als Latentmedium enthält.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Latentkältespeicher (3) Tetradecan als Latentmedium enthält.
4. Fahrzeug-Klimaanlage zum Betrieb mit einem Verfahren nach einem der Ansprüche 1 bis 3.
PCT/EP2003/009676 2002-10-10 2003-09-01 Verfahren zur verdampfungstemperaturregelung bei einer klimaanlage WO2004035335A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP03808689A EP1554142A1 (de) 2002-10-10 2003-09-01 Verfahren zur verdampfungstemperaturregelung bei einer klimaanlage
AU2003266338A AU2003266338A1 (en) 2002-10-10 2003-09-01 Method for controlling evaporation temperature in an air conditioning system
JP2004544016A JP2006502903A (ja) 2002-10-10 2003-09-01 空調設備における蒸発温度制御方法
US10/530,760 US7251946B2 (en) 2002-10-10 2003-09-01 Method for controlling evaporation temperature in an air conditioning system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10247262.9 2002-10-10
DE10247262A DE10247262A1 (de) 2002-10-10 2002-10-10 Verfahren zur Verdampfungstemperaturregelung bei einer Klimaanlage

Publications (1)

Publication Number Publication Date
WO2004035335A1 true WO2004035335A1 (de) 2004-04-29

Family

ID=32038456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/009676 WO2004035335A1 (de) 2002-10-10 2003-09-01 Verfahren zur verdampfungstemperaturregelung bei einer klimaanlage

Country Status (6)

Country Link
US (1) US7251946B2 (de)
EP (1) EP1554142A1 (de)
JP (1) JP2006502903A (de)
AU (1) AU2003266338A1 (de)
DE (1) DE10247262A1 (de)
WO (1) WO2004035335A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006011327A1 (de) * 2006-03-09 2007-09-13 Behr Gmbh & Co. Kg Wärmeübertrager mit Kältespeicher
CN104251537A (zh) * 2013-06-28 2014-12-31 德尔福技术有限公司 相变材料蒸发器充能控制
US9464837B2 (en) 2012-03-21 2016-10-11 Mahle International Gmbh Phase change material evaporator charging control

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0326365D0 (en) * 2003-11-12 2003-12-17 Koninkl Philips Electronics Nv A radio communication system,a method of operating a communication system,and a mobile station
WO2006005171A1 (en) * 2004-07-09 2006-01-19 Junjie Gu Refrigeration system
DE102004055339A1 (de) * 2004-11-16 2006-05-18 Behr Gmbh & Co. Kg Klimaanlage mit Kältespeicher
DE102004055343A1 (de) * 2004-11-16 2006-05-18 Behr Gmbh & Co. Kg Klimaanlage mit Kältespeicher
DE102004055340A1 (de) * 2004-11-16 2006-05-18 Behr Gmbh & Co. Kg Klimaanlage mit Kältespeicher
DE102006021291A1 (de) * 2006-05-05 2007-11-08 Behr Gmbh & Co. Kg Verfahren zum Betrieb einer Kraftfahrzeug-Klimaanlage
DE102007036299A1 (de) 2007-07-31 2009-02-05 Behr Gmbh & Co. Kg Verfahren zum Betreiben einer Klimaanlage
US20090191804A1 (en) * 2008-01-29 2009-07-30 Lakhi Nandlal Goenka Heating, ventilating, and air conditioning system having a thermal energy exchanger
US20090188266A1 (en) * 2008-01-29 2009-07-30 Stephen Think Hung Heating, ventilating, and air conditioning system having a thermal energy exchanger
JP2009270775A (ja) * 2008-05-08 2009-11-19 Sanden Corp 冷凍サイクル
RU2411424C2 (ru) * 2008-05-22 2011-02-10 Сергей Иванович Петров Способ охлаждения воздуха в замкнутой полости бытового холодильника и устройство для реализации указанного способа
US8713959B2 (en) * 2009-11-25 2014-05-06 Panasonic Corporation Heat generating body box housing refrigeration device
US9400510B2 (en) 2012-03-21 2016-07-26 Mahle International Gmbh Phase change material evaporator charging control
JP6227559B2 (ja) * 2012-12-11 2017-11-08 株式会社カネカ 蓄熱材組成物、蓄熱材及び輸送容器
US9643468B2 (en) 2014-08-13 2017-05-09 Fca Us Llc Regenerative vehicle air conditioning system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6016662A (en) * 1996-06-03 2000-01-25 Denso Corporation Vehicular air conditioning apparatus for effectively cooling a main cooling unit and an additional cooling unit
DE10124757A1 (de) * 2000-05-26 2001-11-29 Denso Corp Fahrzeugklimaanlage mit Kältespeicher
DE20115273U1 (de) * 2001-01-05 2002-05-08 Behr Gmbh & Co Klimaanlage für ein Kraftfahrzeug

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4679410A (en) * 1986-10-30 1987-07-14 General Motors Corporation Integral evaporator and accumulator for air conditioning system
US4745778A (en) * 1987-03-27 1988-05-24 General Motors Corporation Integral evaporator and accumulator for air conditioning system
US5180004A (en) * 1992-06-19 1993-01-19 General Motors Corporation Integral heater-evaporator core
US5505060A (en) * 1994-09-23 1996-04-09 Kozinski; Richard C. Integral evaporator and suction accumulator for air conditioning system utilizing refrigerant recirculation
JPH08136086A (ja) * 1994-11-01 1996-05-31 Nippondenso Co Ltd 冷媒蒸発器
BR9800780A (pt) * 1997-02-28 1999-10-13 Denso Corp Evaporador de refrigerante
DE19728578C2 (de) * 1997-07-04 1999-11-25 Daimler Chrysler Ag Verfahren zur außentaupunktabhängigen Verdampfertemperatursteuerung
DE19745028A1 (de) * 1997-10-11 1999-04-15 Behr Gmbh & Co Verfahren und Vorrichtung zur verdampfervereisungsgeschützten Klimaanlagensteuerung
JP3972501B2 (ja) * 1999-01-18 2007-09-05 株式会社デンソー 蓄熱用熱交換装置および車両用空調装置
JP3879296B2 (ja) * 1999-01-19 2007-02-07 株式会社デンソー 熱交換器
DE19964398B4 (de) * 1999-05-03 2006-03-09 Bayerische Motoren Werke Ag Verfahren zur Ermittlung eines Komfortgrenzwertes der spezifischen Enthalpie einer Fahrgastzelle bei einem Kraftfahrzeug mit Klimaanlage
US6185957B1 (en) * 1999-09-07 2001-02-13 Modine Manufacturing Company Combined evaporator/accumulator/suctionline heat exchanger
JP2001153489A (ja) * 1999-11-30 2001-06-08 Showa Alum Corp アキュームレータ一体型蒸発器
DE50111403D1 (de) * 2001-01-05 2006-12-21 Behr Gmbh & Co Kg Klimaanlage für ein Kraftfahrzeug

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6016662A (en) * 1996-06-03 2000-01-25 Denso Corporation Vehicular air conditioning apparatus for effectively cooling a main cooling unit and an additional cooling unit
DE10124757A1 (de) * 2000-05-26 2001-11-29 Denso Corp Fahrzeugklimaanlage mit Kältespeicher
DE20115273U1 (de) * 2001-01-05 2002-05-08 Behr Gmbh & Co Klimaanlage für ein Kraftfahrzeug

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006011327A1 (de) * 2006-03-09 2007-09-13 Behr Gmbh & Co. Kg Wärmeübertrager mit Kältespeicher
US8464550B2 (en) 2006-03-09 2013-06-18 Behr Gmbh & Co. Kg Heat exchanger with cold accumulator
US9464837B2 (en) 2012-03-21 2016-10-11 Mahle International Gmbh Phase change material evaporator charging control
CN104251537A (zh) * 2013-06-28 2014-12-31 德尔福技术有限公司 相变材料蒸发器充能控制
EP2842778A1 (de) * 2013-06-28 2015-03-04 Delphi Technologies, Inc. Phasenwechselmaterialverdampferladesteuerung

Also Published As

Publication number Publication date
DE10247262A1 (de) 2004-04-22
JP2006502903A (ja) 2006-01-26
US20060000232A1 (en) 2006-01-05
EP1554142A1 (de) 2005-07-20
AU2003266338A1 (en) 2004-05-04
US7251946B2 (en) 2007-08-07

Similar Documents

Publication Publication Date Title
EP1221389B1 (de) Klimaanlage für ein Kraftfahrzeug
DE102014111971B4 (de) Klimaanlage für ein Fahrzeug
EP1961592B1 (de) Klimaanlage für ein Fahrzeug
DE112016003558B4 (de) Wärmepumpen-System
WO2004035335A1 (de) Verfahren zur verdampfungstemperaturregelung bei einer klimaanlage
EP3444542B1 (de) Kreislaufsystem für ein fahrzeug und verfahren dazu
DE102012111672B4 (de) Kältemittelkreislauf einer Klimaanlage mit Wärmepumpen- und Nachheizfunktionalität
DE102006026359B4 (de) Klimaanlage für Fahrzeuge
DE10242464B4 (de) Vorrichtung zur Klimatisierung eines Fahrzeuginnenraums
DE102013110224A1 (de) Verfahren zum Betreiben einer Klimaanlage für ein Kraftfahrzeug
DE112013006239T5 (de) Wärmetauscher
EP3374216B1 (de) Klimaanlage
DE112015003005T5 (de) Kältekreislaufvorrichtung
DE112012005008T5 (de) Wärmetauscher
EP2821727B1 (de) Verfahren zum Betrieb eines Lüftungsheizgerätes und Lüftungsheizgerät
DE112015005246T5 (de) Wärmepumpen-fahrzeugklimatisierungssystem
DE102020117471A1 (de) Wärmepumpenanordnung mit indirekter Batterieerwärmung für batteriebetriebene Kraftfahrzeuge und Verfahren zum Betreiben einer Wärmepumpenanordnung
DE202011110325U1 (de) Luftentfeuchtungseinheit
EP2020315A2 (de) Verfahren zum Betrieb einer Klimaanlage
EP1462281A2 (de) Klimaanlage mit mehreren Verdampfern für ein Kraftfahrzeug
DE102013219146A1 (de) Fahrzeug-wärmepumpensystem und -steuerverfahren
EP1407905B1 (de) Klimaanlage für ein Fahrzeug und zugehöriges Betriebsverfahren
DE102019130803B4 (de) Verfahren zum Wärmemanagement eines Kraftfahrzeugs
DE102019203295B4 (de) Verfahren zum Betreiben einer Kälteanlage für ein Fahrzeug mit einem eine Wärmepumpenfunktion aufweisenden Kältemittelkreislauf
DE10308254A1 (de) Klimaanlage für ein Fahrzeug und zugehöriges Betriebsverfahren

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003808689

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004544016

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2006000232

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10530760

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2003808689

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10530760

Country of ref document: US