WO2004023538A1 - 結晶成長方法、結晶成長装置、ビーム分岐装置および表示装置 - Google Patents

結晶成長方法、結晶成長装置、ビーム分岐装置および表示装置 Download PDF

Info

Publication number
WO2004023538A1
WO2004023538A1 PCT/JP2003/011323 JP0311323W WO2004023538A1 WO 2004023538 A1 WO2004023538 A1 WO 2004023538A1 JP 0311323 W JP0311323 W JP 0311323W WO 2004023538 A1 WO2004023538 A1 WO 2004023538A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
crystallization
thin film
crystal growth
irradiation
Prior art date
Application number
PCT/JP2003/011323
Other languages
English (en)
French (fr)
Inventor
Yoshihiro Taniguchi
Tetsuya Inui
Yasushi Kubota
Yasuyoshi Kaise
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Priority to KR1020057000279A priority Critical patent/KR100620942B1/ko
Priority to AU2003261945A priority patent/AU2003261945A1/en
Publication of WO2004023538A1 publication Critical patent/WO2004023538A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02686Pulsed laser beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02691Scanning of a beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/066Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms by using masks
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/02Single-crystal growth directly from the solid state by thermal treatment, e.g. strain annealing
    • C30B1/023Single-crystal growth directly from the solid state by thermal treatment, e.g. strain annealing from solids with amorphous structure
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • C30B13/16Heating of the molten zone
    • C30B13/22Heating of the molten zone by irradiation or electric discharge
    • C30B13/24Heating of the molten zone by irradiation or electric discharge using electromagnetic waves
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02678Beam shaping, e.g. using a mask

Definitions

  • the present invention relates to a crystal growth method using a beam such as a laser beam, a crystal growth apparatus and a beam branching apparatus, and a display device including a thin film transistor having a polycrystalline thin film as an active layer.
  • a thin film transistor used in a display device using liquid crystal or electoluminescence (E L) uses amorphous or polycrystalline silicon as an active layer.
  • thin film transistors using polycrystalline silicon as the active layer have many advantages over thin film transistors using amorphous silicon as the active layer because of the high carrier (electron) mobility. doing.
  • a switching element be formed in the pixel portion, but a drive circuit can be formed in the peripheral region of the pixel.
  • some peripheral circuits can be formed on one substrate. This eliminates the need for a separate dry IC (integrated circuit) and drive circuit board to be mounted on the display device, so that the display device can be provided at a low price.
  • Another advantage is that the transistor size can be reduced, so that the switching element formed in the pixel portion can be reduced and the aperture ratio can be increased. Therefore, a display device with high brightness and high accuracy can be provided.
  • an amorphous silicon thin film is formed on a glass substrate by C V D (chemical vapor deposition) or the like, and then a separate process for polycrystallizing the amorphous silicon is required.
  • a glass substrate 5005 on which an amorphous silicon thin film is formed is heated to a temperature of about 400 ° C.
  • the length 2 0 O mn! A method of irradiating a glass substrate 50 5 with a linear beam 50 6 having a diameter of about 40 O mm and a width of about 0.2 mm to 1. O mm is common.
  • crystal grains having a crystal grain size of about 0.2 ⁇ m or more and 0.5 ⁇ m are formed.
  • the amorphous silicon in the portion irradiated with the laser does not melt throughout the entire thickness direction, but melts while leaving a part of the amorphous region. Throughout, crystal nuclei are generated and crystals grow toward the outermost surface of the silicon thin film to form randomly oriented crystal grains.
  • FIG. 16 is a drawing for explaining a needle crystal structure formed by one pulse irradiation. For example, the width is 2 ⁇ !
  • the laser irradiation region 5 2 1 melts by slit-shaped pulse irradiation of ⁇ 3 ⁇ m, and the crystal forms in the lateral direction from the boundary of the melting region, that is, in the direction parallel to the glass substrate (indicated by the arrow 5 2 2) grow up. Crystals grown from both sides collide at the center of the melting region, and the growth is completed. This crystal growth in the direction indicated by the arrow 5 2 2 is referred to as super lateral growth.
  • FIG. 17 is a diagram for explaining the super lateral growth mode by multiple times of pulse irradiation.
  • Super lateral growth is completed by irradiating the pulse laser once, as explained using Fig. 16.
  • FIG. 17 to FIG. 19 that is, an amorphous thin film is irradiated with a beam to melt the irradiated region 5 2 1 a. So Then, a crystal grows in this part.
  • the irradiation region 5 2 1 b is melted by slightly shifting. Crystals grow further in this part.
  • the irradiated region 5 21 c is then formed by irradiating the beam at a slightly shifted position.
  • the crystals can be further extended by forming the irradiated regions 5 2 1 d and 5 2 1 e by slightly shifting.
  • a longer needle-shaped crystal grows taking over the already grown crystal. It is characterized in that a long crystal having a uniform orientation in the crystal growth direction can be obtained.
  • the length of the crystal grown by one pulse irradiation varies depending on various conditions. For example, when the substrate temperature is 300 ° C., the wavelength is 30 °. It is known that when the excimer laser of 8 nm is irradiated, the length of the crystal is about 1 / im to l 2 ⁇ at the longest. This is described, for example, in the 1st 12th Research Textbook p p.
  • the feed pitch of 1 Z 2 to 1/3 of the crystal length grown by one laser irradiation that is, about 0.3 m to 0.6 ⁇ m Pulse irradiation is repeated at a minute feed pitch. For this reason, it took an extremely long time to crystallize the entire substrate area.
  • a method for shortening the time required for crystallization for example, in Japanese Patent Application Laid-Open No. 2 0 00-3 0 6 8 5 9, a mask provided with slit-shaped light transmission portions with equal intervals is used as a mask on the substrate surface There is a method of forming an image of the above.
  • the length of the crystal becomes the pitch of the image of the slit-like light transmission part determined from the pitch of the slit-like light transmission part and the magnification of the imaging system.
  • the crystal length is longer than the method of irradiating one linear beam 5 06 shown in FIG. Divided into a plurality of crystallized regions.
  • the crystallized region is a region where crystals having substantially the same crystal length are arranged in a direction perpendicular to the crystal length direction.
  • the mobility between crystallization regions is not very high, but the mobility within one crystallization region is high. Therefore, if the size of one crystallization region is set to a size capable of forming at least one transistor and the transistor is formed in one crystallization region, the method shown in FIG. 15 is superior. Transistors with improved performance can be obtained. .
  • the laser irradiation region is crystallized, and this irradiation region is moved to the next region on the substrate, and the crystallization is sequentially repeated. At this time, since the crystallization is not performed during the time required to move the substrate or the mask to the next irradiation region, the time is wasted.
  • the present invention has been made in view of the above-described problems, and one object of the present invention is to provide a crystal growth method and apparatus capable of manufacturing a high-quality polycrystalline semiconductor thin film in a short time, and a beam branching. Is to provide a device.
  • Another object of the present invention is to efficiently produce a high-quality polycrystalline semiconductor thin film, and to provide a high-performance display device having a thin film transistor having the polycrystalline semiconductor thin film as an active layer.
  • mth (m is an integer greater than or equal to 1) and m + 1th band-shaped beams are irradiated toward the thin film, and the thin film is irradiated with the mth and m + 1th kth crystallization regions And a distance r (r is longer than the length t of one crystal growth) from the m-th k-th crystallization region, and the m + 1-th k-th crystallization region Irradiating the partially overlapping region with the mth band-shaped beam to form the mth k + 1 crystallized region connected to the m + 1st kth crystallized region in a thin film.
  • the m-th distance is longer than the length t of one crystal growth t. Since the mth k + 1 crystallized region is formed in a thin film in a region distant from the kth crystallized region, the next crystallized region can be formed in a position farther than before. As a result, as compared with the conventional case, another crystallization region can be formed in a region away from one crystallization region, and the manufacturing time can be shortened.
  • the step of forming the k th crystallized region includes the step of branching the beam emitted from the beam source to shape the m th and m + 1 strip beams.
  • the distance r is constant regardless of the value of m
  • the shapes of the m-th and m + 1-th band beams are constant regardless of the value of m
  • the direction in which the plurality of k-th crystallization regions are arranged is It is constant regardless of the value of k.
  • the step of forming the k-th crystallization region and the step of forming the k + 1 crystallization region include a step of irradiating the first to n-th band-shaped beam groups toward the thin film,
  • To n-th band beams each include y beams (y is greater than 1) arranged in one direction at intervals of p: from the (m + 1) -th k-th crystallization region.
  • the distance q to the m-th k + 1 crystallized region is not less than 0.2 times and not more than 0.8 times the length t of one crystal growth.
  • the step of forming the k + 1 crystallized region includes a step of irradiating the mth and m + 1 strip-like beams on the thin film at a constant cycle by moving the thin film at a constant speed.
  • the crystal growth apparatus includes a supporting means for supporting the thin film, an irradiation means for irradiating the thin film with m-th (m is an integer of 1 or more) and m + 1 strip-shaped beams, and supporting.
  • Drive means for moving the means relative to the irradiation means; and control means for controlling the irradiation means and the drive means.
  • the irradiation means irradiates the m-th and m + 1-th band beams toward the thin film to form the m-th and m + 1-th k-th crystallization regions on the thin film, and then the support means is separated from the irradiation means by a distance r.
  • the drive means moves the thin film by a distance r from the m-th k-th crystallization region, and the m + 1-th
  • the irradiation means irradiates the m-th band-shaped beam to a region partially overlapping the k-crystallization region to form the m-th k + 1-crystallization region connected to the m + 1-th k-crystallization region in a thin film.
  • the control means controls the driving means and the irradiation means.
  • the distance is longer than the length t of one crystal growth. Since the mth k + 1 crystallized region is formed in a thin film in a region separated from the mth kth crystallized region by r, the next crystallized region is formed at a position farther than before. Can. As a result, compared to the conventional case, another crystallization region can be formed in a region away from one crystallization region, and the manufacturing time can be shortened.
  • the driving means moves the support means relative to the irradiation means at a constant speed
  • the control means controls the driving means and the irradiation means so that the irradiation means irradiates the thin film with a constant cycle.
  • the crystal growth apparatus further includes a beam source for generating a beam.
  • the irradiation unit includes a mask having a plurality of slits.
  • the mask shapes the m-th and m + 1-th band beams by diverging the light emitted from the beam source. '
  • the mask includes first to Nth slit groups (N is an integer of 2 or more) formed side by side in one direction, and each of the first to Nth slit groups has a predetermined interval.
  • P includes a plurality of slits formed side by side in one direction, and each of the plurality of slits has the same shape.
  • the driving means moves the support means at a constant speed with respect to the irradiation means.
  • a beam branching device is provided in each of first to Nth regions (N is an integer of 2 or more) and first to Nth regions arranged in one direction. And 1st to Nth slit groups formed.
  • Each of the first to Nth slit groups includes a plurality of slits formed in one direction at equal intervals P.
  • S is an integer between 1 and N ⁇ 1
  • S + 1 region adjacent to the S region in the S + 1 region closest to the S region
  • the distance to the slit is SXQ
  • Q is the distance on the beam splitter corresponding to 0.2 to 0.8 times the length t of one crystal growth.
  • each crystallization region can be formed at a position shifted by a predetermined position by making the movement amount constant.
  • a display device includes a pixel region in which a plurality of pixels are disposed, and an outer peripheral region that is provided so as to surround the pixel region and is formed of polycrystals extending in a substantially constant direction. Is provided. The width of one pixel along the extending direction of the polycrystal is almost a natural number times the length of the polycrystal in the outer peripheral region.
  • a display device includes a pixel region in which a plurality of pixels are disposed, and an outer peripheral region that is provided so as to surround the pixel region and is formed of polycrystals extending in a substantially constant direction. Prepare. The length of the polycrystal in the outer region is almost several times the width of one pixel.
  • FIG. 1 is a schematic diagram showing an apparatus for manufacturing a semiconductor thin film according to the first embodiment of the present invention.
  • FIG. 2 is a plan view of a mask having a slit according to the first embodiment of the present invention.
  • FIG. 3 is a cross-sectional view of a mask shown for explaining a method for crystallizing a thin film.
  • FIG. 4 is an enlarged view of the mth k-th crystallization region 2 0 2 a shown in FIG.
  • FIG. 5 is a cross-sectional view of a mask shown for explaining a method for crystallizing a thin film.
  • FIG. 6 is an enlarged view of the mth k + 1 crystallized region 2 0 3 a shown in FIG.
  • FIG. 7 is a diagram for explaining the locus of movement of the irradiation region according to the present invention.
  • FIG. 8 is a diagram showing a state in which a crystallization region is formed in the band-like region in the forward-direction band-like crystallization region.
  • Figure 9 shows a layout in which a total of nine display elements are formed at once from a single glass substrate.
  • FIG. 10 is a plan view showing in detail the crystallization region crystallized according to the second embodiment.
  • FIG. 11 is a plan view showing in detail the crystallization region crystallized by the second embodiment. is there.
  • FIG. 12 is a plan view showing in detail a crystallization region crystallized according to the second embodiment.
  • FIG. 13 is a plan view showing in detail the crystallization region crystallized according to the second embodiment
  • FIG. 14 is a plan view showing in detail the crystallization region crystallized according to the second embodiment.
  • FIG. 15 is a schematic diagram showing a crystallization technique using a conventional laser.
  • FIG. 16 is a diagram for explaining needle-like crystal yarns and weaves formed by one pulse irradiation.
  • Figure 17 is the same for explaining the super lateral growth mode by multiple pulse irradiations.
  • FIG. 18 is a diagram for explaining a super lateral growth mode by a plurality of pulse irradiations.
  • FIG. 19 is a diagram for explaining a form of super lateral growth by multiple times of pulse irradiation.
  • FIG. 1 is a schematic diagram showing an apparatus for manufacturing a semiconductor thin film according to the first embodiment of the present invention.
  • crystal growth apparatus 1 includes beam radiation means 1 1 as a beam source, variable attenuation means 1 2, beam shaping means 1 3, irradiance uniformity means 1 4, and mask 1 6. And a mask image forming means 17.
  • the beam emitting means 1 1 emits a pulsed beam capable of melting silicon.
  • the beam emitting means 11 can be constituted by a light source that emits light having a wavelength in the ultraviolet region, such as an excimer laser, various solid-state laser oscillators typified by a YAG (yttrium-anoreminium mu garnet) laser. desirable.
  • an excimer laser oscillator that emits light having a wavelength of 30 8 nm is used as the beam radiating means 11.
  • the variable attenuation means 12 is means for attenuating the irradiance of the beam that irradiates the substrate surface at a predetermined rate.
  • the beam shaping means 13 shapes the beam into a predetermined dimension.
  • the irradiance leveling means 14 is a means for uniformizing the irradiance of the non-uniform beam. Specifically, using a cylindrical lens array and a condenser lens, a beam with a Gaussian irradiance distribution is once split and then superimposed on the surface of the mask 16 for irradiation.
  • the mask 16 divides the beam to form an i-th slit beam group including one or more slit beams.
  • i is an integer from 1 to n.
  • the term “slit beam” refers to either a slit-shaped beam (light) image formed on a substrate, a beam forming the image, or an optical path of the beam.
  • the shape or dimensions of a slit beam it refers to the shape or dimensions of the image.
  • the mask image imaging means 17 is a means for forming an image of the slit beam formed by the mask 16 as a slit beam forming means on the substrate as an image. Specifically, it is configured using a lens.
  • the radiation direction changing means 19 is a means for changing the radiation direction of the beam, and is composed of, for example, a mirror or a lens. There are no particular limitations on the location and quantity, and it may be appropriately arranged according to the optical design and mechanism design of the device.
  • FIG. 2 is a plan view of a mask having a slit according to the first embodiment of the present invention.
  • masks 16 are arranged in a first direction in a first region 1 0 1 A, a second region 1 0 1 B, a third region 1 0 1 C, ... an Nth region 1 0 Has 1 N.
  • the first to Nth slit groups 10 02 A to 10 2 N are arranged.
  • Each of the first to Nth slit groups 10 0 2 A to 1 0 2 N includes a plurality of slits 10 2 formed side by side in one direction at equal intervals P. From the boundary between the second region 1 0 1 B as the S region and the third region 1 0 1 C as the S + 1 region adjacent to the second region 1 0 1 B, the third region 1 0 1 C Of these, the distance to the slit 10 2 located in the portion closest to the second region 1 0 1 B is SXQ (2 XQ). Q is a length not less than 0.2 times and not more than 0.8 times the distance on the mask 16 corresponding to the length t of one crystal growth.
  • the imaging magnification of the mask is 1 / 5.
  • Q is 0.2 X 5 X t or more and 0.8 X 5 X t or less, where t is the length of one crystal growth.
  • the mask 16 is formed adjacent to the first slit group 1 0 2 A and the first slit group 1 0 2 A, in which a plurality of slits 1 0 2 are formed in one direction at equal intervals P. And a second slit group 10 2 B in which the same number of slits 10 2 as the first slit group 10 2 A are formed at equal intervals.
  • the distance D between the first slit group 1 0 2 A and the second slit group 1 0 2 B is different from the distance P.
  • the slit shape and the beam shape are similar.
  • the dimensions on the mask are shown in capital letters, and the dimensions of the beam irradiated on the semiconductor thin film are shown in small letters.
  • a X B indicates the dimensions of the effective area of the mask, which is a rectangular area.
  • the effective area is the area on the mask that is irradiated (hereinafter referred to as pulse irradiation) by a single pulsed beam (hereinafter referred to as “pulse beam”).
  • pulse irradiation the area on the mask that is irradiated
  • pulse beam a single pulsed beam
  • a region on the semiconductor thin film corresponding to the effective region is referred to as an irradiation region.
  • the first to Nth regions 1 0 1 A to 1 0 1 N are formed by equally dividing the effective region into N (N is a predetermined integer equal to or greater than 2).
  • N is a predetermined integer equal to or greater than 2.
  • the length C of each of the first to Nth regions 1 0 1 A to 1 0 1 N is B / N.
  • 1st to Nth regions 1 0 1 A to 1 0 1 N One or more slits 10 2 A slit group as a slit-like light transmitting portion 1 0 2 A to 1 0 2 N is formed.
  • the slit-like light transmission portion formed in the i-th (i is an integer of 1 to N) region is referred to as an i-th slit group.
  • the slit beam group formed by the i th slit group is referred to as the i th slit beam group.
  • the distance P between each slit 1 0 2 is equal.
  • each slit-shaped light transmission part has the same number of slits 1 0 2 Is provided.
  • the position of the S + l slit group relative to the S + l region is compared to the position of the S slit group relative to the S region to the length of the crystal formed or grown by one beam irradiation. It is shifted to the right by a distance Q on the mask 16 corresponding to a length q (Fig. 6) of not less than 0.2 times and not more than 0.8 times.
  • 3 and 5 are cross-sectional views of the mask shown for explaining the method for crystallizing the thin film.
  • an amorphous silicon thin film 2 0 1 is formed on a substrate 18.
  • a mask 16 is positioned on the amorphous silicon thin film 2 0 1, and this mask 1 6 is irradiated with a beam 3 0 0.
  • mask image forming means 17 and radiation direction changing means 19 as shown in FIG. 1 exist between the mask 16 and the amorphous silicon thin film 20 1, but these are omitted in FIG. ing.
  • the beam 3 0 0 is divided into a plurality of strip beams 3 0 1 A to 3 0 1 N by the mask 16.
  • the band-like beams 3 0 1 A to 3 0 1 N are irradiated onto the amorphous silicon thin film 2 0 1, and the irradiated region is melted. After melting, this region solidifies to form a crystallized region.
  • the k-th crystallized region 2 0 2 n is formed.
  • FIG. 4 is an enlarged view of the mth k-th crystallization region 2 0 2 a shown in FIG.
  • the irradiated region is melted. After melting, this region solidifies in the direction indicated by arrows 2 2 2. At this time, the growth length of one crystal is indicated by t.
  • a distance r From the m-th k-th crystallization region 2 0 2 a (where r is longer than the length of one crystal growth t) is the m + 1-th region. K-th crystallization region 2 0
  • Region 2 0 A region partially overlapping b is irradiated with a strip beam 30 1 A as the m-th strip beam to crystallize the m-th k + 1 crystallized region 2 0 2 b.
  • Region 2 0 A region partially overlapping b is irradiated with a strip beam 30 1 A as the m-th strip beam to crystallize the m-th k + 1 crystallized region 2 0 2 b.
  • FIG. 6 is an enlarged view of the mth k + 1 crystallized region 2 0 3 a shown in FIG. Referring to FIG. 6, when the strip beam 30 1 A is irradiated, the portion irradiated with it is melted.
  • the strip beam 3 0 1 A also covers the m + 1 th k-th crystallized region 2 0 2 b, the crystal extends from the m + 1 th k th crystallize region 2 0 2 b.
  • the crystals produced in the process shown in FIG. By repeating such a process, a crystal can be grown.
  • the crystal growth method according to the present invention is directed to the first in (m is an integer of 1 or more) and the m + 1 th strip beams 3 0 1 A and 3 0 1 B toward the amorphous silicon thin film 2 0 1. Irradiation to form mth and m + 1st k-th crystallized regions 2 0 2 a and 2 0 2 b in the amorphous silicon thin film 2 0 1, and a distance r (from the m-th k-th crystallize region r is longer than the length of one crystal growth t).
  • the mth band-like beam 3 0 1 is located in a distant region and partially overlaps the m + 1st k-th crystallization region 2 0 2 b Irradiating A to form the m-th k + 1 crystallized region 2 0 3 a connected to the m + 1st k-th crystallized region 2 0 2 b in the monolayer silicon thin film 2 0 1 .
  • the crystal growth apparatus 1 includes a supporting means 2 1 for supporting an amorphous silicon thin film 2 0 1, an m-th (m is an integer of 1 or more) and an m + 1 band-shaped beam 3 0 1 A on the amorphous silicon thin film 2 0 1
  • Irradiating means 10 for irradiating and crystallizing with 3 0 1 B, driving means 9 for moving the supporting means 21 relative to the irradiating means 10, and control for controlling the irradiating means 10 and the driving means 9 Means 20.
  • the irradiation means 10 includes a beam shaping means 13 and an irradiance uniformizing means 14.
  • Irradiation means 10 irradiates the m-th and m + 1-th band beams 30 1 A and 3 0 1 B toward the monolithic silicon thin film 2 0 1, and the amorphous silicon thin film 2 0 1 And m + 1st k-th crystallized regions 2 0 2 a and 2 0 2 b are formed, and then the support means 2 1 is separated from the irradiation means 1 0 by a distance r (r is the length of one crystal growth t Is longer than the mth k-th crystallization region 2 0 2 a by the distance r, and the m + 1 th k-th crystallization region 2
  • the irradiation means 10 emits the m-th band-shaped beam 30 1 A to the region partially overlapping 0 2 b, and the m-th k + 1 connected to the m + 1 th k-th crystallization region 2 0 2 b
  • the control means 20 controls the driving means 9 and the
  • the steps of forming the k th crystallization region 2 002 a to 2 0 2 ⁇ and forming the k + 1 crystallization region 2 0 3 a to 2 0 3 n include the first to n th strip beams Including a step of irradiating the thin band beams 30 1 A to 30 1 N constituting the group toward the thin film, and each of the first to nth band beam groups is formed side by side in one direction with an interval p. From the (m + 1) th k-th crystallized region 2 0 2 b to the m-th k + 1 crystallized region 2 0 3 a q is not less than 0.2 times and not more than 0.8 times the length t of one crystal growth.
  • FIG. 7 is a diagram for explaining the locus of movement of the irradiation region according to the present invention.
  • the steps according to this embodiment will be described with reference to FIG.
  • the mask irradiation area 4 is arranged at the upper left corner of the substrate 18. If c irradiation region 4 proceeds to step 2 is the left end of the substrate 1 8, the irradiation region 4 until reaches the right end of the substrate 1 8, the step of crystallizing the band-like region in the opposite direction.
  • the process of crystallizing the belt-like region in the reverse direction is to crystallize the belt-like region of width a which is the trajectory of the movement of the irradiation region 4 while moving the irradiation region 4 in the right direction (direction indicated by arrow 4a).
  • step 3 If the irradiated region 4 is at the right end of the substrate 18, a step of crystallizing the belt-shaped region in the forward direction is performed until the irradiated region 4 reaches the left end of the substrate 18.
  • the step of crystallizing the band-like region in the forward direction is a step of crystallizing the band-like region having a width a which is the locus of movement of the irradiation region 4 while moving the irradiation region to the left.
  • step 4 Move irradiation area 4 downward by distance a. Go to step 5.
  • Step 2 If the irradiated area 4 is below the lower end of the substrate 18, the step is finished. If not, go to Step 2.
  • the thin film formed on the entire surface of the substrate 18 can be crystallized by repeating steps 1 to 5 in order.
  • the board 1 8 is stopped.
  • the irradiation region 4 is moved.
  • the substrate 18 and the irradiation region 4 may be moved relative to each other. Either one or both of the substrate 18 and the irradiation region 4 may be moved. ,:,
  • FIG. 8 is a diagram showing a state in which a crystallization region is formed in the band-like region in the forward direction band-like crystallization region.
  • the first slit beam group is irradiated.
  • the first slit beam group forms a crystallized region 1a.
  • the irradiation area is moved in the left direction indicated by 3a by the length on the substrate corresponding to the length C of the equally divided area.
  • the second slit beam group is irradiated.
  • the second slit beam group forms a crystallization region 1b.
  • the crystal grown by the first slit beam group is taken over and grown. Thereafter, similarly to the second crystallization step, the third, fourth,..., Nth crystallization steps are sequentially performed to form a crystallization region.
  • N slit-like light transmission portions from the first slit-like light transmission portion to the N-th slit-like light transmission portion are formed side by side from the left to the right by shifting the distance C by the mask. Therefore, by using this mask, distance. (Distance on amorphous silicon thin film 2 0 1 corresponding to distance C on mask 16)
  • the first crystallization process force is The n-th crystallization step can be performed simultaneously.
  • the entire operation becomes a flow operation, and the trajectory after the irradiation region passes A certain band-like region is sequentially subjected to the first crystallization process to the nth crystallization process, and a crystallization region is formed.
  • the process of crystallizing the belt-like region in the reverse direction consists of the irradiation region moving from left to right, and the crystallization step in the order of the n-th, n-th, 1, 2, crystallization steps.
  • the same crystal as the step of crystallizing the band-like region in the forward direction except that the crystal growth direction is from right to left, and the same crystal as the step of crystallizing the band-like region in the forward direction The formation region can be formed.
  • a slit beam similar to the shape of the slit transmission part shown in Fig. 2 may be periodically pulsed at the frequency f.
  • pulse irradiation can be performed while relatively moving the substrate or irradiation region at a constant speed, so that the substrate or irradiation region can be moved in a shorter time than when the substrate or irradiation region is stopped at a predetermined position and then pulse irradiation is performed.
  • pulse irradiation can be performed while changing the speed and frequency, it is possible to maintain the accuracy of the position where pulse irradiation is performed, and to reduce the consumption of the energy device used for movement.
  • C YXP.
  • the time from pulse irradiation to the next pulse irradiation is the time to move the substrate or irradiation area to the position where the next pulse irradiation is performed, and the time until the beam irradiation means can perform the next pulse irradiation. And whichever is longer.
  • the method described in Japanese Patent Laid-Open No. 2 00 0 3 0 6 8 5 9 after repeating the step of irradiating a pulse by moving the distance q, one irradiation region is crystallized, and then the next irradiation region. The process of moving to the distance b—q is performed.
  • the time from pulse irradiation to the next pulse irradiation is equal to the time until the beam irradiation means can perform the next pulse irradiation.
  • the beam emitting means is in a waiting state, that is, a state in which the beam is not emitted.
  • Embodiment 1 described above if the distance c is set to be shorter than the longest length during which the beam radiating means can move during the time until the next pulse irradiation becomes possible, the beam radiating means is The pulse beam can be emitted with the shortest possible period. Moreover, since it is not necessary to move to the next irradiation area as in the method described in JP 2000-306859 A, as a result, it is necessary to move to the next irradiation area in JP 2000-306859 A. The processing time is shortened by the amount of time.
  • the number of slit-like light transmitting portions or the number of slit-like beam groups may be set to n (pieces).
  • the length of the entire irradiation region is b
  • the length C of the equally divided region corresponds to c above.
  • the distance on the mask may be used.
  • Figure 9 shows the layout of the display elements formed on the substrate.
  • FIG. 9 shows a layout in which a total of nine display elements are formed at a time from a single glass substrate.
  • the layout of display elements such as active matrix liquid crystal display elements is generally roughly divided into a pixel area 31 and its peripheral part (frame area 32).
  • a driver for driving pixels is arranged in the pixel region 31.
  • a driver is formed on a silicon wafer, and the silicon wafer cut into chips is mounted on a liquid crystal substrate and electrically connected. This method includes a separate chip manufacturing process and mounting process, so there are many processes and a long manufacturing time, and the manufacturing cost (labor and material costs) is high. There were drawbacks such as the shape of the protruding tip and large dimensions.
  • the frame region 32 is crystallized, and a high-speed transistor made of silicon having high carrier mobility is formed, thereby speeding up pixel driving or signal processing.
  • the pixel region 31 does not require high mobility, it is not recrystallized by superlateral growth and remains amorphous silicon or polycrystalline silicon having no uniform orientation.
  • the mask used in the present invention has the same structure as that of Embodiment 1, and is shown in FIGS.
  • the force that makes the length a of the slit-shaped beam formed by the slit-shaped light transmitting portion of length A on the mask equal to the width of the frame region 32 shown in FIG. > Set a wider than ⁇ or ⁇ . Using these settings, a series of frames arranged in a row can be obtained by performing the forward band region crystallization step or the reverse band region crystallization step on the frame region 3 2 arranged in a row. Region 32 can be formed.
  • the flow of irradiation area movement will be described with reference to FIG.
  • the irradiation area 4 is arranged at a position 4 2 0 at the upper left in the figure. Go to step 2.
  • a reverse band-like region crystallization process is performed until the irradiated region 4 reaches the right end, and a series of frame regions 32 are crystallized.
  • Go to step 3. Move the irradiation area 4 to the row of the frame area 32 immediately below it as indicated by the arrow 41.
  • a forward zonal region crystallization process is performed until the irradiated region 4 reaches the left end, and a series of frames of the frame region 32 is crystallized. Go to step 5. If the bottom frame region 3 2 has been crystallized, proceed to step 7.
  • Step 6 Move the irradiation area 4 to the row of the frame area 32 immediately below it as indicated by the arrow 4 2. Go to step 2. If all frame regions 3 2 have been crystallized, finish. If not, go to Step 8. Rotate substrate 18 or irradiated area 4 90 °. Go to step 1.
  • the frame region 3 2 requiring high mobility is crystallized and the pixel region 3 1 not requiring high mobility is not crystallized.
  • Manufacturing time can be shortened.
  • the frame-like region is only about 10 to 20% of the total substrate area, the crystallization time can be greatly shortened by not crystallizing the pixel region as in the second embodiment.
  • the frame region 3 2 on the four sides of the pixel region 31 is crystallized.
  • one or more of the four frame regions 3 2 on the four sides is crystallized. Just crystallizing all or part of it has a considerable effect. Therefore, all the frame regions 3 2 on the four sides of the pixel region 3 1 must be crystallized. It is not without.
  • the length a of the slit-shaped light transmission beam is not necessary to set the length a of the slit-shaped light transmission beam to be equal to or wider than the width ⁇ ; of the frame region 32 shown in Fig. 9 and use the aperture for moving the irradiation region of the beam irradiation. It is possible to shorten the distance of moving the irradiation area of the beam irradiation without performing the beam irradiation. As a result, crystallization can be performed in a short time and with energy saving.
  • FIG. 10 shows details of the crystallized region crystallized according to the second embodiment.
  • a long polycrystal 210 having the crystal orientation aligned with the longitudinal direction of frame region 32 is obtained.
  • the pixel region 31 is a pixel region of the liquid crystal, and the frame region 32 is arranged around it.
  • a grid-like line described in the pixel area 31 indicates a boundary line between pixels.
  • the pitch p of the slit beam is equal to the pitch of the crystallization region.
  • the band-like region is formed along the periphery of the pixel region, the direction of the boundary line between the crystallization region and the pixel region adjacent to the crystallization region and the long crystal in the crystallization region The direction is equal. Therefore, by matching the pitch p of the slit beam and the pitch of the pixels, each pixel column and each crystallized region can be made to correspond one-to-one.
  • FIG. 10 is a detailed view showing the coincidence of the pixel and the crystallized region when the pitch of the slit beam!) And the pitch of the pixel are crystallized. In the state of FIG. 10, since each crystallization region corresponds to each pixel column (a series of pixels continuous in the vertical direction in FIG. 10), the transistor corresponding to one pixel column corresponds to 1 It can be formed in one crystal region.
  • the capability required of the transistor varies.
  • Transistors that require high speed are The transistor is required to have a small channel width, but a transistor that requires a large current driving capability for use in pixel driving or the like is required to have a wide channel width.
  • the pixel pitch varies depending on the liquid crystal substrate, but it is designed in the range of approximately 10 xm to 100 ⁇ m.
  • the width of the transistor to be formed is required to be several tens to several hundreds of ⁇ s, and the transistor must be arranged for each pixel column.
  • the second embodiment even if it is a transistor having a channel width, it is possible to easily form a transistor having an arbitrary channel width by setting the channel direction (current flow direction) to the longitudinal direction of the frame region 32. Can be formed. In addition, since the direction of the channel (the direction in which the current flows) matches the direction of high mobility, a transistor with high processing speed can be obtained.
  • the two transistors 25 shown in FIG. 10 are a transistor with a narrow channel width and a transistor with a large channel width, respectively.
  • the width of the crystallization region formed in the frame region 32 can be set to twice the pixel pitch. Even in this case, the same effect as the example shown in FIG. In the transistor shown in Fig. 11, transistors can be designed with two pixel columns and one crystallized region as the base, and high-speed transistors can be designed in the crystallized regions corresponding to the two pixel columns. A jitter can be formed. Therefore, it is possible to design more freely than in FIG.
  • the crystallization region is formed so that at least the pitch of the crystallization region is an integral multiple or a fraction of an integer of the pixel pitch, a transistor having a high speed and an arbitrary channel width corresponding to each pixel column Can be formed easily.
  • the display device 6 0 0 in FIG. 1 3 and FIG. 14 is a pixel in which a plurality of pixels 3 1 a are arranged.
  • the width G of one pixel along the extending direction of the polycrystal 210 is almost a natural number multiple of the length J of the polycrystal 210 in the frame region 32.
  • 10 to 12 includes a pixel region 31 in which a plurality of pixels 31 a are arranged, and a polycrystalline crystal 210 that is provided so as to surround the pixel region 31 and extends in a substantially constant direction.
  • Frame area 32 as an outer peripheral area.
  • the length J of the polycrystal 210 in the frame region 32 is almost a natural number multiple of the width G of one pixel 31a.
  • Beam irradiation frequency f 300Hz in the beam irradiation means
  • Feed pitch per pulse irradiation by super lateral growth q 0.5 ⁇
  • FIG. 15 is a drawing for explaining a conventional method of manufacturing a polycrystalline semiconductor thin film using a single slit beam.
  • the substrate moves at a constant speed while irradiating a single slit beam that can irradiate the short side of the substrate at once.
  • the time required to crystallize the entire surface of the substrate is calculated by the crystallization method according to the method described in Japanese Patent Application Laid-Open No. 2000-306859.
  • a mask having slits formed at equal pitches is used.
  • the irradiation region is moved to the next irradiation.
  • Various manufacturing conditions are defined as follows.
  • the force movement performed by moving the substrate and the time required to bring the substrate to rest require about 0.3 seconds in total.
  • the crystallization time calculation conditions and manufacturing conditions are as follows.
  • 320 20 16 strip-shaped regions are crystallized in order.
  • the crystallization time can be shortened by about 42% compared with the method described in Japanese Patent No. 000-306 8 59.
  • the shape of the light transmitting portion of the mask is a rectangular slit.
  • the shape is not limited to this, and various shapes such as a mesh shape, a sawtooth shape, and a wave shape are available. The shape can be adopted.
  • the mth kth crystallization is performed by a distance r longer than the length t of one crystal growth. Since the m-th k + 1 crystallized region is formed in a thin film in a region separated by a region force ⁇ , the next crystallized region can be formed in a position farther than before. As a result, the moving time of the strip beam can be shortened compared to the conventional case, and the manufacturing time of the crystalline thin film can be shortened. In addition, by increasing the amount of movement, crystallization can be performed sequentially while shifting the time for performing each step between regions. This is the flow work of the crystallization process. In other words, a wide range of crystallization can be performed uniformly and in a short time by periodically repeating simple processes.
  • the crystallization region can be formed with a regular pattern.
  • each of the 1st to n-th band-shaped beam groups includes y beams arranged in one direction at intervals of p, and is arranged from the (m + 1) -th k-th crystallization region. Since the distance q to the k + 1 crystallization region of m is 0.2 to 0.8 times the length of one crystal growth t, the 1st to nth strip beam groups After irradiating the thin film, a plurality of crystallized regions can be formed in a short time and accurately using the band beam group by irradiating the next beam to a position shifted by a predetermined distance q.
  • the crystallization region can be manufactured most efficiently.
  • the slit located in the portion of the S + 1 region closest to the S region from the boundary between the S region and the S + 1 region adjacent to the S region.
  • the distance to is SXQ, Q is 0.2 times the length of one crystal growth Since the distance is on the beam branching device corresponding to above 0.8 times, the beam irradiation device is moved by a predetermined distance after the thin film is irradiated through the S region and the S + 1 region. If the thin film is irradiated with a beam, the next crystallized region is formed so as to overlap the previously formed crystallized region. As a result, the moving distance of the beam irradiation device can be increased, and a thin film can be manufactured in a short time.
  • the width of one pixel along the direction in which the polycrystal extends is approximately a natural number times the length of the polycrystal in the outer peripheral region. Since a transistor corresponding to a pixel column group can be formed for a pixel column group composed of pixel columns, the design is facilitated. Moreover, it becomes a simple structure.
  • the length of the polycrystal in the outer peripheral region is almost a natural number multiple of the width of one pixel along the direction in which the polycrystal extends, so that one pixel row corresponds to one pixel row. Since the transistor corresponding to can be formed, the design is easy. It also has a simple structure. Industrial applicability
  • the present invention relates to a crystal growth method using a beam such as a laser beam, a crystal growth apparatus and a beam branching apparatus, and a thin film using the polycrystalline thin film as an active layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Optics & Photonics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Electromagnetism (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

 高速で結晶化が可能な結晶成長方法を提供する。結晶成長方法は、第m(mは1以上の整数)および第m+1の帯状ビームを薄膜に向けて照射して、アモルファスシリコン膜(201)に第mおよび第m+1の第k結晶化領域(202a、202b)を形成する工程と、第mの第k結晶化領域(202a)から距離r(rは1回の結晶成長の長さよりも長い)離れた領域であって、第m+1の第k結晶化領域(202b)に一部が重なる領域に第mの帯状ビームを照射して第m+1の第k結晶化領域(202b)に連なる第mの第k+1結晶化領域(203a)をアモルファスシリコン膜(201)に形成する工程とを備える。

Description

明細書 結晶成長方法、 結晶成長装置、 ビーム分岐装置および表示装置 技術分野
この発明は、 レーザ光などのビームを用いた結晶成長方法、 結晶成長装置およ ぴビーム分岐装置、 ならびにその多結晶薄膜を活性層とする薄膜トランジスタを 備えた表示装置に関するものである。 背景技術
液晶またはエレクト口ルミネッセンス (E L ) を応用した表示装置に用いられ ている薄膜トランジスタは、 非晶質または多結晶のシリコンを活性層として用い る。 このうち、 多結晶シリコンを活性層として用いた薄膜トランジスタは、 キヤ リア (電子) の移動度が高いため、 非晶質シリコンを活性層として用いた薄膜ト ランジスタと比較して、 多くの長所を有している。
たとえば、 画素部分にスイッチング素子を形成するだけでなく、 画素の周辺領 域に駆動回路を形成できる。 または一部の周辺回路を 1枚の基板上に形成するこ とができる。 このため、 別途ドライノ I C (集積回路) や駆動回路基板を表示装 置に実装する必要がなくなるので、 表示装置を低価格で提供することが可能とな る。
また、 その他の長所として、 トランジスタの寸法を微細化できるので、 画素部 分に形成するスイッチング素子が小さくなり、 開口率を高くできる。 そのため、 高輝度および高精度な表示装置を提供することが可能となる。
多結晶シリコンの薄膜の製造方法では、 ガラス基板に C V D (化学気相成長 法) などで非晶質シリコンの薄膜を形成した後、 別途非晶質シリコンを多結晶化 する工程が必要である。
非晶質シリコンの薄膜を結晶化する工程として、 温度 6 0 0 °C以上の高温ァニ ール法によって行なう方法がある。 この場合、 高温に耐え得る高価なガラス基板 を使用する必要があり、 表示装置の低価格化の阻害要因となっていた。 最近はレ ' 一ザを用いて温度 6 0 0 °C以下の低温で非晶質シリコンの結晶化を行なう技術が 一般化され、 低温のガラス基板に多結晶シリコンの薄膜トランジスタを形成した 表示装置を低価格で提供できるようになっている。
レーザによる結晶化技術は、 図 1 5に示すように、 非晶質シリコン薄膜を形成 したガラス基板 5 0 5を温度 4 0 0 °C程度に加熱する。 次に、 ガラス基板 5 0 5 を一定速度で走査しながら、 長さ 2 0 O mn!〜 4 0 O mm、 幅 0 . 2 mmから 1 . O mm程度の線状ビーム 5 0 6をガラス基板 5 0 5に照射する方法が一般的であ る。 この方法によって、 結晶粒径が 0 . 2 μ m以上 0 . 5 μ m程度の結晶粒が形 成される。 このとき、 レーザを照射した部分の非晶質シリコンは、 厚さ方向全域 にわたつて溶融するのではなく、 一部の非晶質領域を残して溶融することによつ て、 レーザ照射領域全面にわたって、 至るところに結晶核が発生し、 シリコン薄 膜最表面に向かって結晶が成長し、 ランダムな方位の結晶粒が形成される。
さらに、 高性能な表示装置を得るためには、 多結晶シリコンの結晶粒径を大き くする、 または、 結晶の方位を制御することが必要であり、 単結晶シリコンに近 い性能を得ることを目的として、 近年、 数多くの研究開発がなされている。
その中でも、 特に、 国際公開 W0 9 7 / 4 5 8 2 7号公報には、 スーパーラテ ラル成長と称する技術が開示されている。 上述の公報に記載の方法では、 スリツ ト状のパルスレーザをシリコン薄膜に照射し、 シリコン薄膜をレーザ照射領域の 厚さ方向全域にわたって溶融および凝固させて結晶を行なうものである。 図 1 6 は、 1回のパルス照射で形成された針状結晶組織を説明する図面である。 たとえ ば、 幅が 2 π!〜 3 μ mのスリット状のパルス照射によって、 レーザ照射領域 5 2 1力溶融し、 溶融領域の境界から横方向、 すなわち、 ガラス基板に平行な方向 (矢印 5 2 2で示す方向) に結晶が成長する。 溶融領域の中央部で両側から成長 した結晶が衝突し、 成長が終了する。 この矢印 5 2 2で示す方向への結晶の成長 をスーパーラテラノレ成長と称する。
図 1 7は、 複数回のパルス照射によるスーパーラテラル成長の形態を説明する 図である。 スーパーラテラル成長は、 図 1 6を用いて説明したとおり、 パルスレ 一ザを 1回照射することで完了する。 図 1 7から図 1 9で示すように、 すなわち、 ー且アモルファスの薄膜にビームを照射して照射領域 5 2 1 aを溶融させる。 そ してこの部分に結晶を成長させる。 次に、 僅かにずらして照射領域 5 2 1 bを溶 融させる。 この部分で結晶がさらに成長する。 図 1 8で示すように、 次にまた少 しずらした位置にビームを照射して照射領域 5 2 1 cを形成する。 さらに、 僅か ずつずらして照射領域 5 2 1 dおよび 5 2 1 eを形成することにより、 結晶をさ らに伸ばすことができる。 すなわち、 1回前のパルス照射で形成された針状結晶 の一部に重複するように順次パルスレーザを照射していくと、 既に成長した結晶 を引き継いで、 さらに長い針状の結晶が成長し、 結晶の成長方向に方位の揃った 長い結晶が得られるといった特徴を有する。
上述の公報に記載したスーパーラテラル成長では、 1回のパルス照射で成長す る結晶の長さは各種の条件によって異なり、 たとえば基板の温度を 3 0 0 °Cとし た場合において、 波長が 3 0 8 n mのエキシマレーザを照射した場合には、 結晶 の長さは最も長い場合に 1 /i m〜l . 2 μ πι程度となることが知られている。 こ れは、 たとえば参考文献としての応用物理学会結晶工学分科会第 1 1 2回研究テ キス ト p p . 1 9〜2 5に記載されている。
したがって、 長い結晶を形成するためには、 1回のレーザ照射で成長する結晶 長さの 1 Z 2から 1 / 3程度の送りピッチ、 すなわち、 0 . 3 mから 0 . 6 μ m程度の極めて微小な送りピッチでパルス照射を繰返し行なうことになる。 この ため、 基板面積全体にわたつて結晶化するには極めて長レ、時間が必要であつた。 結晶化に要する時間を短縮するための方法として、 たとえば特開 2 0 0 0— 3 0 6 8 5 9号公報では、 等間隔のスリット状光透過部を備えるマスクを用いて基 板面にマスクの像を結像させる方法がある。 この方法では、 結晶の長さはスリツ ト状光透過部のピッチと結像系の倍率から定まるスリット状光透過部の像のピッ チとなる。 また、 特開 2 0 0 0— 3 0 6 8 5 9号公報では、 図 1 5で示す 1本の 線状ビーム 5 0 6を照射する方法に比べて結晶長は長くなり、 多結晶シリコンは 複数の結晶化領域に分割される。 結晶化領域とは、 結晶長のほぼ等しい結晶が結 晶長の方向と垂直な方向に並んでいる領域である。 結晶化領域間の移動度はあま り高くないが、 1つの結晶化領域内での移動度は高い。 したがって、 1つの結晶 化領域の寸法を少なくとも 1つのトランジスタを形成できる寸法とし、 1つの結 晶化領域内にトランジスタを形成するようにすれば、 図 1 5で示した方法より優 れた性能のトランジスタを得ることができる。 .
ただし、 この方法では、 レーザの照射領域を結晶化し、 この照射領域を基板上 の次の領域に移動させて順次結晶化を繰返すことになる。 このとき、 基板もしく はマスクを次の照射領域へ移動するために要する時間の間は結晶化が行なわれな いので、 無駄な時間となる。
上述のとおり、 スーパーラテラル成長では、 '従来のレーザァニール法に比べて 良質の結晶が形成されるが、 結晶化に要する時間が長い。 発明の開示
そこで、 この発明は上述のような問題に鑑みてなされたものであり、 この発明 の 1つの目的は、 良質の多結晶半導体薄膜を短時間で製造することができる結晶 成長方法および装置ならびにビーム分岐装置を提供することである。
この発明の別の目的は、 良質の多結晶半導体薄膜を効率よく製造すること、 お よび多結晶半導体薄膜を活性層とする薄膜トランジスタを有する高性能な表示装 置を提供することである。
この発明に従った結晶成長方法は、 第 m (mは 1以上の整数) および第 m+ 1 の帯状ビームを薄膜に向けて照射して、 薄膜に第 mおよび第 m+ 1の第 k結晶化 領域を形成する工程と、 第 mの第 k結晶化領域から距離 r ( rは 1回の結晶成長 の長さ tよりも長い) 離れた領域であって、 第 m+ 1の第 k結晶化領域に一部が 重なる領域に第 mの帯状ビームを照射して第 m+ 1の第 k結晶化領域に連なる第 mの第 k + 1結晶化領域を薄膜に形成する工程とを備える。
このような工程を備えた結晶成長方法に従えば、 第 mおよび第 m+ 1の第 k結 晶化領域を形成した後、 1回の結晶成長の長さ tよりも長い距離 rだけ第 mの第 k結晶化領域から離れた領域に第 mの第 k + 1結晶化領域を薄膜に形成するため、 従来よりも、 離れた位置に次の結晶化領域を形成することができる。 その結果、 従来に比べて、 1つの結晶化領域から離れた領域に別の結晶化領域を形成するこ とができ、 製造時間を短くすることができる。
また好ましくは、 第 k結晶化領域を形成する工程は、 ビーム源から放たれたビ ームを分岐させて第 mおよぴ第 m+ 1の帯状ビームを整形する工程を含む。 また好ましくは、 mの値にかかわらず距離 rは一定であり、 mの値にかかわら ず第 mおよび第 m+ 1の帯状ビームの形状は一定であり、 複数の第 k結晶化領域 の並ぶ方向は kの値にかかわらず一定である。
また好ましくは、 第 k結晶化領域を形成する工程および第 k + 1結晶化領域を 形成する工程は、 第 1から第 nの帯状ビーム群を薄膜に向けて照射する工程を含 み、 第 1から第 nの帯状ビーム群の各々は、 間隔: pを隔てて 1方向に並んで形成 された y ( yは 1より大きい) 個のビームを含み、 第 m+ 1の第 k結晶化領域か ら第 mの第 k + 1結晶化領域までの距離 qは、 1回の結晶成長の長さ tの 0 . 2 倍以上 0 . 8倍以下の長さである。
また好ましくは、 nは、 n = p / c!で示す関係式を満たすように選ばれる。 また好ましくは、 第 k + 1結晶化領域を形成する工程は、 薄膜を一定速度で移 動させて薄膜に一定の周期で第 mおよび第 m+ 1の帯状ビームを照射する工程を 含む。
また好ましくは、 第 mおよび第 m+ 1の帯状ビームを照射する周波数 ίと薄膜 の移動速度 sとは、 s = r X f で示す関係式を満たす。
この発明に従った結晶成長装置は、 薄膜を支持する支持手段と、 薄膜に第 m (mは 1以上の整数) および第 m+ 1の帯状ビームを照射して結晶化する照射手 段と、 支持手段を照射手段に対して移動させる駆動手段と、 照射手段と駆動手段 とを制御する制御手段とを備える。 第 mおよび第 m+ 1の帯状ビームを薄膜に向 けて照射手段が照射して薄膜に第 mおよび第 m+ 1の第 k結晶化領域を形成した 後、 支持手段を照射手段に対して距離 r ( rは 1回の結晶成長の長さ tよりも長 い) だけ駆動手段が薄膜を移動させて、 第 mの第 k結晶化領域から距離 r離れた 領域であって、 第 m+ 1の第 k結晶化領域に一部が重なる領域に第 mの帯状ビー ムを照射手段が照射して第 m+ 1の第 k結晶化領域に連なる第 mの第 k + 1結晶 化領域を薄膜に形成するように制御手段は駆動手段および照射手段を制御する。 このように構成された結晶成長装置では、 照射手段が帯状ビームを照射して第 mおよび第 m+ 1の第 k結晶化領域を形成した後、 1回の結晶成長の長さ tより も長い距離 rだけ第 mの第 k結晶化領域から離れた領域に第 mの第 k + 1結晶化 領域を薄膜に形成するため、 従来よりも、 離れた位置に次の結晶化領域を形成す ることができる。 その結果、 従来に比べて、 1つの結晶化領域から離れた領域に 別の結晶化領域を形成することができ、 製造時間を短くすることができる。
また好ましくは、 駆動手段が一定速度で照射手段に対して支持手段を移動させ、 照射手段が薄膜に一定の周期でビームを照射するように制御手段は駆動手段およ び照射手段を制御する。
また好ましくは、 結晶成長装置は、 ビームを発生させるビーム源をさらに備え る。
また好ましくは、 照射手段は、 複数のスリットを有するマスクを含む。 マスク は、 ビーム源から放たれた光を分岐させて第 mおよび第 m+ 1の帯状ビームを整 形する。 '
また好ましくは、 マスクは、 1方向に並んで形成された第 1から第 N (Nは 2 以上の整数) のスリット群を含み、 第 1から第 Nのスリッ ト群の各々は、 所定の 間隔 Pで 1方向に並んで形成された複数のスリットを含み、 複数のスリットの 各々は同一形状である。
また好ましくは、 スリット群の数 Nは、 N = P /Q (Qは 1回の結晶成長の長 さ tの 0 . 2倍以上 0 . 8倍以下に対応するマスク上での距離) で示す関係式を 満たす。
また好ましくは、 駆動手段は、 支持手段を照射手段に対して一定速度で移動さ せる。
この発明の別の局面に従ったビーム分岐装置は、 1方向に並ぶように配置され た第 1から第 N (Nは 2以上の整数) の領域と、 第 1から第 Nの領域の各々に形 成された第 1から第 Nのスリット群とを備える。 第 1から第 Nのスリット群の 各々は、 等しい間隔 Pで 1方向に並んで形成された複数のスリ ットを含む。 第 S 領域 (Sは 1以上 N—1以下の整数) とその第 S領域に隣接する第 S + 1領域と の境界部分から、 第 S + 1領域のうち第 S領域に最も近い部分に位置するスリツ トまでの距離は S X Qであり、 Qは、 1回の結晶成長の長さ tの 0 . 2倍以上 0 . 8倍以下に対応するビーム分岐装置上での距離である。
このように構成されたビーム分岐装置では、 第 S領域に形成された第 Sのスリ ット群と、 第 S + 1領域に形成された第 S + 1のスリット群とは、 距離 Qずつず れているため、 移動量を一定とすることで所定の位置だけずれた位置にそれぞれ の結晶化領域を形成することができる。
この発明の 1つの局面に従った表示装置は、 複数の画素が配置される画素領域 と、 画素領域を取囲むように設けられ、 ほぼ一定の方向に延びる多結晶により構 成される外周領域とを備える。 多結晶が延びる方向に沿った 1つの画素の幅は、 外周領域の多結晶の長さのほぼ自然数倍である。
この発明の別の局面に従った表示装置は、 複数の画素が配置される画素領域と、 画素領域を取囲むように設けられ、 ほぼ一定の方向に延びる多結晶により構成さ れる外周領域とを備える。 外周領域の多結晶の長さは、 1つの画素の幅のほぼ自 然数倍である。 図面の簡単な説明
図 1は、 この発明の実施の形態 1に従った半導体薄膜を製造する装置を示す模 式図である。
図 2は、 この発明の実施の形態 1に従ったスリットを有するマスクの平面図で める。
図 3は、 薄膜を結晶化する方法を説明するために示すマスクの断面図である。 図 4は、 図 3で示す第 mの第 k結晶化領域 2 0 2 aを拡大して示す図である。 図 5は、 薄膜を結晶化する方法を説明するために示すマスクの断面図である。 図 6は、 図 5で示す第 mの第 k + 1結晶化領域 2 0 3 aを拡大して示す図であ る。
図 7は、 この発明に従った照射領域の移動の軌跡を説明するための図である。 図 8は、 順方向帯状結晶化領域において帯状領域に結晶化領域が形成されてい く様子を示す図である。
図 9は、 1枚のガラス基板から合計 9個の表示用素子を一度に形成するレイァ ゥトを示す。
図 1 0は、 実施の形態 2により結晶化された結晶化領域を詳細に示す平面図で める。
図 1 1は、 実施の形態 2により結晶化された結晶化領域を詳細に示す平面図で ある。
図 1 2は、 実施の形態 2により結晶化された結晶化領域を詳細に示す平面図で ある。
図 1 3は、 実施の形態 2により結晶化された結晶化領域を詳細に示す平面図で 図 1 4は、 実施の形態 2により結晶化された結晶化領域を詳細に示す平面図で ある。
図 1 5は、 従来のレーザにより結晶化技術を示す模式図である。
図 1 6は、 1回のパルス照射で形成された針状結晶糸且織を説明する図である。 図 1 7は、 複数回のパルス照射によるスーパーラテラル成長の形態を説明する 同である。
図 1 8は、 複数回のパルス照射によるスーパーラテラル成長の形態を説明する 図である。
図 1 9は、 複数回のパルス照射によるスーパーラテラル成長の形態を説明する 図である。 発明を実施するための最良の形態
以下、 この発明の実施の形態について、 図面を参照して説明する。
(実施の形態 1 )
図 1は、 この発明の実施の形態 1に従った半導体薄膜を製造する装置を示す模 式図である。 図 1を参照して、 結晶成長装置 1は、 ビーム源としてのビーム放射 手段 1 1と、 可変減衰手段 1 2と、 ビーム整形手段 1 3と、 放射照度均一化手段 1 4と、 マスク 1 6と、 マスク像結像手段 1 7とを備えている。
ビーム放射手段 1 1は、 シリコンを溶融することが可能なパルス状のビームを 放射する。 たとえば、 エキシマレーザ、 YA G (イットリウムーアノレミニゥムー ガーネット) レーザに代表される各種固体レーザ発振器など、 紫外域の波長を有 する光を放射する光源によりビーム放射手段 1 1を構成することが望ましい。 こ の実施の形態では、 波長が 3 0 8 n mの光を放射するエキシマレーザ発振器をビ ーム放射手段 1 1として用いた。 可変減衰手段 1 2は、 基板面を照射するビームの放射照度を所定の割合で減衰 させる手段である。
ビーム整形手段 1 3は、 ビームを予め定められた寸法に整形する。 放射照度均 一化手段 1 4は、 不均一であるビームの放射照度を均一にする手段である。 具体 的には、 シリンドリカルレンズァレイとコンデンサレンズを用い、 ガウシアン型 放射照度分布のビームを一旦分割してマスク 1 6の表面に再度重ね合わせて照射 する。
マスク 1 6は、 ビームを分岐して、 1つ以上複数のスリット状ビームからなる 第 iスリット状ビーム群を形成する。 ここで、 iは 1以上 n以下の整数である。 なお、 本明細書において、 「スリット状ビーム」 とは、 基板上に結像したスリツ ト状のビーム (光) の像、 またはその像をなすビーム、 またはビームの光路のい ずれかである。 また、 スリツト状ビームの形状または寸法について言及するとき は、 その像の形状または寸法について言及するものである。
マスク像結像手段 1 7は、 スリツト状ビーム形成手段としてのマスク 1 6によ つて形成されたスリット状ビームを像として基板上に結像させる手段である。 具 体的にはレンズなどを用いて構成する。
また、 放射方向変更手段 1 9はビームの放射方向を変更する手段であって、 た とえば、 ミラーやレンズなどから構成される。 配置箇所、 数量に特に限定はなく、 装置の光 設計、 機構設計に応じて適切に配置してもよい。
なお、 本装置は基板上の任意の位置に適切かつ均一な照度のスリット状ビーム を照射できればよく、 上述の装置の構成例によって特定されるものではない。 図 2は、 この発明の実施の形態 1に従ったスリットを有するマスクの平面図で ある。 図 2を参照して、 マスク 1 6は、 1方向に並ぶように配置された第 1領域 1 0 1 A、 第 2領域 1 0 1 B、 第 3領域 1 0 1 C…第 N領域 1 0 1 Nを有する。 第 1から第 N領域 1 0 1 A〜l 0 1 Nの各々には、 第 1から第 Nのスリッ ト群 1 0 2 A〜1 0 2 Nが配置されている。 第 1から第 Nのスリット群 1 0 2 A〜1 0 2 Nの各々は、 等しい間隔 Pで 1方向に並んで形成された複数のスリット 1 0 2 を含む。 第 S領域としての第 2領域 1 0 1 Bと、 その第 2領域 1 0 1 Bに隣接す る第 S + 1領域としての第 3領域 1 0 1 Cとの境界部分から第 3領域 1 0 1 Cの うち第 2領域 1 0 1 Bに最も近い部分に位置するスリット 1 0 2までの距離は S X Q ( 2 X Q) である。 Qは、 1回の結晶成長の長さ tに対応するマスク 1 6上 での距離の 0 . 2倍以上 0 . 8倍以下の長さである。 例えば、 マスク 1 6上での 長さ 1 0 O mmのパターンがアモルファスシリコン薄膜 2 0 1に転写されると、 そのパターンの長さが 2 O mmになるとすると、 そのマスクの結像倍率は 1 / 5 である。 この場合、 1回の結晶成長長さを tとすると Qは、 0 . 2 X 5 X t以上、 0 . 8 X 5 X t以下となる。
マスク 1 6は、 複数のスリット 1 0 2が等しい間隔 Pで 1方向に並んで形成さ れた第 1のスリット群 1 0 2 Aと、 第 1のスリット群 1 0 2 Aに隣り合って形成 され、 第 1のスリ ッ ト群 1 0 2 Aと同じ数のスリ ッ ト 1 0 2が等間隔で形成され た第 2のスリット群 1 0 2 Bとを備える。 第 1のスリット群 1 0 2 Aと第 2のス リット群 1 0 2 Bとの間隔 Dが間隔 Pと異なる。
このようなマスク 1 6のスリット 1 0 2を通過したスリット状ビームは、 一定 の倍率で半導体薄膜上に結像するので、 スリツトの形状とビームの形状は相似形 状である。 なお、 マスク上での寸法を大文字で表わし、 半導体薄膜へ照射するビ ームの寸法を小文字で表わす。
図 2で、 A X Bは、 矩形の領域であるマスクの有効領域の寸法を示す。 有効領 域は 1回のパルス状のビーム (以下、 このビームを 「パルスビーム」 と呼ぶ) に よって照射 (以下、 この照射をパルス照射と呼ぶ) されるマスク上の領域である。 なお、 有効領域に対応する半導体薄膜上の領域を照射領域と称する。
有効領域が N個 (Nは予め定められた 2以上の整数) に等分割されて第 1から 第 Nの領域 1 0 1 Aから 1 0 1 Nが形成されている。 ここでは、 各々の第 1から 第 Nの領域 1 0 1 Aから 1 0 1 Nの長さ Cは B /Nである。 各々の第 1から第 N の領域 1 0 1 Aから 1 0 1 Nに 1つ以上複数本のスリット 1 0 2から構成される スリット状光透過部分としてのスリット群 1 0 2 A〜1 0 2 Nが形成される。 こ の実施の形態では、 第 i ( iは 1以上 N以下の整数) 領域に形成されたスリット 状光透過部分を第 iスリット群と称する。 また、 第 iスリット群によって形成さ れるスリツト状ビーム群を第 iスリツト状ビーム群と称する。 各スリット 1 0 2 の間の距離 Pは等しい。 また、 各スリット状光透過部分は同数のスリット 1 0 2 を備える。 第 S + l領域に対する第 S + lスリッ ト群の配置位置は、 第 S領域に 対する第 Sスリット群の位置と比較して、 1回のビーム照射で形成または成長す る結晶の長さの 0 . 2倍以上 0 . 8倍以下の長さ q (図 6 ) に対応したマスク 1 6上での距離 Qだけ右にずらされている。
次に、 この実施の形態に従って、 薄膜を結晶化する方法を説明する。 図 3およ ぴ図 5は、 薄膜を結晶化する方法を説明するために示すマスクの断面図である。 図 3を参照して、 基板 1 8上にアモルファスシリコン薄膜 2 0 1を形成する。 ァ モルファスシリコン薄膜 2 0 1上にマスク 1 6を位置決めし、 このマスク 1 6に ビーム 3 0 0を照射する。 なお、 マスク 1 6とアモルファスシリコン薄膜 2 0 1 との間には、 図 1で示すようなマスク像結像手段 1 7と放射方向変更手段 1 9が 存在するが、 図 3ではこれらを省略している。
ビーム 3 0 0はマスク 1 6により複数の帯状ビーム 3 0 1 Aから 3 0 1 Nに分 割される。 この帯状ビーム 3 0 1 Aから 3 0 1 Nがアモルファスシリコン薄膜 2 0 1に照射されて、 照射された領域が溶融する。 溶融後この領域が凝固すること により、 結晶化領域が形成される。 たとえば、 第 mの第 k結晶化領域 2 0 2 a、 第 m+ 1の第 k結晶化領域 2 0 2 b、 第 m+ 2の第 k結晶化領域 2 0 2 c、 '··、 第 m+ nの第 k結晶化領域 2 0 2 nが形成される。
図 4は、 図 3で示す第 mの第 k結晶化領域 2 0 2 aを拡大して示す図である。 図 4を参照して、 アモルファスシリコン薄膜 2 0 1に帯状ビーム 3 0 1 Aが照射 されると、 その照射された領域が溶融する。 溶融後この領域が矢印 2 2 2で示す 方向に凝固する。 このとき、 1回の結晶の成長長さは tで示される。
図 5を参照して、 第 mの第 k結晶化領域 2 0 2 aから距離 r .( rは 1回の結晶 成長の長さ tよりも長い) 離れた領域であって、 第 m+ 1の第 k結晶化領域 2 0
2 bに一部が重なる領域に第 mの帯状ビームとしての帯状ビーム 3 0 1 Aを照射 して第 m+ 1の第 k結晶化領域 2 0 2 bに連なる第 mの第 k + 1結晶化領域 2 0
3 aをアモルファスシリコン薄膜 2 0 1に形成する。 他の領域でも、 先に形成し た結晶化領域の一部に重なるように別の結晶化領域を形成する。 具体的には、 第 m+ 1の第 k + 1結晶化領域 2 0 3 b、 第 m+ 2の第 k + 1結晶化領域 2 0 3 c、 ···、 第 m+ nの第 k + 1結晶化領域 2 0 3 nを形成する。 図 6は、 図 5で示す第 mの第 k + 1結晶化領域 2 0 3 aを拡大して示す図であ る。 図 6を参照して、 帯状ビーム 3 0 1 Aが照射されると、 それが照射された部 分が溶融する。 このとき、 帯状ビーム 3 0 1 Aは第 m+ 1の第 k結晶化領域 2 0 2 bにも覆い被さるので、 第 m+ 1の第 k結晶化領域 2 0 2 bから結晶が伸びる。 そのため、 図 4で示す工程で製造した結晶がさらに長くなる。 このような工程を 繰返すことにより、 結晶を成長させることができる。
すなわち、 この発明に従った結晶成長方法は、 第 in (mは 1以上の整数) およ ぴ第 m+ 1の帯状ビーム 3 0 1 Aおよび 3 0 1 Bをアモルファスシリコン薄膜 2 0 1に向けて照射して、 アモルファスシリコン薄膜 2 0 1に第 mおよび第 m+ 1 の第 k結晶化領域 2 0 2 aおよび 2 0 2 bを形成する工程と、 第 mの第 k結晶化 領域から距離 r ( rは 1回の結晶成長の長さ tよりも長い) 離れた領域であって、 第 m+ 1の第 k結晶化領域 2 0 2 bに一部が重なる領域に第 mの帯状ビーム 3 0 1 Aを照射して第 m+ 1の第 k結晶化領域 2 0 2 bに連なる第 mの第 k + 1結晶 化領域 2 0 3 aをァモノレファスシリコン薄膜 2 0 1に形成する工程とを有する。 結晶成長装置 1は、 アモルファスシリコン薄膜 2 0 1を支持する支持手段 2 1 と、 アモルファスシリコン薄膜 2 0 1に第 m (mは 1以上の整数) および第 m + 1の帯状ビーム 3 0 1 Aおよび 3 0 1 Bを照射して結晶化する照射手段 1 0と、 支持手段 2 1を照射手段 1 0に対して移動させる駆動手段 9と、 照射手段 1 0と 駆動手段 9とを制御する制御手段 2 0とを備える。 照射手段 1 0は、 ビーム整形 手段 1 3および放射照度均一化手段 1 4とを含む。 第 mおよび第 m+ 1の帯状ビ ーム 3 0 1 Aおよび 3 0 1 Bをァモノレファスシリコン薄膜 2 0 1に向けて照射手 段 1 0が照射してアモルファスシリコン薄膜 2 0 1に第 mおよび第 m+ 1の第 k 結晶化領域 2 0 2 aおよび 2 0 2 bを形成した後、 支持手段 2 1を照射手段 1 0 に対して距離 r ( rは 1回の結晶成長の長さ tよりも長い) だけ駆動手段 9が支 持手段を移動させて、 第 mの第 k結晶化領域 2 0 2 aから距離 rだけ離れた領域 であって、 第 m+ 1の第 k結晶化領域 2 0 2 bに一部が重なる領域に第 mの帯状 ビーム 3 0 1 Aを照射手段 1 0が照射して第 m+ 1の第 k結晶化領域 2 0 2 bに 連なる第 mの第 k + 1結晶化領域 2 0 3 aをアモルファスシリコン薄膜 2 0 1に 形成するように駆動手段 9および照射手段 1 0を制御手段 2 0が制御する。 第 k結晶化領域 2 0 2 aから 2 0 2 ηを形成する工程および第 k + 1結晶化領 域 2 0 3 aから 2 0 3 nを形成する工程は、 第 1から第 nの帯状ビーム群を構成 する帯状ビーム 3 0 1 Aから 3 0 1 Nを薄膜に向けて照射する工程を含み、 第 1 から第 nの帯状ビーム群の各々は、 間隔 pを隔てて 1方向に並んで形成された y ( yは 1より大きレ、) 個のビームを含み、 第 m+ 1の第 k結晶化領域 2 0 2 bか ら第 mの第 k + 1結晶化領域 2 0 3 aまでの距離 qは、 1回の結晶成長の長さ t の 0 . 2倍以上 0 . 8倍以下の長さである。
図 7は、 この発明に従った照射領域の移動の軌跡を説明するための図である。 図 7を参照して、 この実施の形態に従ったステップを説明する。 マスクの照射領域 4を基板 1 8の左上端に配置する。 ステップ 2へ進む c 照射領域 4が基板 1 8の左端にあるならば、 照射領域 4が基板 1 8の右端に達 するまで、 帯状領域を逆方向に結晶化する工程を実施する。 帯状領域を逆方向に 結晶化する工程とは、 照射領域 4を右方向 (矢印 4 aで示す方向) に移動させな がら、 照射領域 4の移動の軌跡である幅 aの帯状領域の結晶化を行なう工程であ る。 ステップ 3へ進む。 照射領域 4が基板 1 8の右端にあるならば、 照射領域 4が基板 1 8の左端に達 するまで帯状領域を順方向に結晶化する工程を実施する。 帯状領域を順方向に結 晶化する工程は、 照射領域を左へ移動させながら、 照射領域 4の移動の軌跡であ る幅 aの帯状領域の結晶化を行なう工程である。 ステップ 4へ進む。 照射領域 4を下へ距離 aだけ移動させる。 ステップ 5へ進む。
ステップ 5
照射領域 4が基板 1 8の下端より下にあるならば、 ステップを終了する。 そう でない場合には、 ステップ 2へ進む。
以上、 ステップ 1から 5を順に繰返すことにより、 基板 1 8表面全体に形成さ れた薄膜を結晶化することができる。 なお、 図 7においては、 基板 1 8を停止さ せ、 照射領域 4を移動させる構成として説明したが、 基板 1 8と照射領域 4とは 相対的に移動すればよい。 基板 1 8または照射領域 4のどちらか一方、 または両 方を移動させてもよい。 ,:,
次に、 帯状領域を順方向に結晶化する工程について説明する。 図 8は、 順方向 帯状結晶化領域において帯状領域に結晶化領域が形成されていく様子を示す図で ある。 図 8を参照して、 まず第 1結晶化工程において、 .第 1スリッ ト状ビーム群 の照射を行なう。 第 1スリツト状ビーム群は結晶化領域 1 aを形成する。 次に、 照射領域を 3 aで示す左方向に、 等分割領域の長さ Cに対応する基板上の長さだ け移動させる。 第 2結晶化工程において、 第 2スリット状ビーム群を照射する。 第 2スリット状ビーム群は、 結晶化領域 1 bを形成する。 結晶化領域 1 bは、 結 晶化領域 l aと比較して、 基板上で qだけ右にずれた位置であるため、 第 1スリ ット状ビーム群によって成長した結晶を引き継いで結晶成長する。 以後、 第 2結 晶化工程と同様に第 3、 第 4、 ···、 第 n結晶化工程を順次実施することにより、 結晶化領域を形成する。
この実施の形態では、 マスクに距離 Cずつずらして左から右に第 1スリット状 光透過部分から第 Nスリット状光透過部分までの N個のスリット状光透過部分を 並んで形成している。 したがって、 このマスクを用いることにより、 距離。 (マ スク 1 6上の距離 Cに対応するァモルファスシリコン薄膜 2 0 1上での距離) ず つずれて左から右に並ぶ N個の基板上の領域について、 それぞれ第 1結晶化工程 力 ら第 n結晶化工程を同時に実施することができる。 照射領域は距離 cずつ右か ら左に照射領域を移動しながら第 1結晶化工程から第 n結晶化工程を実施するの で、 全体としては流れ作業となり、 照射領域が通過した後の軌跡である帯状領域 は第 1結晶化工程から第 n結晶化工程までを順次実施したことになり、 結晶化領 城が形成されることになる。
次に、 帯状領域を逆方向に結晶化する工程を説明する。 帯状領域を逆方向に結 晶化する工程は、 照射領域の移動方向が左から右であること、 第 n、 第 n— 1、 · · ·、 2、 1結晶化工程の順に結晶化工程を実施すること、 結晶の成長方向が右か ら左であることを除いて、 帯状領域を順方向に結晶化する工程と同一であり、 帯 状領域を順方向に結晶化する工程と同様の結晶化領域の形成が可能である。 また、 帯状領域を順方向に結晶化する工程と帯状領域を逆方向に結晶化するェ 程とにおいて、 パルス照射の周波数が一定である場合には、 分割された第 1から 第 Nの領域 1 0 1 Aから 1 0 1 Nの長さ Cに対応する基板上の長さ c (=パルス 照射間の移動量) とパルス照射の周波数 f から求まる一定速度 c X f によって基 板または照射領域を相対移動させる。 これにより、 図 2で示すスリット状透過部 の形状と相似であるスリット状ビームを周波数 f で周期的にパルス照射してもよ い。 この場合、 一定速度で基板または照射領域を相対移動させながらパルス照射 できるので、 基板または照射領域を所定の位置に停止させてからパルス照射する より短時間で基板または照射領域を移動させることができる。 また、 速度や周波 数を変化させながらパルス照射することにより、 パルス照射をする位置の精度を 維持しゃすく、 かつ移動に用いるエネルギゃ装置の消耗を少なくすることができ る。
また、 スリット状光透過部はピッチが Pであり、 それぞれの第 1から第 Nの領 域のピッチ方向の長さは Cであるので、 等分割領域に形成できるスリットの数 Y C/ P = c / pである。 したがって、 Yを を満たす最大の整数とし た場合、 最も多くの結晶化領域を形成することができる。 また、 Yを定めてから、 式 C = Y X Pによって Cを求めてもよい。 さらに、 Cと Nから式 B = C X Nによ つて Bを求めてもよレ、。 その場合、 一定速度 sは、 c X f = X Y X f となる。 特開 2 0 0 0— 3 0 6 8 5 9号公報に記載の方法と実施の形態 1の方法との処 理速度を比較する。 パルス照射してから次のパルス照射をするまでの時間は、 基 板もしくは照射領域を次のパルス照射をする位置まで移動させる時間と、 ビーム 放射手段が次のパルス照射が可能になるまでの時間とのいずれかの長い方により 決定される。 特開 2 0 0 0— 3 0 6 8 5 9号公報に記載の方法の場合、 距離 qだ け移動してパルス照射する工程を繰返して 1つの照射領域を結晶化した後に、 次 の照射領域まで距離 b— qだけ移動する工程を実施する。 距離 qだけ移動してパ ルス照射するときは、 移動する距離が極めて短いため、 移動はすぐに完了する。 したがって、 パルス照射してから次のパルス照射するまでの時間は、 ビーム放射 手段が次のパルス照射が可能になるまでの時間と等しい。 逆に、 次の照射領域ま で移動するときは、 移動する距離が極めて長いため、 移動に時間がかかる。 その 間、 ビーム放射手段は待っている状態、 すなわちビームを放射しない状態となる。 それに対して、 上述の実施の形態 1において、 ビーム放射手段が次のパルス照 射が可能になるまでの時間の間に移動できる最長の長さよりも短く距離 cを設定 すれば、 ビーム放射手段は可能とする最も短い周期でパルスビームを放射するこ とができる。 しかも、 特開 2000— 306859号公報に記載の方法のように 次の照射領域まで移動する必要がないので、 結果として特開 2000— 3068 59号公報における次の照射領域まで移動するために必要な時間分だけ処理時間 が短いことになる。
また、 本発明の実施の形態において、 結晶の長さをスリット状ビームのピッチ pと同じとするためには、 1つの結晶化領域について n-pZq (回) パルス照 射する必要がある。 そのためには、 スリ ッ ト状光透過部分の数またはスリ ッ ト状 ビーム群の数を n (個) としてもよい。
さらに、 照射領域全体の長さが bであったならば、 パルス照射間の移動量 c = b/n = b X q/pとし、 等分割領域の長さ Cを上述の cに対応十るマスク上の 距離とすればよい。 この場合、 1つのスリ ッ ト状ビーム群に含まれるスリ ッ ト状 ビームの数 y = c/p = b X q/p2となる。
さらに、 一定速度で照射領域または基板を移動しながら、 一定の周波数 ίでパ ルス照射する場合、 一定速度 s = c X f =b X f X qZpとなる。
(実施の形態 2)
本発明の実施にあたっては、 実施の形態 1のように、 基板全面を結晶化させる 場合の他にも、 種々の実施例が可能である。
特に、 本発明によって製造したガラス基板上の多結晶シリコン薄膜を用いて、 液晶表示装置を形成する場合に特段の効果が得られた。 基板上に形成された表示 用素子のレイアウトを図 9に示す。
図 9は、 1枚のガラス基板から合計 9個の表示用素子を一度に形成するレイァ ゥトを示している。 アクティブマトリックス型液晶表示用素子などの表示用素子 のレイアウトは、 通常、 画素領域 31と、 その周辺部分 (額縁領域 32) に大別 される。
画素領域 31には画素と液晶を駆動するための薄膜トランジスタとが配置され、 額縁領域 3 2には画素駆動用のドライバが配置される。 従来の表示用素子では、 ドライバをシリコンウェハに形成し、 このシリコンウェハをチップ状に切断した ものを液晶基板に実装し電気的に接続していた。 この方法は別途チップを作製す る工程や、 実装する工程を含むため、 工程が多く製造時間が長い、 および、 製造 費用 (工賃および材料費) が高い、 接続が断線し故障することがある、 チップが 突起した形状となる、 寸法が大きいなどの欠点があつた。
そこで、 これらのドライバ回路を液晶ガラス基板に予め作り込んでおく方法が 提案されている。 また、 この際ドライバ回路だけでなく、 従来外付けであった他 の信号処理回路 (画像処理回路、 メモリ回路、 コントローラ回路、 電源回路な ど) をも液晶基板上に作り込むことが可能である。 ただし、 この場合、 額縁領域 3 2にはドライバ回路などの高速度または高電流駆動または小型の回路を作り込 む必要があるため、 額縁領域 3 2に形成されるシリコン薄膜にはキャリアの移動 度の高いものが要求される。 具体的には、 キャリアの移動度が 1 0 0 c m 2 , (V - s e c ) 〜 2 0 0 c m 2 / (V - s e c ) 以上、 望ましくは 5 0 0 c m 2 / (V■ s e c ) 程度のものが要求される。
本発明の実施の形態 2では、 額縁領域 3 2を結晶化し、 キャリアの移動度の高 いシリコンによる高速なトランジスタを形成することによって、 画素駆動または 信号処理を高速化したものである。 なお、 画素領域 3 1は、 高い移動度を要求さ れないため、 スーパーラテラル成長による再結晶化をせず、 非晶質シリコンまた は方位の揃っていない多結晶シリコンのままとする。 本発明に用いるマスクは、 実施の形態 1と同様の構造で、 図 1および 2で示される。 ただし、 実施の形態 2 の場合、 マスク上での長さ Aのスリット状光透過部によつて形成されるスリット 状ビームの長さ aを図 9で示す額縁領域 3 2の幅ひと等しくする力 >、 または αよ り aを広く設定する。 このような設定を用いて、 1列に並んだ額縁領域 3 2に対 し順方向帯状領域結晶化工程または逆方向帯状領域結晶化工程を実施することに より、 1行に並んだ一連の額縁領域 3 2を形成することが可能である。
照射領域の移動のフローを図 9を用いて説明する。 照射領域 4を図中の左上の位置 4 2 0に配置する。 ステップ 2へ進む。 照射領域 4が右端に達するまで逆方向帯状領域結晶化工程を実施し、 一連の額 縁領域 3 2の結晶化をする。 ステップ 3へ進む。 そのすぐ下の一連の額縁領域 3 2の行へ照射領域 4を矢印 4 1で示すように移 動させる。 ステップ 4へ進む。 照射領域 4が左端に達するまで順方向帯状領域結晶化工程を実施し、 一連の額 緣領域 3 2の行を結晶化する。 ステップ 5へ進む。 最下行の額縁領域 3 2を結晶化していたらステップ 7へ進む。 そうでない場合 はステップ 6へ進む。 そのすぐ下の一連の額縁領域 3 2の行へ照射領域 4を矢印 4 2で示すように移 動させる。 ステップ 2へ進む。 すべて額縁領域 3 2を結晶化していたら、 終了する。 そうでない場合はステツ プ 8へ進む。 基板 1 8または照射領域 4を 9 0 ° 回転させる。 ステップ 1へ進む。
上述のフローにより、 高い移動度が要求される額縁領域 3 2を結晶化し、 高い 移動度が要求されない画素領域 3 1を結晶化しないため、 基板 1 8全面を結晶化 させる場合と比較して、 製造時間を短縮することができる。 通常、 額縁状の領域 は全基板面積の 1 0から 2 0 %程度しかないため、 実施の形態 2のように画素領 域を結晶化しないことにより、 大幅に結晶化時間を短縮できる。
なお、 この実施の形態では、 画素領域 3 1の四方にある額縁領域 3 2を結晶化 しているが、 四方にある 4つの額縁領域 3 2のうち 1つ以上の額縁領域 3 2につ いて、 その全部または一部を結晶化するだけでも、 かなりの効果がある。 したが つて、 画素領域 3 1の四方にあるすベての額縁領域 3 2を結晶化しなければなら ないわけではない。
また、 スリツト状光透過ビームの長さ aを図 9で示す額縁領域 3 2の幅 ο;と等 しくまたは広く設定し、 ビーム照射の照射領域の移動のフ口一を用いることによ つて不要なビーム照射を行なわず、 かつビーム照射の照射領域を移動する距離を 短くすることが可能である。 ひいては、 短時間かつ省エネルギで結晶化を行なう ことができる。
また、 この実施の形態 2により結晶化された結晶化領域の詳細を図 1 0に示す。 図 1 0を参照して、 この実施の形態に従って結晶化を行なうと、 結晶の方位が 額縁領域 3 2の長手方向に揃った長い多結晶 2 1 0が得られる。 ここで、 画素領 域 3 1は液晶の画素領域であり、 その周辺に額縁領域 3 2が配置されていること を示している。 また、 画素領域 3 1に記載した方眼状の線は、 画素と画素の境界 線を示している。
特開 2000— 24 3 9 6 8号公報、 特開 2000— 243 96 9号公報、 特 開 2000— 243 9 70号公報では、 異方性を有する結晶の方向とトランジス タのゲート長を規定する技術が開示されている。 ところが、 これらの公報に記載 の技術では、 ゲート長方向に多数の結晶を含むものである。
本発明において、 スリツト状ビームのピッチ pは結晶化領域のピッチに等しい。 また、 この実施の形態において、 帯状領域は画素領域の周囲に沿って形成されて いるので、 結晶化領域と結晶化領域に隣接する画素領域との境界線の方向と結晶 化領域における長結晶の方位とは等しい。 したがって、 スリット状ビームのピッ チ pと画素のピッチを合わせることによって、 各画素列と各結晶化領域を 1対 1 に対応させることができる。 図 1 0は、 スリット状ビームのピッチ!)と画素のピ ツチを合わせて結晶化した場合における画素と結晶化領域との一致を示した詳細 図である。 図 10の状態では、 各画素列 (図 10において上下方向に連なる一連 の画素) に対して各結晶化領域が 1対 1に対応するので、 1つの画素列に対応す るトランジスタを対応する 1つの結晶領域に形成することができる。
額縁領域 3 2には画素を駆動するドライバトランジスタやその他の用途のトラ ンジスタを配置することが望まれるが、 その場合、 トランジスタに要求される能 力はさまざまなである。 高速性を要求されるトランジスタは、 そのデバイスサイ ズが小さいことが要求されるが、 画素駆動などに用いるために大きな電流駆動能 力が必要とされるトランジスタはそのチャネル幅が広いことが要求される。 画素ピッチは液晶基板によりさまざまなであるが、 概ね 1 0 x mから 1 0 0 μ mの範囲で設計する。 一方、 成形するトランジスタの幅は、 数十から数百 μが要 求され、 かつトランジスタを各画素列ごとに配置する必要がある。
この実施の形態 2によれば、 チャネル幅のトランジスタで,あっても、 チャネル 方向 (電流の流れる方向) を額縁領域 3 2の長手方向に設定することで任意のチ ャネル幅のトランジスタを容易に形成することができる。 かつ、 トランジスタは チャネルの方向 (電流が流れる方向) が移動度の高い方向と一致しているため、 処理が高速なトランジスタを得ることができる。 図 1 0で示した 2つのトランジ スタ 2 5は、 それぞれ、 チヤネノレ幅の狭いトランジスタおよびチヤネノレ幅の広い トランジスタである。
なお、 他の例として、 図 1 1で示すように、 額縁領域 3 2に形成された結晶化 領域の幅を、 画素ピッチの 2倍に設定することも可能である。 この場合であって も、 上述の図 1 0で示した例と同様の効果が得られる。 図 1 1で示したトランジ スタでは、 2つの画素列と 1つの結晶化領域とを耝として、 トランジスタの配置 設計を行なうことができ、 2つの画素列に対応する結晶化領域内に高速なトラン ジスタを形成することができる。 そのため、 図 1 0と比較して、 より自由に設計 をすることができる。
また、 図 1 2のように、 3本の画素列の幅で結晶化領域を設定することも可能 である。 この場合、 額縁領域 3 2形成した結晶化領域の幅を画素ピッチの 2倍と 設定した場合と同様の効果が得られ、 より自由に設計をすることができる。 さらに、 図 1 3および図 1 4で示したように、 1本の画素列の幅に複数の結晶 化領域を設定することも可能であり、 各画素列に対する高速かつ任意のチャネル 幅を有するトランジスタを形成できる。 すなわち、 少なくとも結晶化領域のピッ チを、 画素のピッチの整数倍または整数分の 1となるように結晶化領域を形成す れば、 各画素列に対応する高速かつ任意のチャネル幅を有するトランジスタを容 易に形成できる。
図 1 3および図 1 4の表示装置 6 0 0は、 複数の画素 3 1 aが配置される画素 領域としての画素領域 31と、 画素領域 31を取囲むように設けられ、 ほぼ一定 の方向に延びる多結晶 210により構成される外周領域としての額縁領域 32と を備える。 多結晶 210が延びる方向に沿った 1つの画素の幅 Gは、 額縁領域 3 2の多結晶 210の長さ Jのほぼ自然数倍である。
図 10から図 12の表示装置 600は、 複数の画素 31 aが配置される画素領 域 31と、 画素領域 31を取囲むように設けられ、 ほぼ一定の方向に延びる多結 晶 210により構成される外周領域としての額縁領域 32とを備える。 額縁領域 32の多結晶 210の長さ Jは、 1つの画素 31 aの幅 Gのほぼ自然数倍である。 次に、 従来の結晶化方法と本発明による結晶化方法とによる結晶化時間につい て具体的に説明する。
その前提条件として、 種々の製造方法に対し、 共通する製造条件を下記のとお り統一する。
基板寸法: 320 mm X 400 mm
ビーム照射手段におけるビームの照射周波数 f : 300Hz
スーパーラテラル成長によるパルス照射ごとの送りピッチ q : 0. 5 μιη まず、 1つのスリット状ビームを用いて基板面全面を結晶化するために要する 時間を算出する。
図 15は、 従来の単一のスリツト状ビームによる多結晶半導体薄膜の製造方法 を説明するための図面である。 図 1 5においては基板の短辺を一括照射できる 1 本のスリット状ビームをパルス照射しながら、 基板が一定速度で移動する構成と した。
(基板の送り速度 s) = (送りピッチ q) X (ビームの照射周波数 f )
=0. 0005 X 300
=0: 1 5mm/s e cとなる。 したがって、
(基板全面を結晶化するために用する時間)
= (基板長さ Z送り速度 s) =400/0. 15 = 2667秒となる。
次に、 特開 2000— 306859号公報に記載の方法による結晶化方法によ つて基板面全面を結晶化するために要する時間を算出する。 上記公報では、 等し いピッチでスリットが形成されたマスクを用いている。 この場合、 上述の公報に 記載のとおり、 基板面全面をビーム照射領域ごとに結晶化を完了させてから、 次 の照射へ照射領域を移動する。 各種の製造条件を次のとおり定める。
スーパーラテラル成長による針状結晶の長さ p : 50 μιη
(=基板面におけるスリット状ビームのピッチ)
マスク像の結像倍率: 1 Ζ 5
照射領域の面積: 20 mm X 20 mm
マスク面での有効領域の面積: 10 OmmX 10 Omm
従来技術における 1つの照射領域に必要とするパルス照射回数 nは
(1つの照射領域に対するパルス照射の回数 n) = (針状結晶の長さ!)) / (送りピッチ q) =0. 05/0. 0005
= 100 (回) '
1つの照射領域の結晶化に要する時間 tは、
( 1つの照射領域を結晶化する時間)
= (1つの照射時間に対するパルス照射の回数 n) / (ビームの照射周波数 f ) =100/300
=0. 333 (秒)
隣接する照射領域への移動は、 たとえば基板を移動させることによって行なう 力 移動と基板を静止させるのに要する時間は、 合計 0. 3秒程度必要である。 前述のとおり基板寸法は 32 OmmX 40 Ommであるから、 (3 20/2 0) X (400/20) =320個の照射領域を順に結晶化することになる。 したがって、 (基板全面を結晶化するために要する時間)
= { (1つの照射領域の結晶化する時間) + (隣接する照射領域への移動に要 する時間) } X (照射領域の数) = (0. 333 + 0. 3) X 320 = 203秒 となる。
次に、 本発明の実施の形態 1による結晶化方法について基板全面を結晶化する ために要する時間を算出する。 上記公報に記載の従来技術と同様、 結晶化時間算 出条件と製造条件は以下のとおりでする。
スーパーラテラル成長による tl"状結晶の長さ P : 50 / m
(基板面におけるスリット状ビームのピッチ) マスクの結像倍率: 1/5
照射領域の面積: 20 mm X 20 mm
(マスク面での有効領域: 10 OmmX 1 0 Omm)
図 7における幅 a (=2 Omm) の帯状領域を結晶化するための基板の移動速 度 sは、
s = c X f =b/n X f =b X f X q/p
= 20 X 300 X 0. 0005/0. 05 = 60 (mm/ s e c) となる。 基板全面を結晶化するためには、 1つの帯状領域を結晶化した後、 隣接する帯 状領域に移動し、 同様の工程を繰返す。 隣接する帯状領域への移動は、 たとえば 基板を移動させることによって行なうが、 基板を移動させてかつ停止させるのに 必要な時間は、 従来と同様に 0. 3秒程度必要である。
前述のとおり基板寸法は 3 2 OmmX 40 Ommであるから、 320 20 = 1 6個の帯状領域を順に結晶化することになる。
したがって、 (基板全面を結晶化するために要する時間)
= { (2 Omm幅の帯状領域の結晶化に要する時間) + (隣接帯状領域への移 動時間) } X (帯状領域数) で表わされる。 長さ 400mmの帯状領域を結晶化 するためには
400 + b _ c =400+ 20 X (1— 0. 0005/0. 05) =4 1 9. 8の距離を移動しながらビーム照射しなければならないので、 基板全面を結晶化 するために要する時間は
(4 1 9. 8/60 + 0. 3) X I 6 = 1 1 7秒となる。 したがって、 特開 2
000-306 8 5 9号公報に記載の方法に比べて約 42%もの結晶化時間の短 縮化が可能になる。
さらに、 スーパーラテラル成長による針状結晶の長さを 20 とすると、 こ の時間短縮効果は一層顕著になる。 各種の製造条件を前述のとおりとし、 同様の 計算を行なうと、 特開 2000— 306 8 5 9号公報に記載の方法では、 ( 0 - 1 3 3 + 0. 3) X 3 20= 1 3 9秒である。
本発明による結晶化方法による場合、
(4 1 9. 5/1 5 0 + 0. 3) X I 6 = 50秒 となり、 約 6 4 %もの結晶化時間の短縮が可能になる。
なお、 この発明の実施の形態によれば、 マスクの光透過部の形状を矩形のスリ ットとしたが、 形状はこれに限定されることなく、 メッシュ形状、 鋸歯形状、 波 状などの種々の形状が採用できる。
この発明の結晶成長方法に従えば、 第 mおよび第 m+ 1の第 k結晶化領域を形 成した後、 1回の結晶成長の長さ tよりも長い距離 rだけ第 mの第 k結晶化領域 力 ^離れた領域に第 mの第 k + 1結晶化領域を薄膜に形成するため、 従来よりも 離れた位置に次の結晶化領域を形成することができる。 その結果、 従来に比べて 帯状ビームの移動時間を短くすることができ、 結晶質薄膜の製造時間を短くする ことができる。 また、 移動量を大きくすることで、 各領域間で各工程を実施する 時間をずらしながら順次結晶化することができる。 これは、 結晶化工程の流れ作 業化である。 つまり単純な工程の周期的繰返しによって広い領域の結晶化を均一 かつ短時間で行なうことができる。
また、 この発明に従えば、 帯状ビームの移動距離 rと帯状ビームの形状が一定 であるため、 規則正しいパターンで結晶化領域を形成することができる。
また、 この発明では、 第 1から第 nの帯状ビーム群の各々は間隔 pを隔てて 1 方向に並んで^成された y個のビームを含み、 第 m+ 1の第 k結晶化領域から第 mの第 k + 1結晶化領域までの距離 qは 1回の結晶成長の長さ tの 0 . 2倍以上 0 . 8倍以下の長さであるため、 第 1から第 nの帯状ビーム群を薄膜に照射した 後、 所定の距離 qだけずれた位置に次のビームを照射することで帯状ビーム群を 用いて複数の結晶化領域を短時間でかつ正確に形成することができる。
また、 この発明において nが p / qを満たせば最も効率よく結晶化領域を製造 することができる。
また、 薄膜を一定速度 sで移動させて薄膜に一定周期 f で第 mおよび第 m + 1 の帯状ビームを照射することで第 mおよび第 m+ 1の帯状ビームの移動方向に結 晶化領域が並んだ結晶質薄膜を短時間で効率よく製造することができる。
この発明に従ったビーム分岐装置では、 第 S領域とその第 S領域に隣接する第 S + 1領域との境界から、 第 S + 1領域のうち第 S領域に最も近い部分に位置す るスリットまでの距離は S X Qであり、 Qは、 1回の結晶成長の長さの 0 . 2倍 以上 0 . 8倍以下に対応するビーム分岐装置上で距離であるため、 第 S領域およ び第 S + 1領域を介してビームを薄膜に照射した後、 所定の距離だけビーム照射 装置を移動させて薄膜にビームを照射すれば、 先に形成された結晶化領域に重な るように次の結晶化領域が形成される。 その結果、 ビーム照射装置の移動距離を 大きくすることができ、 短時間で薄膜を製造することができる。
この発明に従った表示装置では、 多結晶が延びる方向に沿った 1つの画素の幅 は外周領域の多結晶の長さのほぼ自然数倍であるため、 特定の数、 連続して形成 された画素列からなる画素列群に対してその画素列群に対応するトランジスタを 形成できるので設計が容易となる。 また簡素な構造となる。
この発明に従った表示装置では、 外周領域の多結晶の長さは多結晶が延びる方 向に沿った 1つの画素の幅のほぼ自然数倍であるため 1つの画素列に対してその 画素列に対応するトランジスタを形成できるため設計が容易である。 また簡素な 構造となる。 産業上の利用可能性
この発明は、 レーザ光などのビームを用いた結晶成長方法、 結晶成長装置およ ぴビーム分岐装置、 ならびにその多結晶薄膜を活性層とする薄膜
備えた表示装置の分野に適用される。

Claims

請求の範囲
1. 第 m (mは 1以上の整数) および第 m+ 1の帯状ビーム (301A, 301 B) を薄膜 (201) に向けて照射して、 前記薄膜に第 mおよび第 m+ 1の第 k 結晶化領域 (202 a, 202 b) を形成する工程と、
前記第 mの第 k結晶化領域から距離 r は 1回の結晶成長の長さ tよりも長 い) 離れた領域であって、 前記第 m+ 1の第 k結晶化領域 (202 b) に一部が 重なる領域に第 πιの帯状ビーム (301A) を照射して前記第 m+ 1の第 k結晶 化領域に連なる第 mの第 k+ 1結晶化領域 (203 a) を薄膜に形成する工程と を備えた、 結晶成長方法。
2. 前記第 k結晶化領域を形成する工程は、 ビーム源 (1 1) 力 ら放たれたビー ムを分岐させて前記第 mおよび第 m+ 1の帯状ビームを整形する工程を含む、 請 求項 1に記載の結晶成長方法。
3. 前記 mの値にかかわらず距離 rは一定であり、 前記 mの値にかかわらず前記 第 mおよび第 m+ 1の帯状ビームの形状は一定であり、 複数の前記第 k結晶化領 域の並ぶ方向は kの値にかかわらず一定である、 請求項 1に記載の結晶成長方法。
4. 前記第 k結晶化領域 (202 a— 202 η) を形成する工程および前記第 k + 1結晶化領域 (203 a— 203 η) を形成する工程は、 第 1から第 ηの帯状 ビーム (301 Α— 301 Ν) 群を薄膜に向けて照射する工程を含み、
前記第 1から第 nの帯状ビーム群の各々は、 間隔 pを隔てて 1方向に並んで形 成された y (yは 1より大きい) 個のビームを含み、
前記第 Π1+ 1の第 k結晶化領域から前記第 mの第 k+ 1結晶化領域までの距離 qは、 1回の結晶成長の長さ tの 0. 2倍以上 0. 8倍以下の長さである、 請求 項 1に記載の結晶成長方法。
5. 前記 nは、 n = p/qで示す関係式を満たすように選ばれる、 請求項 4に記 載の結晶成長方法。
6. 前記第 k+ 1結晶化領域 (203 a— 203 η) を形成する工程は、 薄膜を 一定速度で移動させて薄膜に一定の周期で第 mおよび第 m+ 1の帯状ビームを照 射する工程を含む、 請求項 4に記載の結晶成長方法。
7. 前記第 mおよび第 m+ 1の帯状ビーム (301A, 301 B) を照射する周 波数 f と前記薄膜の移動速度 sとは、 s = r X f で示す関係式を満たす、 請求項 6に記載の結晶成長方法。
8. 薄膜を支持する支持手段 (21) と、
薄膜に第 m (mは 1以上の整数) および第 m+ 1の帯状ビーム ( 301 A, 3 01 B) を照射して結晶化する照射手段 (10) と、
前記支持手段を前記照射手段に対して移動させる駆動手段 (9) と、 前記照射手段と前記駆動手段とを制御する制御手段 (20) とを備え、 前記第 mおよび第 m+ 1の帯状ビーム (301A, 301 B) を薄膜に向けて 前記照射手段が照射して前記薄膜に第 mおよび第 m+ 1の第 k結晶化領域 (20 2 a, 202 b) を形成した後、 前記支持手段を前記照射手段に対して距離 r ( rは 1回の結晶成長の長さ tよりも長い) だけ駆動手段が前記支持手段を移動 させて、 前記第 mの第 k結晶化領域から距離 rだけ離れた領域であって、 前記第 m+ 1の第 k結晶化領域に一部が重なる領域に第 mの帯状ビームを前記照射手段 が照射して前記第 m+ 1の第 k結晶化領域に連なる第 mの第 k +1結晶化領域を 薄膜に形成するように駆動手段および照射手段を前記制御手段が制御する、 結晶
9. 前記駆動手段が一定速度で前記照射手段に対して前記支持手段を移動させ、 前記照射手段が前記薄膜に一定の周期でビームを照射するように前記制御手段は 前記駆動手段および前記照射手段を制御する、 請求項 8に記載の結晶成長装置。
10. ビームを発生させるビーム源 (1 1) をさらに備えた、 請求項 8に記載の 結晶成長装置。
1 1. 前記照射手段は、 複数のスリ ット (102) を有するマスク (16) を含 み、 前記マスクは、 前記ビーム源から放たれた光を分岐させて前記第 mおよび第 m+ 1の帯状ビームを整形する、 請求項 10に記載の結晶成長装置。
12. 前記マスクは、 1方向に並んで形成された第 1から第 N (Nは 2以上の整 数) のスリッ ト群 (102A— 1◦ 2N) を含み、 前記第 1から第 Nのスリツト 群の各々は、 所定の間隔 Pで 1方向に並んで形成された複数の前記スリ ッ ト (1 02) を含み、 複数の前記スリットの各々は同一形状である、 請求項 1 1に記載 の結晶成長装置。
1 3. 前記スリット群の数 Nは、 N=P/Qで示す関係式を満たし、 Qは、 1回 の結晶成長の長さ tの 0. 2倍以上 0. 8倍以下に対応する前記マスク上での距 離である、 請求項 12に記載の結晶成長装置。 .,
14. 前記駆動手段は、 前記支持手段を前記照射手段に対して一定速度で移動さ せる、 請求項 8に記載の結晶成長装置。
1 5. 1方向に並ぶように配置された第 1から第 Nの領域 (10 1A— 10 1 N) と、
前記第 1から第 Nの領域の各々に形成された第 1から第 N (Nは 2以上の整 数) のスリ ット群 (102A— 102N) とを備えたビーム分岐装置であって、 前記第 1から第 Nのスリット群の各々は、 等しい間隔 Pで 1方向に並んで形成 された複数のスリット (102) を含み、
第 S領域 (Sは 1以上 N— 1以下の整数) とその第 S領域に隣接する第 S+ 1 領域との境界から、 前記第 S+ 1領域のうち前記第 S領域に最も近い部分に位置 する前記スリットまでの距離は S XQであり、 前記 Qは、 1回の結晶成長の長さ tの 0. 2倍以上 0. 8倍以下に対応するビーム分岐装置上での距離である、 ビ ーム分岐装置。
16. 複数の画素 (31 a) が配置される画素領域 (31) と、
前記画素領域を取囲むように設けられ、 ほぼ一定の方向に延びる多結晶により 構成される外周領域 (32) とを備え、
前記多結晶が延びる方向に沿った 1つの前記画素の幅は、 前記外周領域の多結 晶の長さのほぼ自然数倍である、 表示装置。
17. 複数の画素 (31 a) が配置される画素領域 (3 1) と、
前記画素領域を取囲むように設けられ、 ほぼ一定の方向に延びる多結晶 (21 0) により構成される外周領域 (32) とを備え、
前記外周領域の多結晶の長さは、 前記多結晶が延びる方向に沿った 1つの前記 画素の幅のほぼ自然数倍である、 表示装置。
PCT/JP2003/011323 2002-09-09 2003-09-04 結晶成長方法、結晶成長装置、ビーム分岐装置および表示装置 WO2004023538A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020057000279A KR100620942B1 (ko) 2002-09-09 2003-09-04 결정성장방법, 결정성장장치, 빔분기장치 및 표시장치
AU2003261945A AU2003261945A1 (en) 2002-09-09 2003-09-04 Crystal growing method, crystal growing apparatus, beam splitter, and display

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-262763 2002-09-09
JP2002262763A JP2004103782A (ja) 2002-09-09 2002-09-09 結晶成長方法、結晶成長装置、ビーム分岐装置および表示装置

Publications (1)

Publication Number Publication Date
WO2004023538A1 true WO2004023538A1 (ja) 2004-03-18

Family

ID=31973166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/011323 WO2004023538A1 (ja) 2002-09-09 2003-09-04 結晶成長方法、結晶成長装置、ビーム分岐装置および表示装置

Country Status (4)

Country Link
JP (1) JP2004103782A (ja)
KR (1) KR100620942B1 (ja)
AU (1) AU2003261945A1 (ja)
WO (1) WO2004023538A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007031209A1 (de) * 2005-09-12 2007-03-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur rekristallisierung von schichtstrukturen mittels zonenschmelzen, hierfür verwendete vorrichtung und dessen verwendung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07302907A (ja) * 1994-04-28 1995-11-14 A G Technol Kk アクティブマトリクス表示素子およびその製造方法
US6281470B1 (en) * 1997-04-02 2001-08-28 Sharp Kabushiki Kaisha Thin film semiconductor device uniforming characteristics of semiconductor elements and manufacturing method thereof
US20020083557A1 (en) * 2000-12-28 2002-07-04 Yun-Ho Jung Apparatus and method of crystallizing amorphous silicon
US20020104750A1 (en) * 2001-02-08 2002-08-08 Hiroshi Ito Laser processing method and apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07302907A (ja) * 1994-04-28 1995-11-14 A G Technol Kk アクティブマトリクス表示素子およびその製造方法
US6281470B1 (en) * 1997-04-02 2001-08-28 Sharp Kabushiki Kaisha Thin film semiconductor device uniforming characteristics of semiconductor elements and manufacturing method thereof
US20020083557A1 (en) * 2000-12-28 2002-07-04 Yun-Ho Jung Apparatus and method of crystallizing amorphous silicon
US20020104750A1 (en) * 2001-02-08 2002-08-08 Hiroshi Ito Laser processing method and apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007031209A1 (de) * 2005-09-12 2007-03-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur rekristallisierung von schichtstrukturen mittels zonenschmelzen, hierfür verwendete vorrichtung und dessen verwendung
US7713848B2 (en) 2005-09-12 2010-05-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for re-crystallization of layer structures by means of zone melting, a device for this purpose and use thereof

Also Published As

Publication number Publication date
AU2003261945A1 (en) 2004-03-29
KR20050017002A (ko) 2005-02-21
KR100620942B1 (ko) 2006-09-19
JP2004103782A (ja) 2004-04-02

Similar Documents

Publication Publication Date Title
US6573163B2 (en) Method of optimizing channel characteristics using multiple masks to form laterally crystallized ELA poly-Si films
US6495405B2 (en) Method of optimizing channel characteristics using laterally-crystallized ELA poly-Si films
JP4263403B2 (ja) シリコン結晶化方法
US20090218577A1 (en) High throughput crystallization of thin films
JP2004311935A (ja) 単結晶シリコン膜の製造方法
KR20110094022A (ko) 박막 결정화를 위한 시스템 및 방법
US20020102821A1 (en) Mask pattern design to improve quality uniformity in lateral laser crystallized poly-Si films
JP4691331B2 (ja) 非晶質シリコン膜の結晶化方法
JP2008227077A (ja) レーザ光のマスク構造、レーザ加工方法、tft素子およびレーザ加工装置
JP2005197658A (ja) 多結晶シリコン膜の形成方法
KR101135537B1 (ko) 레이저 조사 장치
TW202034388A (zh) 雷射退火方法及雷射退火裝置
KR100611040B1 (ko) 레이저 열처리 장치
WO2004023538A1 (ja) 結晶成長方法、結晶成長装置、ビーム分岐装置および表示装置
US20070238270A1 (en) Method for forming polycrystalline film
JP2006210789A (ja) 半導体結晶薄膜の製造方法およびその製造装置ならびにフォトマスクならびに半導体素子
JP2004119900A (ja) 半導体薄膜の結晶化方法およびレーザ照射装置
KR100956339B1 (ko) 규소 결정화 시스템 및 규소 결정화 방법
US20080102611A1 (en) Method for fabricating a polysilicon layer having large and uniform grains
JP2007207896A (ja) レーザビーム投影マスクおよびそれを用いたレーザ加工方法、レーザ加工装置
US7649206B2 (en) Sequential lateral solidification mask
JP2005167007A (ja) 半導体薄膜の製造方法および薄膜半導体素子
JP4467276B2 (ja) 半導体薄膜を製造する方法と装置
JP2008147236A (ja) 結晶化装置およびレーザ加工方法
JP2007242803A (ja) 半導体薄膜の製造方法および半導体薄膜の製造装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020057000279

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020057000279

Country of ref document: KR

122 Ep: pct application non-entry in european phase