WO2004022631A1 - 改質された導電性ポリマー材料及びその製造方法 - Google Patents

改質された導電性ポリマー材料及びその製造方法 Download PDF

Info

Publication number
WO2004022631A1
WO2004022631A1 PCT/JP2003/011253 JP0311253W WO2004022631A1 WO 2004022631 A1 WO2004022631 A1 WO 2004022631A1 JP 0311253 W JP0311253 W JP 0311253W WO 2004022631 A1 WO2004022631 A1 WO 2004022631A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
conductive polymer
film
aluminum
polymer material
Prior art date
Application number
PCT/JP2003/011253
Other languages
English (en)
French (fr)
Inventor
Katsuyoshi Hoshino
Hiroyuki Watanabe
Original Assignee
Japan Science And Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Agency filed Critical Japan Science And Technology Agency
Priority to US10/526,147 priority Critical patent/US7384578B2/en
Publication of WO2004022631A1 publication Critical patent/WO2004022631A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers

Definitions

  • the present invention relates to a modified conductive polymer material having high resistance to oxidation and reduction and having controlled conductivity, and a method for producing the same.
  • Conventional technology a modified conductive polymer material having high resistance to oxidation and reduction and having controlled conductivity, and a method for producing the same.
  • Conductive polymers are generally said to have excellent repetition stability against oxidation-reduction (doping and undoping), but those that have reached practical levels are only polyaline, and polyaline. Equally famous polypyrroles, polythiones, etc. have not been put into practical use as active electrical elements, mainly due to durability issues. Possibilities of applying conductive polymer materials to active devices include the use of organic light-emitting devices as hole injection layers (Patent Document 1), use as overcurrent protection devices (Patent Documents 2 and 3), and light-emitting devices. Utilization as an element (Patent Documents 4 and 5) is common, and an attempt is made to apply a conductive polymer alone to an electric or electronic element.
  • Patent Literature 1 Japanese Patent Application Laid-Open No. 5-1114 887 Patent Document 2 JP-A-9-24610
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2000-213
  • Patent Literature 4 Japanese Patent Application Laid-Open No. H10-204404
  • Patent Document 5 Japanese Patent Application Laid-Open No. 2000-26085
  • Patent Document 6 Japanese Patent Publication No. 6-7 4 3 4 5 Disclosure of the Invention
  • Conducting a polymer can cause a cross-linking reaction between polymer chains, especially when a large voltage is applied during redox (doping and undoping), especially in the positive direction.
  • redox redox
  • Conducting a polymer can cause a cross-linking reaction between polymer chains, especially when a large voltage is applied during redox (doping and undoping), especially in the positive direction.
  • conductive polymers had another problem. That is, even though electrons and holes can travel freely in one chain, electrons' holes must jump because the end of one chain is not connected to the end of another chain. This is also considered to be a factor that lowers the electrical conductivity of conductive polymers.
  • Patent Document 6 the one disclosed in Patent Document 6 described above is to form a mixed film of a conductive polymer and a metal oxide, the incorporation of the metal oxide is governed by chance, and the amount of incorporation is controlled and uniform incorporation is performed. Is impossible.
  • the conductive polymer film thickness must be 10 m or more to capture a sufficient amount of particles because it captures particles with an average particle size of about 100 nm. .
  • the present inventors made it possible to contact a conductive polymer having a cation radical and a dication (in terms of physics, polaron and bipolar port) with a metal that is easily oxidized, and to maintain the state in which adsorbed water was present. By doing so, it has been found that the durability of the conductive polymer material against oxidation and reduction is improved, and the conductivity can be controlled. That is, the present invention provides (1) a method in which a metal is buried between polymer chains in a state where a metal is oxidized by a chemical reaction between a metal one-thione radical and a dication-one adsorbed water, and the metal is a conductive polymer.
  • a modified conductive polymer material characterized by being a metal having a work function lower than the work function.
  • the present invention is characterized in that (2) the metal is one selected from aluminum, titanium, indium, force dome, manganese, iron, copper, silver, tin, antimony, lead, sodium, or calcium.
  • the metal is one selected from aluminum, titanium, indium, force dome, manganese, iron, copper, silver, tin, antimony, lead, sodium, or calcium.
  • the present invention provides (3) a method of contacting a metal having a work function smaller than the work function of a conductive polymer with a conductive polymer and maintaining the metal in a state in which adsorbed water is present, thereby reducing metal thione.
  • the present invention also provides (4) a method of forming a conductive polymer film on a substrate, and depositing a metal having a work function smaller than that of the conductive polymer on the surface of the conductive polymer film so that the metal and the conductive polymer are separated from each other.
  • the conductive polymer of the present invention fills the space between polymer chains with an oxidized metal oxide such as aluminum oxide or zinc oxide, thereby preventing a cross-linking reaction due to repeated oxidation-reduction and preventing deterioration of the conductive polymer. It is to prevent.
  • an oxidized metal oxide such as aluminum oxide or zinc oxide
  • the cross-linking reaction can be prevented, but it prevents the jump of electrons and holes at the end of one chain and the end of another chain. Will be. That is, deterioration can be prevented, but the electrical conductivity of the entire film decreases.
  • deterioration can be prevented and conductivity can be increased.
  • the amount of metal oxide incorporated into the conductive polymer is determined by the amount of metal deposited, and can be strictly controlled. Also, the unit to be incorporated is as small as about several mn. Therefore, even if a conductive polymer having a film thickness of about 1 / _ ⁇ and sub-micrometer is used, mixing (hybridization) is sufficiently possible.
  • the conductive polymer material of the present invention has stable electric properties (increases durability), various elements that have been the sole pioneers of inorganic semiconductors and metals, for example, Excellent characteristics can be exhibited when used in electrode materials for secondary batteries, organic circuit patterns (organic thin film transistors, etc.), antistatic sheets, organic thin film light emitting devices, and so on.
  • a conductive polymer is formed into a film by dissolving a film-forming raw material in a solution and oxidizing the raw material on an electrode substrate to polymerize the raw material. At this time, a reaction occurs in which the polymer film itself is oxidized simultaneously with the polymerization, and cation radicals and cations having a positive charge are formed in the polymer film.
  • Fig. 1 schematically shows the chemical reaction between the metal-cation radical and the dication-adsorbed water.
  • the work function of the conductive polymer 3 film is smaller than the work function of the conductive polymer.
  • Metal 1 such as aluminum or indium, which is a metal to be attached, is attached by vapor deposition or the like and brought into contact (upper part in FIG. 1).
  • Non-uniform deposition such as island deposition is one of the preferred techniques. Also. If there are structural defects such as microvoids, microscratches, and pinholes in the conductive polymer 3 film, microvoids, microscratches, pinholes 4, etc. are formed in the deposited metal 1, as shown in Fig. 1. Therefore, the contact area can be increased. Then, as shown in an enlarged manner in the lower part of FIG.
  • the conductive polymer 3 undergoes a reduction reaction, the cation radical and the dication 9 in the polymer disappear, and the dopant 8 is dedoped.
  • the generated metal oxide / hydroxide 7 penetrates into the conductive polymer 3 and moves by diffusion to be present in the nano space between the polymer chains 10.
  • FIG. 2 shows a schematic diagram of a conductive polymer material modified by the result of such galvanic corrosion reaction.
  • aluminum oxide / hydroxide 7 formed between the polymer chains 10 by a chemical reaction between the metal thiol radical and the dication-adsorbed water was included.
  • a conductive polymer is obtained. If the metal deposition amount is insufficient, the dopant 8 and unreacted cation radical and dication 9 remain after undoping, but the degree of the residual can be adjusted by the metal deposition amount.
  • FIG. 1 is a schematic diagram showing a chemical reaction between a metal monothione radical and a dication monoadsorbed water in a method for producing a modified conductive polymer of the present invention.
  • FIG. 2 is a schematic diagram showing the structure of the modified conductive polymer material of the present invention.
  • FIG. 3 is a graph showing the results obtained by shaving the polypyrrole film from the surface of the polypyrrole film containing aluminum of Example 1 and performing elemental analysis by X-ray photoelectron spectroscopy every time the polypyrrole film was shaved.
  • FIG. 4 is a graph showing the change over time in the electrical conductivity of the polypyrrole film of Example 1 which occluded aluminum and the polypyrrole film on which nothing was deposited.
  • FIG. 1 is a schematic diagram showing a chemical reaction between a metal monothione radical and a dication monoadsorbed water in a method for producing a modified conductive polymer of the present invention.
  • FIG. 2 is
  • FIG. 5 (a) is a cyclic bonamerogram of polypyrrole which has not been vapor-deposited
  • FIG. 5 (b) is a polypyrrole film of Example 1 containing aluminum
  • Fig. 3 shows a cyclic voltammogram
  • FIG. 6 is a graph showing a change over time in electric conductivity of the polypyrrole film in which indium was occluded in Example 2.
  • FIG. 7 is a cyclic voltammogram of the polypyrrole film containing indium of Example 2.
  • polystyrene resin examples include, but are not limited to, polypyrrole, polyindole, polyfunctional rubazole, polythiophene (including the basic polythiophene, the same applies hereinafter), polyaniline derivative, polyacetylene derivative, polyfuran derivative, polyparaphenylenevinylene derivative, polyazulene derivative, Polyparaphenylene derivative, poly It also includes the use of chain conductive polymers such as parafu-lensulphide derivatives, polyisothianaphthene derivatives, and polythiazyl, and polyacene-based conductive polymers.
  • chain conductive polymers such as parafu-lensulphide derivatives, polyisothianaphthene derivatives, and polythiazyl, and polyacene-based conductive polymers.
  • the conductive polymer film As a general method for forming the conductive polymer film, there are an electrolytic polymerization method, a chemical polymerization method, a solution coating method and the like, and the production method is not limited. Any heat-resistant material can be formed by vapor deposition.
  • the conductive polymer is brought into contact with the metal.
  • One method is to form a conductive polymer film on a substrate and deposit a metal having a work function smaller than the work function of the conductive polymer on the surface of the conductive polymer film.
  • Metals with lower work functions than conductive polymers e.g., aluminum, titanium, indium, cadmium, manganese, iron, copper, silver, tin, antimony, lead, sodium, or calcium, and adsorbed water
  • the evaporated metal is oxidized (partially converted to hydroxide) and occluded in the polymer film.
  • indium oxide has a conductivity as high as that of a metal.
  • the conductivity of a conductive polymer can be greatly increased. Even if a metal having a relatively large work function, such as gold, platinum, nickel, iridium, or palladium, is deposited, no metal occlusion phenomenon occurs in the conductive polymer.
  • a vapor deposition method By using such a vapor deposition method, it is possible to obtain a modified conductive polymer material simply by placing it in a daily ambient atmosphere in which adsorbed water exists immediately after vapor deposition.
  • a conductive polymer material having unprecedented excellent properties can be provided.
  • As a method for depositing a metal not only a vapor deposition method but also various deposition methods such as a sputtering method, a plating method, an electrodeposition method, and an electron beam method can be used.
  • IT0 film using a glass substrate on which an indium tin oxide (hereinafter referred to as IT0) film is spin-coated as a working electrode is a dichloromethane solution in which pyrrole (2raM) and tetraethylammonium-perchlorate (65mM) are dissolved.
  • a polypyrrole film was formed thereon by electrolytic polymerization.
  • the electrolytic polymerization conditions were a polymerization potential of 1. IV (indicated by a potential with respect to a saturated calomel reference electrode), a polymerization temperature of 0 ° C., and a current of electricity of 0.7 C / cm 2 . Further, the polymerization atmosphere was performed under nitrogen, but it is not always necessary to be under nitrogen. .
  • an aluminum metal film of about 20 nm was deposited on the surface of the polypyrrole film by a vacuum deposition method.
  • Fig. 3 shows the results of X-ray photoelectron spectroscopy (usually abbreviated to XPS) of the aluminum-occluded polypyrrole film produced in Example 1, which was subjected to elemental analysis every time the polypyrrole film was cut from the surface. The results obtained are shown.
  • XPS X-ray photoelectron spectroscopy
  • the scale on the right axis indicates the depth from the film surface, Onm indicates the film surface, and the 420 nm point indicates the interface between the film, the IT0 film and the glass substrate.
  • the horizontal axis is the binding energy of the element of interest. In this graph, we look at the binding energy region of 2p electrons of the aluminum atom.
  • 74_75eV is the signal of aluminum constituting aluminum oxide (AI2O3) or aluminum hydroxide (AI2O3 ⁇ 2 ⁇ ).
  • AI2O3 aluminum constituting aluminum oxide
  • AI2O3 ⁇ 2 ⁇ aluminum hydroxide
  • a signal should appear at 71.4 eV, but since there is no signal at that value, the deposited aluminum enters the polypyrrole film as aluminum oxide, It can be seen that the depth reaches ⁇ 180 nm.
  • Figure 4 shows the results of measuring the change over time in the electrical conductivity of a polypyrrole film on which nothing was deposited and of the film after aluminum was deposited.
  • the time immediately after the electropolymerization was set to zero, and in the case of the sample in which the aluminum film was evaporated, the time was set to zero immediately after the evaporation. The measurement was started at an elapsed time of 30 minutes.
  • aluminum oxide is a conductive polymer chain
  • the electric conductivity is reduced to about l / 4 to l / 5 to enter the space.
  • the value of the reduced conductivity is still a value in the high conductivity region, and is still a conductive polymer.
  • Fig. 5 (a) shows the cyclic properties of the polypyrrole on which no vapor was deposited
  • Fig. 5 (b) shows the cyclic bonoletan of polypyrrole deposited with an aluminum film. Shows a gram. When a positive potential is applied to the polypyrroline finolem, a positive current flows.This is because the film is oxidized to form radical cations and dications in the film. -Shows how the film enters the film.
  • Example 1 A sample was prepared by depositing an indium film on the surface of a polypyrrole film under the same conditions as in Example 1 except that the metal deposited in Example 1 was changed from aluminum to aluminum. The phenomenon is exactly the same as in Example 1, and the appearance of disappearance of indium was observed.
  • indium reacts with a cation (radical cation and dication) and water adsorbed in the polypyrrole is a transparent substance indicator ⁇ arm oxide (IrnOs) Z indium hydroxide ( ⁇ 2 ⁇ 3 / ⁇ 2 0 ) (Slightly yellowish It can be seen that the substance was converted into a substance and incorporated into the film.
  • FIG. 6 shows the change with time when the electrical conductivity measurement by the four-terminal method was performed on a polypyrrole film in which indium oxide and indium hydroxide were occluded, with the time when indium was deposited being zero. From Figure 6, although the time up to 5 hours are reduced conductivity, stable value becomes SOOOSZcm as high conductivity, it can be seen that indeed 3 4 times the value of the poly pillow Luffy Lum before deposition. This can be interpreted as the fact that indium oxide was actually present in the polypyrrole film as described above, and increased the conductivity.
  • FIG. 7 shows a cyclic voltammogram of a polypyrrole film containing indium oxide Z and indium hydroxide. From FIG. 7, it can be seen that even when indium oxide is incorporated into the polypyrrole film, the effect of improving the durability of the film is exhibited.
  • An aluminum film was deposited on the surface of the polymethyl methacrylate film under the same conditions as in Example 1 except that polymethyl methacrylate, which was an insulating polymer, was used instead of pyrrole. Note that tetraethylammonium perchlorate is dispersed in the polymethyl methacrylate film. In this situation, the deposited aluminum and adsorbed water are present, but no cation radical or dication. In this example, the aluminum film did not disappear at all. Therefore, it is clear that cation radicals and dications are required for the phenomenon of aluminum loss, and that it is necessary to create a flow of electrons from aluminum to the polymer film.
  • Comparative Example 2 A sample was prepared by depositing a gold film on the surface of a polypyrrole film under the same conditions as in Example 1 except that the metal to be deposited in Example 1 was changed from aluminum to gold.
  • Example 1 Aluminum / polypyrrole samples prepared in Example 1, and stored under vacuum rather than in air (10- 3 Pa). As a result, no aluminum was lost even after 24 hours. The reason for this is that there was not enough water adsorbed under vacuum, and the tri-existence of aluminum mono-thione radical and di-cation mono-adsorbed water was not formed. Industrial applicability

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)

Abstract

金属−カチオンラジカルおよびジカチオン−吸着水の三者の間の化学反応により金属が酸化された状態(一部水酸化物化された状態)でポリマー鎖間を埋めていることを特徴とする改質された導電性ポリマー材料。金属は導電性ポリマーの仕事関数よりも小さな仕事関数をもつ金属を用いる。導電性ポリマーと金属とを接触させて金属−カチオンラジカルおよびジカチオン−吸着水の三者が共存する状態にすることにより導電性ポリマー材料の酸化還元に対しての耐久性を向上させ、かつ導電性制御も可能となる。

Description

明 細 書 改質された導電性ポリマー材料及びその製造方法 技術分野
本発明は、 酸化還元に対しての耐久性が大きく、 かつ制御された導電性を有す る改質された導電性ポリマー材料とその製造方法に関する。 従来の技術
導電性ポリマーは、 一般に酸化還元 (ドーピング '脱ドーピング) に対しての 繰り返し安定性に優れるとは言われているものの実用レベルに達しているものは、 ポリア二リン程度であり、 ポリア-リンと同じくらい有名なポリピロール、 ポリ チオフ ン等は主に耐久性の問題で能動的電気素子として実用化されていない。 導電性ポリマー材料の能動素子への応用の可能性については、 有機発光素子の 正孔注入層としての利用 (特許文献 1 ) 、 過電流保護素子としての利用 (特許文 献 2、 3 ) 、 発光素子としての利用 (特許文献 4、 5 ) などが一般的であり、 導 電性ポリマー単独で電気あるいは電子素子に応用しようとするものである。
ドーパントを均一にドープさせ、 かつ易動性とするために電解液であるピロ一 ルの溶液に Π02あるいは Si02の微粒子を懸濁し、 ピロールの重合を行って 10〜10 OOnmの粒径の微粒子を重合膜内に取り込ませた導電性ポリマーと金属酸化物の混 合膜がある (特許文献 6 ) 。
特許文献 1 特開平 5— 1 1 4 4 8 7号公報 特許文献 2 特開平 9—2 4 6 0 1 0号公報
特許文献 3 特開 2 0 0 2—1 3 4 3 0 3号公報
特許文献 4 特開平 1 0— 2 0 4 4 2 6号公報
特許文献 5 特開 2 0 0 0— 2 6 8 5 1号公報
特許文献 6 特公平 6— 7 4 3 4 5号公報 発明の開示
導電性ポリマーは、 酸化還元 (ドーピング '脱ドーピング) を行う際に、 特に プラスの方向に大きな電圧をかけると、 ポリマー鎖同士の架橋反応などが起きる。 長いポリマー鎖でフィルムができている場合、 その中を走る電子あるいはホール はほとんど横道にそれることなく、 鎖に沿って走るので短時間でフィルムを横断 でき、 高い伝導性を示す。
ところが、 ポリマー鎖の間が架橋され、 横道が形成されると、 電子あるいはホ ールが様々の方向に進むことになり、 電気伝導に時間がかかることになるし、 ま たそういつた横道の部分は、 エネルギー的に電子やホールの落とし穴 (トラップ ) となり、 そこで電子 'ホールの寿命が尽きる。 すなわち、 フィルムの伝導性が 低下し、 劣化へとつながる (極端な場合は絶縁化に至り、 もはや導電性ポリマー ではなくなる) 。
また、 こうした問題のほかに、 導電性ポリマーにはもう一つの問題があった。 それは、 一本の鎖内は自由に電子 .ホールが走行できるにしても、 鎖の端と別の 鎖の端はつながっていないので、 電子 'ホールは飛び移らねばならない。 これも 導電性ポリマーの電気伝導性を下げる要因とされている。 上記の特許文献 6に開示されているものは導電性ポリマーと金属酸化物の混合 膜を作るものであるが、 金属酸化物の取り込みは偶然により支配され、 取り込み 量の制御や均一な取り込みを行うのは不可能である。 また、 微粒子とはいっても 平均粒径が lOOnm程度の粒子を取り込むので、 十分な量の粒子を取り込むために は、 導電性ポリマーの膜厚を 10 m以上にもしなければならないといった欠点が あった。
本宪明者らは、 カチオンラジカル及ぴジカチオン (物理の用語で言えばポーラ ロンとバイポーラ口ン) を有する導電性ポリマーに酸化されやすい金属を接触さ せて、 吸着水が存在する状態に保持することにより、 導電性ポリマー材料の酸化 還元に対しての耐久性を向上させ、 かつ導電性制御も可能となることを見出した。 すなわち、 本発明は、 (1 ) 金属一力チオンラジカル及びジカチオン一吸着水 の三者の間の化学反応により金属が酸化された状態でポリマー鎖間を埋めており、 該金属が導電性ポリマーの仕事関数よりも小さな仕事関数をもつ金属であること を特徴とする改質された導電性ポリマー材料である。
また、 本発明は、 (2 ) 金属がアルミニウム、 チタン、 インジウム、 力ドミゥ ム、 マンガン、 鉄、 銅、 銀、 スズ、 アンチモン、 鉛、 ナトリウム、 又はカルシゥ ムから選ばれた一種であることを特徴とする上記 (1 ) の改質された導電性ポリ マー材料である。
また、 本発明は、 (3 ) 導電性ポリマーの仕事関数よりも小さな仕事関数をも つ金属と導電性ポリマーとを接触させ、 かつ吸着水の存在する状態に保持するこ とにより金属一力チオンラジカル及びジカチオン一吸着水の三者が共存する状態 を作り出すことを特徴とする上記 (1 ) の改質された導電性ポリマー材料の製造 方法である。
また、 本発明は、 (4 ) 基板上に導電性ポリマーフィルムを形成し、 該導電性 ポリマーフィルム表面に導電性ポリマーよりも小さな仕事関数をもつ金属を蒸着 することにより金属と導電性ポリマーとを接触させることを特徴とする上記 ( 3 ) の改質された導電性ポリマー材料の製造方法である。
本発明の導電性ポリマーは、 ポリマー鎖間を酸化アルミニウムや酸化ィンジゥ ムなどの酸化された金属酸ィヒ物で埋めることにより、 酸化還元の繰り返しによる 架橋反応を防止し、 導電性ポリマーの劣化を防ぐものである。
なお、 金属酸化物の生成の際に金属酸化物に水分子が水和化し、 一部金属水酸 化物が不可避的に生成するので、 金属酸化物の一部は金属水酸化物として存在す ることになる。
例えば、 絶縁性の酸化アルミ二ゥムで導電性ポリマーの鎖間の隙間を埋めた場 合、 架橋反応が防止できるが、 鎖の端と別の鎖の端では電子 'ホールの飛び移り を妨げることになる。 すなわち、 劣化を防止できるが、 フィルム全体の電気伝導 度は下げることになる。 一方、 高導電性の酸化インジウムで埋めた場合は、 劣化 も防止できるし、 また、'伝導度も高めることができる。
本発明の製造方法によれば、 導電性ポリマ一^ ·の金属酸化物の取り込み量は金 属の蒸着量によって決定され、 厳密な制御が可能である。 また、 取り込まれる単 位も数 mn程度に小さく、 したがって 1 /_ί πι及びサブマイクロメーター程度の膜厚の 導電性ポリマーを用いても混合化 (ハイプリッド化) が十分可能である。
本発明の導電性ポリマー材料は、 電気物性が安定する (耐久性が増大する) こ とから、 無機半導体や金属の独壇場であった様々の素子、 例えば、 コン 二次電池の電極材料、 有機回路パターン (有機薄膜トランジスタなど) 、 帯電防 止シート、 有機薄膜発光素子などに利用して優れた特性を発揮できる。
(作用)
' 一般に、 導電性ポリマーは、 フィルム形成原料を溶液に溶かし、 電極基板上で 原料を酸化すると原料が重合し、 フィルム状の形態となる。 このとき重合と同時 にポリマーフィルムそのものが酸化される反応が起こり、 プラス電荷を持つカチ オンラジカル及びジカチオンがポリマーフィルム内にできる。
, このとき、 溶液中に、 C104—、 BF4-、 PF6-、 パラトルェンスッレホン酸イオンなど のマイナスイオン (ドーパントと呼ばれる) を添加しておくと、 マイナスイオン が、 ポリマーフィルム内に取り込まれ、 カチオンラジカル及ぴジカチオンを電気 的に中和する。
第 1図に、 金属一カチオンラジカル及びジカチオン一吸着水の三者の間の化学 反応を模式的に示すように、 導電性ポリマー 3のフィルムに導電性ポリマーの仕 事関数よりも小さな仕事関数をもつ金属であるアルミニウムまたはインジウム等 の金属 1を蒸着などにより付着させて接触させる (第 1図の上の部分) 。
金属一力チオンラジカル及ぴジカチオン一吸着水の三者の間の化学反応をより 効率的に行うためには、 導電性ポリマー 3のフィルム表面及び金属との吸着水の 接触面積を高めることが望ましく、 島状蒸着などの不均一蒸着が好ましい手法の 一つである。 また。 導電性ポリマー 3のフィルムにマイクロボイド、 マイクロス クラッチ、 ピンホール等の構造欠陥があると、 第 1図に示すように、 蒸着した金 属 1にマイクロボイド、 マイクロスクラッチ、 ピンホール 4などが形成されるの で接触面積を高めることができる。 そして、 第 1図の下の部分に拡大して示すように、 金属 1を付着させた導電性 ポリマー 3を吸着水 2が存在する状態に保持することにより、 金属 1のマイクロ ポイド、 マイクロスクラッチ、 ピンホール 4などから吸着水 2が導電性ポリマー 3内に浸透するようにすると、 金属 1一力チオンラジカル及びジカチオン 9一吸 着水 2の三者の間で化学反応が起こり、 酸化され易い金属 1が導電性ポリマー 3 内に侵入しつつ酸化 (一部水酸化物化) されることとなる。
一方、 導電性ポリマー 3は還元反応を受け、 ポリマー内のカチオンラジカル及 びジカチオン 9が消滅し、 ドーパント 8が脱ドープされる。 生じた金属酸化物/ 水酸化物 7は導電性ポリマー 3内に侵入し、 拡散により移動してポリマー鎖 1 0 間のナノ空間に存在することになる。
以上の結果は、 金属-ラジカルカチオン及びジカチオン-吸着水の三者の間でガ ルバニ電池が形成され、 仕事関数のより小さな酸化され易い金属から、 仕事関数 のより大きなポリピロールフィルムに電子移動が生じたことに起因する。 この電 子移動により酸化されやすい金属は吸着水の存在下でガルバ二腐食反応により酸 化され、 その酸化物(アルミユウムの場合は AI2O3/水酸化物 (A1203 · χΗ2θ)に変化 する。 )
第 2図に、 このようなガルバ二腐食反応の結果によって改質された導電性ポリ マー材料の模式図を示す。 第 2図に示すように、 ポリマー鎖 1 0間に金属一力チ オンラジカル及びジカチオン一吸着水の三者の間の化学反応により形成されたァ ルミニゥム酸化物/水酸化物化 7が含まれた導電性ポリマーが得られる。 金属の 蒸着量が不足する場合には、 脱ドープ後にドーパント 8や未反応のカチオンラジ カル及びジカチオン 9が残存するが、 残存の程度は金属の蒸着量により調整でき る。
図面の簡単な説明
第 1図は、 本発明の改質された導電性ポリマーの製造方法における金属一力チ オンラジカル及びジカチオン一吸着水の三者の間の化学反応を示す模式図である。 第 2図は、 本発明の改質された導電性ポリマー材料の構造を示す模式図である。 第 3図は、 実施例 1のアルミニウムを吸蔵したポリピロールフィルムについて、 ポリピロールフィルムを表面から削り、 削る毎に X線光電子分光分析法により元 素分析を行った結果を示すグラフである。 第 4図は、 実施例 1のアルミエゥムを 吸蔵したポリピロールフィルムと何も蒸着していないポリピロールフィルムの電 気伝導度の経時変化を示すグラフである。 第 5図の (a ) は、 何も蒸着していな いポリピロ一ノレのサイクリックボノレタンモグラム (voltamraogram) 、 第 5図の ( b ) は、 実施例 1のアルミニウムを吸蔵したポリピロールフィルムのサイタリ ックボルタンモグラムを示す。 第 6図は、 実施例 2のインジウムを吸蔵したポリ ピロールフィルムについて、 電気伝導度の経時変化を示すグラフである。 第 7図 は、 実施例 2のインジウムを吸蔵したポリピロールフィルムのサイクリックボル タンモグラムである。 発明を実施するための最良の形態
ポリマーとしては、 特に限定されず、 ポリピロール、 ポリインドール、 ポリ力 ルバゾール、 ポリチォフェン (基本のポリチォフェンを含む、 以下同様) 誘導体、 ポリア二リン誘導体、 ポリアセチレン誘導体、 ポリフラン誘導体、 ポリパラフエ エレンビニレン誘導体、 ポリアズレン誘導体、 ポリパラフエュレン誘導体、 ポリ パラフエ-レンサルファイ ド誘導体、 ポリイソチアナフテン誘導体、 ポリチアジ ル等の鎖状導電性ポリマーや、 ポリァセン系導電性ポリマーも利用することがで 含る。
導電性ポリマー膜の一般的な形成方法としては、 電解重合法、 化学重合法、 溶 液塗布法などがあり、 その製造方法は限定されない。 耐熱性のある材料ならば蒸 着法でも形成できる。
金属一カチオンラジカル及びジカチオン一吸着水の三者が共存する状態を作り 出すために、 まず、 導電性ポリマーと金属とを接触させる。 一つの方法としては、 基板上に導電性ポリマーフィルムを形成し、 該導電性ポリマーフィルム表面に導 電性ポリマーの仕事関数よりも小さな仕事関数をもつ金属を蒸着する方法である。 導電性ポリマーと比べて仕事関数の小さな金属、 例えば、 アルミ-ゥム、 チタ ン、 インジウム、 カドミウム、 マンガン、 鉄、 銅、 銀、 スズ、 アンチモン、 鉛、 ナトリウム、 又はカルシウムを蒸着し、 吸着水が存在する状態に保持すると、 蒸 着した金属は酸化 (一部水酸化物化) されながら、 ポリマーフィルム内に吸蔵さ れる。 特に、 酸化インジウムは金属並に高い伝導性を示すことが知られており、 酸化インジウムで橋渡ししてやれば、 導電性ポリマーの伝導性を大きく高めるこ とができる。 仕事関数の比較的大きな金属、 すなわち、 金、 白金、 ニッケル、 ィ リジゥム、パラジウム等を蒸着しても導電性ポリマー内部への金属吸蔵現象は起 こらない。
真空下でない限り、 通常、物質は吸着水で覆われる状態になるので、 吸着水が 存在する状態に保持するためには、 導電性ポリマーの仕事関数よりも小さな仕事 関数をもつ金属と導電性ポリマーとを接触させた状態で 13常の大気中 (例えば、 温度 2 0 °C、 相対湿度 5 0 %程度) に保持するか水に少しでも濡れるような操作 をするだけでよい。
このような蒸着法を用いると、 蒸着直後に吸着水が存在する日常の周囲雰囲気 に置くだけでも、 改質された導電性ポリマー材料を得ることができるので効率的 でコスト的には全く問題なく、 従来にない優れた特性を有する導電性ポリマー材 料を提供することができる。 なお、 金属を堆積する方法としては、 蒸着法だけで はなく、 スパッタ法、 メツキ法、 電着法、 電子ビーム法等、 様々な堆積法を用い ることができる。
(実施例)
実施例 1
ピロール (2raM) と過塩素酸テトラエチルアンモ -ゥム (65mM) を溶解したジ クロロメタン溶液を電解液とし、 酸化インジウムスズ (以降 IT0という) 膜がス ピンコートされたガラス基板を動作電極として IT0膜上にポリピロールフィルム を電解重合法にて形成した。
電解重合条件は、 重合電位 1. IV (飽和カロメル参照電極に対する電位で示され る) 、 重合温度 0°C、 通電電気量 0, 7C/cm2とした。 また、 重合雰囲気は窒素下で 行ったが必ずしも窒素下である必要はない。 .
この操作により、 IT0膜上に約 400nmの厚さの、 過塩素酸イオン(C104- )がドー ピングされたポリピロールフィルムが形成された。
次に、 真空蒸着法により、 ポリピロールフィルム表面にアルミニウム金属膜を 約 20nm蒸着した。 蒸着は、 真空度 10- 3Pa、 室温 (22°C) にて行った。
アルミニウム膜をポリピロールフィルム表面に蒸着したガラス基板を蒸着装置 から取り出し、 温度 20°C、 湿度 50%の空調室内に静置して、 変化の様子を観察し た。 蒸着したアルミニウム膜は、 蒸着から早くも 5分後に一部のアルミニウムが 消え始めた。 そして徐々に消えていき、 12時間後には完全に消失した。
第 3図に、 実施例 1で製作したアルミニウム吸蔵ポリピロールフィルムについ て、 X線光電子分光分析法 (通常 XPSと略される) により、 ポリピロールフィル ムを表面から肖 IJり、 削る毎に元素分析を行った結果を示す。
右の軸の目盛りはフィルム ¾面からの深さを表しており、 Onmがフィルム表面、 420nmの点がフィルムと IT0膜とガラス基板の界面を示す。 横軸は注目している元 素の結合エネルギーであり、 このグラフの場合、 アルミェゥム原子の 2p電子の結 合エネルギー領域を見ている。
' 74_75eVにシグナルが見られたが、 これは酸化アルミニウム (AI2O3) あるい は水酸化アルミェゥム (AI2O3 · χΗ2θ) を構成しているアルミニウムのシグナル である。 金属状態のアルミニウムの場合、 71. 4eVにシグナルを示すはずであるが、 その値のところにはシグナルがないことから、 蒸着アルミニウムは酸化アルミ二 ゥムとなってポリピロールフィルム内に侵入し、 150〜180nmの深さに達している ことが分かる。
第 4図に、 何も蒸着していないポリピロールフィルムと、 アルミニウムを蒸着 した後のフィルムの電気伝導度の経時変化を測定した結果を示す。 何も蒸着して いないポリピロ一 の場合、 電解重合直後を時間ゼロとし、 アルミニウム膜を蒸 着した試料の場合は、 蒸着直後を時間ゼロとした。 また、 測定開始は、 経過時間 3 0分からスタートした。
アルミニウム膜を蒸着した試料の場合、 酸化アルミニウムが導電性ポリマー鎖 間に入り込むため電気伝導度は l/4〜l/5程度に低下している。 しかしながら、 注 意すべきは、 低下した伝導度の値は、 なお高伝導度領域の数字であり、 導電性ポ 'リマーであることには変わりがない。
第 5図の (a ) に何も蒸着していないポリピロールのサイクリックポルタンモ グラムの繰り返し特性を示し、 第 5図の (b ) に、 アルミニウム膜を蒸着したポ リピロ一ノレのサイクリックボノレタンモグラムを示す。 ポリピロ一ルフィノレムに正 の電位をかけるとプラスの電流が流れるが、 これはフィルムが酸化されてフィル ム内にラジカルカチオンやジカチオンができ、 それを電気的に中和するために電 解液から C104—がフィルム内に入ってくる様子を示している。
第 5図の (a ) の場合、 電位掃引 (potential- sweep) を繰り返すと次第に波形 がつぶれ、 楕円形になりながら変化する様子が分かる。 これはフィルムの電気伝 導度が下がり、 抵抗が上がったときに見られる挙動であり、 フィルムが徐々.に劣 化していく様子が分かる。 しかしながら、 第 5図の (b ) の場合、 掃引 4回目あ たりから波形が重なり、 安定して酸化還元が起きる様子が分かる。 すなわち、 ポ リピロールフィルムの酸化還元の耐久性が著しく改善されたことが分かる。
実施例 2
実施例 1の蒸着金属をアルミニウムからィンジゥムに変えた以外は実施例 1と 同じ条件でィンジゥム膜をポリピロールフィルム表面に蒸着した試料を作製した。 現象的には実施例 1と全く同様であり、 インジウムが消える様子が観察された。 アルミニウムのケースとの類推により、 インジウムはポリピロール中のカチオン (ラジカルカチオンやジカチオン) 及び吸着水と反応し、 透明物質であるインジ ゥム酸化物 (IrnOs) Z水酸化インジウム (Ιη2θ3/χΗ20) (やや黄色みを帯びてい る) に物質変換されフィルム内に取り込まれたことが分かる。
第 6図に、 酸化インジウム Z水酸化インジウムを吸蔵したポリピロールフィル ムについて、 インジウムを蒸着した時刻をゼロとし、 4端子法による電気伝導度 測定を行った時の経時変化を示す。 第 6図から、 時刻 5時間までは伝導度が低下 するものの、 安定値は SOOOSZcmもの高伝導度となり、 蒸着前のポリピロールフィ ルムの実に 3 4倍もの値を示すことが分かる。 これは、 実際に上記のように酸化 インジウムがポリピロールフィルム中に存在し、 伝導度を押し上げたものと解釈 される。
第 7図に、 酸化インジウム Z水酸化インジウムを吸蔵したポリピロールフィル ムのサイクリックボルタンモグラムを示す。 第 7図から、 酸化ィンジゥムがポリ ピロールフィルム内に取り込まれた場合もフィルムの耐久性を向上させる効果を 示すことが分かる。
比較例 1
ピロールに代えて絶縁性ポリマーであるポリメタクリル酸メチルを用いた以外' は実施例 1と同じ条件でアルミユウム膜をポリメタクリル酸メチルフィルム表面 に蒸着した。 なお、 ポリメタクリル酸メチルフィルム中には過塩素酸テトラエチ ルアンモニゥムが分散されている。 この状況は、 蒸着アルミニウムと吸着水は存 在するが、 カチオンラジカルやジカチオンは無い状態である。 この例では、 アル ミユウム膜は全く消失しなかった。 したがって、 アルミニウムが消失する現象に は、 カチオンラジカルやジカチオンが必要であり、 アルミニウムからポリマーフ イルムへの電子の流れを作る必要があることが分かる。
比較例 2 実施例 1の蒸着金属をアルミニウムから金に代えた以外は実施例 1と同じ条件 で金膜をポリピロールフィルム表面に蒸着した試料を作製した。
金のような貴金属を蒸着した場合、 蒸着から一週間を経過してもポリピロール フィルム内に全く取り込まれなかった。 金を用いた場合、 金の仕事関数とポリピ ロールの仕事関数がほぼ等しく、 アルミニウムからポリマーフィルムへの電子の 流れがない。 したがって、 このことも電子の流れ (電流) の重要性を示している。
'比較例 3
実施例 1で作製したアルミニウム/ポリピロール試料を、 空気中ではなく真空 下 (10- 3Pa) で保存した。 その結果、 24時間経過してもアルミニウムは全く消失 しなかった。 この理由は、 真空下においては十分な吸着水がなく、 アルミニウム 一力チオンラジカル及びジカチオン一吸着水の三者共存状態が形成されなかった ためである。 産業上の利用可能性
本発明によれば、 従来技術を用いて作製された導電性ポリマーではなし得なか つた酸化還元に対しての大きな耐久性と導電性制御を効率的な方法により実現で きるので各種の電気、 電子素子材料としての導電性ポリマーの実用化に貢献でき る。

Claims

請 求 の 範 囲
1 . 金属一カチオンラジカル及びジカチオン一吸着水の三者の間の化学反応によ り金属が酸化された状態でポリマー鎖間を埋めており、 該金属が導電性ポリマー の仕事関数よりも小さな仕事関数をもつ金属であることを特徴とする改質された 導電性ポリマー材料。
2 . 金属がアルミニウム、 チタン、 インジウム、 カドミウム、 マンガン、 鉄、 銅、 銀、 スズ、 アンチモン、 鉛、 ナトリウム、 又はカルシウムから選ばれた一種であ ることを特徴とする請求の範囲第 1項記載の改質された導電性ポリマー材料。
3 . 導電性ポリマーの仕事関数よりも小さな仕事関数をもつ金属と導電性ポリマ 一とを接触させ、 かつ吸着水の存在する状態に保持することにより金属一力チォ ンラジカル及びジカチオン一吸着水の三者が共存する状態を作り出すことを特徴 とする請求の範囲第 1項記載の改質された導電性ポリマー材料の製造方法。
4 . 基板上に導電性ポリマーフィルムを形成し、 該導電性ポリマーフィルム表面 に導電性ポリマーよりも小さな仕事関数をもつ金属を蒸着することにより金属と 導電性ポリマーとを接触させることを特徴とする請求の範囲第 3項記載の改質さ れた導電性ポリマー材料の製造方法。
PCT/JP2003/011253 2002-09-04 2003-09-03 改質された導電性ポリマー材料及びその製造方法 WO2004022631A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/526,147 US7384578B2 (en) 2002-09-04 2003-09-03 Modified electroconductive polymer material and method for preparation thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-259456 2002-09-04
JP2002259456A JP4240961B2 (ja) 2002-09-04 2002-09-04 改質された導電性ポリマーフイルム及びその製造方法

Publications (1)

Publication Number Publication Date
WO2004022631A1 true WO2004022631A1 (ja) 2004-03-18

Family

ID=31973077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/011253 WO2004022631A1 (ja) 2002-09-04 2003-09-03 改質された導電性ポリマー材料及びその製造方法

Country Status (3)

Country Link
US (2) US7384578B2 (ja)
JP (1) JP4240961B2 (ja)
WO (1) WO2004022631A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10557210B2 (en) 2014-02-24 2020-02-11 The Boeing Company Direct electrochemical synthesis of doped conductive polymers on metal alloys
US10204743B2 (en) 2017-02-06 2019-02-12 Kemet Electronics Corporation Capacitor with charge time reducing additives and work function modifiers
DE112015002365T5 (de) 2014-05-21 2017-02-16 Kemet Electronics Corporation Kondensator mit ladungszeit reduzierenden zusätzen und austrittsarbeitsmodifikatoren
CN113782750B (zh) * 2021-09-17 2023-05-02 广西鑫锋环保科技有限公司 一种金属@共聚复合板栅及其制备和在铅酸电池中的应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0468439A2 (en) * 1990-07-26 1992-01-29 Eastman Kodak Company Organic electroluminescent device with stabilizing cathode capping layer
EP0468440A2 (en) * 1990-07-26 1992-01-29 Eastman Kodak Company Organic electroluminescent device with stabilized cathode
EP0468438A2 (en) * 1990-07-26 1992-01-29 Eastman Kodak Company Organic electroluminescent device with stabilizing fused metal particle cathode
JPH09156022A (ja) * 1995-12-05 1997-06-17 Mitsui Toatsu Chem Inc 透明導電性積層体
JPH10125474A (ja) * 1996-10-24 1998-05-15 Tdk Corp 有機el発光素子
WO2000022683A1 (en) * 1998-10-14 2000-04-20 Uniax Corporation Thin metal-oxide layer as stable electron-injecting electrode for light emitting diodes

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5912576A (ja) * 1982-07-12 1984-01-23 Nippon Denso Co Ltd 有機電池の電極形成方法
US5068060A (en) * 1986-08-07 1991-11-26 Allied-Signal Inc. Neutral and electrically conductive poly(heterocyclic vinylenes) and processes for preparing same
JPH0674345B2 (ja) 1990-01-25 1994-09-21 松下電器産業株式会社 導電性高分子組成物
JPH05114487A (ja) 1991-08-23 1993-05-07 Fuji Electric Co Ltd 有機薄膜発光素子
JPH0816511B2 (ja) 1992-08-26 1996-02-21 ニチアス株式会社 パッキンおよびその製造法
US5286415A (en) * 1992-12-28 1994-02-15 Advanced Products, Inc. Water-based polymer thick film conductive ink
JPH09246010A (ja) 1996-03-07 1997-09-19 Matsushita Electric Ind Co Ltd 導電性ポリマ
JPH10204426A (ja) 1997-01-22 1998-08-04 Matsushita Electric Ind Co Ltd 有機薄膜発光素子
ATE283536T1 (de) * 1997-07-25 2004-12-15 Ormecon Gmbh Chemische verbindungen von intrinsisch leitfähigen polymeren mit metallen
US6328874B1 (en) * 1998-01-05 2001-12-11 Mcdonnell Douglas Corporation Anodically formed intrinsically conductive polymer-aluminum oxide composite as a coating on aluminum
US6440332B1 (en) * 1998-06-09 2002-08-27 Geotech Chemical Company Method for applying a coating that acts as an electrolytic barrier and a cathodic corrosion prevention system
JP3950556B2 (ja) 1998-07-15 2007-08-01 三菱電機株式会社 発光型有機・無機複合材料およびその製造法
DE19845881A1 (de) * 1998-10-06 2000-04-13 Bayer Ag Anordnung auf Basis von Poly-(3,4,-dioxythiophen)-Derivaten, die mit Protonen elektrochrom geschaltet werden
JP2002134303A (ja) 2000-10-26 2002-05-10 Matsushita Electric Ind Co Ltd 導電性ポリマ及びその製造方法と過電流保護素子及びその製造方法
US6613452B2 (en) * 2001-01-16 2003-09-02 Northrop Grumman Corporation Corrosion resistant coating system and method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0468439A2 (en) * 1990-07-26 1992-01-29 Eastman Kodak Company Organic electroluminescent device with stabilizing cathode capping layer
EP0468440A2 (en) * 1990-07-26 1992-01-29 Eastman Kodak Company Organic electroluminescent device with stabilized cathode
EP0468438A2 (en) * 1990-07-26 1992-01-29 Eastman Kodak Company Organic electroluminescent device with stabilizing fused metal particle cathode
JPH09156022A (ja) * 1995-12-05 1997-06-17 Mitsui Toatsu Chem Inc 透明導電性積層体
JPH10125474A (ja) * 1996-10-24 1998-05-15 Tdk Corp 有機el発光素子
WO2000022683A1 (en) * 1998-10-14 2000-04-20 Uniax Corporation Thin metal-oxide layer as stable electron-injecting electrode for light emitting diodes

Also Published As

Publication number Publication date
US7384578B2 (en) 2008-06-10
US20060124905A1 (en) 2006-06-15
US20080210913A1 (en) 2008-09-04
JP4240961B2 (ja) 2009-03-18
JP2004099640A (ja) 2004-04-02
US7645401B2 (en) 2010-01-12

Similar Documents

Publication Publication Date Title
Ling et al. Controllable Organic Resistive Switching Achieved by One‐Step Integration of Cone‐Shaped Contact
Nagarajan et al. Electrochemical capacitance of MnOx films
Liu Electrodeposition of manganese dioxide in three-dimensional poly (3, 4-ethylenedioxythiophene)–poly (styrene sulfonic acid)–polyaniline for supercapacitor
JP2013157633A (ja) 光電池
Krishnan et al. Kinetic factors determining conducting filament formation in solid polymer electrolyte based planar devices
WO2005061762A1 (ja) ナノアレイ電極の製造方法およびそれを用いた光電変換素子
Sidhu et al. Vertically aligned ZnO nanorod core-polypyrrole conducting polymer sheath and nanotube arrays for electrochemical supercapacitor energy storage
TW200915641A (en) Process for producing electroconductive polymer electrode and dye-sensitized solar cell comprising the electroconductive polymer electrode
CN100533783C (zh) 特征在于氧化还原电极的电子连接设备
Nguyen et al. Enhanced electrochromic capacity performances of hierarchical MnO2-polyaniline/PEDOT: PSS/Ag@ Ni nanowires cathode for flexible and rechargeable electrochromic Zn-Ion battery
Cassagneau et al. Self‐Assembled Diode Junctions Prepared from a Ruthenium Tris (Bipyridyl) Polymer, n‐Type TiO2 Nanoparticles, and Graphite Oxide Sheets
WO2007133017A1 (en) Highly electron conductive polymer and electrochemical energy storage device with high capacity and high power using the same
Chen et al. Multilayer Cascade Charge Transport Layer for High‐Performance Inverted Mesoscopic All‐Inorganic and Hybrid Wide‐Bandgap Perovskite Solar Cells
JP6016780B2 (ja) 導電性高分子溶液及びその製造方法、導電性高分子材料、ならびにそれを用いた固体電解コンデンサ及びその製造方法
Kim et al. Ultrafast PEDOT: PSS/H2SO4 electrical double layer capacitors: comparison with polyaniline pseudocapacitors
Eswaran et al. Improved cyclic retention and high‐performance supercapacitive behavior of poly (diphenylamine‐co‐aniline)/phosphotungstic acid nanohybrid electrode
Carbas et al. Poly (3, 4-ethylenedioxythiophene) electrode grown in the presence of ionic liquid and its symmetrical electrochemical supercapacitor application
Kang et al. Simple fabrication of nickel sulfide nanostructured electrode using alternate dip-coating method and its supercapacitive properties
TWI376826B (en) Electrolyte transistor and method of fabricating the same
Mwemezi et al. Zinc Anodes Modified by One‐Molecular‐Thick Self‐Assembled Monolayers for Simultaneous Suppression of Side‐Reactions and Dendrite‐Formation in Aqueous Zinc‐Ion Batteries
US7645401B2 (en) Modified electroconductive polymer material and polymer film
Fabretto et al. The mechanism of conductivity enhancement in poly (3, 4-ethylenedioxythiophene)–poly (styrenesulfonic) acid using linear-diol additives: Its effect on electrochromic performance
KR102021049B1 (ko) 초고용량 커패시터용 전극 및 이의 제조방법
Sharma et al. Nano crystalline porous silicon as large-area electrode for electrochemical synthesis of polypyrrole
Ma et al. The fabrication of multilayers of conducting polymers and its high capacitance performance electrode for supercapacitor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
ENP Entry into the national phase

Ref document number: 2006124905

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10526147

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10526147

Country of ref document: US