WO2004021422A1 - 処理装置、載置台、処理方法 - Google Patents

処理装置、載置台、処理方法 Download PDF

Info

Publication number
WO2004021422A1
WO2004021422A1 PCT/JP2003/010508 JP0310508W WO2004021422A1 WO 2004021422 A1 WO2004021422 A1 WO 2004021422A1 JP 0310508 W JP0310508 W JP 0310508W WO 2004021422 A1 WO2004021422 A1 WO 2004021422A1
Authority
WO
WIPO (PCT)
Prior art keywords
processing
electrode
processing container
mounting table
frequency power
Prior art date
Application number
PCT/JP2003/010508
Other languages
English (en)
French (fr)
Inventor
Hiroshi Kannan
Yasuhiro Oshima
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Priority to AU2003257622A priority Critical patent/AU2003257622A1/en
Publication of WO2004021422A1 publication Critical patent/WO2004021422A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • C23C16/5096Flat-bed apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge

Definitions

  • the present invention relates to a processing apparatus that performs processing by applying high-frequency (RF) power between electrodes, a mounting table used for the processing apparatus, and a processing method, and is particularly suitable for performing a desired processing in a specific region in the processing apparatus.
  • the present invention relates to a processing apparatus, a mounting table used for the processing apparatus, and a processing method.
  • a processing apparatus for applying a high-frequency power between electrodes to perform a film forming process or the like applies high-frequency power between electrodes in an airtightly configured apparatus to turn a raw material gas supplied into the apparatus into plasma, and to perform chemical reaction of radicals of neutrally excited particles contained in the plasma.
  • the substance produced by the reaction is used as the material for film formation.
  • the conditions are set so that the film is formed on the object to be processed, for example, a semiconductor wafer, but actually, the inner wall of the processing apparatus and the side of the mounting table for mounting the object to be processed.
  • a film is usually formed.
  • Such undesired formed films require clean jungling as they can become a source of contamination for processing if they deposit and flake off.
  • a high frequency is applied to the cleaning gas (performs a plasma treatment) in a remote chamber (remote chamber) different from the processing chamber to generate radicals.
  • This radical was introduced into the transport and the processing chamber, by reacting a film component as a radical and click Riyungu target gasified, in which (where discharging the gas from the processing Chiyanba, when it is deactivated during the transport of radicals data Since the re-energy efficiency cannot be ensured, after being introduced into the processing chamber, the plasma processing is performed again using the electrode in the processing chamber.
  • the part to be cleaned includes the inner wall of a processing chamber including a part around a shower head for introducing a processing gas, and the upper surface and side surfaces of a mounting table for mounting a semiconductor wafer to be processed.
  • the cleaning efficiencies at these sites to be cleaned are not necessarily the same in the disclosure of the above-mentioned known documents. This is because the radicals of the cleaning gas cannot be distributed uniformly near each part of the apparatus due to the method of introducing the cleaning gas and reactivating it.
  • the present invention has been made in view of the above circumstances, and is directed to a processing apparatus that performs processing by applying high-frequency power between electrodes, a mounting table used for the processing apparatus, and a processing method.
  • An object of the present invention is to provide a processing apparatus capable of performing desired processing, a mounting table used for the processing apparatus, and a processing method.
  • a processing apparatus includes: a processing container configured in an airtight manner; a first electrode provided in the processing container; and a first electrode provided in the processing container.
  • a processing apparatus having a processing container, first and second electrodes, and a high-frequency power source, wherein the processing container has a plurality of regions, the plurality of regions are separated by a non-conductive member, and each of the regions is separated by a non-conductive member. Facing the inside of the processing vessel.
  • each region faces the inside of the processing vessel, it is easy to focus on cleaning the area where the film formed inside the processing vessel is growing. is there. That is, for example, the impedance element connected to the area is changed to a lower impedance element. In this case, a high-frequency current conduction path is formed through the region, and plasma is generated inside the processing vessel near the region, so that the clearing gas can be activated or reactivated.
  • the processing apparatus includes: an airtightly configured processing container; a first electrode provided in the processing container; and a second electrode provided to face the first electrode. And a high-frequency power supply for supplying high-frequency power between the first electrode and the second electrode, wherein the second electrode of the processing object mounting table has a It is characterized by having a plurality of regions.
  • a processing apparatus including a processing container, a target object mounting table having a first electrode and a second electrode, and a high-frequency power supply, wherein the second electrode has a plurality of separated regions.
  • the processing object mounting table area in which there is a film that is growing on the processing object mounting table or on the side surface. It is easy to focus on cleaning. That is, for example, if the impedance element connected to the second electrode closer to the processing object mounting area is made to have a lower impedance, the conduction path of the high-frequency current passes through the processing object mounting area. Is formed, and plasma is generated in the vicinity of the processing object mounting table area, resulting in clearing. This is because the activating gas can be activated or reactivated.
  • the second electrode is provided on the processing object mounting table, it is also possible to generate the plasma by concentrating the plasma region near the processing object. That is, for example, if the impedance element connected to the second electrode closer to the object to be processed has a lower impedance, a conduction path for a high-frequency current is formed through the object to be processed. High-density plasma is generated in the vicinity of the object to be processed, and the number of types of film to be formed is increased.
  • the processing apparatus includes: an airtightly configured processing container; a first electrode provided in the processing container; and a second electrode provided to face the first electrode. And a high-frequency power supply for supplying high-frequency power between the first electrode and the second electrode, wherein the processing container and the second electrode are respectively variable. It is characterized in that an impedance circuit is connected.
  • the processing apparatus has a processing object mounting table having a processing container, a first electrode, and a second electrode, and a high-frequency power supply.
  • the processing container and the second electrode each have a variable impedance circuit. It is connected. With such a configuration, different impedances can be given to the high-frequency voltage from the high-frequency power supply for each of the processing container and the second electrode (the object mounting table).
  • a conduction path for high-frequency current is formed in the processing vessel and the second electrode having a lower impedance element to be connected, and thus a portion (in the processing vessel or the processing target) is formed.
  • Plasma is generated inside the processing vessel near one of the body mounting tables) to activate or reactivate the cleaning gas. Can be transformed.
  • this can be generated by concentrating the plasma region near the object to be processed on the object mounting table. That is, for example, if the impedance element connected to the second electrode is set to a lower impedance, conduction of high-frequency power through the processing vessel side is prevented, and high-density plasma is generated near the object to be processed.
  • the number of types of films to be formed can be increased.
  • the mounting table according to the present invention is provided on a mounting member capable of mounting the substrate to be processed in a substantially horizontal posture, a first electrode provided on the mounting member, and a mounting member. It comprises a first electrode and an insulated second electrode.
  • the first and second electrodes provided on the mounting member are insulated, the first and second electrodes pass through the respective regions of the mounting member close to the first and second electrodes, and the high-frequency voltage from the high-frequency power supply It is easy to give different impedance to For example, if different impedance elements are connected from the respective electrodes to the outside of the processing vessel, the respective electrodes are insulated and the state described above is obtained.
  • the impedance element connected to the electrode (the first or second electrode) closer to the mounting table area is made to have a lower impedance, high-frequency current can be passed through the mounting table area. This is because a conduction path is formed, so that plasma is generated in the mounting table area, and the cleaning gas can be activated or reactivated. Further, it is also possible to generate the plasma by concentrating the plasma region near the object to be processed on the mounting table.
  • the impedance element connected to the electrode (the first or second electrode) closer to the object to be processed is made to have a lower impedance, the conduction path of the high-frequency current through the object to be processed is reduced.
  • high-density plasma is generated in the vicinity of the object to be processed, thereby increasing the number of film types to be formed.
  • the processing method according to the present invention includes a step of introducing a processing gas into a processing container; and a step of dividing the processing container and an object mounting table provided inside the processing container into regions. Holding at least one connected to an impedance element lower than the other region; and supplying high-frequency power to an electrode provided inside the processing container under the held state. It is characterized by having.
  • At least one of the divided areas of the processing container and the object mounting table is kept connected to an impedance element lower than the other areas.
  • high-frequency power is supplied to the electrode provided inside the processing container in such a state, a conduction path for high-frequency current is formed in a case where the connected impedance element has a lower impedance. Therefore, plasma is generated inside the processing container near the region, and the cleaning gas can be activated or reactivated.
  • high-density plasma is generated in the vicinity of the object to be processed to increase the number of types of film to be formed.
  • the method of dividing the area of the processing container and the object mounting table is to divide the processing container into multiple areas and to divide the object mounting table into multiple areas. In addition to this, it also includes dividing into a processing container and an object mounting table.
  • the present invention for the respective regions in the processing container, or for each region of the mounting table, or for the processing container and the mounting table, different from the high frequency voltage from the high frequency power supply. It is easy to give an impedance dance. As a result, if the impedance element connected to the region or the like is made to have a lower impedance, a conduction path for high-frequency current is formed through the region, and plasma is generated inside the processing vessel near the region. The cleaning gas and the raw material gas can be activated or reactivated. Therefore, it is possible to provide a processing device capable of performing a desired process in a specific area in the processing device. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a configuration diagram schematically showing a plasma processing apparatus according to one embodiment of the present invention.
  • FIG. 2 is a configuration diagram showing a cross section showing a specific example of the insulating section 25 shown in FIG.
  • FIG. 3 is a configuration diagram showing a cross section showing a specific example of the insulating section 26 shown in FIG.
  • FIGS. 4A and 4B are diagrams showing specific examples of the variable impedance circuit 30a (30b, 30c, 31) shown in FIG.
  • FIG. 5 is a diagram schematically showing a configuration example of the remote processing container 27 shown in FIG.
  • FIG. 6 is a configuration diagram schematically showing a plasma processing apparatus according to another embodiment of the present invention.
  • FIG. 7 is a configuration diagram schematically showing a plasma processing apparatus according to still another embodiment of the present invention.
  • At least one of the plurality of regions is connected to a variable impedance circuit. It has a variable impedance circuit as a device in advance.
  • a variable impedance circuit a part of which may include a mere conductive wire to make the impedance be zero.
  • the variable impedance means that the impedance value changes at a fixed frequency.
  • At least one of the plurality of separated regions is connected to a variable impedance circuit. This also holds a variable impedance circuit as a device in advance.
  • the processing apparatus of the present invention further includes a remote processing container having a processing space communicating with the inside of the processing container.
  • the equipment has a remote processing container that activates cleaning gas in advance.
  • the first electrode is provided at a position including immediately below a center of a portion of the mounting member where the substrate to be processed is to be positioned
  • the second electrode Is provided at a position not including immediately below the center of a portion of the mounting member where the substrate to be processed is to be located.
  • the mounting member is divided into a portion where the substrate to be processed is to be located and other portions, and electrodes are provided corresponding to the portions.
  • the substrate to be processed is located and where it is not This is because the degree of growth of the film to be formed is different. Another reason is to generate high-density plasma in a space close to the substrate to be processed.
  • FIG. 1 is a configuration diagram schematically showing a plasma processing apparatus according to an embodiment of the present invention, in which a processing vessel portion shows a vertical cross section.
  • the plasma processing apparatus includes a processing vessel 11a, lib, 11c which forms an airtight processing chamber inside, and an upper electrode (first Electrode) 12, mounting table 13, lower electrode (second electrode) 14, mounting table support column 15, and upper electrode insulating member 17.
  • the upper electrode 12 has a disk-shaped hollow 12 a, and a large number of pores 12 b through which the gas is introduced into the processing chamber (through the hollow 12 a. Exists).
  • the processing containers 11a, 11b, and 11c are divided into regions via insulation portions 25 and 26 from each other.
  • variable impedance circuits 30a, 30b, and 30c are grounded via variable impedance circuits 30a, 30b, and 30c, each of which is a variable impedance element. It is connected to the.
  • a variable impedance circuit 31 is connected to the lower electrode 14 (the processing vessels 11 a, lib, and 11 c are made of, for example, cylindrical aluminum whose surface is anodized, and have a ceiling portion.
  • An upper electrode 12 is provided on the upper surface, and a mounting table support column 15 for supporting the mounting table 13 is provided upright at the center of the bottom surface. Is disposed insulated from the processing vessel 11 c by an annular upper electrode insulating member 17 You.
  • the upper electrode 12 has a disk-shaped shape on the side facing the substrate 10 to be processed, which is made of, for example, aluminum whose surface is anodized on a conductive single crystal silicon.
  • the upper electrode 12 has a disc-shaped hollow 12 b disposed therein, and a large number of pores 12 b are provided substantially vertically from the hollow 12 b through the upper electrode 12.
  • a diffusion plate for diffusing the gas introduced from the gas supply pipe 16 may be provided in the hollow 12 b.
  • a disk-shaped mounting table 13 having a circular plate-shaped lower electrode 14 therein is disposed.
  • the mounting table 13 can mount and hold the substrate 10 to be processed with the surface to be processed facing upward, and itself is made of an insulating material such as Ceramics® Polyimide.
  • a gas supply pipe 16 for supplying gas is provided above the upper electrode 12, and communicates with the hollow 12 a of the upper electrode 12.
  • the gas supply pipe 16 is connected to a gas supply system 22 so that a predetermined amount of a predetermined gas can be introduced into the processing chamber.
  • an upper electrode power supply 23 is electrically connected to the upper electrode 12 via an upper electrode side matching circuit 24, whereby impedance-matched, for example, 13.56 MHz A radio frequency (RF) voltage of z can be applied to the upper electrode 12. With this applied voltage, the gas introduced into the processing vessels 11a, lib, and 11c can be turned into plasma through the pores 12b of the upper electrode 12 (or a remote processing vessel described later). The gas introduced from 27 through the valve 28 is converted into plasma.
  • RF radio frequency
  • An exhaust valve 18 is provided on the bottom surface side of the processing container 11 a, and the exhaust valve 18 is connected to a turbo molecular pump 19. Further, the turbo molecular pump 19 is connected to an exhaust system 21 via an exhaust pipe 20. By this.
  • the processing chamber can be depressurized to a predetermined pressure when performing plasma processing in the processing vessels 11a, lib, and 11c. In addition, residual gas can be exhausted during or after processing (film formation processing, cleaning processing).
  • a goo valve 29 for loading and unloading the substrate 10 to be processed is provided on the side surface of the processing container 11b.
  • the substrate to be processed 26 is loaded or unloaded by, for example, a robot arm via the gate valve 29 that has been opened.
  • a remote processing container 27 is connected to the upper portion of the side surface of the processing container 11 c via a valve 28.
  • the remote processing container 27 can excite, for example, a tally-enhancing gas by plasma processing, and supply a gas containing generated radicals into the processing containers 11a, lib, and 11c via a valve 28. .
  • a variable impedance circuit 31 is electrically connected to the lower electrode 14 outside the processing vessel 11a, lib, 11c, and in some cases, a high-frequency current is easily conducted through the lower electrode 14.
  • C When conduction is weak, plasma is generated more closely using the gas inside the substrate 10 as a raw material, and it is in a state suitable for a predetermined film forming process. . If it is difficult to conduct, as will be described later, plasma can be generated by using the gas inside as a raw material in close proximity to one or more of the processing vessels 11a, lib, and 11c. You can do it. This will be described below.
  • the processing vessel 11a, lib, 11c is a portion that occupies substantially the cylindrical bottom surface of the processing chamber, a portion that occupies almost lower than the level of the lower surface of the upper electrode 12 on the side of the processing chamber, and approximately It is divided into upper sections, each of which has an inner wall facing the processing chamber. These electrical divisions are ensured by insulating portions 25 and 26 arranged in a circumferential shape. place
  • the variable impedance circuits 30a, 30b, and 30c are connected to the processing vessels 11a, lib, and 11c, respectively, so that any of the divided processing vessel portions can have a high frequency. It is possible to obtain a state in which the current conduction is weak and a state in which conduction is difficult.
  • the upper electrode 1 2 is connected via one of the processing vessel 11 a, lib, and 11 c, which easily conducts the high-frequency current.
  • High-frequency power applied to the internal gas is supplied to the internal gas.
  • the gas inside is thereby turned into plasma and radicals are generated (or the deactivated gas is radicalized again). Therefore, when the gas is a cleaning gas, it reacts more with the film deposited on the inner wall of one of the processing vessels 11a, 11b, and 11c, which is easy to conduct high-frequency current. Depending on the site, it is possible to clean as desired.
  • the substrate 10 to be processed is mounted on the mounting table 13 via the gate valve 29, and the source gas is set while the processing chamber is maintained at a predetermined pressure by the turbo-molecular pump 19 and other exhaust systems 21. Is introduced into the processing chamber from the gas supply system 22.
  • the pressure is about 70 Pa and the source gases are TEOS (tetraethyl orthosilicate) and O 2 .
  • each of the variable impedance circuits 30a, 30b, 30c, 31 has, for example, the smallest impedance (ideally zero).
  • a high-frequency voltage is applied to the upper electrode 12 from the upper electrode power supply 23, and the supply power is set to, for example, 500 W, to convert the gas introduced into the processing chamber into plasma.
  • the film formation on the substrate 10 to be processed by the plasma CVD as described above can be performed for various types of films by selecting a source gas and setting process conditions such as pressure to a predetermined value. it can. In almost all cases, it is the same that the film is gradually deposited and formed on the inner wall of the processing vessels lla, lib, and 11c.
  • the click re-learning target and S i ⁇ 2 film as an example.
  • the SiO 2 film to be tallied is often present on the inner walls of the processing vessels 11a, lib, and 11c, and is less on the surface of the mounting table 13 in comparison. This is because the substrate to be processed 10 is mounted on the mounting table 13 during the film forming process.
  • NF 3 is prepared as a cleaning gas, and is introduced into the remote processing container 27 for plasma treatment.
  • This plasma treatment generates radicals in the plasma.
  • This radical-containing gas is introduced into the processing vessels 11a, lib, and 11c via the valve 28.
  • the pressure in the processing vessel 11a, lib, and 11c is, for example, 100 Pa, and the amount of the introduced gas is 500 sccm.
  • Cleaning in the processing chamber can be performed for the time being only by the above operations. Radicals in the introduced gas react with S i O 2 This is because the reaction product is gasified.
  • the gasified reaction product is discharged from the processing chamber by a turbo molecular pump 19 and another exhaust system 21.
  • high-frequency power for example, about 500 W
  • high-frequency power for example, about 500 W
  • the impedance values of the impedance circuits 30a, 30b, 30c, and 31 are changed from normal values.
  • the impedance value is calculated based on each impedance circuit connected to the processing vessel 11a, 1lb, 11c, and the lower electrode 14.
  • 30a, 30b, 30c, and 31 can be set independently.
  • variable impedance circuit 31 connected to the mounting table 13 is made larger than usual.
  • the inner wall of the processing vessel 11a, lib, 11c has more Since a large amount of SiO 2 film is deposited and formed, cleaning is focused on this. Therefore, the variable impedance circuits 30a, 30b, 30c connected to the processing vessels 11a, lib, 11c are made to have lower impedance sequentially or simultaneously.
  • the mounting table 13 is normally located closest to the upper electrode 12, and is most concerned about damage due to the reactivation of the Tallyjung gas.
  • reactivation of the cleaning gas can be avoided in the vicinity of 13.
  • the cleaning gas preliminarily plasma-treated in the remote processing container 27 is transported to the processing containers 11a, lib, and 11c via the valve 28.
  • the method for reactivating the cleaning gas in the processing chamber has been described, but the cleaning gas is introduced into the processing chamber by using the upper electrode 12 as a shower head. You can start with 2.
  • the cleaning gas can be appropriately selected according to the film material to be cleaned.
  • W, T i the film such as a fluorine-based gas and Application Benefits flow port acetate of any organic fluorine-based gas such as NF 3 that mentioned above in the click Rininguga scan, T i, C r, A
  • C 1 the film material to be cleaned.
  • W, T i the film such as a fluorine-based gas and Application Benefits flow port acetate of any organic fluorine-based gas such as NF 3 that mentioned above in the click Rininguga scan, T i, C r, A
  • a chlorine-based gas such as 2 can be used.
  • the method of dividing the processing containers 11a, lib, and 11c as shown in Fig. 1 is not limited to this.
  • it can be divided into two or more regions as a whole so as to divide a part where the cleaning effect is desired to be improved.
  • the radial division can be made.
  • One of the divided areas If the impedance is made variable, it is possible to avoid damage or focus cleaning on the area.
  • the plasma processing apparatus it is not necessary to dispose the mounting table 13 in contact with the lower surface of the substrate 10 to be processed.
  • a supporting member that supports three points on the peripheral portion of the substrate to be processed 10 in a dot shape may be used.
  • the variable impedance circuit 31 may not be necessarily provided. It is necessary to avoid damage in the cleaning process, because there is no mounting table 13 having, for example, ceramics-polyimide as described above.
  • FIG. 2 is a configuration diagram showing a cross section showing a specific example of the insulating section 25 shown in FIG.
  • the same parts as those in FIG. 1 are given the same numbers.
  • the processing vessel 11a and the processing vessel 11b are electrically insulated by an annular insulator 41 having a raised peripheral portion inside. Then, the insulator 41 and the processing vessel 11a are sealed by an orring 42, and the insulator 41 and the processing vessel 11b are sealed by an orring 43. Both the orings 42 and 43 are provided circumferentially along the insulator 41.
  • the insulator 41 for example, a ceramics-fluorinated resin can be used.
  • the structure of the insulating portion 25 will be further described in accordance with the procedure for assembling the same.
  • the processing container 11a has a groove for an o-ring 42 cut circumferentially, and a plurality of screw holes for bolts 44a and 44b along the outer periphery.
  • An orifice 42 is fitted into the groove of the processing vessel 11a, and the annular shape of the insulator 41 is inserted so that the fitted oring 42 is inserted between the processing vessel 11a and the processing vessel 11a. Make the parts face each other.
  • the bolts 44a and 44b are screwed into the processing vessel 11a via the insulator 41 to provide insulation. The fixing and sealing between the body 41 and the processing vessel 11a are ensured.
  • an orifice 43 is fitted into the above groove of the processing vessel 11b, and the processing vessel 11b is further insulated so that the fitted oring 43 is sandwiched between the processing body 11b and the insulator 41. 4 Face the toroidal part.
  • the bolts 45a and 45b are screwed into the processing container 11b via the insulator 41, so that the processing container 11b and the insulator 41 are fixed and sealed.
  • FIG. 3 is a configuration diagram showing a cross section showing a specific example of the insulating section 26 shown in FIG.
  • the same parts as those in FIG. 1 are given the same numbers. This structure is similar in concept to that shown in FIG. 2, but will be briefly described below.
  • the processing vessel 11b and the processing vessel 11c are electrically insulated by an annular insulator 51 having a raised peripheral portion on the outside. Then, the insulator 51 and the processing vessel 11 b are sealed by an awling 52, and the insulator 51 and the processing vessel 11 c are sealed by an orring 53. Both the orings 52 and 53 are provided circumferentially along the insulator 51.
  • the insulator 51 for example, a ceramics-fluorinated resin can be used.
  • the configuration of the insulating part 26 will be further described in accordance with the assembling procedure.
  • the processing vessel 11b is provided with a groove for an orifice 52, and several bolts 54a, 54b above it and on the inner side as the processing vessel 11b. Screw holes are provided.
  • An orifice 52 is fitted into the groove of the processing vessel 11b, and the insulator 51 is raised so that the fitted orifice 52 is sandwiched between the processing vessel 11b and the processing tool 11b.
  • the circumferential portions are opposed to each other.
  • the bolts 54a and 54b are screwed into the processing vessel lib via the insulator 51, so that the insulator 51 and the processing vessel 11b are secured and sealed.
  • an orifice 53 is fitted into the groove of the processing vessel 11c, and the processing vessel 11c is inserted so that the fitted orifice 53 is interposed between the processing body 11c and the insulator 51.
  • the insulator 51 is opposed to the upstanding peripheral portion.
  • the bolts 55a and 55b are screwed into the processing vessel 11c via the insulator 51, thereby securing the processing vessel 11c and the insulator 51 and securing the seal. .
  • FIGS. 4A and 4B are circuit diagrams showing specific examples of the variable impedance circuit 30a (30b, 30c, 31) shown in FIG. Fig. 4A shows a series resonance circuit with a variable C v and a fixed crest.
  • a high-frequency current is to be conducted to the portion connected to this (during film formation processing or cleaning processing).
  • the CV is changed so that the circuit resonates at the high frequency ⁇ . If it is not desired to conduct a high-frequency current to a portion connected to this, C V is changed so that the circuit becomes non-resonant at the high frequency ⁇ .
  • FIG. 4B shows a circuit with constant impedance Z (where constant impedance means that when the frequency is fixed, the impedance value is fixed. If the frequency changes, the impedance value generally naturally changes. ) Is a variable impedance circuit by switching the impedance zero circuit with the switch circuit SW.
  • the switch SW functions as a circuit of constant impedance Z at the position shown in the figure, and functions as a circuit of zero impedance at the opposite position in the figure. That is, when conducting high-frequency current to a portion connected to the variable impedance circuit, the switch SW is switched to the opposite position from that shown in the figure, and when it is not desired to conduct high-frequency current, the switch sw is shown in the figure. Switch to position.
  • each element may be replaced with a variable value element.
  • each element may be replaced with a variable value element.
  • FIG. 5 is a diagram schematically showing a configuration example of the remote processing container 27 shown in FIG.
  • the remote processing container 27 has a configuration in which, for example, a lead wire 272 is wound around an alumina tube 271, and both ends of the lead wire 272 are connected to a high-frequency power source 273.
  • high-frequency power is supplied from the high-frequency power source 273 with the cleaning gas introduced into the alumina tube 271.
  • its frequency is 13.56 MHz and its power value is l kW.
  • the cleaning gas containing radicals is supplied to the processing vessels 11a, 11b, 11c (FIG. 1) via the valve 28 as described above.
  • FIG. 6 is a configuration diagram schematically showing a plasma processing apparatus according to another embodiment of the present invention, and the components already described are given the same reference numerals. The description of the parts already described is omitted.
  • the lower electrode provided on the mounting table 13 is divided into regions. That is, the lower electrode is divided into lower electrodes 14a and 14b, each of which is electrically insulated.
  • the lower electrode 14a is provided in the shape of a circular disk so as to include immediately below the center of the substrate 10 to be processed, and the lower electrode 14b is provided so as not to include immediately below the center of the substrate 10 to be processed.
  • An annular shape is provided outside the electrode 14a.
  • Each of the lower electrodes 14a, 14b is independently connected to a variable impedance circuit 31a, 31b.
  • the cleaning gas can be selectively reactivated in the space close to the periphery or the side surface of the mounting table 13 where the film to be cleaned is easily deposited and formed (or Activation). That is, as described above, in order to reactivate (or activate) the cleaning gas, a conduction path for the high-frequency current may be secured through the space.
  • variable impedance circuit 31b connected to the lower electrode 14b close to the peripheral edge and the side surface is made lower impedance, and the variable impedance circuit connected to the lower electrode 14a close to the other is made lower.
  • the variable impedance circuits 31a and 31b can use the circuit shown in FIG. 4 described above.
  • the lower electrodes 14a and 14b are provided separately on the mounting table 13, a method of generating a plasma region particularly concentrated around the substrate 10 to be processed may be used. It can. That is, for example, if the variable impedance circuit 31a connected to the lower electrode 14a closer to the processing substrate 10 is made to have a lower impedance, the high-frequency wave is passed through the processing substrate 10 A current conduction path is formed, and high-density plasma is generated in the vicinity of the substrate 10 to be processed, so that the number of types of formed films can be increased. Also, when the same idea is applied to an etching apparatus as a plasma processing apparatus, high quality of the etching processing can be realized.
  • the amount of source gas supplied to the inside of the processing chamber is 100 sccm, 50 sccm, and 200 sccm for Si F 4 , Si H 4 , and O 2 , respectively, and is supplied to the upper electrode 12.
  • the high-frequency power is 1500 W to 2000 W
  • a SiOF film is formed on the substrate 10 to be processed.
  • the plasma processing apparatus also has an effect that it is possible to perform a desired process different from the usual process in a specific area on the substrate 10 to be processed in the apparatus.
  • the processing container Although the region of 11 is not divided by the insulator, the region of the processing vessel 11 may be divided as in the embodiment shown in FIG. According to this, the effect of the embodiment shown in FIG. 1 can also be obtained.
  • FIG. 7 is a configuration diagram schematically showing a plasma processing apparatus according to still another embodiment of the present invention, and the same reference numerals are given to the components already described. The description of the parts already described is omitted.
  • variable impedance circuit 31 is connected to the lower electrode 14, and a variable impedance circuit 30 is connected to the processing vessel 11. I do.
  • a circuit as shown in FIG. 4 can be used for the variable impedance circuits 30 and 31.
  • variable impedance circuit 31 connected to the lower electrode 14 has a higher impedance
  • variable impedance circuit 30 connected to the processing container 11 has a lower impedance
  • the cleaning gas is reactivated (or activated) in a space close to the processing vessel 11, so that damage to the mounting table 13 due to cleaning can be avoided and the processing vessel 1 can be reactivated.
  • the effect of the tiling can be obtained for the inner wall of (1).
  • variable impedance circuit 31 connected to the lower electrode 14 is made to have a lower impedance, conduction of high-frequency power through the processing vessel 11 is prevented, and thus This is because high-density plasma is generated near the processing substrate 10.
  • a plasma processing apparatus may realize an increase in the number of film types to be formed and a high quality etching process.
  • the processing apparatus and the mounting table according to the present invention can be manufactured in the semiconductor manufacturing apparatus manufacturing industry, and can be used in the semiconductor manufacturing industry. Further, the processing method according to the present invention can be used in the semiconductor manufacturing industry ( therefore, each has industrial applicability).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

 処理装置内の特定の領域で所望の処理を行うことが可能な処理装置を提供する。気密に構成された処理容器と、処理容器内に設けられた第1の電極と、処理容器内に設けられ、第1の電極と対向する第2の電極と、第1の電極と第2の電極との間に高周波電力を供給する高周波電源とを具備し、処理容器または第2の電極は、複数の領域を有する。そして、それぞれの領域について、高周波電源からの高周波電圧に対して異なったインピーダンスを与える。これにより、その領域を通って高周波電流の導通路が形成され、処理装置内の特定の領域で例えばクリーニングのような所望の処理を行うことが可能な処理装置が実現する。

Description

明 細 書
処理装置、 載置台、 処理方法
技術分野
本発明は、 電極間に高周波 (R F ) 電力を与えて処理を行う処理装置 それに用いられる載置台、 および処理方法に係り、 特に、 処理装置内の 特定の領域で所望の処理を行うのに適する処理装置、 それに用いられる 載置台、 および処理方法に関する。
背景技術
半導体デバイスなどの電子部品を製造するためのプロセスのひとつと して、 電極間に高周波電力を与えて成膜処理などを行う処理装置が利用 されている。 このような処理装置は、 例えば、 気密に構成された装置内 の電極間に高周波電力を与えて装置内に供給される原料ガスをプラズマ 化し、 プラズマ中に含まれる中性励起粒子のラジカルの化学反応で生じ た生成物質を成膜の材料とする。
成膜が、 被処理体である例えば半導体ウェハ上になされるように条件 を設定するのはもちろんであるが、 実際には、 処理装置の内壁や被処理 体を載置するための載置台側面などにも、 通常は、 成膜がなされる。 こ のような望まれない形成膜は、 堆積して剥がれ落ちると処理に対する汚 染源になるのでク リーユングが必要である。
ク リーニングのひとつの方法と して、 特開平 1 0— 1 4 9 9 8 9号公 報記載のものがある。 この方法では、 処理チャンバとは異なる遠隔に設 けられたチャンバ (遠隔チャンバ) でク リーニングガスに高周波を投入 し (プラズマ化処理を行ない) 、 ラジカルを発生させる。 このラジカル を輸送して処理チャンバに導入し、 ラジカルとク リーユング対象となる 膜成分とを反応させてガス化し、 このガスを処理チヤンバから排出する ( ここで、 ラジカルを輸送する間にこれが失活するとタ リ一エング効率が 確保できないので、 処理チヤンバ内に導入されたあと再び処理チヤンバ にある電極を用いてプラズマ化処理を行う。 発明の開示
上記公知文献では、 しかしながら、 ク リーニングすべき部位それぞれ でのク リーニング効率について言及するところがない。 一般に、 タ リー ニングすべき部位には、 処理ガスを導入するシャワーヘッ ド回りを含め た処理チャンバの内壁や被処理体たる半導体ウェハを載置する載置台の 上面部や側面部などがある。 これらのク リ一ユングすべき部位でのク リ 一二ング効率は、 上記公知文献の開示内容では必ずしも同一にはならな レ、。 これは、 ク リーニングガスの導入やその再活性化の方法に起因して ク リ一二ングガスのラジカルが装置の各部位付近で均一には分布し得な いからである。
ラジカルの密度が大きい場所付近の部位ではク リ一ユングが早く進行 し、 ラジカルの密度が小さい場所付近の部位では相対的にク リ一ユング が遅く進行する。 すべてのク リーニングを完了するには、 遅く進行する 部位を基準にク リーニングするしかないが、 この場合には、 過度のク リ 一エング処理により部位によっては意図しない反応が生じ装置ダメージ が発生することが考えられる。 このようなダメージが発生するのではク リーエングと して好ましく ない。 また、 ダメージを回避するようにタ リ 一ユング時間を制限すると部位によって不十分はク リ一二ングとなる。 また、 一般的に、 プラズマ処理では、 発生させるプラズマの密度によ り成膜種が限定される場合がある。 このため、 電極間に高周波電力を与 えて成膜処理を行う装置では、 電極間に高周波電力を与えプラズマを発 生させるのみでは、 プラズマの密度が不足し成膜できない膜種が存在す る。
本発明は、 上記の事情を考慮してなされたもので、 電極間に高周波電 力を与えて処理を行う処理装置、 それに用いられる載置台、 および処理 方法において、 処理装置内の特定の領域で所望の処理を行うことが可能 な処理装置、 それに用いられる載置台、 および処理方法を提供すること を目的とする。
上記の課題を解決するため、 本発明に係る処理装置は、 気密に構成さ れた処理容器と、 前記処理容器内に設けられた第 1 の電極と、 前記処理 容器内に設けられ、 前記第 1 の電極と対向する第 2の電極と、 前記第 1 の電極と前記第 2の電極との間に高周波電力を供給する高周波電源とを 具備し、 前記処理容器は、 非導電部材で隔てられ、 前記処理容器内部に 面する複数の領域を有することを特徴とする。
すなわち、 処理容器と第 1、 第 2の電極と高周波電源とを有する処理 装置であって、 処理容器には、 複数の領域があり、 複数の領域同士は非 導電部材で隔てられかつそのそれぞれが処理容器内部に面している。 こ のような構成であると、 処理容器にそれぞれの領域について、 高周波電 源からの高周波電圧に対して異なったイ ンピーダンスを与えることが容 易である。 例えば、 それぞれの領域から処理容器外部に異なったインピ 一ダンス要素を接続すれば、 各領域は非導電部材で隔てられているので 上記のような状態になる。
さらに、 それぞれの領域が処理容器内部に面しているので、 処理容器 内部に形成される膜のうちょり成長がなされているものが存在する領域 について、 重点的にク リーニングすることも容易である。 すなわち、 例 えば、 その領域に接続されるィンピーダンス要素をより低ィンピーダン スにすれば、 その領域を通って高周波電流の導通路が形成され、 よって その領域付近の処理容器内部にプラズマが発生しク リーエングガスを活 性化または再活性化することができるからである。
したがって、 処理で生じる装置内の不要堆積膜を部位によって所望に ク リーニングすることが可能、 すなわち処理装置内の特定の領域で所望 の処理を行うことが可能な処理装置を提供できる。
また、 本発明に係る処理装置は、 気密に構成された処理容器と、 前記 処理容器内に設けられた第 1 の電極と、 前記第 1 の電極に対向して設け られ、 第 2の電極を有する被処理体載置台と、 前記第 1 の電極と前記第 2の電極との間に高周波電力を供給する高周波電源とを具備し、 前記被 処理体載置台の前記第 2の電極は、 分離した複数の領域を有することを 特徴とする。
すなわち、 処理容器と第 1 の電極と第 2の電極を有する被処理体載置 台と高周波電源とを有する処理装置であって、 第 2の電極は、 分離した 複数の領域がある。 このよ うな構成であると、 第 2の電極のそれぞれの 領域について、 高周波電源からの高周波電圧に対して異なったインピー ダンスを与えることが容易である。 例えば、 それぞれの領域から処理容 器外部に異なったィンピーダンス要素を接続すれば、 各領域は分離して いるので上記のような状態になる。
さらに、 第 2の電極は被処理体載置台に設けられているので、 被処理 体載置台上や側面に形成される膜のうちより成長がなされているものが 存在する被処理体載置台領域について、 重点的にク リーニングすること も容易である。 すなわち、 例えば、 その被処理体載置台領域により近接 する第 2の電極に接続されるィンピーダンス要素をより低イ ンピーダン スにすれば、 その被処理体載置台領域を通って高周波電流の導通路が形 成され、 よってその被処理体載置台領域付近にプラズマが発生しク リ一 ニングガスを活性化または再活性化することができるからである。
また、 第 2の電極が被処理体載置台に設けられているので、 被処理体 近辺にプラズマ領域を集中させてこれを発生させることも可能である。 すなわち、 例えば、 被処理体により近接する第 2の電極に接続されるィ ンピーダンス要素をよ り低インピ一ダンスにすれば、 その被処理体を介 して高周波電流の導通路が形成され、 よって被処理体付近に密度の高い プラズマが発生し形成膜種の増加ゃェツチング処理の高品質化なども実 現する。
したがって、 処理装置内の特定の領域で所望の処理を行う ことが可能 な処理装置を提供できる。
また、 本発明に係る処理装置は、 気密に構成された処理容器と、 前記 処理容器内に設けられた第 1 の電極と、 前記第 1 の電極に対向して設け られ、 第 2の電極を有する被処理体載置台と、 前記第 1 の電極と前記第 2の電極との間に高周波電力を供給する高周波電源とを具備し、 前記処 理容器および前記第 2の電極には、 それぞれ可変インピーダンス回路が 接続されていることを特徴とする。
すなわち、 処理容器と第 1 の電極と第 2の電極を有する被処理体載置 台と高周波電源とを有する処理装置であって、 処理容器および第 2の電 極には、 それぞれ可変インピーダンス回路が接続されている。 このよ う な構成であると、 処理容器と第 2の電極 (被処理体载置台) それぞれに ついて、 高周波電源からの高周波電圧に対して異なったィンピーダンス を与えることができる。
これによ り、 処理容器、 第 2の電極のうち、 接続されるイ ンピーダン ス要素がよ り低ィンピーダンスものの方に高周波電流の導通路が形成さ れ、 よってその部位 (処理容器か被処理体載置台のいずれか) 付近の処 理容器内部にプラズマを発生させク リ一二ングガスを活性化または再活 性化することができる。
また、 被処理体載置台上の被処理体近辺にプラズマ領域を集中させて これを発生させることもできる。 すなわち、 例えば、 第 2の電極に接続 されるィンピーダンス要素をより低ィンピーダンスにすれば、 処理容器 側を介する高周波電力の導通を阻止し、 よって被処理体付近に密度の高 いプラズマが発生し形成膜種の増加ゃェツチング処理の高品質化なども 実現する。
したがって、 処理装置内の特定の領域で所望の処理を行うことが可能 な処理装置を提供できる。
また、 本発明に係る載置台は、 被処理基板をほぼ水平姿勢で載置可能 な載置部材と、 前記載置部材に設けられた第 1の電極と、 前記載置部材 に設けられ、 前記第 1 の電極と絶縁された第 2の電極とを具備すること を特徴とする。
すなわち、 載置部材に設けられた第 1、 第 2の電極は絶縁されている ので、 第 1、 第 2の電極に近接する載置部材それぞれの領域を通過して, 高周波電源からの高周波電圧に対して異なったイ ンピーダンスを与える ことが容易である。 例えば、 それぞれの電極から処理容器外部に異なつ たィンピーダンス要素を接続すれば、 各電極は絶縁しているので上記の ような状態になる。
これにより、 載置台上や側面に形成される膜のうちょり成長がなされ ているものが存在する載置台領域について、 重点的にク リーニングする ことが容易である。 すなわち、 例えば、 その載置台領域によ り近接する 電極 (上記第 1か第 2の電極) に接続されるイ ンピーダンス要素をよ り 低インピーダンスにすれば、 その載置台領域を通って高周波電流の導通 路が形成され、 よってその載置台領域にプラズマが発生しク リーニング ガスを活性化まはた再活性化することができるからである。 また、 載置台上の被処理体近辺にプラズマ領域を集中させてこれを発 生させることも可能である。 すなわち、 例えば、 被処理体により近接す る電極 (上記第 1か第 2の電極) に接続されるイ ンピーダンス要素をよ り低インピーダンスにすれば、 その被処理体を介して高周波電流の導通 路が形成され、 よって被処理体付近に密度の高いプラズマが発生し形成 膜種の増加ゃェツチング処理の高品質化などが実現される。
したがって、 載置台上の特定の領域で所望の処理を行うことが可能な 载置台を提供できる。
また、 本発明に係る処理方法は、 処理ガスを処理容器に導入する工程 と、 領域に分けられた、 前記処理容器および前記処理容器内部に設けら れた被処理体載置台の、 前記分けられた少なく とも一つを他の領域より 低いインピーダンス要素に接続された状態に保持する工程と、 前記保持 された状態下で、 前記処理容器内部に設けられた電極に高周波電力を供 給する工程とを具備することを特徴とする。
すなわち、 処理容器および被処理体載置台の分けられた少なく とも一 つの領域を他の領域より低いインピ一ダンス要素に接続された状態に保 持する。 このよ うな状態で、 処理容器内部に設けられた電極に高周波電 力を供給すると、 接続されるィンピーダンス要素がより低ィンピーダン スものの方に高周波電流の導通路が形成される。 よって、 その領域付近 の処理容器内部にプラズマが発生しク リ一ニングガスを活性化または再 活性化することができる。 また、 被処理体付近に密度の高いプラズマを 発生させ形成膜種の増加ゃェツチング処理の高品質化なども実現する。
したがって、 処理装置内の特定の領域で所望の処理を行うことが可能 な処理方法を提供できる。
なお、 処理容器および被処理体載置台の領域の分け方には、 処理容器 を複数の領域に分けることや被処理体載置台を複数の領域に分けること のほか、 処理容器と被処理体載置台とに分けることも含まれる。
以上のように、 本発明によれば、 処理容器にそれぞれの領域について., または載置台のそれぞれの領域について、 または処理容器と載置台とに ついて、 高周波電源からの高周波電圧に対して異なったィンピーダンス を与えることが容易である。 これにより、 その領域等に接続されるイン ピーダンス要素をより低ィンピーダンスにすれば、 その領域を通って高 周波電流の導通路が形成され、 よってその領域付近の処理容器内部にプ ラズマが発生しク リ一二ングガスや原料ガスを活性化または再活性化す ることができる。 したがって、 処理装置内の特定の領域で所望の処理を 行うことが可能な処理装置を提供できる。 図面の簡単な説明
図 1は、 本発明の一実施形態に係るプラズマ処理装置を模式的に示す 構成図である。
図 2は、 図 1中に示した絶縁部 2 5の具体例を示す断面で示す構成図 である。
図 3は、 図 1中に示した絶縁部 2 6の具体例を示す断面で示す構成図 である。
図 4 A、 図 4 Bは、 図 1 中に示した可変イ ンピーダンス回路 3 0 a ( 3 0 b、 3 0 c、 3 1 ) の具体例を示す図である。
図 5は、 図 1中に示した遠隔処理容器 2 7の構成例を模式的に示す図 である。
図 6は、 本発明の別の実施形態に係るプラズマ処理装置を模式的に示 す構成図である。
図 7は、 本発明のさ らに別の実施形態に係るプラズマ処理装置を模式 的に示す構成図である。 発明を実施するための最良の形態
本発明の処理装置の実施態様と して、 前記複数の領域は、 その少なく とも一つが可変インピーダンス回路に接続されている。 可変ィンビーダ ンス回路をあらかじめ装置と して保有するものである。 可変インピーダ ンス回路と しては、 その一部に単なる導線を含ませィンピーダンスをゼ 口にすることを意図するものであってもよレ、。 本願において、 インピー ダンスとは、 Z = R + j X ( ω ) で定義される複素量であり 、 ここで、 Rは純抵抗分、 X ( ω ) は周波数により変化するリアクタンス分である (現実の回路では、 厳密には Rも周波数により変化する) 。 また、 可変 ィンピーダンスとは、 周波数固定でィンピーダンス値が変化するの意で ある。 これらは以下でも同様である。
また、 本発明の処理装置の実施態様と して、 前記分離した複数の領域 は、 その少なく とも一つが可変インピーダンス回路に接続されている。 これも、 可変イ ンピーダンス回路をあらかじめ装置と して保有するもの である。
また、 本発明の処理装置は、 実施態様と して、 前記処理容器の内部に 連通する処理空間を有する遠隔処理容器をさらに具備する。 あらかじめ ク リ一二ングガスを活性化処理する遠隔処理容器を装置と して保有する ものである。
また、 本発明の載置台の実施態様と して、 前記第 1の電極は、 前記載 置部材の前記被処理基板が位置すべき部位の中心直下を含む位置に設け られ、 前記第 2の電極は、 前記載置部材の前記被処理基板が位置すべき 部位の中心直下を含まない位置に設けられる。 載置部材を被処理基板が 位置すべき部位とそれ以外に分け、 それらに対応して電極を設けるもの である。 被処理基板が位置すべき部位とそれ以外とでは、 典型的に堆積 する膜の成長度が異なるのでこれに対応するためである。 また被処理基 板に近接する空間に密度の高いプラズマを発生させるためである。
以下では本発明の実施形態を図面を参照しながら説明する。 図 1は、 本発明の一実施形態に係るプラズマ処理装置を模式的に示す構成図であ り、 そのうち処理容器の部分については垂直断面を示すものである。 図 1に示すように、 このプラズマ処理装置は、 内部に気密な処理室を 構成する処理容器 1 1 a、 l i b , 1 1 c と、 この処理容器内の構成で ある、 上部電極 (第 1の電極) 1 2、 載置台 1 3、 下部電極 (第 2の電 極) 1 4、 載置台支持柱 1 5、 上部電極絶縁部材 1 7を有する。 ここで. 上部電極 1 2には、 円盤状の中空 1 2 aが存在し、 またこの中空 1 2 a を介してガスを処理室內に導入する細孔 1 2 bが多数 (すなわちシャヮ 一へッ ドが) 存在する。 処理容器 1 1 a 、 l l b、 1 1 cは、 互いに絶 縁部 2 5、 2 6を介して領域に分けられている。
また、 処理容器 1 1 a、 l i b , 1 1 cまたはその中の上記構成に接 続して、 ガス供給管 1 6、 ガス供給系 2 2、 上部電極電源 2 3、 上部電 極側マツチング回路 2 4、 排気用バルブ 1 8、 ターボ分子ポンプ 1 9、 排気管 2 0、 排気系 2 1、 ゲー トバルブ 2 9、 遠隔処理容器 2 7、 バル ブ 2 8を有する。 複数の領域に分けられた処理容器 1 1 a 、 l l b、 1 1 cは、 そのそれぞれが可変ィンピーダンス要素と しての可変ィンピー ダンス回路 3 0 a 、 3 0 b、 3 0 cを介してグラウンドに接続されてい る。 下部電極 1 4には、 可変インピーダンス回路 3 1が接続されている ( 処理容器 1 1 a 、 l i b , 1 1 cは、 例えば表面がアルマイ ト処理さ れた円筒状のアルミニウムからなり、 その天井部に上部電極 1 2が設け られ、 底面部中央には載置台 1 3を支持する載置台支持柱 1 5が起立し て設けられる。 上部電極 1 2は、 処理容器 1 1 c との間に存在する環状 の上部電極絶縁部材 1 7により処理容器 1 1 cから絶縁されて配設され る。
上部電極 1 2は、 被処理基板 1 0に対向する側が、 例えば導電性の単 結晶シリ コンゃ表面をアルマイ ト処理されたアルミニウムで構成される 円盤状の形状である。 上部電極 1 2には、 内部に円盤状の中空 1 2 bが 配置され、 中空 1 2 bから上部電極 1 2を貫通して細孔 1 2 bがほぼ上 下方向に多数設けられる。 なお、 中空 1 2 bには、 ガス供給管 1 6から 導入されるガスを拡散する拡散板が配設されてもよい。
処理容器 1 1 a、 l i b , 1 1 c内で上部電極 1 2に対向する位置に は、 内部に円形板状の下部電極 1 4を有する円盤状の載置台 1 3が配置 される。 載置台 1 3は、 被処理面を上に向けた被処理基板 1 0を載置、 保持することができ、 それ自体は絶縁性の例えばセラミクスゃポリイ ミ ドなどからなる。
上部電極 1 2の上側にはガスを供給するガス供給管 1 6が設けられ、 上部電極 1 2の中空 1 2 aに通じている。 ガス供給管 1 6は、 ガス供給 系 2 2に接続されており、 これにより所定のガスを所定の量だけ処理室 に導入することができる。
また、 上部電極 1 2には、 上部電極側マッチング回路 2 4を介して上 部電極電源 2 3が電気的に接続されており、 これにより、 イ ンピーダン ス整合された例えば 1 3. 5 6 MH zの高周波 (R F ) 電圧を上部電極 1 2に印加することができる。 この印加電圧によ り、 上部電極 1 2の細 孔 1 2 bを通して処理容器 1 1 a、 l i b , 1 1 c内に導入されたガス をプラズマ化することができる (または、 後述する遠隔処理容器 2 7か らバルブ 2 8を介して導入されたガスをプラズマ化処理する。 ) 。
処理容器 1 1 aの底面側には排気用バルブ 1 8が設けられ、 排気用バ ルブ 1 8は、 ターボ分子ポンプ 1 9に接続される。 さらにターボ分子ポ ンプ 1 9は、 排気管 2 0を介して排気系 2 1に接続される。 これによ り . 処理容器 1 1 a、 l i b , 1 1 c内でプラズマ処理を行う時に処理室を 所定の圧力に減圧することができる。 また、 処理 (成膜処理、 ク リ一二 ング処理) 中またはこれを終了したあとには残留するガスを排出するこ とができる。
また、 処理容器 1 1 bの側面には、 被処理基板 1 0を搬入 '搬出する ためのグー トバルブ 2 9が設けられる。 被処理基板 1 0を搬入または搬 出する場合には、 開状態と されたゲー トバルブ 2 9を介して例えばロボ ッ トアームによ り被処理基板 2 6が出し入れされる。
さらに、 処理容器 1 1 cの側面上部には、 バルブ 2 8を介して遠隔処 理容器 2 7が接続して設けられる。 遠隔処理容器 2 7は、 例えばタ リー エングガスをプラズマ処理して励起し、 発生したラジカルを含むガスを バルブ 2 8を介して処理容器 1 1 a、 l i b , 1 1 c内に供給すること ができる。
下部電極 1 4には、 処理容器 1 1 a、 l i b , 1 1 cの外部で可変ィ ンピーダンス回路 3 1が電気的に接続され、 場合により下部電極 1 4を 通して高周波電流を導通しやすく したり導通しにく くすることができる c 導通しゃすくすると、 被処理基板 1 0に近接して内部のガスを原料と し てプラズマがよ り発生し、 所定の成膜処理に適する状態となる。 導通し にく くすると、 後述するよ うに処理容器 1 1 a、 l i b , 1 1 cのいず れか一つ以上に近接して内部のガスを原料と してよりプラズマを発生さ せることができる状態となる。 これについては次に述べる。
処理容器 1 1 a、 l i b , 1 1 cは、 例えば図示するよ うに、 ほぼ処 理室の円筒底面を占める部分、 処理室側面における上部電極 1 2下面の 水準よりほぼ下を占める部分、 ほぼそれより上の部分に分けられていて、 それらの分割領域はそれぞれ内壁が処理室に面している。 これらの電気 的分割は、 周状に配設された絶縁部 2 5、 2 6によって確保される。 処 理容器 1 1 a、 l i b , 1 1 cには、 それぞれ、 可変ィンピーダンス回 路 3 0 a、 3 0 b、 3 0 cが接続され、 これにより、 分割された任意の 処理容器部分について、 高周波電流の導通しゃすい状態と導通しにくい 状態とを得ることができる。
下部電極 1 4について高周波電流が導通しにく く されている場合には. 処理容器 1 1 a、 l i b , 1 1 cのうちいずれか高周波電流の導通しや すいものを介して上部電極 1 2に印加された高周波電力が内部のガスに 供給される状態となる。 内部のガスは、 これによつてプラズマ化されて ラジカルが生じる (または失活したガスを再びラジカル化する) 。 した がって、 ガスがク リーニングガスである場合には、 処理容器 1 1 a、 1 1 b、 1 1 cのうちいずれか高周波電流の導通しやすいものの内壁に堆 積した膜とより反応し、 部位によって所望にク リーユングすることが可 能である。
次に、 上記構成を説明したプラズマ処理装置の一連の動作を説明する t まず、 被処理基板 1 0に所定の成膜を行うプロセスの例と して、 プラズ マ C VDで S i 02膜を形成する場合を説明する。
ゲ一トバルブ 2 9を介して被処理基板 1 0を載置台 1 3上に載置し、 ターボ分子ポンプ 1 9他の排気系 2 1により処理室内を所定の圧力に設 定しつつ、 原料ガスをガス供給系 2 2から処理室内に導入する。 例えば. 圧力を 7 0 P a程度、 原料ガスを T E O S (テ トラェチルオルソシリケ ート) および O 2とする。 T E O Sの供給量を l O O s c c m ( s e c mは、 標準時換算での立方センチメー トル毎分) 、 O 2の供給量を 1 0 0ないし 2 0 0 s c c mとする。 なお、 遠隔処理容器 2 7は、 この成膜 処理では使用しないのでバルブ 2 8は閉状態と しておく。
また、 各可変インピーダンス回路 3 0 a、 3 0 b、 3 0 c、 3 1は、 それぞれ、 例えば最も小さいインピーダンス (理想的にはゼロ) になる ように設定しておく。 この状態で、 上部電極 1 2に高周波電圧を上部電 極電源 2 3から印加し供給電力を例えば 5 0 0 Wと して処理室内部に導 入された上記ガスをプラズマ化する。
これにより、 プラズマ化されたガス中にラジカル (励起種) が生じて 互いに反応し、 被処理基板 1 0の表面には S i O 2膜が形成される。 こ の処理においては、 上部電極 1 2に対向して配置された被処理基板 1 0 上に最も効率的に S i 02膜が形成されるが、 処理容器 1 1 a、 l i b , 1 1 cの内壁にも徐々に S i 02膜が堆積 ·形成される。
なお、 以上のようなプラズマ C VDによる被処理基板 1 0上への成膜 は、 原料ガスを選択しかつ圧力などのプロセス条件を所定に設定するこ とにより、 種々の膜種について行うことができる。 ほとんどすべての場 合、 処理容器 l l a、 l i b , 1 1 cの内壁にも徐々にその膜が堆積 · 形成されることは、 同様である。
次に、 上記構成を説明したプラズマ処理装置内部のク リ一二ング処理 を説明する。 例と してク リ一二ング対象を S i 〇 2膜とする。 タ リー- ングすべき S i O 2膜は、 処理容器 1 1 a、 l i b , 1 1 cの内壁に多 く存在し、 比較して載置台 1 3表面には少ない。 これは、 成膜処理中に おいて、 載置台 1 3上には、 被処理基板 1 0が載置されているからであ る。
ク リーニングガスと して N F 3を用意し、 これを遠隔処理容器 2 7内 に導入しプラズマ化処理する。 このプラズマ化処理によ りプラズマ中に ラジカルが生じる。 このラジカルを含むガスをバルブ 2 8を介して処理 容器 1 1 a、 l i b , 1 1 c内に導入する。 処理容器 1 1 a、 l i b , 1 1 c内の圧力を例えば 1 0 0 P a と し、 上記ガスの導入量を 5 0 0 s c c mとする。 以上の操作によるのみでも、 処理室内のク リーニングを 一応は行うことができる。 導入されたガス中のラジカルが S i O 2と反 応し反応生成物がガス化するからである。 ガス化した反応生成物は、 タ ーボ分子ポンプ 1 9他の排気系 2 1により処理室から排出される。
上記の操作のみでは、 しかしながら、 処理室内部の部位それぞれにつ いて一様かつ十分にク リーニングすることは難しい。 一つは、 遠隔処理 容器 2 7で発生されたラジカルが処理容器 1 1 a、 l i b , 1 1 cに輪 送されることによ り一部失活するので効率的反応が確保されないからで ある。 もうひとつは、 処理室内に導入されたク リーニングガスの流れが 一様にはならないので、 処理室内部の各部位近く に存在するラジカルの 密度に違いが生じるからである。
そこで、 このプラズマ処理装置では、 上部電極 1 2から高周波電力 (例えば 5 0 0 W程度) を供給して上記導入されたク リ一ユングガスを プラズマ処理して再び活性化する。 このとき、 特に各インピーダンス回 路 3 0 a、 3 0 b、 3 0 c、 3 1のインピーダンス値を通常とは変化さ せる。 イ ンピーダンス値は、 すでに説明のように、 処理容器 1 1 a、 1 l b、 1 1 c、 および下部電極 1 4に接続される各イ ンピーダンス回路
3 0 a、 3 0 b、 3 0 c、 3 1について独立に設定できる。
相対的に大きいイ ンピーダンス値にされたインピーダンス回路に接続 を有する部位では、 高周波電流が流れにく くなり、 したがってその部位 近くでのクリーニングガスの再活性化はより小さい。 これに対し、 相対 的に小さいインピーダンス値にされたィンピーダンス回路に接続を有す る部位では、 高周波電流が流れやすく なり、 したがってその部位近くで のク リ一二ングガスの再活性化はより大きい。
載置台 1 3の表面に堆積 ' 形成された S i O 2膜はより少ない量であ り、 ク リ一ユングの必要性がより小さい。 そこで載置台 1 3に接続され た可変ィンピーダンス回路 3 1のィンピーダンス値を通常より大きくす る。 これに対して、 処理容器 1 1 a、 l i b , 1 1 cの内壁には、 より 多量の S i O 2膜が堆積 · 形成されるのでこれを重点的にク リ一ユング する。 そこで、 処理容器 1 1 a、 l i b , 1 1 cに接続された可変ィン ピーダンス回路 3 0 a、 3 0 b、 3 0 cの方を順繰りにまたは同時によ り低ィンピーダンスにする。
これによ り、 ク リーエング処理による内部の各部位へのダメージを避 けつつ、 適切な範囲 (部位的、 時間的) で各部位をク リーニングするこ とが可能となる。 特に、 載置台 1 3は、 通常であれば上部電極 1 2に最 も近い位置にあり、 タ リ一ユングガスの再活性化によ り最もダメージが 心配されるが、 この実施形態では、 載置台 1 3に近接してク リーニング ガスの再活性化を避けることができ、 好都合である。
なお、 以上のク リーニングの説明では、 遠隔処理容器 2 7であらかじ めプラズマ化処理されたク リ一二ングガスを処理容器 1 1 a、 l i b , 1 1 c にバルブ 2 8を介して輸送し、 さらにタ リ一二ングガスを処理室 内で再活性化する方法を説明したが、 ク リ一二ングガスの処理室内への 導入は、 シャワーヘッ ドたる上部電極 1 2を用いてガス供給系 2 2から 行う よ うにしてもよレヽ。
また、 ク リーニングガスは、 ク リーニング対象の膜材質によ り適宜選 択することができる。 例えば、 W、 T i などの膜には、 ク リーニングガ スと して上記でも述べた N F 3などのフッ素系ガスやト リ フロ口酢酸な どの有機フッ素系のガス、 T i、 C r、 A 1 などの膜には、 例えば C 1
2などの塩素系ガスを用いることができる。
さ らには、 処理容器 1 1 a、 l i b , 1 1 cの図 1 に示したような分 割のし方は、 これに限られるものではない。 特にク リーニング効果を向 上したい部位について分割するよ うに全体と して 2以上の領域に分割構 成することができる。 その際、 周方向に同一領域となるような分割にす るに限らず放射状に分割することもできる。 分割された中の一つの領域 についてィンピーダンスが可変されるよ うにされていればその領域につ いてダメージの回避または重点的なク リ一二ングが実現する。
また、 プラズマ処理装置と しては、 載置台 1 3が被処理基板 1 0の下 面に接するように配設される必要はない。 例えば、 被処理基板 1 0の周 縁部 3点を点状で支持するような支持部材であってもよい。 その場合に は、 可変ィンピーダンス回路 3 1は、 必ずしも設けられなくてもよい。 ク リ一二ング処理においてダメージを避ける必要がある、 上記説明のよ うな例えばセラ ミタスゃポリイ ミ ドを有する載置台 1 3がないからであ る。
図 2は、 図 1 中に示した絶縁部 2 5の具体例を示す断面で示す構成図 である。 図 2において、 図 1 と同一の部位には同一番号を付してある。 図 2に示すよ うに、 処理容器 1 1 a と処理容器 1 1 b との間は、 起立 した周状部分を内側に有する円環状の絶縁体 4 1によって電気的に絶縁 される。 そして、 絶縁体 4 1 と処理容器 1 1 a とは、 オーリ ング 4 2に よりシールされ、 絶縁体 4 1 と処理容器 1 1 b とは、 ォーリ ング 4 3に よりシールされる。 オーリ ング 4 2、 4 3は、 ともに絶縁体 4 1 に沿つ て周状に設けられている。 絶縁体 4 1には、 例えば、 セラミ クスゃフッ 素系の樹脂を用いることができる。
絶縁部 2 5について、 その組立ての手順に従ってさ らに構成を説明す る。 まず、 処理容器 1 1 aのみが存在する状態であるとする。 処理容器 1 1 aには、 ォーリング 4 2用の溝が周状に切ってあり、 その周外側に 沿って何箇所かのボルト 4 4 a、 4 4 b用のねじ穴が設けられている。 処理容器 1 1 a の上記溝にォーリ ング 4 2を嵌め込み、 さ らにこの嵌 め込まれたオーリ ング 4 2を処理容器 1 1 a との間にはさみ込むように 絶縁体 4 1 の円環状部分を対向させる。 この状態で、 ボル ト 4 4 a、 4 4 bを絶縁体 4 1を介して処理容器 1 1 aにねじ込むことにより、 絶縁 体 4 1 と処理容器 1 1 a との固定およびシールが確保される。
次に、 処理容器 1 1 bの上記溝にォーリ ング 4 3を嵌め込み、 さらに この嵌め込まれたオーリ ング 4 3を絶縁体 4 1 との間にはさみ込むよ う に処理容器 1 1 bを絶縁体 4 1 の円環状部分に対向させる。 この状態で. ボルト 4 5 a、 4 5 bを絶縁体 4 1を介して処理容器 1 1 bにねじ込む ことにより、 処理容器 1 1 b と絶縁体 4 1 との固定およびシールが確保 される。
以上により、 処理容器 1 1 a、 絶縁体 4 1、 処理容器 1 1 bの固定、 シールを行うことができる。 このような構造によりシール性を確保した 上で処理容器 1 1 a と同 1 1 b との電気的絶縁をすることができる。 図 3は、 図 1 中に示した絶縁部 2 6の具体例を示す断面で示す構成図 である。 図 3において、 図 1 と同一の部位には同一番号を付してある。 この構造は、 考え方と してほぼ図 2に示すものと同様のものであるが、 以下一応説明する。
図 3に示すよ うに、 処理容器 1 1 b と処理容器 1 1 c との間は、 起立 した周状部分を外側に有する円環状の絶縁体 5 1によって電気的に絶縁 される。 そして、 絶縁体 5 1 と処理容器 1 1 b とは、 オーリ ング 5 2に よりシールされ、 絶縁体 5 1 と処理容器 1 1 c とは、 ォーリ ング 5 3に よりシールされる。 オーリ ング 5 2、 5 3は、 ともに絶縁体 5 1に沿つ て周状に設けられている。 絶縁体 5 1には、 例えば、 セラミクスゃフッ 素系の樹脂を用いることができる。
絶縁部 2 6について、 その組立ての手順に従ってさ らに構成を説明す る。 まず、 処理容器 1 1 bのみが存在する状態であるとする。 処理容器 1 1 bには、 ォーリ ング 5 2用の溝が周状に切ってあり、 その上側かつ 処理容器 1 1 b と しての内面側に何箇所かのボルト 5 4 a、 5 4 b用の ねじ穴が設けられている。 処理容器 1 1 bの上記溝にォーリ ング 5 2を嵌め込み、 さ らにこの嵌 め込まれたォーリ ング 5 2を処理容器 1 1 b との間にはさみ込むよ うに 絶縁体 5 1 の起立した周状部分を対向させる。 この状態で、 ボルト 5 4 a、 5 4 bを絶縁体 5 1を介して処理容器 l i bにねじ込むことによ り . 絶縁体 5 1 と処理容器 1 1 b との固定およびシールが確保される。
次に、 処理容器 1 1 cの上記溝にォ一リ ング 5 3を嵌め込み、 さらに この嵌め込まれたオーリ ング 5 3を絶縁体 5 1 との間にはさみ込むよ う に処理容器 1 1 cを絶縁体 5 1 の起立した周状部分に対向させる。 この 状態で、 ボルト 5 5 a、 5 5 bを絶縁体 5 1を介して処理容器 1 1 c に ねじ込むことにより、 処理容器 1 1 c と絶縁体 5 1 との固定およびシー ルが確保される。
以上によ り、 処理容器 1 1 b、 絶縁体 5 1、 処理容器 1 1 cの固定、 シールを行うことができる。 このよ うな構造によ りシール性を確保した 上で処理容器 1 1 b と同 1 1 c との電気的絶縁をすることができる。 図 4 A、 図 4 Bは、 図 1 中に示した可変インピーダンス回路 3 0 a ( 3 0 b、 3 0 c、 3 1 ) の具体例を示す回路図である。 図 4 Aは、 可 変の C v と固定のしとによる直列共振回路であり、 これに接続される部 位に高周波電流を導通させたいとき (成膜処理時またはク リ一二ング処 理時の両者あり得る。 以下でも同。 ) には、 その高周波 ωにおいて回路 が共振するように C Vを変化させる。 また、 これに接続される部位に高 周波電流を導通させたくない場合には、 その高周波 ωにおいて回路が非 共振になるように C Vを変化させる。
なお、 図 4 Αに示すような直列共振回路のイ ンピーダンスは、 Z = j X (ω ) の形になり純抵抗分がゼロとなるが、 実際の回路では、 C vや Lに損失があるため実部たる純抵抗分はゼロではなく、 一般的にはこの 実部も周波数特性を有する。 図 4 Bは、 定インピーダンス Zの回路 (ここで定イ ンピーダンス とは. 周波数が固定した場合にはィンピーダンス値が固定するの意味であり、 周波数が変化すれば一般的に当然インピーダンス値が変わる。 ) とイ ン ピーダンスゼロ回路とをスィ ツチ回路 SWでスィ ツチさせることによる 可変インピーダンス回路である。 すなわち、 スィ ッチ SWが図示の位置 では定インピーダンス Zの回路と して機能し、 図示を反対の位置ではィ ンピーダンスゼロの回路と して機能する。 すなわち、 この可変インピー ダンス回路に接続される部位に高周波電流を導通させたいときには、 ス ィツチ SWを図示とは反対の位置に切換え、 高周波電流を導通させたく ないときには、 スィ ッチ swを図示の位置に切換える。
なお、 図 4 Bで定インピーダンス回路 Zは、 図示するよ うに、 C s と L s との直列共振回路、 C p と L p との並列共振回路、 抵抗 の 2端子 回路などを用いることができる。 また、 定イ ンピーダンス回路 Zのイン ピーダンス値を微調整するために、 各素子を値可変素子に入れ換えても よい。 または、 定イ ンピーダンス回路 Zを複数 (Z l、 Z 2、 ···) 設け、 かつスィツチ SWを多接点タイプのものに変えて、 各定インピーダンス Z l、 Z 2、 …の各一端をスィ ッチ SWの各接点に接続するようにして もよい。 このよ うな構成で得られるイ ンピーダンス値の微調整は、 各部 位でのク リ一二ング効率の微調整に利用することができる。
図 5は、 図 1 中に示した遠隔処理容器 2 7の構成例を模式的に示す図 である。 図 5に示すように、 遠隔処理容器 2 7は、 例えばアルミナ管 2 7 1の外側を導線 2 7 2が巻き付け、 導線 2 7 2の両端が高周波電源 2 7 3に接続された構成を有する。
ク リーニングガスを活性化する場合には、 アルミナ管 2 7 1内にク リ 一ユングガスが導入された状態で高周波電源 2 7 3から高周波電力を与 える。 例えばその周波数は 1 3. 5 6 MH z、 電力値は l kWである。 これにより、 ク リ一ユングガス中にプラズマが発生しかっこれによ り効 率よく ラジカルを作り出すことができる。 ラジカルを含むク リーニング ガスは、 すでに説明のようにバルブ 2 8を介して処理容器 1 1 a、 1 1 b、 1 1 c (図 1 ) に供給される。
次に、 図 1に示したものとは異なる本発明の実施形態を図 6を参照し て説明する。 図 6は、 本発明の別の実施形態に係るプラズマ処理装置を 模式的に示す構成図であり、 すでに説明した構成には同一番号を付して ある。 なお、 すでに説明した部分については説明を省略する。
この実施形態では、 図 1に示した実施形態と異なり、 載置台 1 3に配 設される下部電極について領域分割を行なっている。 すなわち、 下部電 極は、 下部電極 1 4 a、 1 4 bに分割され、 それぞれは、 電気的に絶縁 されている。
下部電極 1 4 aは、 被処理基板 1 0の中心直下を含むように円形円板 の形状に設けられ、 下部電極 1 4 bは、 被処理基板 1 0の中心直下を含 まないように下部電極 1 4 aの外側に円環状に設けられる。 それぞれの 下部電極 1 4 a、 1 4 bからは独立に可変ィンピーダンス回路 3 1 a、 3 1 bに接続がなされる。
このような構成にすることにより、 ク リ一二ングすべき膜が堆積 · 形 成されやすい載置台 1 3の周縁部や側面部に近接する空間で選択的にク リーユングガスの再活性化 (あるいは活性化) を行うことができるよ う になる。 すなわち、 すでに説明したように、 ク リーニングガスの再活性 ィ匕 (あるいは活性化) のためには、 その空間を通って高周波電流の導通 路が確保されるようにすればよい。
そこで、 周縁部や側面部に近接する下部電極 1 4 bに接続される可変 インピーダンス回路 3 1 bをより低インピーダンスと し、 それ以外に近 接する下部電極 1 4 a に接続される可変ィンピーダンス回路 3 1 a をよ り高イ ンピーダンスにする。 なお、 可変インピーダンス回路 3 1 a、 3 1 bには、 すでに述べた図 4に示した回路を用いることができる。
また、 この実施形態では、 下部電極 1 4 a、 1 4 bが分割して載置台 1 3に設けられているので、 被処理基板 1 0近辺にプラズマ領域を特に 集中させて発生させるという使い方もできる。 すなわち、 例えば、 被処 理基板 1 0によ り近接する下部電極 1 4 aに接続される可変ィ ンビーダ ンス回路 3 1 a をより低インピーダンスにすれば、 その被処理基板 1 0 を介して高周波電流の導通路が形成され、 よって被処理基板 1 0付近に 密度の高いプラズマが発生し形成膜種の増加を実現できる。 また、 同様 の考えをプラズマ処理装置と してのエッチング装置に適用した場合には. ェツチング処理の高品質化も実現する。
このようなプラズマ領域の集中による成膜の例と して S i O Fの成膜 を説明する。 通常、 S i O Fの成膜には、 高密度プラズマが必要であり いわゆる平行平板のプラズマ処理装置では、 この種の成膜はできない。 しかし、 図 6に示すプラズマ処理装置では、 下部電極 1 4 b より下部電 極 1 4 aについて高周波電流が流れやすい条件にすることにより、 よ り 集中したプラズマ領域が形成され得るので、 これが可能になる。
例えば、 原料ガスを S i F 4、 S i H4、 02の 3種と し、 処理室内部 の圧力を 5ないし 1 5 P a とする。 処理室内部に供給する原料ガスの量 を S i F4、 S i H4、 O 2についてそれぞれ、 1 0 0 s c c m、 5 0 s c c m、 2 0 0 s c c mと して、 上部電極 1 2に供給する高周波電力を 1 5 0 0ないし 2 0 0 0Wとすると、 被処理基板 1 0上に S i O Fの成 膜がなされるものである。
したがって、 この実施形態に係るプラズマ処理装置では、 装置内の被 処理基板 1 0上という特定の領域で通常とは異なる所望の処理を行うこ とが可能になるという効果もある。 なお、 この実施形態では、 処理容器 1 1については、 絶縁体による領域分割を行っていないが、 図 1に示し た実施形態と同様に処理容器 1 1についても領域分割してもよい。 これ によれば、 図 1 に示した実施形態の効果をも得ることができる。
次に、 図 1、 図 6に示したものとは異なる本発明の実施形態を図 7を 参照して説明する。 図 7は、 本発明のさらに別の実施形態に係るプラズ マ処理装置を模式的に示す構成図であり、 すでに説明した構成には同一 番号を付してある。 なお、 すでに説明した部分については説明を省略す る。
この実施形態では、 図 1、 図 2に示した実施形態と異なり、 下部電極 1 4に可変ィンピーダンス回路 3 1が接続され、 処理容器 1 1に接続さ れて可変ィ ンピーダンス回路 3 0が存在する。 可変インピーダンス回路 3 0、 3 1には、 図 4に示したような回路を用いることができる。
このよ う に、 処理容器 1 1に領域分割がなく、 下部電極 1 4にも分割 領域がない場合であっても、 少なく とも、 載置台 1 3にダメージを与え るようなク リーニングを回避することができる。 すなわち、 下部電極 1 4に接続される可変ィンピーダンス回路 3 1をよ り高イ ンピーダンス と し、 処理容器 1 1に接続される可変ィンピーダンス回路 3 0をよ り低ィ ンピーダンスとする。
これによれば、 ク リーニングガスの再活性化 (または活性化) を処理 容器 1 1に近接する空間で行うことになるので、 載置台 1 3に対するク リーエングのダメージを回避しつつ、 処理容器 1 1の内壁に対してタ リ 一二ングの効果を得ることができる。
また、 載置台 1 3上の被処理基板 1 0近辺にプラズマ領域を集中させ て発生させるという効果も期待できる。 すなわち、 例えば、 下部電極 1 4に接続される可変ィンピーダンス回路 3 1をより低ィンピーダンスに すれば、 処理容器 1 1側を介する高周波電力の導通を阻止し、 よって被 処理基板 1 0付近に密度の高いプラズマが発生するからである。 これに より、 プラズマ処理装置と して、 形成膜種の増加やエッチング処理の高 品質化なども実現する可能性がある。 産業上の利用可能性
本発明に係る処理装置および載置台は、 半導体製造装置の製造産業に おいて製造が可能であり、 半導体製造産業において使用可能である。 ま た、 本発明に係る処理方法は、 半導体製造産業において使用可能である ( よって、 いずれも産業上の利用可能性を有する。

Claims

請 求 の 範 囲
1 . 気密に構成された処理容器と、
前記処理容器内に設けられた第 1 の電極と、
前記処理容器内に設けられ、 前記第 1 の電極と対向する第 2の電極と 前記第 1の電極と前記第 2の電極との間に高周波電力を供給する高周 波電源とを具備し、
前記処理容器は、 非導電部材で隔てられ、 前記処理容器内部に面する 複数の領域を有する
ことを特徴とする処理装置。
2 . 前記複数の領域は、 その少なく とも一つが可変インピーダンス回路 に接続されていることを特徴とする請求項 1記載の処理装置。
3 . 気密に構成された処理容器と、
前記処理容器内に設けられた第 1の電極と、
前記第 1 の電極に対向して設けられ、 第 2の電極を有する被処理体载 置台と、
前記第 1の電極と前記第 2の電極との間に高周波電力を供給する高周 波電源とを具備し、
前記被処理体載置台の前記第 2の電極は、 分離した複数の領域を有す る
ことを特徴とする処理装置。
4 . 前記分離した複数の領域は、 その少なく とも一つが可変インピーダ ンス回路に接続されていることを特徴とする請求項 3記載の処理装置。
5 . 気密に構成された処理容器と、
前記処理容器内に設けられた第 1 の電極と、
前記第 1の電極に対向して設けられ、 第 2の電極を有する被処理体載 置台と、
前記第 1の電極と前記第 2の電極との間に高周波電力を供給する高周 波電源とを具備し、
前記処理容器および前記第 2の電極には、 それぞれ可変ィンピーダン ス回路が接続されていることを特徴とする処理装置。
6 . 前記処理容器の内部に連通する処理空間を有する遠隔処理容器をさ らに具備することを特徴とする請求項 1ないし 5のいずれか 1項記載の 処理装置。
7 . 被処理基板をほぼ水平姿勢で載置可能な載置部材と、
前記載置部材に設けられた第 1 の電極と、
前記載置部材に設けられ、 前記第 1 の電極と絶縁された第 2の電極と を具備することを特徴とする載置台。
8 . 前記第 1の電極は、 前記載置部材の前記被処理基板が位置すべき部 位の中心直下を含む位置に設けられ、
前記第 2の電極は、 前記載置部材の前記被処理基板が位置すべき部位 の中心直下を含まない位置に設けられる
ことを特徴とする請求項 7記載の載置台。
9 . 処理ガスを処理容器に導入する工程と、
領域に分けられた、 前記処理容器および前記処理容器内部に設けられ た被処理体載置台の、 前記分けられた少なく とも一つを他の領域より低 いインピーダンス要素に接続された状態に保持する工程と、
前記保持された状態下で、 前記処理容器内部に設けられた電極に高周 波電力を供給する工程と .
を具備することを特徴とする処理方法。
PCT/JP2003/010508 2002-08-30 2003-08-20 処理装置、載置台、処理方法 WO2004021422A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003257622A AU2003257622A1 (en) 2002-08-30 2003-08-20 Processing device, mounting table, processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002/252272 2002-08-30
JP2002252272A JP2004095700A (ja) 2002-08-30 2002-08-30 処理装置、載置台、処理方法

Publications (1)

Publication Number Publication Date
WO2004021422A1 true WO2004021422A1 (ja) 2004-03-11

Family

ID=31972731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/010508 WO2004021422A1 (ja) 2002-08-30 2003-08-20 処理装置、載置台、処理方法

Country Status (4)

Country Link
JP (1) JP2004095700A (ja)
AU (1) AU2003257622A1 (ja)
TW (1) TW200405416A (ja)
WO (1) WO2004021422A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4799947B2 (ja) * 2005-02-25 2011-10-26 株式会社ダイヘン 高周波電源装置および高周波電源の制御方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0354825A (ja) * 1989-07-21 1991-03-08 Tokyo Electron Ltd プラズマ処理装置
JPH03173785A (ja) * 1989-12-01 1991-07-29 Toshiba Corp ドライエッチング装置
JPH0499318A (ja) * 1990-08-18 1992-03-31 Fujitsu Ltd プラズマ反応処理装置
JPH0661185A (ja) * 1992-08-06 1994-03-04 Tokyo Electron Ltd プラズマ処理装置
JPH11176821A (ja) * 1997-12-08 1999-07-02 Toshiba Corp 成膜装置及び成膜方法
JP2001053008A (ja) * 1999-08-04 2001-02-23 Applied Materials Inc 半導体製造装置のクリーニング方法
JP2001144077A (ja) * 1999-11-15 2001-05-25 Applied Materials Inc プラズマ処理装置及び方法
JP2001319920A (ja) * 2000-03-01 2001-11-16 Hitachi Ltd プラズマ処理装置および処理方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0354825A (ja) * 1989-07-21 1991-03-08 Tokyo Electron Ltd プラズマ処理装置
JPH03173785A (ja) * 1989-12-01 1991-07-29 Toshiba Corp ドライエッチング装置
JPH0499318A (ja) * 1990-08-18 1992-03-31 Fujitsu Ltd プラズマ反応処理装置
JPH0661185A (ja) * 1992-08-06 1994-03-04 Tokyo Electron Ltd プラズマ処理装置
JPH11176821A (ja) * 1997-12-08 1999-07-02 Toshiba Corp 成膜装置及び成膜方法
JP2001053008A (ja) * 1999-08-04 2001-02-23 Applied Materials Inc 半導体製造装置のクリーニング方法
JP2001144077A (ja) * 1999-11-15 2001-05-25 Applied Materials Inc プラズマ処理装置及び方法
JP2001319920A (ja) * 2000-03-01 2001-11-16 Hitachi Ltd プラズマ処理装置および処理方法

Also Published As

Publication number Publication date
JP2004095700A (ja) 2004-03-25
AU2003257622A1 (en) 2004-03-19
TW200405416A (en) 2004-04-01

Similar Documents

Publication Publication Date Title
US20210130955A1 (en) Film forming apparatus and film forming method
JP4817528B2 (ja) 電子ワークピース製造装置
KR101111556B1 (ko) 듀얼 챔버 플라즈마 처리 장치
US20210140044A1 (en) Film forming method and film forming apparatus
JP5165993B2 (ja) プラズマ処理装置
KR101336446B1 (ko) 기판 에지로부터의 가스 주입을 튜닝하는 프로세스
US8377255B2 (en) Plasma processing apparatus and method of controlling distribution of a plasma therein
US8261691B2 (en) Plasma processing apparatus
KR20100029041A (ko) 성막 방법 및 성막 장치
JP2001517373A (ja) プラズマ処理チャンバの内面上への堆積物の堆積を制御する方法及び装置
US11289308B2 (en) Apparatus and method for processing substrate and method of manufacturing semiconductor device using the method
US20190385815A1 (en) Film forming apparatus
JP2004342984A (ja) 基板保持機構およびプラズマ処理装置
JP2004186402A (ja) プラズマ処理装置及びプラズマ処理方法
KR101118997B1 (ko) 플라즈마 처리 장치 및 방법
JP6952542B2 (ja) プラズマ処理方法およびプラズマ処理装置
WO2004021422A1 (ja) 処理装置、載置台、処理方法
US6524430B1 (en) Apparatus for fabricating a semiconductor device
TWI838692B (zh) 用於處理基板的匹配網路及電漿處理腔室
US20210202298A1 (en) Semiconductor device manufacturing method and semiconductor device manufacturing system
US20230207294A1 (en) Plasma control apparatus and plasma processing system
KR100683255B1 (ko) 플라즈마 처리 장치 및 배기 장치
JP2000003907A (ja) クリーニング方法及びクリーニングガス生成装置
US20030015292A1 (en) Apparatus for fabricating a semiconductor device
TW202247241A (zh) 用於處理基板的方法及設備

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase