WO2004020928A1 - Egrクーラ - Google Patents

Egrクーラ Download PDF

Info

Publication number
WO2004020928A1
WO2004020928A1 PCT/JP2003/009775 JP0309775W WO2004020928A1 WO 2004020928 A1 WO2004020928 A1 WO 2004020928A1 JP 0309775 W JP0309775 W JP 0309775W WO 2004020928 A1 WO2004020928 A1 WO 2004020928A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
egr cooler
center line
plane
tubes
Prior art date
Application number
PCT/JP2003/009775
Other languages
English (en)
French (fr)
Inventor
Takazi Igami
Toshimichi Kobayashi
Jyohei Yamamoto
Hiroshi Saitoh
Original Assignee
Toyo Radiator Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US10/526,331 priority Critical patent/US7171956B2/en
Priority claimed from JP2002249786A external-priority patent/JP4273483B2/ja
Priority claimed from JP2002270395A external-priority patent/JP2004108641A/ja
Priority claimed from JP2003145967A external-priority patent/JP4207196B2/ja
Application filed by Toyo Radiator Co., Ltd. filed Critical Toyo Radiator Co., Ltd.
Priority to EP03791188A priority patent/EP1548386B1/en
Priority to DE60332369T priority patent/DE60332369D1/de
Publication of WO2004020928A1 publication Critical patent/WO2004020928A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/05316Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05333Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/29Constructional details of the coolers, e.g. pipes, plates, ribs, insulation or materials
    • F02M26/32Liquid-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/06Tubular elements of cross-section which is non-circular crimped or corrugated in cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/42Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/42Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
    • F28F1/424Means comprising outside portions integral with inside portions
    • F28F1/426Means comprising outside portions integral with inside portions the outside portions and the inside portions forming parts of complementary shape, e.g. concave and convex
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/007Auxiliary supports for elements
    • F28F9/013Auxiliary supports for elements for tubes or tube-assemblies
    • F28F9/0131Auxiliary supports for elements for tubes or tube-assemblies formed by plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases

Definitions

  • the present invention relates to an exhaust gas recirculation device (hereinafter, referred to as an EGR cooler).
  • EGR cooler in which a large number of linear tubes having a circular cross section are arranged in parallel at a distance from each other, both ends of which are connected to a header, and the outer periphery of the tubes is covered by a casing.
  • the cooling water is circulated in the casing, the exhaust gas is circulated in the tube, and heat is exchanged between the two to cool the exhaust gas.
  • Japanese Patent Application Laid-Open No. 2000-345925 discloses an invention in which a plurality of spiral projections are formed on the inner peripheral surface of a tube so that exhaust gas can evenly and sufficiently contact the inner peripheral surface of the tube. It has been proposed as.
  • a conventional EGR cooler tube with multiple spiral protrusions formed on the inner surface side can be expected to further improve the contact between the exhaust gas and the inner peripheral surface of the tube, but that is not enough. Is hard to say.
  • an object of the present invention is to provide an EGR cooler which can promote heat exchange by sufficiently stirring exhaust gas in a tube and can be easily manufactured. Furthermore, the EGR cooler may generate condensed liquid in the tube, in which case the condensed liquid is desirably removed smoothly. Disclosure of the invention According to the present invention, a large number of tubes (1) having a circular cross section are arranged in parallel at a distance from each other, and both ends of each tube (1) are communicated with a pair of headers (2). 1) In the EGR cooler, the exhaust gas (3) to be cooled flows inside and the cooling fluid (4) flows through the outer surface of the tube (1).
  • the EGR tube is characterized in that the tube (1) has a circular cross section, and is plastically deformed in a plane passing through the center line thereof, thereby forming an exhaust gas flow path that is bent into a waveform inside. It is a ruler.
  • the center line of the tube (1) is on a straight line and is spaced apart from each other in the longitudinal direction so that a number of recesses (5) are bent from the outer surface to the inner surface, and the recesses (5) are
  • the inner and outer surfaces of the cross section on one plane are formed in a mountain shape, and the ridge line (5a) at the top of the mountain is orthogonal to the one plane,
  • Adjacent recesses (5) are formed at positions 180 degrees circumferentially different from each other,
  • EGR coolers Both ends of the tube in the longitudinal direction are EGR coolers in which circular sections (la) having a circular cross section perpendicular to the axis are formed.
  • Each of the tubes (1) has the same shape whose center line is bent in a waveform in the one plane, and is parallel to each other so that the phases of the waveforms of the tubes in each row coincide. It is an EGR cooler located in.
  • the EGR cooler is arranged so that the phases of the waves in adjacent rows are 180 degrees different from each other.
  • the present invention described in claim 5 is based on claim 3,
  • the plane of the bending direction of the center line of each tube (1) is at the same angle 0 with respect to the horizontal plane (15). This is an EGR cooler that is inclined.
  • Each tube (1) is an EGR cooler having a tube support (7) formed in a V-shaped cross section on the lower surface side of two spaced apart tops of the center line waveform.
  • each tube (1) The longitudinal ends of each tube (1) are EGR coolers whose center lines are formed straight.
  • the EGR cooler of the present invention has the above configuration and has the following effects.
  • the tube 1 is plastically deformed in one plane passing through the center line of the tube 1 so as to form the exhaust gas flow path in a waveform.
  • the gas gas can be sufficiently meandered and agitated and stirred to promote heat exchange with the cooling fluid 4 on the outer surface of the tube 1.
  • plastic deformation portion is performed in one plane passing through the center line, a plastic material having a circular cross section can be easily plastically deformed by press working or the like.
  • the plurality of recesses 5 are separated from each other in the longitudinal direction and the circumferential direction, are bent from the outer surface to the inner surface by plastic deformation, and the cross section of the recess 5 has a mountain shape.
  • the ridge line 5a in a direction intersecting the center line of the tube 1, the exhaust gas 3 flowing through the inside is guided to the chevron of the recess 5 and undulated by the ridge line 5a. Circulates and stirs exhaust gas 3 smoothly without increasing flow resistance so much To promote heat exchange. At the same time, clogging is unlikely to occur.
  • each of the concave portions 5 is bent by plastic deformation from the outer surface side of the tube having a circular cross section, its manufacture is easy.
  • the tube 1 is basically circular in cross section, high pressure resistance and high pressure exhaust gas 3 can be circulated.
  • the recesses 5 are circumferentially separated from each other by 180 degrees, so that the exhaust gas 3 is periodically wave-shaped to further improve the heat exchange performance.
  • the arrangement density of the tubes can be made the same as that of the straight tube while shortening the entire length of the heat exchanger. That is, the length between both ends can be reduced as compared with the case where a straight tube having the same flow path length in the tube 1 is used.
  • the tubes 1 have the same shape with the center line bent in a waveform in one plane and are arranged in parallel so that the phases of the waveforms in each row match, the tubes 1 are compact and have high performance. Good! /, EGR cooler can be provided.
  • heat exchange can be promoted by sufficiently agitating the exhaust gas 3 flowing in the tube 1 and the fluid flowing in the outer surface side thereof by the waveform of the tube 1.
  • the condensate generated inside the tube 1 of the EGR cooler can flow smoothly downward in the inclined direction inside the tube 1. Therefore, there is no danger of condensate remaining in the tube 1 and corroding the tube 1, and the durability is high.
  • GR cooler can be provided.
  • the exhaust gas 3 flowing through the tube 1 is agitated and the heat transfer area is increased, so that heat exchange with the cooling fluid 4 can be promoted. .
  • the tubes 1 when a large number of tubes 1 are arranged on a pair of plate members 6, they can be arranged in parallel in the same direction. That is, the tubes 1 are juxtaposed on the plate 6 without facing in an arbitrary direction around the center line. Thereby, at the time of assembling the EGR cooler, the respective bent planes can be arranged in the same direction and can be easily assembled.
  • the lower surface side of the top of the tube 1 is formed in a V-shaped cross section, and has the support portion 7 therein, so that the support V-shaped concave portion aligned with the support portion 7 is provided.
  • the plate 6 having 13 allows a large number of tubes 1 to be arranged side by side while maintaining the bent planes in the same direction. Thereby, the assembly of the EGR cooler may be facilitated.
  • the straight portions at both ends in the longitudinal direction of the tube 1 are communicated with the header 2, and the communicating portions can be easily airtightly fixed. That is, the airtightness of the tube passage between the tube 1 and the header 2 can be ensured by the same method as that for the tube having a straight length.
  • FIG. 1 is a partially cutaway plan view of the EGR cooler of the present invention
  • FIG. 2 is a perspective view of a main part of a tube 1 used in the EGR cooler
  • FIG. 3 is a cross-sectional view taken along the line III-III of FIG.
  • Fig. 4 is a cross-sectional view taken along the line IV-IV in Fig. 3
  • Fig. 5 shows another example of the tube 1 used in the EGR cooler
  • Fig. 5 (A) is a front view thereof
  • Figs. (D) is a cross-sectional view taken along the line B--B, C--C, and D--D in FIG. 5 (A)
  • FIG. 6 is a schematic cross-sectional view taken along the line VI--VI in FIG.
  • FIG. 8 is a partially cutaway plan view of an EGR cooler showing a second embodiment of the present invention
  • FIG. 8 is a view taken in the direction of arrows VIII-VIII in FIG. 7
  • FIG. 9 is still another embodiment of the EGR cooler of the present invention.
  • FIG. 10 is a schematic cross-sectional view taken along the line X--X of FIG. 9, and
  • FIG. 11 is a side view of the tube 1 used in the EGR cooler before being assembled to a pair of plate members 6 before assembling.
  • FIG. 12 is a front view of the EGR cooler, and FIG. 12 is an explanatory view showing a state in which the tube 1 used in the EGR cooler is attached to the header plate 2a.
  • Fig. 14 is an explanatory view showing the use state of the tube 1 attached to the header plate 2a.
  • Fig. 15 is a front view showing the parallel support state of another tube 1 used in the EGR cooler.
  • 6 is a cross-sectional view taken along the line FF of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a partially cutaway plan view of the EGR cooler of the present invention
  • FIG. 2 is a perspective view of a main part of a tube 1 used in the EGR cooler
  • FIG. 3 is a cross-sectional view taken along the line III-III of FIG. 4 is a sectional view taken along the line IV-IV in FIG.
  • a number of tubes 1 are spaced apart from each other and arranged in parallel at regular intervals, and both ends of each tube 1 are connected to a pair of headers 2. Then, the exhaust gas 3 flows into each tube 1 from one header 2 and is guided to the other header 2.
  • a cooling fluid 4 such as cooling water or cooling air flows around the outer circumference of each tube 1 to cool the exhaust gas 3.
  • each of the tubes 1 is formed by forming a large number of recesses 5 in a tube having a circular cross section so as to be separated from each other in the longitudinal direction and the circumferential direction of the tube 1. Adjacent recesses 5 are 180 degrees apart from each other in the circumferential direction. Each recess 5 is shown in Figure 4.
  • the inner and outer surfaces of the cross section parallel to the center line L are bent into a mountain shape, and the ridgeline 5 a at the top of the mountain is orthogonal to the center line L.
  • the ridge line 5 a is located in the direction of gravity when the heat exchanger is installed. As a result, no concavities and convexities are formed on the lower surface side of the tube 1, and condensed water accumulated in the tube can be smoothly removed to the outside.
  • the cooling fluid 4 flows in a direction perpendicular to the center line L of the tube 1 as shown in FIG. Further, the exhaust gas 3 flowing in the tube 1 undulates and is stirred by the presence of the many concave portions 5, and heat exchange with the cooling fluid 4 is promoted.
  • each tube 1 Note that the cooling fluid 4 itself flowing on the outer surface side of each tube 1 is also agitated by the presence of the concave portion 5 to promote heat exchange.
  • FIGS. 5 and 6 show another example of the tube 1 used in the EGR cooler of the present invention
  • FIG. 5 (A) is a front view thereof
  • FIGS. 5 (B) to (D) are FIG. 5 (A).
  • FIG. 3 is a cross-sectional view of each of B—B, C—C, and D—D in FIG.
  • FIG. 6 is a schematic sectional view taken along the line VI-VI in FIG. 5 (A).
  • the concave portion 5 in this example has a shape in which the maximum diameter is larger than the diameter of the tube 1, the cross section at the ridge line 5a is slightly larger than a semicircle, and both ends of the ridge line 5a are slightly expanded.
  • the exhaust gas 3 flowing through the tube 1 can be expanded in the direction of the ridge line at the concave portion 5, whereby the stirring of the fluid can be promoted and the heat exchange can be further improved.
  • FIG. 7 is a plan view (partially omitted) showing another example of the EGR cooler of the present invention
  • FIG. 8 is a view taken along the line ⁇ _ ⁇ in FIG.
  • the EGR cooler has the same shape in which the center line of each tube 1 is bent in a waveform in one plane except for both ends. And, at both ends in the longitudinal direction of the tube 1, the center line is formed in a straight line. Then, both ends thereof are passed through the tube through holes of the pair of header plates 2a, and the through portions are air-tightly fixed.
  • the header plate 2a closes the opening of the header body 2b, and forms the header 2 by the header plate 2a and the header body 2b.
  • the waveforms of the tubes 1 in each row are arranged in parallel with each other as shown in FIG.
  • the tubes 1 in each row vertically adjacent to each other are arranged such that the phases of the waves are different by 180 degrees.
  • the header 2 on the right side is provided with an exhaust gas outlet pipe 9.
  • the exhaust gas 3 flows in from the inlet / outlet pipe of the header 2 on the left side in FIG. 7, flows through each tube 1, and the exhaust gas outlet pipe 9 of the other header 2. From which it is guided to the outside.
  • a cooling fluid 4 composed of cooling water or cooling air flows in parallel to the bent plane of the tube, and the cooling fluid 4 cools the exhaust gas 3 in the tube. .
  • the exhaust gas 3 is guided in a waveform in the tube 1 and is stirred, thereby promoting heat exchange with the cooling fluid 4 and, at the same time, removing the soot adhering in the tube 1 by the stirring, so that the inside of the tube 1 is removed. Prevent blockage. Further, since the cooling fluid 4 flows in parallel to the bent plane of the tube 1, the cooling fluid 4 itself is also stirred, and heat exchange with the exhaust gas 3 can be promoted.
  • FIG. 9 is a cross-sectional front view of a main part showing another embodiment of the EGR cooler of the present invention
  • FIG. 10 is a view taken in the direction of arrows XX in FIG.
  • This EGR cooler has the same shape as that of Fig. 7 in which the center line of each tube 1 is bent into a waveform, and is parallel to each other so that the phases of the waveforms of those tubes in each row match. Are located in
  • the casing 4 covers the outer periphery of the aggregate of a large number of tubes 1 and that each tube 1 has the same wave phase in all rows. is there. That is, the upper tube 1 and the lower tube 1 are bent in the same direction in a waveform. As shown in FIG. 9, the whole is arranged at an angle ⁇ inclined with respect to the horizontal plane 15.
  • Each tube 1 has its surface in the bending direction held horizontally, and its surface is inclined at an angle ⁇ ⁇ ⁇ ⁇ with respect to the horizontal plane 15. As a result, the condensate generated in the tube 1 smoothly flows downward in the inclined direction. As a result, there is no possibility that the condensed liquid will accumulate in the tube 1 and corrode the tube.
  • each tube 1 is stabilized in the state shown in Fig. 11 by gravity balance.
  • the tubes 1 can be juxtaposed on the plate 6 in the same direction as shown in FIG.
  • This parallel arrangement facilitates the assembly of the EGR cooler. That is, at the time of the assembling, the respective tubes 1 can be arranged in parallel with the tube-through holes of the header plate 2a by matching the directions of the tubes, as shown in FIG. In this example, all the tubes 1 can be arranged in parallel with the wave bending direction of each tube 1 positioned vertically. Next, the whole assembly is rotated 90 degrees to be positioned as shown in FIG.
  • FIGS. 15 and 16 show another embodiment of the tube 1.
  • This embodiment differs from FIGS. 11 and 12 in that the cross section of the tube 1 at the support point of the plate 6 is V It is shaped like a letter.
  • the plate 6 has a large number of supporting V-shaped recesses 13 at its upper edge so as to be aligned with it. It is parallel and separated from / ⁇ .
  • the directions of all the tubes 1 arranged in parallel can be oriented in the same direction by the support V-shaped concave portion 13 and the support portion 7.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Geometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

製造し易く且つ、熱交換を促進し得るEGRクーラとして、横断面円形のチューブ1をその中心線を通る一平面内で塑性変形して、内部に波形に曲折された排気ガス流路を形成する。

Description

明 細 書
EGRクーラ 技術分野 . 本発明は、 排気ガス再循環装置 (以下、 EGRクーラという) に関する。 背景技術
EGRクーラとして、 断面円形の直線状チューブを多数互いに離間して並列させ、 その両端をヘッダに連通すると共に、チューブの外周をケーシングによって被蔽した ものが存在する。 そして、 ケーシング内に冷却水を流通させると共に、 チューブ内に 排気ガスを流通させ、 両者間に熱交換を行って、 排気ガスを冷却するものである。 さらに他の EGRクーラとして、チューブの内周面に複数条のスパイラル状の突起 を形成し、排気ガスがチューブの内周面にまんべんなく充分に接触するようにした発 明が特開 2000— 345925号として提案されている。
従来の E G Rクーラのチューブとして、その内面側に複数条のスパイラル状の突起 を形成したものは、排気ガスとチューブ内周面との接触をより向上させることがある 程度期待できるものの、 それでは充分とは言い難い。
そこで本発明は、排気ガスをチューブ内で充分攪拌してさらに熱交換を促進できる と共に、 製造し易い EGRクーラを提供することを課題とする。 さらには、 EGRク ーラはチューブ内に凝縮液が発生することがあり、 その場合、 その凝縮液を円滑に排 除できることを目的とする。 発明の開示 請求項 1に記載の本発明は、 断面円形の多数のチューブ(1)が互いに離間して並列 され、夫々のチューブ(1)の両端が一対のヘッダ(2)に連通されてなり、 チューブ(1) 内に被冷却用の排気ガス(3)が流通すると共に、チューブ(1)の外面に冷却流体 (4)が 流通する E G Rクーラにおいて、
前記チューブ(1) は横断面円形のものを、 その中心線を通る一平面内で、 塑性変形 して、内部に波形に曲折された排気ガス流路が形成されたことを特徴とする E G Rク ーラである。
請求項 2に記載の本発明は、 請求項 1において、
前記チューブ(1) の中心線が一直線上にあり、 互いに長手方向に離間して、 多数の 凹陥部(5) がその外面側から内面側に曲折されると共に、 その凹陥部(5) は前記一平 面上の断面の内外面が山形に形成され且つ、その山の頂部の稜線 (5a)はその一平面に 直交し、
隣り合う凹陥部(5) は互いに周方向に 180度異なる位置に形成され、
チューブ ) の長手方向の両端部は、 軸線に直交する断面を円形とした円形部(la) が形成されてなる E G Rクーラである。
請求項 3に記載の本発明は、 請求項 1において、
夫々の前記チューブ(1) は、 その中心線が前記一平面内で波形に曲折形成されてな る同一形状のものからなり、各列でそれらのチューブの波形の位相が一致するように 互いに平行に配置された E G Rクーラである。
請求項 4に記載の本発明は、 請求項 3において、
隣合う列の波の位相が互いに 180度異なるように配置された E G Rクーラである。 請求項 5に記載の本発明は、 請求項 3において、
夫々のチューブ(1) の中心線の曲折方向の平面が水平面(15)に対して同一の角度 0 に傾斜して配置された E G Rクーラである。
請求項 6に記載の本発明は、 請求項 3において、
夫々のチューブ(1) は、 その中心線の波形の互いに離間した二つの頂部の下面を、 その中心線に直交する板材 (6) で支持したとき、 チューブ全体の重力バランスにより 波の曲折する平面上の一方側のみに向くように形成された E G Rクーラである。 請求項 7に記載の本発明は、 請求項 3において、
夫々のチューブ(1)は、その中心線の波形の互いに離間した二つの頂部の下面側が、 横断面 V字状に形成されたチューブ支持部(7) を有する E G Rクーラである。
請求項 8に記載の本発明は、 請求項 3〜請求項 7のいずれかにおいて、
夫々のチューブ(1) の長手方向両端部は、 その中心線が直線に形成された E G Rク ーラである。
本発明の E G Rクーラは以上の構成からなり、 次の効果を有する。
請求項 1に記載の本発明によれば、 チューブ 1の中心線を通る一平面内で、 チュー ブ 1を塑性変形して、排気ガス流路を波形に形成することにより、 チューブ 1内の排 気ガスを充分曲折蛇行させて攪拌し、チューブ 1の外面の冷却流体 4との熱交換を促 進させることができる。
また、 塑性変形部分は中心線を通り一平面内で行われるため、横断面円形のものを プレス加工等により容易に塑†生変形することができる。
請求項 2に記載の本発明によれば、多数の凹陥部 5を長手方向および周方向に夫々 離間し、外面から内面側に塑性変形によって曲折形成し且つ、 凹陥部 5の断面を山形 にすると共にその稜線 5 aをチューブ 1の中心線に交差する方向に形成することに よって、 内部を流通する排気ガス 3は凹陥部 5の山形に導かれ且つ、 稜線 5 aによつ てうねり状に流通し、流通抵抗をそれ程大きくすることなく円滑に排気ガス 3を攪拌 して熱交換を促進できる。 それと共に、 目詰まりの起こり難いものとなる。
また、夫々の凹陥部 5は断面円形のチューブの外面側から塑性変形により曲折され たものであるからその製造が容易である。
さらには、 チューブ 1の両端部に円形部 1 aが形成されているので、 チューブ 1の 両端が揷通されるヘッダ 2の揷通部の気密性を確保できる。
そしてチューブ 1は基本的に断面円形であるので、耐圧性が高く高圧の排気ガス 3 を流通させることができる。
また、 凹陥部 5は互いに周方向に 180度離間したもので、 排気ガス 3を周期的に波 形にうねらせ熱交換性能をさらに向上し得る。
請求項 3に記載の本発明によれば、 熱交換器全体の長さを短くしつつ、 そのチュー ブの配列密度を直線管のそれと同一にすることができる。 即ち、 チューブ 1内の流路 長を同一とする直線管を用いる場合に比べて、 その両端間長さを短くすることができ る。
し力 も、それらのチューブ 1は中心線が一平面内で波形に曲折形成された同一形状 で且つ各列の間の波形の位相が一致するように平行に配置されたから、 コンパク トで 性能の良!/、 E G Rクーラを提供できる。
また、チューブ 1の波形によってチューブ 1内を流通する排気ガス 3およびその外 面側を流通する流体を充分攪拌して熱交換を促進し得る。
請求項 4に記載の本発明によれば、チューブ 1の外面側の流体の攪拌を促進し熱交 換性能を向上させることができる。
請求項 5に記載の本発明によれば、 E G Rクーラのチューブ 1の内部に生じる凝縮 液をチューブ 1内の傾斜方向下方に円滑に流下させることができる。 そのため、 凝縮 液がチューブ 1内に滞留してチューブ 1を腐蝕させるおそれがなく、耐久性の高レヽ E G Rクーラを提供できる。
し力 も、 チューブ 1は夫々軸線が波形に曲折形成されているため、 チューブ 1内を 流通する排気ガス 3を攪拌すると共に伝熱面積が広くなり、冷却流体 4との熱交換を 促進し得る。
請求項 6に記載の本発明によれば、一対の板材 6上に多数のチューブ 1を配置した とき、 同一方向に並列させることができる。 即ち、 チューブ 1は中心線の周りの勝手 な方向に向くことなく、 板材 6上で並列される。 それにより、 E G Rクーラ組立ての 際に、 夫々の曲折平面を同一方向に配置して容易に組み立てることができる。
請求項 7に記載の本発明によれば、チューブ 1の頂部の下面側が横断面 V字状に形 成され、 そこに支持部 7を有するので、 その支持部 7に整合する支持用 V字凹部 13を 有する板材 6によって、多数のチューブ 1をその曲折平面を同一方向に維持して多数 並列させることができる。 それにより、 E G Rクーラの組立てを容易にし得る。
請求項 8に記載の本発明によれば、チューブ 1の長手方向両端の直線部をへッダ 2 に連通し、 その連通部を気密に容易に固定することができる。 即ち、 全長が直線状の チューブと同様の方法によってチューブ 1とヘッダ 2とのチューブ揷通部の気密性 を確保し得る。 図面の簡単な説明
図 1は、 本発明の E G Rクーラの一部破断平面図、 図 2は、 同 E G Rクーラに用い られるチューブ 1の要部斜視図、 図 3は、 図 2の III— III矢視横断面図、 図 4は、 図 3における IV— IV矢視断面図、 図 5は、 同 E G Rクーラに用いられるチューブ 1の 他の例を示し、 図 5 (A) はその正面図、 図 5 ( B ) 〜 (D) は図 5 (A) の B— B , C一 C , D— Dの各断面矢視図、 図 6は、 図 5 (A) の VI— VI矢視断面略図、 図 7は、 本発明の第 2の実施の形態を示す E G Rクーラの一部破断平面図、 図 8は、 図 7の VIII— VIII矢視図、 図 9は、 本発明の E G Rクーラのさらに他の実施の形態を示す要 部破断正面図、 図 1 0は、 図 9の X— X矢視断面略図、 図 1 1は、 同 E G Rクーラに 用いられるチューブ 1の組立て前の状態で、一対の板材 6に並列した状態を示す正面 図、 図 1 2は、 図 1 1の XII— XII矢視図、 図 1 3は、 同 E G Rクーラに用いられる チューブ 1をヘッダープレート 2 aに取付けた状態を示す説明図、 図 1 4は、 同へッ ダーブレート 2 aに取付けたチューブ 1の使用状態を示す説明図、 図 1 5は、 同 E G Rクーラに用いられる他のチューブ 1の並列支持状態を示す正面図、 図 1 6は、 図 1 5の F— F矢視断面図である。 発明を実施するための最良の形態
次に、 図面に基づいて本発明の実施の形態につき説明する。
図 1は本発明の E G Rクーラの一部破断平面図であり、 図 2はその E G Rクーラに 用いられるチューブ 1の要部斜視図、 図 3は図 2の III— III矢視断面図、 図 4は図 3における IV— IV矢視断面図である。
この E G Rクーラは、 多数のチューブ 1が互いに離間して定間隔に並列され、 夫々 のチューブ 1の両端が一対のへッダ 2に連通されたものである。 そして一方のヘッダ 2から排気ガス 3が各チューブ 1内に流入し、 それが他方のヘッダ 2に導かれる。 各 チューブ 1の外周には、 冷却水または冷却風等の冷却流体 4が流通して、 排気ガス 3 を冷却するものである。
夫々のチューブ 1は図 2〜図 4に示す如く、断面円形のチューブに多数の凹陥部 5 をチューブ 1の長手方向および周方向に互いに離間して形成したものである。 隣合う 凹陥部 5は、 互いに周方向に 180度離間している。 そして夫々の凹陥部 5は図 4に示 す如く、 中心線 Lに平行な断面の内外面が山形に曲折され、 その山の頂部の稜線 5 a が中心線 Lに直交する。
なお、 チューブ 1の長手方向両端には凹陥部 5が存在せず、 そこには円形部 1 aが 形成され、 その円形部 1 aがヘッダ 2の円形孔 8に揷通され、該揷通部がろう付けま たは溶接により気密に接合されるものである。
また、 凹陥部 5は熱交換器の据付け状態において、 その稜線 5 aが重力方向に位置 する。 それによつてチューブ 1の下面側に凹凸部を形成させず、 チューブ内にたまる 凝縮水を円滑に外部に排除できる。
そして、 冷却流体 4は図 1の如く、 チューブ 1の中心線 Lに直交する方向に流通す る。 また、 チューブ 1内を流通する排気ガス 3は、 多数の凹陥部 5の存在によってう ねり状に流通し攪拌されて冷却流体 4との熱交換が促進される。
なお、夫々のチューブ 1の外面側を流通する冷却流体 4自体も凹陥部 5の存在によ り攪拌され熱交換が促進される。
次に、図 5および図 6は本発明の E G Rクーラに用いるチューブ 1の他の例を示し、 図 5 (A) はその正面図、 図 5 ( B ) 〜 (D ) は図 5 (A) の B— B , C— C , D— Dの各断面矢視図である。 また、 図 6は図 5 (A) の VI— VI矢視断面略図である。
この例が図 2〜図 4と異なる点は、 凹陥部 5の形状である。 この例の凹陥部 5は、 その最大直径がチューブ 1の直径よりも大きくなり、その稜線 5 aにおける断面が半 円よりも少し大きく且つ、稜線 5 aの両端が僅かに拡開された形状を有する。 この場 合、 チューブ 1を流通する排気ガス 3を凹陥部 5で稜線方向に広げることができ、 そ れにより流体の攪拌を促進しさらに熱交換を向上することができる。
次に、 図 7は本発明の E G Rクーラの他の例を示す平面図 (一部を省略) であり、 図 8は図 7の νΐΠ_νΐΠ矢視図である。 この E G Rクーラは、夫々のチューブ 1の中心線がその両端部を除いて一平面内で 波形に曲折形成された同一形状のものからなる。 そして、 そのチューブ 1の長手方向 両端部では、 その中心線が直線状に形成されている。 そしてその両端部が、 一対のへ ッダーブレート 2 aのチューブ揷通孔に揷通され、その揷通部が気密に固定されてい る。
このヘッダープレート 2 aはヘッダ本体 2 bの開口を閉塞し、そのヘッダープレー ト 2 aとヘッダ本体 2 bとによりヘッダ 2を形成するものである。
各列における夫々のチューブ 1の波形は、位相が一致するようにして図 7の如く互 いに平行に配置されている。 また、 上下に隣り合う各列のチューブ 1どうしは、 その 波の位相が 180度異なるように配置されている。
なお、 右側のへッダ 2には排気ガス出口パイプ 9が設けられている。
このようにしてなる E G Rクーラは、 図 7で左側のへッダ 2の出入口パイプカ ら排 気ガス 3が流入し、 各チューブ 1内を流通して、 他方のヘッダ 2の排気ガス出口パイ プ 9からそれが外部に導かれるものである。 各チューブ 1の外面側には、 夫々チュー ブの曲折平面に平行に冷却水または冷却空気からなる冷却流体 4が流通し、その冷却 流体 4によってチューブ内の排気ガス 3が冷却されるものである。
その排気ガス 3はチューブ 1内で波形に誘導されて攪拌され、冷却流体 4との熱交 換を促進すると共に、 その攪拌によってチューブ 1内に付着する煤を剥離させ、 チュ ーブ 1内が閉塞することを防止する。 また、 冷却流体 4がチューブ 1の曲折平面に平 行に流通するため、 その冷却流体 4自体も攪拌され、 排気ガス 3との熱交換を促進し 得る。
次に、 図 9は本発明の E G Rクーラの他の実施の形態を示す要部断面正面図であり、 図 1 0は図 9の X— X矢視図である。 この E G Rクーラは、 図 7のそれと同様に、 夫々のチューブ 1の中心線が波形に曲 折された同一形状のものからなり、各列でそれらのチューブの波形の位相が一致する ように互いに平行に配置されている。
図 7の例と異なる点は、多数のチューブ 1の集合体の外周をケーシング 4が被嵌し ていること、およぴ各チューブ 1は全ての列において波の位相が一致していることで ある。 即ち、 上段側のチューブ 1と下段側のチューブ 1とは同一方向に波形に曲折さ れている。 そして全体が図 9に示す如く、 水平面 15に対して角度 Θ傾斜して配置され ている。
夫々のチューブ 1は、 その曲折方向の面を水平に保持した状態で、 その面を水平面 15に対して角度 Θ傾斜させたものである。 これにより、 チューブ 1内に発生する凝縮 液は傾斜方向下方に向かって円滑に流下する。 それにより、 チューブ 1内に凝縮液が 溜まって、 チューブを腐蝕させるおそれがない。
次に、 このチューブ 1の詳細は図 1 1の如く形成されている。
これは一対の板材 6によって、夫々のチューブ 1の頂部 10の下面 11を支持したとき、 図 1 1および図 1 2の姿勢に各チューブ 1を整列させるようにして、熱交換器の組立 てを容易に行うものである。 このとき各チューブ 1は図 1 1の如く、 その両端部の中 心線 L が波全体の中心線 L。よりも下方に位置されている。そのため重力バランスに より各チューブ 1は図 1 1の状態で安定する。
これはチューブ 1を一対の板材 6で図 1 1の如く支持したとき、 が L。より下方 に位置した場合、 チューブ 1の位置エネルギーは最も安定した低い位置にある。 その ため図 1 1の向きで安定し、 不用意にそれが回転することがないからである。
仮に、 1^が L。よりも上位にあると全体として位置エネルギーが高くなり、重力の 影響を受けてより低い方に移動し、 図 1 1の状態に安定する。 その結果、 多数のチュ ーブ 1を板材 6上に図 1 2の如く向きを同一にして並列することができる。 このよう に並列することにより、 E G Rクーラの組立てを容易にする。 即ちその組立ての際、 夫々のチューブの向きを一致させて図 1 3の如く、ヘッダープレート 2 aのチューブ 揷通孔に夫々のチューブ 1を並列させることができる。 この例では夫々のチューブ 1 の波の曲折方向を上下方向に位置して全てのチューブ 1を並列させることができる。 次いで、 その組立体全体を 9 0度回転させ図 1 4の如く位置し且つ、 そのチューブ の曲折平面を水平に位置させ、 さらに全体を図 9の如く水平面 15に対し角度 Θ傾ける ことにより、 チューブ 1の内面に生ずる凝縮液を円滑に下方に流下させ、 チューブ 1 の内部にそれが溜まることを防止できる。
次に、図 1 5および図 1 6はチューブ 1の他の実施の形態を示し、この例が図 1 1, 図 1 2と異なる点は、板材 6の支持点においてチューブ 1の横断面が V字状に形成さ れていることである。 そして板材 6は、 それに整合するようにその上縁に多数の支持 用 V字凹部 13が互!/ヽに離間して並列されている。
この場合にも、並列される全てのチューブ 1の向きを支持用 V字凹部 13と支持部 7 とにより同一方向に向けることができる。

Claims

請 求 の 範 囲
1. 断面円形の多数のチューブ(1) が互いに離間して並列され、 夫々のチューブ(1) の両端が一対のヘッダ(2) に連通されてなり、 チューブ(1) 内に被冷却用の排気ガス (3) が流通すると共に、 チューブ(1) の外面に冷却流体 (4) が流通する E G Rクーラ において、
前記チューブ (1) は横断面円形のものを、 その中心線を通る一平面内で、 塑性変形 して、内部に波形に曲折された排気ガス流路が形成されたことを特徴とする E G Rク
2. 請求項 1において、
前記チューブ(1) の中心線が一直線上にあり、 互いに長手方向に離間して、 多数の 凹陥部(5) がその外面側から内面側に曲折されると共に、 その凹陥部 (5) は前記一平 面上の断面の内外面が山形に形成され且つ、その山の頂部の稜線(5a)はその一平面に 直交し、
隣り合う凹陥部(5) は互いに周方向に 180度異なる位置に形成され、
チューブ(1)の長手方向の両端部は、 軸線に直交する断面を円形とした円形部(la) が形成されてなる E G Rクーラ。
3. 請求項 1において、
夫々の前記チューブ(1)は、 その中心線が前記一平面内で波形に曲折形成されてな る同一形状のものからなり、各列でそれらのチューブの波形の位相が一致するように 互いに平行に配置された E G Rクーラ。
4. 請求項 3において、
隣合う列の波の位相が互レヽに 180度異なるように配置された E G Rクーラ。
5. 請求項 3において、 夫々のチューブ(1) の中心線の曲折方向の平面が水平面(15)に対して同一の角度 Θ に傾斜して配置された E G Rクーラ。 '
6. 請求項 3において、
夫々のチューブ(1) は、 その中心線の波形の互いに離間した二つの頂部の下面を、 その中心線に直交する板材 (6) で支持したとき、 チューブ全体の重力パランスにより 波の曲折する平面上の一方側のみに向くように形成された E G Rクーラ。
7. 請求項 3において、
夫々のチューブ(1)は、その中心線の波形の互いに離間した二つの頂部の下面側力 横断面 V字状に形成されたチューブ支持部(7) を有する E G Rクーラ。
8. 請求項 3〜請求項 7のいずれかにおいて、
夫々のチューブ(1) の長手方向両端部は、 その中心線が直線に形成された E G Rク ーラ。
PCT/JP2003/009775 2002-08-28 2003-07-31 Egrクーラ WO2004020928A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/526,331 US7171956B2 (en) 2002-08-28 2002-07-31 EGR cooler
EP03791188A EP1548386B1 (en) 2002-08-28 2003-07-31 Egr cooler
DE60332369T DE60332369D1 (de) 2002-08-28 2003-07-31 Agr-kühler

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2002249786A JP4273483B2 (ja) 2002-08-28 2002-08-28 熱交換器用チューブおよび熱交換器
JP2002-249786 2002-08-28
JP2002270395A JP2004108641A (ja) 2002-09-17 2002-09-17 多管型熱交換器
JP2002-270395 2002-09-17
JP2003145967A JP4207196B2 (ja) 2003-05-23 2003-05-23 熱交換器
JP2003-145967 2003-05-23

Publications (1)

Publication Number Publication Date
WO2004020928A1 true WO2004020928A1 (ja) 2004-03-11

Family

ID=31982125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/009775 WO2004020928A1 (ja) 2002-08-28 2003-07-31 Egrクーラ

Country Status (5)

Country Link
US (1) US7171956B2 (ja)
EP (1) EP1548386B1 (ja)
CN (1) CN100404995C (ja)
DE (1) DE60332369D1 (ja)
WO (1) WO2004020928A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006040053A1 (de) * 2004-10-07 2006-04-20 Behr Gmbh & Co. Kg Luftgekühlter abgaswärmeübertrager, insbesondere abgaskühler für kraftfahrzeuge
JP2017026301A (ja) * 2015-07-23 2017-02-02 ホヴァル・アクティエンゲゼルシャフト 伝熱器パイプ及び該伝熱器パイプを有する加熱ボイラ
US20180106500A1 (en) * 2016-10-18 2018-04-19 Trane International Inc. Enhanced Tubular Heat Exchanger

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007100673A (ja) * 2005-10-07 2007-04-19 Hino Motors Ltd Egrクーラ
US20070114005A1 (en) * 2005-11-18 2007-05-24 Matthias Bronold Heat exchanger assembly for fuel cell and method of cooling outlet stream of fuel cell using the same
US8272431B2 (en) * 2005-12-27 2012-09-25 Caterpillar Inc. Heat exchanger using graphite foam
US7287522B2 (en) * 2005-12-27 2007-10-30 Caterpillar Inc. Engine system having carbon foam exhaust gas heat exchanger
US7461639B2 (en) * 2006-04-25 2008-12-09 Gm Global Technology Operations, Inc. Coated heat exchanger
US8978740B2 (en) 2006-06-22 2015-03-17 Modine Manufacturing Company Heat exchanger
US9403204B2 (en) * 2010-01-29 2016-08-02 Modine Manufacturing Company Heat exchanger assembly and method
DE102006028578B4 (de) * 2006-06-22 2020-03-12 Modine Manufacturing Co. Wärmetauscher, insbesondere Abgaswärmetauscher
CN100565077C (zh) * 2006-12-19 2009-12-02 北京美联桥科技发展有限公司 波浪形螺旋凹槽换热管及其换热器
US8069912B2 (en) 2007-09-28 2011-12-06 Caterpillar Inc. Heat exchanger with conduit surrounded by metal foam
DE102009020306A1 (de) * 2008-05-12 2010-02-11 Modine Manufacturing Co., Racine Wärmetauscher und Verfahren zum Zusammenbau
DE102009057232A1 (de) * 2009-12-05 2011-06-09 GM Global Technology Operations LLC, ( n. d. Ges. d. Staates Delaware ), Detroit Rohrförmiger Wärmetauscher für Kraftfahrzeug-Klimaanlage
EP2463490B1 (en) * 2010-12-10 2015-09-09 Perkins Engines Company Limited Improvements in or relating to gas coolers for internal combustion engines
DE102011002552A1 (de) * 2011-01-12 2012-07-12 Ford Global Technologies, Llc Aufgeladene Brennkraftmaschine und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
JP5923886B2 (ja) * 2011-07-20 2016-05-25 株式会社デンソー 排気冷却装置
JP5768795B2 (ja) * 2011-10-18 2015-08-26 カルソニックカンセイ株式会社 排気熱交換装置
US9605912B2 (en) * 2012-04-18 2017-03-28 Kennieth Neal Helical tube EGR cooler
US9494112B2 (en) 2013-05-10 2016-11-15 Modine Manufacturing Company Exhaust gas heat exchanger and method
US9470187B2 (en) * 2014-04-14 2016-10-18 Fca Us Llc EGR heat exchanger with continuous deaeration
CN105890399A (zh) * 2014-10-31 2016-08-24 丹佛斯微通道换热器(嘉兴)有限公司 换热器
KR20160097613A (ko) * 2015-02-09 2016-08-18 현대자동차주식회사 통합 egr 쿨러
US10024275B2 (en) * 2016-01-12 2018-07-17 Ford Global Technologies Llc Condensate management system for an exhaust gas cooler and heat recovery device
CN107806777B (zh) * 2016-09-09 2020-12-04 丹佛斯微通道换热器(嘉兴)有限公司 无翅片换热器
PL230056B1 (pl) * 2016-10-13 2018-09-28 Aic Spolka Akcyjna Rura płomieniowa opalanego wymiennika ciepła
CN106482564B (zh) * 2016-11-08 2018-12-28 北京美联桥科技集团有限公司 一种带有凹陷的热交换管和热交换器
CN108317018B (zh) * 2017-12-29 2019-11-22 浙江锋锐发动机有限公司 气缸盖冷却装置及其制作方法以及气缸盖冷却系统
US10890381B2 (en) 2019-01-15 2021-01-12 Hamilton Sundstrand Corporation Cross-flow heat exchanger
WO2022147595A1 (en) * 2021-01-11 2022-07-14 Conflux Technology Pty Ltd Heat exchanger

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61170803U (ja) * 1985-04-05 1986-10-23
JPH09242548A (ja) * 1996-03-08 1997-09-16 Mazda Motor Corp 機械式過給機付エンジンの吸気装置
JPH11505011A (ja) * 1995-05-02 1999-05-11 ピアス,ディビッド,ブランド チューブフィン付けの機械および方法および製品
WO2000039517A1 (fr) * 1998-12-29 2000-07-06 Valeo Thermique Moteur Echangeur de chaleur a tubes souples
JP2002168586A (ja) * 2000-12-04 2002-06-14 Tokyo Radiator Mfg Co Ltd 熱交換器

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2731242A (en) * 1951-05-01 1956-01-17 Turbo Ray Inc Radiant heating systems and apparatus therefor
US4134377A (en) * 1977-09-29 1979-01-16 Borg-Warner Corporation Exhaust gas recirculation control valve and heat exchanger
DE3338734A1 (de) * 1983-10-25 1985-05-02 Rudolf Dipl.-Ing. 6900 Heidelberg Thomae Gliederradiator
US4685292A (en) * 1985-09-09 1987-08-11 Zwick Energy Research Organization, Inc. Exhaust cooling system for internal combustion engine
CN2072209U (zh) * 1990-08-18 1991-02-27 天津市中光经济技术有限公司 管束式热交换器
US5251693A (en) * 1992-10-19 1993-10-12 Zifferer Lothar R Tube-in-shell heat exchanger with linearly corrugated tubing
JPH0755384A (ja) * 1993-08-19 1995-03-03 Sanden Corp 多管式熱交換器
US5732688A (en) * 1996-12-11 1998-03-31 Cummins Engine Company, Inc. System for controlling recirculated exhaust gas temperature in an internal combustion engine
FR2792968B1 (fr) * 1999-04-29 2001-06-29 Westaflex Automobile Echangeur thermique en plastique et acier destine a etre dispose dans un circuit d'admission d'air d'un moteur, notamment dans un repartiteur comportant deux chambres et element du circuit d'admission d'air d'un moteur
EP1238193B1 (en) * 1999-12-14 2007-05-23 Cooper-Standard Automotive Inc. Integrated egr valve and cooler
DE10011954A1 (de) * 2000-03-11 2001-09-13 Modine Mfg Co Abgaswärmetauscher in einer Abgasrückführungsanordnung
DE10233407B4 (de) * 2001-07-26 2016-02-18 Denso Corporation Abgaswärmeaustauscher

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61170803U (ja) * 1985-04-05 1986-10-23
JPH11505011A (ja) * 1995-05-02 1999-05-11 ピアス,ディビッド,ブランド チューブフィン付けの機械および方法および製品
JPH09242548A (ja) * 1996-03-08 1997-09-16 Mazda Motor Corp 機械式過給機付エンジンの吸気装置
WO2000039517A1 (fr) * 1998-12-29 2000-07-06 Valeo Thermique Moteur Echangeur de chaleur a tubes souples
JP2002168586A (ja) * 2000-12-04 2002-06-14 Tokyo Radiator Mfg Co Ltd 熱交換器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1548386A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006040053A1 (de) * 2004-10-07 2006-04-20 Behr Gmbh & Co. Kg Luftgekühlter abgaswärmeübertrager, insbesondere abgaskühler für kraftfahrzeuge
US8739520B2 (en) 2004-10-07 2014-06-03 Behr Gmbh & Co. Kg Air-cooled exhaust gas heat exchanger, in particular exhaust gas cooler for motor vehicles
JP2017026301A (ja) * 2015-07-23 2017-02-02 ホヴァル・アクティエンゲゼルシャフト 伝熱器パイプ及び該伝熱器パイプを有する加熱ボイラ
US20180106500A1 (en) * 2016-10-18 2018-04-19 Trane International Inc. Enhanced Tubular Heat Exchanger

Also Published As

Publication number Publication date
DE60332369D1 (de) 2010-06-10
CN100404995C (zh) 2008-07-23
US7171956B2 (en) 2007-02-06
US20060130818A1 (en) 2006-06-22
CN1685192A (zh) 2005-10-19
EP1548386A4 (en) 2007-01-03
EP1548386A1 (en) 2005-06-29
EP1548386B1 (en) 2010-04-28

Similar Documents

Publication Publication Date Title
WO2004020928A1 (ja) Egrクーラ
JP4756585B2 (ja) 熱交換器用伝熱管
JP7506217B2 (ja) 全てが二次の空冷式産業用蒸気復水器
US8069905B2 (en) EGR gas cooling device
US6820682B2 (en) Heat exchanger
EP1834153B1 (en) Heat exchanger
US20070193732A1 (en) Heat exchanger
JP4143966B2 (ja) Egrクーラ用の偏平チューブ
US20080000627A1 (en) Heat exchanger
US20070000652A1 (en) Heat exchanger with dimpled tube surfaces
JP3004253U (ja) 冷媒を液化するためのコンデンサー
JP3744432B2 (ja) 排気熱交換装置
EP1724543A1 (en) Heat exchange unit and heat exchanger using the heat exchange unit
US20060260789A1 (en) Heat exchange unit and heat exchanger using the heat exchange unit
US5097896A (en) Heat exchanger
CN218131765U (zh) 反应釜外接冷凝器
JP2015535591A (ja) 熱交換手段のチューブ要素
JP2002350071A (ja) 二重管式熱交換器
EP1331462A2 (en) Automotive heat exchanger
KR100941706B1 (ko) 열 교환기
RU2052757C1 (ru) Теплообменник
JP7452672B2 (ja) フィンチューブ熱交換器
JP2020051681A (ja) サーペンタイン型熱交換器
JPS6034938Y2 (ja) ヒ−トパイプ式熱交換器
CN217058489U (zh) 热交换器

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003791188

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006130818

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10526331

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20038234653

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2003791188

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10526331

Country of ref document: US