WO2004015110A1 - 糖鎖合成遺伝子 - Google Patents

糖鎖合成遺伝子 Download PDF

Info

Publication number
WO2004015110A1
WO2004015110A1 PCT/JP2003/010025 JP0310025W WO2004015110A1 WO 2004015110 A1 WO2004015110 A1 WO 2004015110A1 JP 0310025 W JP0310025 W JP 0310025W WO 2004015110 A1 WO2004015110 A1 WO 2004015110A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
human
sugar chain
linked sugar
enzyme
Prior art date
Application number
PCT/JP2003/010025
Other languages
English (en)
French (fr)
Inventor
Kenichi Nakayama
Tomoko Ishii
Yoshihumi Jigami
Original Assignee
National Institute Of Advanced Industrial Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Advanced Industrial Science And Technology filed Critical National Institute Of Advanced Industrial Science And Technology
Priority to AU2003257811A priority Critical patent/AU2003257811A1/en
Priority to JP2004527350A priority patent/JPWO2004015110A1/ja
Priority to US10/523,363 priority patent/US20060257387A1/en
Publication of WO2004015110A1 publication Critical patent/WO2004015110A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1051Hexosyltransferases (2.4.1)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis

Definitions

  • the present invention relates to a human gene for synthesizing an enzyme involved in N-linked sugar chain synthesis derived from human, a diagnostic or therapeutic drug for glycoprotein glycan deficiency syndrome (CDGS) using the gene, and a recombinant using the gene. And a method for producing an enzyme that catalyzes the synthesis of a human N-linked sugar chain using the transformant, or using the enzyme or the transformant to produce a human N-linked sugar chain. It relates to a method for synthesizing type sugar chains.
  • CDGS glycoprotein glycan deficiency syndrome
  • the present invention clarifies human genes involved in the N-linked sugar chain synthesis system in the endoplasmic reticulum, and uses this to diagnose and treat glycoprotein glycan deficiency syndromes, and to develop glycan engineering.
  • An object of the present invention is to provide means for synthesizing the enzyme in large quantities. Disclosure of the invention
  • the present inventors have conducted intensive studies to solve the above problems, and as a result, have found a human gene having high homology to the gene of an enzyme that catalyzes N-linked sugar chain synthesis in the endoplasmic reticulum of yeast.
  • the cloned human gene was able to complement the function of the gene with respect to the deletion strain of the gene in the yeast endoplasmic reticulum.
  • the present invention is as follows.
  • the enzyme that catalyzes the synthesis of human N-linked sugar chains is a glycosyltransferase.
  • a diagnostic or therapeutic agent for human sugar chain deficiency syndrome using the gene encoding the amino acid sequence described in (3) or the gene represented by SEQ ID NO: 3, 5, 7, or 9.
  • a method for producing an enzyme comprising culturing the transformant according to (7) in a medium, and collecting an enzyme that catalyzes the synthesis of human N-linked sugar chain from the culture.
  • Figure 1 is a graph showing the results of electrophoresis performed transformant samples, the JY746 strain (wild strain) the sample and g md3 strains sample.
  • FIG. 4 is a diagram showing the results of electrophoresis performed on.
  • FIG. 3 is a diagram showing the results of electrophoresis performed on a transformant sample, a W303-1A strain (wild strain) sample, and an alg9 strain sample.
  • FIG. 4 shows the results of electrophoresis performed on a transformant sample, a W303-1A strain (wild strain) sample, and an alglO strain sample.
  • FIG. 5 shows the results of electrophoresis performed on a transformant sample, a W303-1A strain (wild strain) sample, and an algl2 strain sample.
  • the gene used to clone the gene of the enzyme that catalyzes the synthesis of human N-linked sugar chain is a gene belonging to a group of enzymes involved in the synthesis of N-linked sugar chain in yeast endoplasmic reticulum. , ALG11 gene, ALG8 gene, ALG9 gene, ALG10 gene, ALG12 gene and the like. Specific examples include the algll gene of Schizosaccharomyces ces pombe and the ALG8, ALG9, ALG10, and ALG12 genes of Saccharomyces cerevisiae.
  • the gene encodes glycolipid monomannosyltransferase (EC2.4 ⁇ 131) in the ⁇ -linked sugar chain synthesis system It is a gene that does.
  • the ALG8 gene of Saccharomyces cerevisiae is a gene encoding glycolipid ⁇ -glucosyltransferase (EC2.4.1.-) in the N-linked sugar chain synthesis system.
  • the ALG9 gene of Saccharomyces cerevisiae is a gene encoding glycolipid hemannosyltransferase (EC2.4.1.130) in the N-linked sugar chain synthesis system.
  • the ALG10 gene of Saccharomyces cerevisiae is a gene that encodes glycolipid monoglucosyltransferase (EC2.4 ⁇ ⁇ ⁇ ⁇ -) in the N-linked sugar chain synthesis system.
  • the ALG12 gene of Saccharomyces cerevisiae is a gene encoding glycolipid monomannosyltransferase (EC2.4.1.130) in the N-linked sugar chain synthesis system.
  • a human gene homologous to the N-linked sugar chain synthesis enzyme gene in the yeast endoplasmic reticulum is cloned.
  • a human gene homologous to the enzyme gene of the N-linked sugar chain synthesis system in the yeast endoplasmic reticulum is ligated to a vector that can be expressed in yeast, for example, pREPl, YEp51, YEp352GAP, pSH19, pY0325, etc.
  • yeast for example, pREPl, YEp51, YEp352GAP, pSH19, pY0325, etc.
  • a recombinant expression vector A yeast in which an enzyme gene of the N-linked sugar chain synthesis system has been deleted or mutated is transformed. If the transformed yeast has recovered the function lost by the deletion or mutation of the enzyme gene, the human gene is an N-linked sugar chain synthesis enzyme gene in the human endoplasmic reticulum. Thereafter, by PCR or amplification of the transformant, a large number of the above-described recombinant vectors are removed, and the N.V. An enzyme gene for a
  • the algll gene of the above-mentioned Schizosaccharomyces pombe is a glycolipid ⁇ -mannosyltransferase in the N-linked sugar chain synthesis system (EC2.4.1. 131), which has a mutation in this gene.
  • the Schizosaccharomyces pombe g md3 strain is temperature-sensitive and glycosylation-deficient. Due to the deficiency in glycosylation of certain acid phosphatases, they produce smaller MW than the wild type.
  • a primer is prepared based on the sequence of the algll gene and amplified by PCR using a human cDNA library to obtain a human gene having high homology to the algll gene (eg, FLJ21803).
  • a human gene having high homology to the algll gene eg, FLJ21803
  • the above gmd3 strain was transformed, and the temperature sensitivity and the molecular weight of acid phosphatase were determined. If the transformant is negative for temperature sensitivity and the molecular weight of acid phosphatase is returned to the same position as that of the wild-type strain, the above human gene is an N-linked bran chain synthesis enzyme gene in the human endoplasmic reticulum. Yes, the gene can be mass-produced by a conventional method.
  • Yeast strains in which the N-linked sugar chain enzyme gene is deleted or mutated examples thereof include the Schizosaccharomyces pombe gmd3 strain in which the algll gene is mutated, and the Saccharomyces cerevisiae alg8 strain in which the ALG8 gene is mutated.
  • the yeast strain is mutated, and the yeast strain in which the N-linked sugar chain synthase enzyme gene is deleted or mutated is screened using the decrease in the molecular weight of the glycoprotein and the temperature sensitivity as an indicator. Obtainable.
  • CDGS is an autosomal recessive inherited disease that presents various pathologies, such as cerebellar hypoplasia, liver damage, and peripheral neuropathy, of which type I is caused by deletion or mutation of an N-linked sugar chain enzyme gene. It is said that the gene is caused by enzyme deficiency, and the gene identified for the first time as a human N-linked sugar chain synthesis enzyme gene in the present invention is a useful diagnostic agent for CDGS. For example, by comparing the nucleotide sequence of the glycolipid monomannosyltransferase (EC2.4 ⁇ 131) represented by SEQ ID NO: 1 of the present invention with the nucleotide sequence of the corresponding enzyme gene of a patient, the abnormality in the gene is determined. , CDGS can be diagnosed or not.
  • the enzyme gene of the patient to be compared is determined using the enzyme gene of the present invention as a probe. It can be obtained by extracting a target gene from blood or the like, and amplifying the gene by a PCR method as appropriate.
  • the enzyme gene of the human N-linked sugar chain synthesis system of the present invention is also useful in gene therapy, including the enzyme gene of the human N-linked sugar chain synthesis system of the present invention, A virus particle containing the gene by using a helper cell or the like incorporated into a vector for gene therapy of a virus, retrovirus, Sendai virus, etc. Infants are prepared and introduced by inoculating the human body.
  • the enzyme gene of the human N-linked sugar chain synthesis system is incorporated into a vector such as plasmids pBR322, pUC18, pUC19, pET-3, YEp51, YEp352GAP, and the vector is used as a host for bacteria or yeast.
  • a vector such as plasmids pBR322, pUC18, pUC19, pET-3, YEp51, YEp352GAP
  • the vector is used as a host for bacteria or yeast.
  • yeast When the yeast is a host, examples include YEpl3, YCp50, YEp51, YEp352GAP pSH19, and pREPl. Further, to express the gene, a promoter is connected upstream thereof.
  • the promoter used in the present invention may be any promoter suitable for the host used for gene expression. Examples of the host include Escherichia coli (BL21, BL21 (DE3), etc.) and yeast (Saccharomyces cerevisiae ⁇ Pichia pastons. Schizosaccharomyces pombe chick).
  • the enzyme of the human N-linked sugar chain synthesizing system obtained by the above-mentioned production method is useful as a therapeutic agent for CDGS itself, and is used to synthesize human N-linked sugar chain in vitro using the enzyme. You can also.
  • Man5GlcNAc2-pp-Dol can be synthesized by using Man4GlcNAc2-pp-Dol and GDP-mannose as substrates.
  • the gene was cloned by PCR using a human cDNA library.
  • the cDNA library used was QUICK.Clone cDNA from CLONTECH.
  • the primer was based on the sequence registered on the database, and the part encoding the protein with restriction enzymes was used. To facilitate excision, a primer was prepared that contained an Ndel site at the N-terminal and a Smal site at the C-terminal. The sequence of each primer is shown below.
  • the PCR conditions are as follows.
  • Phase 1 94 ° C for 15 seconds
  • the amplified DNA fragment of about 1.5 kbp obtained under these conditions was inserted into the pCR2.1TOPO vector using a TA cloning kit.
  • the nucleotide sequence of the cloned gene was confirmed by a sequence kit using the dideoxy method.
  • the gene had the nucleotide sequence shown in SEQ ID NO: 1.
  • SEQ ID NO: 1 shows the corresponding amino acid sequence together with the nucleotide sequence of the gene.
  • the amino acid sequence of the protein corresponding to the gene is shown in SEQ ID NO: 2.
  • the FLJ21803 gene inserted in the pCR2.1TOPO vector was cut out with Ndel-Smal, and multiplexed between the fission yeast promoter nmtl and its overnight 21803 / pREPl was constructed by inserting into the Ndel-Smal site of the fission yeast multicopy expression vector pREPl having a roning site. This expression vector was transduced into the fission yeast Schizosaccharomyces pombe gmd3 mutation.
  • the resulting transformants were examined for temperature sensitivity as an indicator of the presence or absence of N-linked sugar chain synthesis.
  • transformants that could grow at 37 ° C were collected, grown in a low phosphate medium, and crushed with glass beads, and subjected to electrophoresis using acrylamide gel.
  • electrophoresis was performed on a sample obtained from the gmd3 strain transformed with the Saccharomyces cerevisiae ⁇ ALGll gene, the gmd3 strain sample, and the JY746 strain (wild strain).
  • Figure 1 shows the results together.
  • Lanes 1 to 3 in the figure are for the samples obtained from the above-mentioned S. albicans bomb transformant.
  • Lane 4 is for the gmd3 strain sample obtained by separate culture.
  • Lanes are samples obtained from the gmd3 strain transformed with the ALGll gene of Saccharomyces cerevisiae, and lane 6 is a sample obtained from the JY746 strain (wild strain).
  • lane 6 is a sample obtained from the JY746 strain (wild strain).
  • a band corresponding to a high molecular weight acid phosphatase having a completely added sugar chain was observed, whereas the band corresponding to the gmd3 strain sample was observed. Only bands with lower molecular weight and incomplete glycosylation are seen.
  • the gene was cloned by PCR using a human cDNA library.
  • the cDNA library used was QUICK-Clone cDNA from CLONTECH. Primers were prepared based on the sequences registered on the database. The sequence of each primer is shown below.
  • the PCR conditions are as follows.
  • the DNA amplified fragment of about 1.5 kbp obtained under these conditions was inserted into the pCR2.1TOPO vector using a TA cloning kit.
  • the nucleotide sequence of this cloned gene was confirmed by a sequence kit using the didoxy method.
  • the relevant gene is It had the base sequence shown in SEQ ID NO: 3.
  • the amino acid sequence of the protein corresponding to the gene is shown in SEQ ID NO: 4.
  • the MGC2840 gene inserted into the pCR2.1TOPO vector was excised with EcoR I-Nae I, and the yeast glycolysis system promoter overnight GAPDH and its yeast mining plant overnight.
  • These expression vectors were transformed into the budding yeast Saccharomyces cerevisiae alg8 wbpl mutant.
  • the resulting transformants were examined for temperature sensitivity as an indicator of the presence or absence of N-linked sugar chain synthesis.
  • the transformants and the control, Saccharomyces cerevisiae W303-1A strain (wild strain) and the alg8 wbpl mutant strain were cultured at 30 ° C for 5 days on an SD-ura medium having the following composition. Temperature sensitivity was confirmed.
  • transformants that could grow at 30 ° C were collected, grown in a complete medium, and crushed with glass beads as a sample, and subjected to electrophoresis using acrylamide gel.
  • al g 8 wbpl strain sample, and were subjected to electrophoresis also attached to the W 3 (-1A strain (wild strain) samples. Shown in Figure 2 together these results.
  • lanes 1 to 4 are for the samples obtained from the above Saccharomyces cerevisiae transformants, and lane 5 is for the alg8 wtol strain obtained by separate culture.
  • Lane 6 is a sample obtained from W303-1A strain (wild strain). In both the transformant sample and the W303-1A strain (wild strain) sample, a band corresponding to carboxypeptidase Y having a large molecular weight with a sugar chain completely added was observed, while the band corresponding to the alg8 wbpl strain sample was observed. Only bands with smaller molecular weight and no glycosylation are seen.
  • the gene was cloned by PCR using a human cDNA library.
  • the cDNA library used was QUICK-Clone cDNA from CLONTECH.
  • primers were prepared based on the sequences registered on the database. The sequence of each primer is shown below.
  • the PCR conditions are as follows.
  • the amplified DNA fragment of about 2 kbp obtained under these conditions was introduced into the pCR2.1TOPO vector using a TA cloning kit.
  • This cloned gene is The nucleotide sequence was confirmed by a sequence kit using the xy method.
  • the relevant gene had the nucleotide sequence shown in SEQ ID NO: 5.
  • the amino acid sequence of the protein corresponding to the gene is shown in SEQ ID NO: 6.
  • the FLJ21845 gene inserted into the pCR2.1TOPO vector was excised with EcoR I-Dra I, and the pUC18 multi-cloning was performed between the yeast glycolysis promoter GAPDH and the yeast mine overnight. It was inserted into the EcoR I-Pvu II site of YEp352GAP, a development vector that has a portion from EcoR I to Sal I. These expression vectors were transformed into the budding yeast Saccharomyces cerevisiae alg9 wbpl mutant.
  • the resulting transformants were examined for temperature sensitivity as an indicator of the presence or absence of N-linked sugar chain synthesis.
  • Transformants and control Saccharomyces cerevisiae W303-1A (wild type) and alg9 wbpl mutant were cultured in SD-uni medium having the following composition for 5 days at 30 to confirm temperature sensitivity. did. As a result, it was confirmed that the transformant and the wild strain could grow even at 30 ° C. In contrast, the alg9 wbpl mutant could not grow at 30 ° C.
  • transformants that could grow at 30 ° C were collected, grown in a complete medium, and crushed with glass beads as a sample, and subjected to electrophoresis using acrylamide gel. Similarly, electrophoresis was performed on the alg9 wbpl strain sample and the W303-1A strain (wild strain) sample. Figure 3 shows the results together.
  • Lanes 1-3 in the figure were obtained from the Saccharomyces cerevisiae transformant. Lane 4 is a sample of alg9 wbpl strain obtained by separate culturing, and Lane 5 is a sample obtained from W303-1A strain (wild strain).
  • the gene was cloned by PCR using human cDNA.
  • the cDNA used was human stomach cDNA.
  • Primers were prepared based on the sequences registered on the database. The sequence of each primer is shown below.
  • the PCR conditions are as follows.
  • the XM-050190 gene inserted into the pCR2.1TOPO vector is excised with EcoR I-Kpn I, and the pUC18 multi-chromosome is inserted between the yeast glycolytic promoter GAPDH and the yeast Mine overnight. Yuichi, a development engineer who has a portion from EcoR I to Sal I, was introduced to the EcoR I-Kpn I site of YEp352GAP. These expression vectors were transformed into a budding yeast Saccharomyces cerevisiae alglO wbpl mutant.
  • the resulting transformants were examined for temperature sensitivity as an indicator of the presence or absence of N-linked sugar chain synthesis.
  • a transformant and a control, Saccharomyces cerevisiae W303-1A (wild type) and an alglO wbpl mutant were cultured in an SD-ura medium having the following composition at 30 ° C for 5 days, and then temperature-sensitive. It was confirmed.
  • the gene was cloned by PCR using a human cDNA library.
  • cDNA library cDNA of human tissue was used. Primers were prepared based on the sequences registered on the database. The sequence of each primer is shown below.
  • the PCR conditions are as follows.
  • the amplified DNA fragment of about 1.5 kbp obtained under these conditions was inserted into the pCR2.1TOPO vector using a TA cloning kit.
  • the nucleotide sequence of the cloned gene was confirmed by a sequence kit using the didoxy method.
  • the relevant gene had the nucleotide sequence of SEQ ID NO: 9.
  • the amino acid sequence of the protein corresponding to the gene is shown in SEQ ID NO: 10.
  • the MGC3136 gene inserted into the pCR2.1TOPO vector is excised with EcoRI, and the yeast glycolysis promoter GAPDH is inserted between pAP18 and the rice millet.
  • the expression vector containing the portion from EcoRI to SalI was inserted into the EcoRI site of YEp352GAP. These expression vectors were transformed into Saccharomyces cerevisiae algl2 mutant strains of budding yeast.
  • Transformants were collected, grown in a complete medium, and crushed with glass beads as a sample, and subjected to electrophoresis using acrylamide gel. Similarly, al g 12 strains sample, and also the W303-1A strain (wild strain) the sample was subjected to electrophoresis. Figure 5 shows these results together.
  • Lanes 1 to 4 in the figure are for samples obtained from the above Saccharomyces cerevisiae transformants, lane 5 is for the algl2 strain sample obtained by separate culture, and lane 6 is for the W303-1A strain. This is a sample obtained from (wild strain).
  • the gene for the N-linked sugar chain synthase in the human endoplasmic reticulum has been clarified for the first time.
  • Deletion or mutation of the N-linked sugar chain synthase gene in the human endoplasmic reticulum is known to cause glycoprotein glycan deficiency syndrome (CDGS). It is extremely useful for diagnosis and treatment of glycoprotein deficiency syndrome (CDGS).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Endocrinology (AREA)
  • Emergency Medicine (AREA)
  • Obesity (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本発明は、ヒトの小胞体のN結合型糖鎖合成酵素の遺伝子を明らかにすることにより、糖タンパク質糖鎖不全症候群(CDGS)の診断あるいは治療に有効な手段を提供する。本発明では、酵母小胞体におけるN結合型糖鎖合成を触媒する酵素遺伝子と相同性を有し、かつ酵母における該遺伝子の欠失株に対して該遺伝子の機能を相補し得ることを指標として、ヒトN結合型糖鎖合成を触媒する酵素の遺伝子を見いだす。 

Description

P T/JP2003/010025 明 細 書 糖鎖合成遺伝子 技術分野
本発明は、 ヒト由来の N結合型糖鎖合成に関わる酵素を合成するためのヒト 遺伝子、 該遺伝子を用いた糖タンパク質糖鎖不全症候群 (CDGS) の診断あるい は治療薬、 該遺伝子により組み換えられた組み換えベクター及び形質転換体、 該 形質転換体を用いてヒト N結合型糖鎖の合成を触媒する酵素を製造する方法、 若 しくは該酵素あるいは上記形質転換体を用いて、 ヒト N結合型糖鎖を合成する方 法に関する。 背景技術
糖タンパク質糖鎖不全症候群 CDGSの原因遺伝子を特定するためには、 糖鎖 合成に関わる遺伝子を網羅的にクローニングする必要がある. 特に、 ヒト N結合 型糖鎖の根本の合成に関わる遺伝子であるヒト小胞体での合成過程における遺伝 子群は、 特に重要である。
現に、 糖タンパク質糖鎖不全症候群のうち、 いくつかの原因遺伝子が究明さ れているが、 これらの多くは小胞体での N結合型糖鎖の合成に関わる遺伝子の不 全によることが知られている。 この小胞体での N結合型糖鎖の合成経路は、 酵母 からヒトに至るまで共通して存在し、 その合成に関わる遺伝子の多くは、 酵母で 単離されてきている。 一方、 ヒトの遺伝子については、 デ一夕ベース上にほぼ全ての配列があると 考えられているにもかかわらず、 その機能が未知であるために、 そのほとんどの 遺伝子が単離されていない。 このため、 さらなる CDGSの詳しい診断、 治療のた めには、 これらの遺伝子の単離が重要な課題となっている。
一方、 この N結合型糖鎖の合成において、 基本骨格となる小胞体での生合成 酵素は、 生体外での大量合成を行う際には必須のものである。 このことから、 こ れらの遺伝子を単離する事は、 糖鎖工学への応用として酵素の供給をする際にも 非常に重要となる。
本発明は、 小胞体での N結合型糖鎖合成系に関わるヒトの遺伝子を明らかに し、 これを用いて、 糖タンパク質糖鎖不全症侯群の診断、 治療を行うとともに、 糖鎖工学への応用として該酵素を大量合成する手段を提供することにある。 発明の開示
本発明者らは、 上記課題を解決すべく鋭意研究を重ねた結果、 酵母の小胞体 での N結合型糖鎖合成を触媒する酵素の遺伝子と相同性の高いヒト遺伝子を見い だし、 これをクローニングした。 そして、 該クローニングされた上記ヒト遺伝子 は、 驚くべきことに、 酵母小胞体における該遺伝子の欠失株に対して該遺伝子の 機能を相補し得たことにより、 ヒトの小胞体の N結合型糖鎖合成酵素の遺伝子で あると確信し、 本発明を完成させるに至った。
すなわち、 本発明は以下のとおりのものである。
( 1 ) 酵母小胞体における N結合型糖鎖合成を触媒する酵素遺伝子と相同性を有 し、 かつ酵母における該遺伝子の欠失株に対して該遺伝子の機能を相補し得るも のであって、ヒト N結合型糖鎖合成を触媒する酵素を合成するためのヒト遺伝子。
(2) ヒト N結合型糖鎖合成を触媒する酵素が糖転移酵素である (1) 記載のヒ h ?lfeナ α
(3) 配列番号 2、 4、 6、 8または 10で示されるアミノ酸配列、 あるいはそ の一部アミノ酸の欠失、 置換、 付加を含むアミノ酸配列を有するタンパク質をコ —ド る?ifeナ。
(4) 配列番号 1、 3、 5、 7または 9で示される塩基配列を有する遺伝子。
(5) 上記 (3) に記載されたアミノ酸配列をコードする遺伝子、 あるいは配列 番号 3、 5、 7、 または 9で示される遺伝子を用いたヒト糖鎖不全症候群の 診断あるいは治療薬。
(6) 上記 ( 1) 〜 (3) いずれか一項に記載の遺伝子により組み換えられた組 み換えべクタ一。
(7) 上記 (6) に記載の組み換えべクタ一により形質転換された形質転換体。
(8) 上記 (7) に記載の形質転換体を培地に培養し、 培養物からヒト N結合型 糖鎖の合成を触媒する酵素を採取することを特徴とする、 該酵素の製造方法。
(9) 上記 (8) に記載の酵素を用いることを特徴とする、 ヒト N結合型糖鎖の 合成方法。 図面の簡単な説明 '
第 1図は、 形質転換体試料、 JY746株 (野生株) 試料および gmd3株試料に ついて行った電気泳動の結果を示す図である。
第 2図は、 形質転換体試料、 W303-1A株 (野生株) 試料および alg8株試料 について行った電気泳動の結果を示す図である。
第 3図は、 形質転換体試料、 W303-1A株 (野生株) 試料および alg9株試料 について行った電気泳動の結果を示す図である。
第 4図は、 形質転換体試料、 W303-1A株 (野生株) 試料および alglO株試料 について行った電気泳動の結果を示す図である。
第 5図は、 形質転換体試料、 W303-1A株 (野生株) 試料および algl2株試料 について行った電気泳動の結果を示す図である。 発明を実施するための最良の形態
本発明において、 ヒト N結合型糖鎖合成を触媒する酵素の遺伝子をクロ一二 ングするために用いる遺伝子は、 酵母小胞体の N結合型糖鎖合成に関与する酵素 群の遺伝子であり、例えば、 ALG11遺伝子、 ALG8遺伝子、 ALG9遺伝子、 ALG10 遺伝子、 ALG12遺伝子等に属する遺伝子である。 具体的には、 例えばシゾサッ カロミセス ·ポンべ ( Schizosaccharomy ces pombe) の algll ¾伝子、 サヅカロミ セス 'セレビジェ(Saccharomyces cerevisiae)の ALG8遺伝子、 ALG9遺伝子、 ALG10 遺伝子、 ALG12遺伝子等である。
上目 ΰシゾサヅカロミセス 'ポンべ ( Schizosaccharomyces pombe) 0 algll τΜ. 伝子は、 Ν結合型糖鎖合成系におけるグリコリピドひ一マンノシルトランスフヱ ラ一ゼ (EC2.4丄 131) をコードする遺伝子である。
サヅカロミセス 'セレビジェ (Saccharomyces cerevisiae) の ALG8遺伝子は N結合型糖鎖合成系におけるグリコリピド α—グルコシルトランスフェラ一ゼ (EC2.4.1.-) をコードする遺伝子である。 サッカロミセス ·セレビジェ (Saccharomyces cerevisiae) の ALG9遺伝子は N結合型糖鎖合成系におけるグリコリピドひーマンノシルトランスフェラ一ゼ (EC2.4.1.130) をコードする遺伝子である。
サヅカロミセス ·セレビジェ (Saccharomyces cerevisiae) の ALG10遺伝子は N結合型糖鎖合成系におけるグリコリピド 一グルコシルトランスフェラ一ゼ (EC2.4丄-) をコードする遺伝子である。
サヅカロミセス ·セレビジェ (Saccharomyces cerevisiae) の ALG12遺伝子は N結合型糖鎖合成系におけるグリコリピド 一マンノシルトランスフェラ一ゼ (EC2.4.1.130) をコードする遺伝子である。
これら酵母の遺伝子と相同性を有し、 かつ酵母におけるこれら遺伝子の欠失 あるいは変異株に対してその機能を相補できるヒト遺伝子は、 ヒト小胞体におけ る N結合型糖鎖合成系の酵素遺伝子といえる。
したがって、 本発明においてヒト小胞体における N結合型糖鎖合成系の酵素 遺伝子を得るには、 酵母小胞体における N結合型糖鎖合成系の酵素遺伝子と相同 性のあるヒト遺伝子をクロ一ニングする。 これには、 例えば、 酵母の上記 N結合 型糖鎖合成系の酵素遺伝子の塩基配列を基に合成プライマ一を作成し、 ヒトの c D N Aライブラリ一を用い P C R法により、 酵母小胞体における N結合型糖鎖合 成系の酵素遺伝子と相同性のあるクローニングされたヒト D N Aを得ることがで さる。
次いで、 酵母小胞体における N結合型糖鎖合成系の酵素遺伝子と相同性のあ るヒト遺伝子を、 酵母において発現可能なベクタ一、 例えば pREPl、 YEp51、 YEp352GAP、 pSH19、 pY0325等に連結し、 該組み換え発現べクタ一を用いて、 N結合型糖鎖合成系の酵素遺伝子が欠失あるいは変異された酵母を形質転換す る。形質転換された酵母が、 該酵素遺伝子の欠失または変異により喪失した機能 を回復していれば、 上記ヒト遺伝子はヒト小胞体における N結合型糖鎖合成系の 酵素遺伝子である。 以後、 P C Rによる増幅、 あるいは形質転換体の培養で、 上 記,組み換えべク夕一を多数取り出し、 該ベクタ一の制限酵素等による切り出し等 の当該分野で周知の方法により、 ヒト小胞体における N結合型糖鎖合成系の酵素 遺伝子を得ることができる。
この点について、 さらに具体的にいえば、 例えば、 上記シゾサッカロミセス •ボンべ (Schizosaccharomyces pombe) の algll遺伝子は、 N結合型糖鎖合成系 におけるグリコリピド α—マンノシルトランスフェラ一ゼ (EC2.4.1.131) をコ一 ドする遺伝子であり、 この遺伝子に変異のあるシゾサヅカロミセス ·ボンべ (Schizosaccharomyces pombe) gmd3株は、 温度感受性であり、 また糖鎖付加不全 となり、 糖蛋白質である酸性フォスファタ一ゼの糖鎖付加において不全があるた め、 野生型に比べ小さい分子量のものを生産する。 一方、 algll遺伝子の配列を 基にプライマ一を作成し、 ヒト c D NAライブラリ一を用いて P C Rにより増幅 を行い、 algll遺伝子と相同性の高いヒト遺伝子 (例えば FLJ21803) を得る。 該 遺伝子を用いて、 上記 gmd3株を形質転換し、 温度感受性および酸性フォスファ 夕ーゼの分子量の大きさをみる。 形質転換体が温度感受性マイナスで、 酸性フォ スファ夕一ゼの分子量を野生型株と同じ位置に戻していれば、上記ヒト遺伝子は、 ヒト小胞体における N結合型糠鎖合成系の酵素遺伝子であり、 常法により該遺伝 子を大量生産できる。
上記 N結合型糖鎖合成系の酵素遺伝子が欠失あるいは変異された酵母株に は、 例えば、 algll遺伝子が変異したシゾサヅカロ ミセス · ボンべ (Schizosaccharomyces pombe) gmd3株、 ALG8遺伝子が変異したサヅカロミセス -セレビジェ (Saccharomyces cerevisiae) alg8株等が挙げられるが、 放射線、 紫 外線照射等の突然変異手段により、 酵母を変異させ、 糖タンパク質の分子量の減 少ゃ温度感受性などを指標として、 N結合型糖鎖合成系の酵素遺伝子が欠失ある いは変異された酵母株をスクリ一ニングして得ることができる。
C D G Sは常染色体劣性遺伝性疾患であり、 小脳形成不全や肝障害、 末梢神 経傷害等様々な病体を呈し、 そのうち I型は N結合型糖鎖合成系の酵素遺伝子の 欠失あるいは変異より該酵素の欠損により引き起こされるとされており、 本発明 において初めてヒト N結合型糖鎖合成系の酵素遺伝子として同定された遺伝子 は、 有用な C D G Sの診断薬である。 例えば、 本発明の配列番号 1で示されるグ リコリピド 一マンノシルトランスフェラーゼ (EC2.4丄 131) の塩基配列と、 対 応する患者の酵素遺伝子の塩基配列と対比して、遺伝子の異常をみることにより、 C D G Sか否かを診断することができる。
本発明のヒト N結合型糖鎖合成系の酵素遺伝子を使用して診断を行う場合に おいて、 対比の対象となる患者の酵素遺伝子は、 本発明の該酵素遺伝子をプロ一 ブとして患者の血液等から対象遺伝子を取り出し、 これを適宜 P C R法により増 幅することにより得ることができる。
また、 本発明のヒト N結合型糖鎖合成系の酵素遺伝子は、 遺伝子治療におい ても有用であり、 これには、 本発明のヒト N結合型糖鎖合成系の酵素遺伝子を、 例えば、 アデノウイルス、 レトロウイルス、 センダイウィルス等の遺伝子治療用 のベクターに組み込み、 ヘルパー細胞などを用いて当該遺伝子を含むウィルス粒 子を調製し、 これを人体に接種することにより導入する。
本発明においては、 ヒト N結合型糖鎖合成系の酵素遺伝子を、 プラスミ ド pBR322、 pUC18、 pUC19、 pET-3、 YEp51、 YEp352GAP等のベクタ一に組み込み、 該ベクタ一で細菌あるいは酵母等の宿主を形質転換し、 該形質転換体を培地に培 養することにより、 該遺伝子に対応するヒト N結合型糖鎖合成系の酵素を大量に 生産することも可能である。 本発明の酵素の製造方法において用いるベクタ一と しては、 例えば大腸菌が宿主の場合 pBR322、 pUC18、 pET-3等があげられる。 酵 母が宿主の場合は、 YEpl3、 YCp50、 YEp51、 YEp352GAP pSH19、 pREPl等が が挙げられる。 さらに、 該遺伝子を発現させるにはその上流にプロモーターを接 続する。 本発明で用いられるプロモー夕一は、 遺伝子の発現に用いる宿主に対応 して適切なプロモ一夕一であればいかなるものでもよい。 宿主としては大腸菌 (BL21、 BL21( DE3)など)、 酵母 ( Saccharomyces cerevisiae^ Pichia pastons. Schizosaccharomyces pombe i ヒ) 等が挙ゎられる。
上記した製造方法により得られるヒト N結合型糖鎖合成系の酵素は、 それ自 体 C D G Sの治療薬として有用であるほか、 該酵素を用いて生体外でヒト N結合 型糖鎖を合成することもできる。 例えば、 ヒト ALG11相同遺伝子にコードされ るひマンノシルトランスフェラーゼの場合、 基質として Man4GlcNAc2-pp-Dol と GDP-mannoseを用いることにより、 Man5GlcNAc2-pp-Dolを合成できる。
以下に、 本発明の実施例を示すが、 本発明は特にこれに限定されるものでは ない。
(実施例 1 )
く A L G 1 1ヒトホモログ FLJ21803のクローニング〉 ヒトの cDNAライブラリ一を用いて PCR法により遺伝子をクローニングし た。 cDNAライブラリーは CLONTECH社の QUICK.Clone cDNAを用いた. プラ イマ一は、 デ一夕一ベース上に登録されている配列をもとに、 制限酵素でタンパ ク質をコードしている部分が容易に切り出せるように、 N —末端部分に Ndelサ イト、 C一末端部分に Smalサイトをあらかじめ含んだプライマーを作製した。 それぞれのプライマーの配列を以下に示す。
5'-TCCCCCGGGT ACTTAAATAACTTTrCCACAGATGATAGGAA-3'
5'-GGGAATrCCATATGGCGGCCGGCGAAAGGAGCTG-3'
PCRの条件は以下のとおりである。
第 1段階: 9 4 °C 1 5秒
第 2段階: 4 9 °C 3 0秒
第 3段階: 7 2 °C 3分
3 0サイクル
この条件で得られた約 1 . 5 k b pの DNA増幅断片を T Aクローニングキ ヅトを用いて pCR2.1TOPOベクタ一に揷入した。 このクロ一ニングされた遺伝子 をダイデォキシ法を用いたシークェンスキヅトにより塩基配列を確認した。 該遺 伝子は配列番号 1で示される塩基配列を有していた、 なお、 配列番号 1には該遺 伝子の塩基配列とともに対応するアミノ酸配列を示した。 また、 該遺伝子に対応 する蛋白質のアミノ酸配列を配列番号 2に示した。
〈形質転換〉
pCR2.1TOPOベクタ一に揷入されている FLJ21803遺伝子を Ndel― Smalで 切り出し、 分裂酵母のプロモーター nmtl とその夕一ミネ一夕一の間にマルチク ローニングサイトをもつ分裂酵母多コピー発現用べクタ一 pREPlの Ndel - Smal サイトに揷入して、 21803 / pREPlを構築した。 この発現ベクターを分裂酵母の シゾサヅカロミセス -ボンべ (Schizosaccharomyces pombe) gmd3変異 へ开質転 換した。
<gmd3変異株の機能〉
得られた形質転換体について、 N結合型糖鎖合成の有無の指標となる温度感 受性を調べた。 形質転換体及びコントロールであるシゾサヅカロミセス ·ボンべ (Schizosaccharomyces pombe) JY746株 (野生株) と gmd3株を以下の組成を有 する MM-leu培地で 37 °Cで 3日間培養して、 温度感受性を調べた。
その結果、 形質転換体と野生株 は 37 °Cでも生育できることが確認された。 こ れに対して gmd3株は 37 °Cでは生育できなかった。
一方、 37 °Cで生育できた形質転換体を採取し、 低リン酸培地で生育させた 後グラスビーズで破砕した物を試料とし、 アクリルアミドゲルを用いて電気泳動 を行った。 同様にしてサヅカロミセス ·セレビジェ(Saccharomyces cerevisiae) © ALGll遺伝子を形質転換した gmd3株から得られた試料、 gmd3株試料、 及び上 記 JY746株 (野生株) 試料についても電気泳動を行った。 これらの結果を合わせ て第 1図に示す。
図中 1〜 3レーンは、 上記シゾサヅカロミセス ·ボンべ形質転換体から得ら れた試料についてのものであり、 4 レーンは別途培養して得られた gmd3株試料 であり、 5 レーンはサヅカロミセス ■セレビジェ( Saccharomyces cerevisiae)の ALGll遺伝子を形質転換した gmd3株から得られた試料であり、 6レーンは JY746 株 (野生株) から得られた試料である。 形質転換体試料と JY746株 (野生株) 試料においては、 ともに完全に糖鎖が 付加した分子量の大きな酸†生フォスファタ一ゼに対応するバンドがみられるのに 対して、 gmd3株試料では該バンドより分子量の小さな不完全な糖鎖付加が起き たバンドしか見られない。
したがって、 このことから、 ヒト遺伝子 FLJ21803 は分裂酵母内でも機能を 相補することが明らかとなった。
(実施例 2 )
く ALG8ヒトホモ口グ MGC2840のクロ一二ング〉
ヒトの cDNAライブラリ一を用いて PCR法により遺伝子をクロ一ニングし た。 cDNAライブラリ一は CLONTECH社の QUICK-Clone cDNAを用いた。 プラ イマ一は、 デ一夕一ベース上に登録されている配列をもとに、 プライマ一を作製 した。 それそれのプライマーの配列を以下に示す。
5'-GGAATTCCATATGGCGGCGCTCACAATTGCCACGGGTACTGGC-3,
S'-TCCCCCGGGTCATTGTTTCTTTGTCTTGCCAATAGCAGAG-S'
PCRの条件は以下の通りである。
94 °C 30秒
50 °C 30秒
72 °C 2分
30サイクル
この条件で得られた約 1.5kbpの DNA増幅断片を TAクローニングキットを 用いて pCR2.1TOPOベクターに揷入した。 このクロ一ニングした遺伝子をダイデ ォキシ法を用いたシークェンスキヅトにより塩基配列を確認した。 該当遺伝子は 配列番号 3で示される塩基配列を有していた。 なお、 該遺伝子に対応する蛋白質 のァミノ酸配列を配列番号 4に示した。
〈形質転換〉
pCR2.1TOPOベクタ一に挿入されている MGC2840遺伝子を EcoR I-Nae Iで 切り出し、 酵母の解糖系のプロモ一夕一 GAPDH とその夕一ミネ一夕一の間に pUC18のマルチクロ一ニングサイトのうち EcoR Iから Sal Iまでの部分を持つ発 現用ぺク夕一 YEp352GAPの EcoR I-Pvu IIサイトに揷入した。 これらの発現べク ターを出芽酵母のサヅカロミセス -セレビジェ (Saccharomyces cerevisiae) alg8 wbpl変異株へ形質転換した。
<alg8 wbpl変異株の機能回復〉
得られた形質転換体について、 N結合型糖鎖合成の有無の指標となる温度感 受性を調べた。形質転換体及びコントロ一ルであるサヅカロミセス 'セレビジェ (Saccharomyces cerevisiae) W303-1A株 (野生株) と alg8 wbpl変異株を以下の 組成を有する SD-ura培地で 30 °Cで 5日間培養して、 温度感受性を確認した。
その結果、 形質転換体と野生株は 30 °Cでも生育できることが確認された。 これに対して alg8 wbpl変異株は 30 °Cでは生育できなかった。
一方、 30 °Cで生育できた形質転換体を採取し、 完全培地で生育させた後、 グラスビーズで破砕した物を試料とし、 アクリルアミドゲルを用いて電気泳動を 行った。 同様にして、 alg8 wbpl株試料、 及び上記 W3( -1A株 (野生株) 試料に ついても電気泳動を行った。 これらの結果を合わせて第 2図に示す。
図中 1〜4レーンは上記サヅカロミセス 'セレビジェ形質転換体から得られ た試料についてのものであり、 5レーンは別途培養して得られた alg8 wtol株試 料であり、 6レーンは W303-1A株 (野生株) から得られた試料である。 形質転換 体試料と W303-1A株 (野生株) 試料においては、 ともに完全に糖鎖が付加した 分子量の大きなカルボキシぺプチダーゼ Yに対応するバンドがみられるのに対し て、 alg8 wbpl株試料では該バンドより分子量が小さく、 糖鎖付加が起こってい ないバンドしか見られない。
したがって、 このことから、 ヒト遺伝子 MGC2840 は出芽酵母内でも機能を 相補することが明らかとなつた。
(実施例 3 )
<ALG9ヒトホモログ FLJ21845のクロ一二ング〉
ヒトの cDNAライブラリ一を用いて PCR法により遺伝子をクローニングし た。 cDNAライブラリ一は CLONTECH社の QUICK-Clone cDNAを用いた。 プラ イマ一は、 デ一夕一ベ一ス上に登録されている配列をもとに、 プライマーを作製 した。 それそれのプライマ一の配列を以下に示す。
5'-AACGTTAACATGGCTAGTCGAGGGGCTCGGCAGCGCCTGAAGGGCAGC-3'
5'-AACGTTAACCTAACCTCCACTTTTCTTCCTGATTTGCTTTGCTTTCCG-3'
PCRの条件は以下の通りである。
94 °C 30秒
50 °C 30秒
72 °C 3分
30サイクル
この条件で得られた約 2kbpの DNA増幅断片を TAクロ一ニングキットを用 いて pCR2.1TOPOベクタ一に揷入した。 このクロ一ニングした遺伝子をダイデォ キシ法を用いたシークェンスキットにより塩基配列を確認した。 該当遺伝子は配 列番号 5で示される塩基配列を有していた。 なお、 該遺伝子に対応する蛋白質の ァミノ酸配列を配列番号 6に示した。
〈形質転換〉
pCR2.1TOPOベクタ一に挿入されている FLJ21845遺伝子を EcoR I-Dra Iで切 り出し、 酵母の解糖系のプロモ一夕一 GAPDH とその夕一ミネ一夕一の間に pUC18のマルチクロ一ニングサイトのうち EcoR Iから Sal Iまでの部分を持つ発 現用べクタ一 YEp352GAPの EcoR I-Pvu IIサイトに挿入した。 これらの発現べク 夕一を出芽酵母のサヅカロミセス ·セレビジェ (Saccharomyces cerevisiae) alg9 wbpl変異株へ形質転換した。
<alg9 wbpl変異株の機能回復〉
得られた形質転換体について、 N結合型糖鎖合成の有無の指標となる温度感 受性を調べた。 形質転換体及びコントロールであるサヅカロミセス 'セレビジェ (Saccharomyces cerevisiae) W303-1A株 (野生株) と alg9 wbpl変異株を以下の 組成を有する SD-uni培地で 30 で 5日間培養して、 温度感受性を確認した。 そ の結果、 形質転換体と野生株は 30 °Cでも生育できることが確認された。 これに 対して alg9 wbpl変異株は 30 °Cでは生育できなかった。
一方、 30 °Cで生育できた形質転換体を採取し、 完全培地で生育させた後、 グラスビーズで破砕した物を試料とし、 アクリルアミドゲルを用いて電気泳動を 行った。 同様にして、 alg9 wbpl株試料、 及び上記 W303-1A株 (野生株) 試料に ついても電気泳動を行った。 これらの結果を合わせて第 3図に示す。
図中 1〜3レーンは上記サッカロミセス ·セレビジヱ形質転換体から得られ た試料についてのものであり、 4レーンは別途培養して得られた alg9 wbpl株試 料であり、 5レーンは W303-1A株 (野生株) から得られた試料である。
形質転換体試料と W303-1A株 (野生株) 試料においては、 ともに完全に糖 鎖が付加した分子量の大きなカルボキシぺプチダ一ゼ Yに対応するバンドがみら れるのに対して、 alg9 wbpl株試料では該バンドより分子量が小さく、 糖鎖付カロ が起こっていないバンドしか見られない。
したがって、 このことから、 ヒト遺伝子 FLJ21845 は出芽酵母内でも機能を 相補することが明らかとなった。
(実施例 4 )
く ALG10ヒトホモ口グ XM—050190のクロ一二ング〉
ヒトの cDNAを用いて PCR法により遺伝子をクロ一ニングした。 cDNAは ヒト stomachの cDNAを用いた。 プライマーは、 データ一ベース上に登録されて いる配列をもとに、 プライマ一を作製した。 それぞれのプライマ一の配列を以下 に示す。
5'-AAAAGGCCTATGGCGCAGCTGGAAGGTTACTATTTCTCGGCCGCCTTG-3'
5'-TTTTCCGGATTACCACATAAACCTTTGAATGTCCTGACTATTTGGCCACT-3'
PCRの条件は以下の通りである。
94 °C 30秒
50 °C 30秒
72 °C 2分
30サイクル
この条件で得られた約 1.5kbpの DNA増幅断片を TAクロ一ニングキヅトを 用いて pCR2.1TOPOベクターに挿入した。 このクローニングした遺伝子をダイデ ォキシ法を用いたシークェンスキットにより塩基配列を確認した。 該当遺伝子は 配列番号 7で示される塩基配列を有していた。 なお、 該遺伝子に対応する蛋白質 のァミノ酸配列を配列番号 8に示した。
〈形質転換〉
pCR2.1TOPOベクタ一に挿入されてレ、る XM— 050190遺伝子を EcoR I-Kpn I で切り出し、 酵母の解糖系のプロモ一夕一 GAPDH とその夕一ミネ一夕一の間に pUC18のマルチクロ一ニングサイトのうち EcoR Iから Sal Iまでの部分を持つ発 現用べク夕一 YEp352GAPの EcoR I-Kpn Iサイトに揷入した。 これらの発現べク 夕一を出芽酵母のサヅカロミセス ·セレビジェ (Saccharomyces cerevisiae) alglO wbpl変異株へ形質転換した。
<alg10 wbpl変異株の機能回復〉
得られた形質転換体について、 N結合型糖鎖合成の有無の指標となる温度感 受性を調べた。 形質転換体及びコントロールであるサヅカロミセス 'セレビジェ (Saccharomyces cerevisiae) W303-1A株 (野生株) と alglO wbpl変異株を以下の 組成を有する SD-ura培地で 30 °Cで 5日間培養して、 温度感受性を確認した。
その結果、 形質転換体と野生株は 30 °Cでも生育できることが確認された。 これに対して alglO wbpl変異株は 30 °Cでは生育できなかった。
一方、 30 °Cで生育できた形質転換体を採取し、 完全培地で生育させた後、 グラスビーズで破砕した物を試料とし、 アクリルアミドゲルを用いて電気泳動を 行った。 同様にして、 alglO wbpl株試料、 及び上記 W303-1A株 (野生株) 試料 についても電気泳動を行った。 これらの結果を合わせて第 4図に示す。 図中 1〜4レーンは上記サヅカロミセス ·セレビジェ形質転換体から得られ た試料についてのものであり、 5レーンは別途培養して得られた alglO wbpl株試 料であり、 6レーンは W303-1A株 (野生株) から得られた試料である。
形質転換体試料と W303-1A株 (野生株) 試料においては、 ともに完全に糖 鎖が付加した分子量の大きなカルボキシぺプチダーゼ Yに対応するバンドがみら れるのに対して、 alglO wbpl株試料では該ノ ンドより分子量が小さく、 糖鎖付カロ が起こっていないバンドしか見られない。
したがって、 このことから、 ヒト遺伝子 XM一 050190 は出芽酵母内でも機能 を相補することが明らかとなつた。
(実施例 5 )
く ALG12ヒトホモログ MGC3136のクロ一二ング〉
ヒトの cDNAライブラリ一を用いて PCR法により遺伝子をクローニングし た。 cDNAライブラリ一は human tissueの cDNAを用いた。 プライマ一は、 デ一 夕—ベース上に登録されている配列をもとに、 プライマ一を作製した。 それぞれ のプライマーの配列を以下に示す。
5'-CGGAATrCATGGCTGGAAAGGGGTCATCAGGCAGGCGG-3'
5'-CGGAATTCTCAGGACGGCCGGGGGAGCCTCTCCAGAAGC-3'
PCRの条件は以下の通りである。
94 °C 30秒
50 °C 30秒
72 °C 3分
30サイクル この条件で得られた約 1.5kbpの DNA増幅断片を TAクロ一ニングキヅトを 用いて pCR2.1TOPOベクタ一に揷入した。 このクロ一ニングした遺伝子をダイデ ォキシ法を用いたシークェンスキットにより塩基配列を確認した。 該当遺伝子は 配列番号 9で示される塩基配列を有していた。 なお、 該遺伝子に対応する蛋白質 のアミノ酸配列を配列番号 10に示した。
〈形質転換〉
pCR2.1TOPOベクタ一に揷入されている MGC3136遺伝子を EcoR Iで切り出 し、 酵母の解糖系のプロモ一夕一 GAPDH とその夕一ミネ一夕一の間に pUC18 のマルチクロ一ニングサイトのうち EcoR Iから Sal Iまでの部分を持つ発現用べ ク夕一 YEp352GAPの EcoR Iサイトに揷入した。 これらの発現べクタ一を出芽酵 母のサヅカロミセス ·セレビジェ (Saccharomyces cerevisiae) algl2変異株へ开質 転換した。
<algl2変異株の機能回復〉
形質転換体を採取し、 完全培地で生育させた後、 グラスビーズで破砕した物 を試料とし、 アクリルアミドゲルを用いて電気泳動を行った。 同様にして、 alg12 株試料、 及び上記 W303-1A株 (野生株) 試料についても電気泳動を行った。 こ れらの結果を合わせて第 5図に示す。
図中 1〜4レ一ンは上記サヅカロミセス 'セレビジェ形質転換体から得られ た試料についてのものであり、 5 レーンは別途培養して得られた algl2株試料で あり、 6レーンは W303-1A株 (野生株) から得られた試料である。
形質転換体試料と W303-1A株 (野生株) 試料においては、 ともに完全に糖 鎖が付加した分子量の大きなカルボキシぺプチダ一ゼ Yに対応するバンドがみら れるのに対して、 algl2株試料では該バンドより分子量が小さく、 糖鎖付加が起 こっていないバンドしか見られない。
したがって、 このことから、 ヒト遺伝子 MGC3136 は出芽酵母内でも機能を 相補することが明らかとなった。 産業上の利用可能性
本発明においては、 ヒトの小胞体の N結合型糖鎖合成酵素の遺伝子を初めて 明らかにした。 ヒ卜の小胞体の N結合型糖鎖合成酵素の遺伝子の欠失あるいは変 異は、 糖タンパク質糖鎖不全症候群 (CDGS) を引き起こすものとして知られて いるものであり、 本発明の上記遺伝子は、糖タンパク質糖鎖不全症候群(CDGS) の診断及び治療等に極めて有用なものである。

Claims

請 求 の 範 囲
1 .酵母小胞体における N結合型糖鎖合成を触媒する酵素遺伝子と相同性を有し、 かつ酵母における該遺伝子の欠失株に対して該遺伝子の機能を相補し得るもので あって、 ヒト N結合型糖鎖合成を触媒する酵素を合成するためのヒト遺伝子。
2 . ヒト N結合型糖鎖合成を触媒する酵素が糖転移酵素である請求の範囲第 1項 記載のヒト遺伝子。
3 . 配列番号 2、 4、 6、 8または 1 0で示されるアミノ酸配列、 あるいはその 一部アミノ酸の欠失、 置換、 付加を含むアミノ酸配列を有するタンパク質をコ一 ドする遺伝子。
4 . 配列番号 1、 3、 5、 7、 または 9で示される塩基配列を有する遺伝子。
5 . 請求の範囲第 3項に記載されたアミノ酸配列をコードする遺伝子、 あるいは 配列番号 1、 3、 5、 7、 または 9で示される遺伝子を用いたヒト糖鎖不全症候 群の診断あるいは治療薬。
6 . 請求の範囲第 1〜 3項のいずれか 1項に記載の遺伝子により組み換えられた 組み換えべク夕一。
7 . 請求の範囲第 6項に記載の組み換えべクタ一により形質転換された形質転換 体。
8 . 請求の範囲第 7項に記載の形質転換体を培地に培養し、 培養物からヒト N結 合型糖鎖の合成を触媒する酵素を採取することを特徴とする、 ヒト N結合型糖鎖 の合成を触媒する酵素の製造方法。
9 . 請求の範囲第 8項に記載の酵素を用いることを特徴とする、 ヒト N結合型糖
ΪΖ
SZ00T0/C00Zdf/X3d OIIS請 ΟΟΖ OAV
PCT/JP2003/010025 2002-08-07 2003-08-06 糖鎖合成遺伝子 WO2004015110A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2003257811A AU2003257811A1 (en) 2002-08-07 2003-08-06 Sugar chain synthase gene
JP2004527350A JPWO2004015110A1 (ja) 2002-08-07 2003-08-06 糖鎖合成遺伝子
US10/523,363 US20060257387A1 (en) 2002-08-07 2003-08-06 Sugar chain synthase gene

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002230196 2002-08-07
JP2002/230196 2002-08-07

Publications (1)

Publication Number Publication Date
WO2004015110A1 true WO2004015110A1 (ja) 2004-02-19

Family

ID=31711673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/010025 WO2004015110A1 (ja) 2002-08-07 2003-08-06 糖鎖合成遺伝子

Country Status (4)

Country Link
US (1) US20060257387A1 (ja)
JP (1) JPWO2004015110A1 (ja)
AU (1) AU2003257811A1 (ja)
WO (1) WO2004015110A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007034160A2 (en) * 2005-09-23 2007-03-29 Astrazeneca Ab Diagnostic methods based on polymorphisms of glucosyltransferase-like protein

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ME03746B (me) * 2012-11-26 2021-04-20 Innophore Gmbh Određivanje nivoa enzimskih fukncionalnosti korišćenjem trodimenzionalnih oblaka tački predstavljajući fizičko-hemijska svojstva proteinskih sapuina

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999058660A1 (en) * 1998-05-12 1999-11-18 Human Genome Sciences, Inc. 97 human secreted proteins
WO2000055375A1 (en) * 1999-03-17 2000-09-21 Alphagene, Inc. Secreted proteins and polynucleotides encoding them
WO2001012659A2 (en) * 1999-08-18 2001-02-22 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Human dna sequences
WO2002034783A2 (en) * 2000-10-27 2002-05-02 Incyte Genomics, Inc. Transmembrane proteins
WO2002040657A2 (en) * 2000-11-20 2002-05-23 Millennium Pharmaceuticals, Inc. 47169 and 33935, novel glycosyl transferases and uses therefor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6703491B1 (en) * 1999-03-17 2004-03-09 Exelixis, Inc. Drosophila sequences
US6703230B2 (en) * 2000-10-06 2004-03-09 Millennium Pharmaceuticals, Inc. 47174, a novel human glycosyltransferase and uses thereof
US20030104385A1 (en) * 2001-08-02 2003-06-05 Evans Glen A. Nucleic acids and encoded polypeptides associated with bipolar disorder

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999058660A1 (en) * 1998-05-12 1999-11-18 Human Genome Sciences, Inc. 97 human secreted proteins
WO2000055375A1 (en) * 1999-03-17 2000-09-21 Alphagene, Inc. Secreted proteins and polynucleotides encoding them
WO2001012659A2 (en) * 1999-08-18 2001-02-22 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Human dna sequences
WO2002034783A2 (en) * 2000-10-27 2002-05-02 Incyte Genomics, Inc. Transmembrane proteins
WO2002040657A2 (en) * 2000-11-20 2002-05-23 Millennium Pharmaceuticals, Inc. 47169 and 33935, novel glycosyl transferases and uses therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007034160A2 (en) * 2005-09-23 2007-03-29 Astrazeneca Ab Diagnostic methods based on polymorphisms of glucosyltransferase-like protein
WO2007034160A3 (en) * 2005-09-23 2007-07-26 Astrazeneca Ab Diagnostic methods based on polymorphisms of glucosyltransferase-like protein

Also Published As

Publication number Publication date
US20060257387A1 (en) 2006-11-16
JPWO2004015110A1 (ja) 2005-12-02
AU2003257811A1 (en) 2004-02-25

Similar Documents

Publication Publication Date Title
JP6155196B2 (ja) 新規フコシルトランスフェラーゼおよびそれらの用途
JP4101304B2 (ja) フルクトシルポリメラーゼ活性を有する酵素をコードする核酸分子
JP5514386B2 (ja) フコシルトランスフェラーゼ遺伝子
JP6097691B2 (ja) 新規フコシルトランスフェラーゼおよびそれらの適用
Fernandez et al. A new stress protein: synthesis of Schizosaccharomyces pombe UDP–Glc: glycoprotein glucosyltransferase mRNA is induced by stress conditions but the enzyme is not essential for cell viability.
CN111344401A (zh) 工程化的葡糖基转移酶
CN115003805A (zh) 工程化的α-1,3分支酶
Li et al. Alternative routes for synthesis of N‐linked glycans by Alg2 mannosyltransferase
Dixon et al. Cloning and initial characterization of the Arabidopsis thaliana endoplasmic reticulum oxidoreductins
JP6986973B2 (ja) ベタレイン色素の合成方法
JPH0686670A (ja) エンド型キシログルカン転移酵素遺伝子
Kotani et al. Purification and characterization of UDP-arabinopyranose mutase from Chlamydomonas reinhardtii
WO2004015110A1 (ja) 糖鎖合成遺伝子
KR20240032944A (ko) 람노스가 고도로 특이적인 글리코실트랜스퍼라제 및 이의 응용
CN113549560B (zh) 一种用于糖蛋白制备的工程化酵母构建方法及其菌株
JP4540067B2 (ja) α−グルカンホスホリラーゼ(GP)の耐熱化方法
KR20170107948A (ko) 사카로마이세스 세레비지애 효모의 만노스 인산화 활성에 핵심적인 유전자 mnn14 및 그 결손 변이주를 활용한 재조합 당단백질 생산 방법
JPH09266792A (ja) 酵母のマンノース−1−リン酸転移を正に制御する遺伝子ならびにこの遺伝子の欠損変異株を利用する高マンノース型中性糖鎖の製造方法
AU2014264732B2 (en) Modified expression of prolyl-4-hydroxylase in physcoitrella patens
Larsson et al. Import and processing of the precursor form of the gamma subunit of the chloroplast ATP synthase from tobacco
JP3081052B2 (ja) 糖転移酵素遺伝子
JP3837853B2 (ja) 組み換えシュクロースシンターゼ
JP4465444B2 (ja) ユビキチン依存型タンパク質分解系を利用した生体内タンパク質分解システム,及びそのシステムを利用したタンパク質の機能解明方法
Tsukiyama et al. Gene cloning, bacterial expression, and purification of a novel rice (Oryza sativa L.) ubiquitin-related protein, RURM1
CN116218805A (zh) Irx10-ct蛋白在从头合成木聚糖中的应用

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004527350

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006257387

Country of ref document: US

Ref document number: 10523363

Country of ref document: US

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10523363

Country of ref document: US