WO2004012252A1 - Method for forming insulating layer - Google Patents

Method for forming insulating layer Download PDF

Info

Publication number
WO2004012252A1
WO2004012252A1 PCT/JP2003/009696 JP0309696W WO2004012252A1 WO 2004012252 A1 WO2004012252 A1 WO 2004012252A1 JP 0309696 W JP0309696 W JP 0309696W WO 2004012252 A1 WO2004012252 A1 WO 2004012252A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
insulating film
temperature control
plasma
forming
Prior art date
Application number
PCT/JP2003/009696
Other languages
French (fr)
Japanese (ja)
Inventor
Toshiaki Hongoh
Satohiko Hoshino
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Priority to JP2004524318A priority Critical patent/JP4580235B2/en
Priority to AU2003252352A priority patent/AU2003252352A1/en
Publication of WO2004012252A1 publication Critical patent/WO2004012252A1/en
Priority to US11/041,303 priority patent/US7569497B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31058After-treatment of organic layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • H01J37/3222Antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/336Changing physical properties of treated surfaces

Definitions

  • the present invention relates to a method for forming an insulating film in which a film on a substrate for an electronic device containing a curable organic material is cured using low-energy plasma.
  • the present invention is widely and generally applicable to the manufacture of electronic device materials such as semiconductors, semiconductor devices, and liquid crystal devices.
  • electronic device materials such as semiconductors, semiconductor devices, and liquid crystal devices.
  • the background art of semiconductor devices will be described as an example here.
  • the design rule becomes finer (for example, about 0.18 / zm or less)
  • the wiring resistance and the capacitance between wirings increase remarkably
  • the conventional wiring material has a higher performance than the conventional one. It will be difficult to do.
  • wiring delay occurs. Therefore, it becomes necessary to use wiring made of a material such as copper (Cu) having lower electric resistance than aluminum. Cu has a lower electrical resistance than aluminum, so wiring delay is reduced. Has a characteristic that flows smoothly.
  • An insulating film with a much lower dielectric constant (Low_k) is required.
  • a Low_k film means a film having a relative dielectric constant of 3.0 or less.
  • a step of curing a coating film applied on a substrate or the like (a curing step based on a reaction such as cross-linking) is actually essential in order to improve the film quality of the insulating film.
  • an excessive heat history thermal project
  • Absence consisting of the coating film There has been a problem that deterioration of the edge film is likely to occur. Disclosure of the invention
  • An object of the present invention is to provide a method for forming an insulating film which has solved the above-mentioned disadvantages of the prior art.
  • Another object of the present invention is to provide a method for forming an insulating film capable of providing a high-quality insulating film while preventing an excessive heat history from being applied.
  • the method for forming an insulating film of the present invention is based on the above findings. More specifically, the method comprises irradiating a curable material-containing film disposed on a substrate for an electronic device with low-energy plasma to cure the film. It is characterized in that the conductive material-containing film is cured.
  • FIG. 1 is a schematic block diagram showing the structure of a microphone mouth-wave plasma processing apparatus suitably usable in the present invention.
  • FIG. 2 is a schematic plan view for explaining a specific configuration example of a mouth electrode used in the microwave plasma processing apparatus shown in FIG.
  • FIG. 3 is a schematic block diagram showing a configuration of a first temperature control device and a temperature control plate used in the microwave plasma processing apparatus shown in FIG.
  • FIG. 4 is a partially enlarged cross-sectional view for explaining the third temperature control device 95.
  • FIG. 5 is a partially enlarged sectional view showing a modification of the temperature control plate of the microphone mouth wave plasma device shown in FIG.
  • the meanings of the symbols in the figure are as follows.
  • an organic material-containing film including a curable material disposed on a substrate for an electronic device is reduced in energy. Irradiation with a plasma is performed to cure the curable material-containing film.
  • the above-mentioned substrate for electronic deposition which can be used in the present invention is not particularly limited, and may be appropriately selected from one or a combination of two or more known substrates for electronic devices.
  • a substrate for an electronic device include a semiconductor material and a liquid crystal device material.
  • the semiconductor material include, for example, a material containing single crystal silicon as a main component.
  • “on the electronic device substrate” means that the insulating film to be formed is above the electronic device substrate (that is, on the side of the substrate on which the layers constituting the electronic device are to be formed). It is sufficient if it is located above. In other words, another insulating layer, a conductor layer (for example, a Cu layer), a semiconductor layer, or the like may be disposed therebetween. It is needless to say that a plurality of insulating layers, conductor layers (for example, Cu layers), semiconductor layers, and the like, including the insulating film to be formed in the present invention, may be arranged as necessary. 3 ⁇ 4>
  • the curable material that can be used in the present invention is not particularly limited, but from the viewpoint of being suitable in combination with a wiring material having good conductivity such as Cu, a curable material that gives an insulating film having a dielectric constant of 3 or less after curing. Is preferred.
  • an organic insulating film having a low dielectric constant having a dielectric constant of 3 or less can be used.
  • PAE-2 manufactured by Shumacher
  • HSG-R7 Hagachi Chemical
  • FLARE Aplied Signal
  • BCB Density Polymer
  • SILK Density Polymer
  • Speed Film W.L. Gore
  • Any organic polymer can be used.
  • the method for disposing the curable material on the substrate for electronic devices is not particularly limited, but it is preferable to apply a solution or dispersion of the curable material having fluidity to the substrate for electronic devices. From the viewpoint of uniformity, this coating is preferably spin coating.
  • the film thickness before and after curing by plasma irradiation is not particularly limited, but the following film thickness can be suitably used.
  • the thickness is reduced by several% (for example, 5 to 6%),
  • the above-mentioned curable coating film is irradiated with low energy plasma.
  • low-energy plasma refers to a plasma having an electron temperature of 2 eV or less.
  • the following plasma processing conditions can be suitably used in view of the characteristics of the insulating film to be formed.
  • Noble gases e.g., Kr, Ar, He or Xe: 100-300 Os ccm, more preferably 200-500 Scsm,
  • N 2 100 to 1000 sccm, more preferably 100 to 200 sccm,
  • Temperature room temperature (25 ° C) to 500 ° C, more preferably room temperature to 400 ° C, particularly preferably 250 ° to 350 ° C Pressure: 0.1 to: L0000Pa, more preferably:! ⁇ 100 Pa, particularly preferably 1-1 OP a
  • Microwave 1 to 10 W / cm 2 , more preferably 2 to 5 W / cm 2 , particularly preferably 3 to 4 WZ cm 2
  • Processing time 10 to 300 seconds, more preferably 60 to 120 seconds
  • Base material temperature 350 ° C 50 ° C
  • Processing time 60 to 120 seconds
  • usable plasma is not particularly limited as long as the low-energy plasma irradiation is possible. From the viewpoint that a cured film having substantially reduced thermal budget can be easily obtained, it is preferable to use plasma having a relatively low electron temperature and high density. By forming a cured film with a substantially reduced thermal budget, peeling of the film and bleeding of the insulating film such as Cu can be suppressed, thus forming a high-quality insulating film. It is possible to do. In particular, when low-energy plasma treatment is performed on a curable material at a temperature of 400 ° C. or lower, an insulating film with particularly small damage can be obtained. (Preferred plasma)
  • the characteristics of the plasma that can be suitably used in the present invention are as follows.
  • Electron temperature 1 eV to 2 eV
  • Plasma density uniformity ⁇ 5% or less
  • an insulating film In the method of forming an insulating film according to the present invention, it is preferable to form a plasma having a low electron temperature and a high density by irradiating a microwave through a planar antenna member having a plurality of slots.
  • a process with particularly small plasma damage and high reactivity at low temperatures can be performed.
  • the conventional microphone mouth wave refers to a frequency of 1 to 100 GHz, but the microwave of the present invention is not limited to this, and refers to a frequency of approximately 50 GHz to 100 GHz.
  • FIG. 1 is a schematic block diagram of the microwave plasma apparatus 100.
  • the microwave plasma apparatus 100 of the present embodiment is connected to a microwave source 10, a reaction gas supply nozzle 50, and a vacuum pump 60.
  • Antenna housing member 20 Antenna housing member 20, first temperature control device 30, processing chamber 4 0 and a second temperature control device 70.
  • the microphone mouth-wave source 10 is made of, for example, a magnetron, and can generate a microwave (for example, 5 kW) of usually 2.45 GHz. Thereafter, the transmission mode of the microwave is converted into a TM, TE, or TEM mode by a mode converter (not shown).
  • a mode converter not shown.
  • an oscillator ⁇ to absorb the reflected wave of the generated microwave returning to the magnetron, and an EH tuner or stub tuner for matching with the load side are omitted.
  • the antenna shortening member 22 is housed in the antenna housing member 20, and the slot electrode 24 is configured as a bottom plate of the antenna housing member 20 in contact with the wavelength shortening member 22.
  • the antenna housing member 20 is made of a material having a high thermal conductivity (for example, aluminum), and is in contact with the temperature control plate 32 as described later. Therefore, the temperature of the antenna housing member 20 is set to substantially the same temperature as the temperature of the temperature control plate 32.
  • the wavelength shortening member 22 a predetermined material having a predetermined dielectric constant and a high thermal conductivity is selected in order to shorten the wavelength of the microwave. In order to make the density of the plasma introduced into the processing chamber 40 uniform, it is necessary to form many slits 25 in a slot electrode 24 described later.
  • the wavelength shortening member 22 has a function of enabling a large number of slits 25 to be formed in the slot electrode 24.
  • alumina-based ceramic, SiN, and A1N can be used as the wavelength shortening member 22.
  • 1 1 ⁇ is the dielectric constant £ t of about 9
  • the slot electrode 24 is screwed to the wavelength shortening member 22 and is made of, for example, a cylindrical copper plate having a diameter of 50 cm and a thickness of 1 mm or less. As shown in FIG. 2, the slot electrodes 24 are slightly outward from the center, for example, starting from a position about several centimeters away, and a number of slits 25 gradually spiral toward the peripheral edge. Is formed.
  • the slit 25 is swirled twice.
  • the slit is formed by arranging a pair of slits 25A and 25B, which are a pair of slits 25A and 25B arranged slightly apart in a substantially T shape as described above.
  • a lit group is formed.
  • the length L1 of each slit 25A25B is the guide wavelength of the microwave; L is set within the range of approximately 116 to 1Z2, and the width is set to about 1 mm.
  • the distance L2 between the outer ring and the inner ring of the slit spiral is set to be approximately the same as the guide wavelength ⁇ , although there are slight adjustments. That is, the length L1 of the slit is set within the range shown by the following equation.
  • each of the slits 25 ⁇ 25 ⁇ it is possible to form a uniform distribution of the microphone mouth wave in the processing room 40.
  • a microphone having a width of about several mm is formed along the outer periphery of the disk-shaped slot electrode 24 along the outer periphery of the spiral slit to prevent radiation of the microphone mouth wave power reflection. There is also (can be omitted). As a result, the antenna efficiency of the slot electrode 24 is increased.
  • the slit pattern of the slot electrode 24 of this embodiment is merely an example, and an electrode having an arbitrary slit shape (for example, an L shape) is used as the slot electrode. It goes without saying that it can be done.
  • the first temperature control device 30 is connected to the antenna housing member 20. I have.
  • the first temperature control device 30 has a function of controlling the temperature change of the antenna housing member 20 and the components in the vicinity of the antenna housing member 20 due to micro heat within a predetermined range.
  • the first temperature control device 30 has a temperature control plate 32, a sealing member 34, a temperature sensor 36 and a heater device 38, and Cooling water is supplied from water source 39.
  • the temperature of the cooling water supplied from the water source 39 is preferably constant.
  • the temperature control plate 32 for example, a material such as stainless steel, which has good thermal conductivity and is easy to process the flow path 33, is selected.
  • the flow path 33 can be formed, for example, by vertically and horizontally penetrating a rectangular temperature control plate 32 and screwing a sealing member 34 such as a screw into a through hole.
  • a sealing member 34 such as a screw into a through hole.
  • each of the temperature control plate 32 and the flow path 33 can have an arbitrary shape.
  • other types of refrigerants alcohol, Galden, Freon, etc.
  • refrigerants alcohol, Galden, Freon, etc.
  • the temperature sensor 36 a known sensor such as a PTC thermistor or an infrared sensor can be used. Although a thermocouple can also use the temperature sensor 36, it is preferable that the thermocouple be configured so as not to be affected by microwaves.
  • the temperature sensor 36 may or may not be connected to the flow path 33. Alternatively, the temperature sensor 36 may measure the temperature of the antenna housing member 20, the wavelength shortening member 22, and / or the slot electrode 24.
  • the heater device 38 is configured, for example, as a heater wire wound around a water pipe connected to the flow path 33 of the temperature control plate 32. By controlling the magnitude of the current flowing through the heater wire, the temperature of the water flowing through the channel 33 of the temperature control plate 32 can be adjusted. Since the temperature control plate 32 has a high thermal conductivity, the temperature of the water flowing through the flow path 33 can be controlled to be substantially the same as the temperature of the water.
  • the temperature control plate 32 is in contact with the antenna housing member 20, and the antenna housing member 20 and the wavelength shortening member 22 have high thermal conductivity. As a result, the temperature of the wavelength shortening member 22 and the temperature of the slot electrode 24 can be controlled by controlling the temperature of the temperature control plate 32.
  • the wavelength shortening member 22 and the slot electrode 24 can be controlled by applying the power of the microwave source 10 (for example, 5 kW) for a long time.
  • the temperature of the electrode itself rises due to the power loss in the shortening member 22 and the slot electrode 24.
  • the wavelength shortening member 22 and the slot electrode 24 are thermally expanded and deformed.
  • the slot length of the slot electrode 24 changes due to the thermal expansion, and the overall plasma density in the processing chamber 40 described below decreases or partially decreases. Or concentrate. If the overall plasma density decreases, the processing speed of the semiconductor wafer W changes. As a result, when the plasma processing is temporally controlled, the processing is stopped after a predetermined time (for example, 2 minutes) has elapsed, and the semiconductor wafer W is taken out of the processing chamber 40. If the density decreases, the desired processing (etching depth or film thickness) may not be formed on the semiconductor wafer W in some cases. Further, if the plasma density is partially concentrated, the processing of the semiconductor wafer W is partially changed. Thus, if the slot electrode 24 is deformed due to the temperature change, the quality of the plasma processing is reduced.
  • a predetermined time for example, 2 minutes
  • the material of the wavelength shortening member 22 and the material of the slot electrode 24 are different, and the slot electrode 24 is warped because both are screwed. Will be. It will be understood that the quality of the plasma treatment is also reduced in this case.
  • the slot electrode 24 does not deform even if it is disposed at a high temperature if the temperature is constant.
  • the temperature control plate 3 2 (that is, the slot electrode 24) is controlled to be, for example, about ⁇ 5 ° C. with reference to 70 ° C.
  • the set temperature such as 70 ° C and the allowable temperature range such as ⁇ 5 ° C can be arbitrarily set depending on the required processing, heat resistance of components, and the like.
  • the first temperature control device 30 obtains the temperature information of the temperature sensor 36 and sets the heater device 38 so that the temperature of the temperature control plate 32 becomes 70 ° C. and 5 ° C. Control the current supplied to the (for example, using a variable resistor).
  • the slot electrode 24 is designed to be used at 70 ° C, that is, designed to have the optimum slit length when placed in an atmosphere at 10 ° C. You.
  • the temperature sensor 36 is disposed on the temperature control plate 32, it takes time for heat to propagate from the temperature control plate 32 to the slot electrode 24 or vice versa. A wider allowable range such as 70 ° C ⁇ 10 ° C may be set.
  • the first temperature control device 30 first operates the heater device 38 to lower the water temperature by 70% because the temperature of the temperature control plate 32 placed at room temperature is lower than 7 ° C. It may be supplied to the temperature control plate 32 at about ° C. Alternatively, it is not necessary to supply water to the temperature control plate 32 until the temperature rise due to the heat of the microphone reaches around 70 ° C. Accordingly, the exemplary temperature control mechanism shown in FIG. 3 may include a mass flow controller that regulates the amount of water from the water source 39 and an on-off valve.
  • the temperature control device 32 When the temperature of the temperature control plate 32 exceeds 75 ° C, for example, water of about 15 ° C is supplied from the water source 39 to start cooling the temperature control plate 32, and thereafter, When the temperature sensor 36 indicates 65 ° C, The temperature control device 32 is driven to control the temperature of the temperature control plate 32 to be 70 ° C. ⁇ 5 ° C.
  • the first temperature controller 30 uses the mass flow controller and the on-off valve described above to supply, for example, about 15 ° C water from a water source 39 to start cooling the temperature control plate 32. Thereafter, when the temperature sensor 36 indicates 70 ° C., various control methods such as stopping supply of water can be adopted.
  • the first temperature control device 30 controls the temperature so that the wavelength shortening member 22 and the slot electrode 24 are in a predetermined allowable temperature range centered on the predetermined set temperature. In this respect, cooling is simply performed without setting them. This is different from the cooling means disclosed in Japanese Patent Application Laid-Open No. 3-191703. Thereby, the quality of the processing in the processing chamber 40 can be maintained. For example, if the slot electrode 24 is designed to have an optimal slit length when placed in an atmosphere of 7 ° C, it is simply cooled to about 15 ° C. It will be appreciated that alone is not meaningful for obtaining an optimal processing environment. '
  • the first temperature control device 30 controls the temperature of the wavelength shortening member 22 and the temperature of the slot electrode 24 simultaneously by controlling the temperature of the water flowing through the temperature control plate 32. .
  • the temperature control plate 32, the antenna housing member 20, and the wavelength shortening member 22 are made of a material having high thermal conductivity.
  • these three temperature controls can be shared by one device, so that the size and cost of the entire device can be prevented in that a plurality of devices are not required.
  • the temperature control plate 32 is merely an example of a temperature control means, and it goes without saying that other cooling means such as a cooling fan can be employed.
  • FIG. 4 is a section for explaining the third temperature control device 95. It is a minute enlarged sectional view.
  • the third temperature control device 95 controls the temperature of the periphery of the dielectric 28 using cooling water, a coolant, or the like.
  • the third temperature control device 95 can be similarly configured using a temperature sensor and a heater device, and thus the detailed description thereof is omitted.
  • the temperature control plate 32 and the antenna storage member 20 are separate members, but the function of the temperature control plate 32 may be provided to the antenna storage member 20.
  • the antenna housing member 20 can be directly cooled.
  • a temperature control plate 98 having a flow path 99 similar to the flow path 33 is formed on the side surface of the antenna housing member 20, the wavelength shortening member 22 and the slot can be formed. It is also possible to cool the electrodes 24 simultaneously.
  • FIG. 5 is a partially enlarged sectional view showing a modification of the temperature control plate 32 of the microwave plasma device 100 shown in FIG.
  • a temperature control plate may be provided around the slot electrode 24, or a flow path may be formed in the slot electrode 24 itself so as not to hinder the arrangement of the slit 25. .
  • the dielectric 28 is disposed between the slot electrode 24 and the processing chamber 40.
  • the slot electrode 24 and the dielectric 28 are surface-bonded, for example, firmly and confidentially by a brazing.
  • a copper thin film is patterned on the back surface of the fired ceramic dielectric 28 by means of screen printing or the like to form a slot electrode 24 including a slit.
  • a slot electrode 24 made of a copper foil may be formed so as to be baked.
  • the dielectric 28 and the processing chamber 40 are joined by a cooling ring 90.
  • a third temperature control device 95 for controlling the temperature around the dielectric 28 to, for example, 80 ° C. to 100 ° C. is provided, the configuration is as shown in FIG.
  • the third temperature control device 95 removes the dielectric material 28 similarly to the temperature control plate 32. It has a surrounding channel 96. Since the third temperature control device is provided near the ring 90 in this way, the temperature of the dielectric 28 and the slot electrode 24 is controlled and the temperature of the ring 90 is controlled. Temperature control can also be performed effectively.
  • the dielectric material 28 is made of aluminum nitride (A1N) or the like, and the pressure of the processing chamber 40 in a reduced pressure or vacuum environment is applied to the slot electrode 24 to deform the slot electrode 24. This prevents the slot electrode 24 from being exposed to the processing chamber 40 and being sputtered or causing copper contamination. If necessary, the slot 28 may be prevented from being affected by the temperature of the processing chamber 40 by forming the dielectric 28 with a material having a low thermal conductivity.
  • the dielectric material 28 can be formed of a material having high thermal conductivity (for example, A 1 N), like the wavelength shortening member 22.
  • the temperature of the slot electrode 24 can be controlled by controlling the temperature of the dielectric material 28, and the temperature control of the wavelength shortening member 22 can be performed through the slot electrode 24. It can be carried out. In this case, it is possible to form a flow path inside the dielectric material 28 so as not to hinder the introduction of the microwave into the processing chamber 40.
  • the above-described temperature control can be arbitrarily combined.
  • the processing chamber 40 has a side wall and a bottom portion formed of a conductor such as aluminum, and is entirely formed in a cylindrical shape. Can be maintained.
  • a heating plate 42 and a semiconductor wafer W as an object to be processed are stored thereon.
  • an electrostatic chuck / clamp mechanism for fixing the semiconductor wafer W is omitted for convenience.
  • the heating plate 42 has a configuration similar to that of the heater device 38 and controls the temperature of the semiconductor wafer W.
  • the hot plate 42 heats the semiconductor wafer W to, for example, about 450 ° C.
  • the hot plate 42 heats the semiconductor wafer W to about 80 ° C. or less, for example.
  • the heating temperature of the heating plate 42 depends on the process. In any case, the heat plate 42 heats the semiconductor wafer W so that moisture as an impurity adheres to the semiconductor layer W.
  • the second temperature control device 70 can control the magnitude of the heating current flowing through the hot plate 42 according to the temperature measured by the temperature sensor 72 that measures the temperature of the hot plate 42.
  • a gas supply nozzle 50 made of quartz pipe for introducing a reaction gas is provided on a side wall of the processing chamber 40, and the nozzle 50 is connected to a mass flow controller 54 and a gas flow path 52 by a gas supply path 52. It is connected to a reaction gas source 58 through an on-off valve 56.
  • a predetermined mixture gas that is, one of neon, xenon, anoregon, helium, radon, and crypton
  • a mixture of N 2 and H 2 ) and NH 3 or SiH 4 gas can be selected.
  • the vacuum pump 60 can evacuate the pressure of the processing chamber 40 to a predetermined pressure (for example, 0.1 to several lOmTorr).
  • a predetermined pressure for example, 0.1 to several lOmTorr.
  • the semiconductor wafer W is housed in the processing chamber 40 by a transfer arm via gate pulp (not shown) provided on the side wall of the normal processing chamber 40. Thereafter, the semiconductor wafer W is arranged on a predetermined mounting surface by vertically moving a lifter pin (not shown).
  • a predetermined processing pressure for example, 50 mTorr
  • at least one reaction gas source 58 mixed with a mixed gas of argon and nitrogen through the mass flow controller 54 and the on-off valve 56 while controlling the flow rate from the nozzle 50. Introduced to 0.
  • the temperature of the processing chamber 40 is adjusted by the second temperature controller 70 and the hot plate 42 so as to be about 70 ° C. Further, the first temperature control device 30 controls the heater device 38 so that the temperature of the temperature control plate 32 becomes about 70 ° C. Thereby, the temperature of the wavelength shortening member 22 and the slot electrode 24 via the temperature control plate 32 is also maintained at about 70 ° C.
  • the slot electrode 24 is designed to have an optimum slit length at 70 ° C. In addition, it is assumed that it is known in advance that the slot electrode 24 has an allowable temperature error of about ⁇ 5 ° C. When plasma is generated, the slot electrode is heated by the heat generated by the plasma. It may be controlled so as to suppress it.
  • microwaves from the microwave source 10 are introduced into the wavelength shortening member 22 in the antenna housing member 20 via, for example, a rectangular waveguide or a coaxial waveguide (not shown) in, for example, a TEM mode.
  • the microwave that has passed through the wavelength shortening member 22 has its wavelength shortened, enters the slot electrode 24, and is introduced from the slit 25 into the processing chamber 40 via the dielectric 28. . Since the wavelength shortening member 22 and the slot electrode 24 are temperature-controlled, there is no deformation due to thermal expansion, etc., and the slot electrode 24 can maintain an optimal slit length. it can. This allows microwaves to be introduced into the processing chamber 40 uniformly (ie, without partial concentration) and at the desired overall density (ie, without loss of density).
  • the temperature of the temperature control plate 32 rises above 75 ° C
  • the first temperature control device 30 controls the temperature of the cooling water to be within 75 ° C by introducing cooling water of about 15 ° C from the water source 39 to the temperature control plate 32.
  • the first temperature control device 30 controls the heater device 38 to control the temperature from the water source 39.
  • the temperature of the temperature control plate 32 can be raised to 65 ° C. or higher by increasing the temperature of the water introduced into the control plate 32.
  • the second temperature control device 70 can control the temperature of the processing chamber 40 by controlling the hot plate 42.
  • the microwave converts the reactive gas into plasma, and irradiates the curable material-containing film disposed on the substrate for electron deposition with low-energy plasma to cure the curable material-containing film.
  • This curing process is performed, for example, for a predetermined time set beforehand, and then the semiconductor wafer W is taken out of the processing chamber 40 from the above-described gate valve (not shown).
  • Microwaves having a desired density are uniformly supplied to the processing chamber 40, so that a film having a desired thickness is uniformly formed on the substrate W. Further, since the temperature of the processing chamber 40 is maintained at a temperature at which moisture and the like do not enter the wafer W, a desired film forming quality can be maintained.
  • the microwave plasma processing apparatus 100 of the present invention does not hinder the use of electron cyclotron resonance, it may include a coil for generating a predetermined magnetic field.
  • the microwave plasma processing apparatus 100 of this embodiment is described as a plasma CVD apparatus.
  • the micro-wave plasma processing apparatus 100 can also be used when etching or cleaning the semiconductor wafer W.
  • the object to be processed in the present invention is not limited to a semiconductor wafer, but includes an LCD and the like. Industrial applicability
  • a method for forming an insulating film capable of providing a high-quality insulating film while preventing an excessive heat history from being applied.

Abstract

A method for forming an insulating layer, which comprises irradiating a film containing a curable material provided on a substrate for an electronic device with a low energy plasma, to thereby cure said film containing a curable material. The method can be employed for forming an elctroconductive film having high quality, while preventing the application of an excessive thermal budget on the film.

Description

明 細 書 絶縁膜の形成方法 技術分野  Description Method of forming insulating film Technical field
本発明は、 硬化性の有機材料を含む電子デバイス用基材上の膜を 、 低エネルギーのプラズマを用いて硬化させる絶縁膜の形成方法に 関する。 背景技術  The present invention relates to a method for forming an insulating film in which a film on a substrate for an electronic device containing a curable organic material is cured using low-energy plasma. Background art
本発明は半導体ないし半導体デバイス、 液晶デバイス等の電子デ パイス材料の製造に広く一般的に適用可能であるが、 こ こでは説明 の便宜のために、 半導体デバイスの背景技術を例にとって説明する 半導体デバイスにおいては、 従来よ り、 設計ルールを微細化する ことで、 高集積化および/又は高性能が進められて来た。 しかしな がら、 設計ルールが微細化 (例えば、 0 . 1 8 /z m以下程度) にな ると、 配線抵抗および配線間容量の増加が顕著となり、 従来の配線 材料ではこれ以上デパイスを高性能化することが困難となる。  The present invention is widely and generally applicable to the manufacture of electronic device materials such as semiconductors, semiconductor devices, and liquid crystal devices. However, for convenience of explanation, the background art of semiconductor devices will be described as an example here. For devices, high integration and / or high performance has been promoted by miniaturizing design rules. However, when the design rule becomes finer (for example, about 0.18 / zm or less), the wiring resistance and the capacitance between wirings increase remarkably, and the conventional wiring material has a higher performance than the conventional one. It will be difficult to do.
例えば、 半導体デパイスの動作速度を上げるためには、 電気信号 の速度を上げる必要がある。 しかしながら、 従来のアルミニウム配 線では、 これ以上 (例えば、 0 . 1 8 μ ιη以下程度に) 半導体デパ ィスの微細化が進むと、 半導体デパイスを構成する回路を流れる電 気信号の速度に限界が生じる (いわゆる 「配線遅延」 が生じる) 。 従って、 アルミニウムよりも電気抵抗の低い銅 (C u ) 等の材料か らなる配線を使うことが必要になって来る。 C uはアルミニウムよ り も電気抵抗が低いため配線遅延が低下し、 細い配線にしても電気 がスムーズに流れるという特徴を有する。 For example, in order to increase the operating speed of a semiconductor device, it is necessary to increase the speed of an electric signal. However, with the conventional aluminum wiring, as the semiconductor device becomes finer than this (for example, about 0.18 μιη or less), the speed of the electric signal flowing through the circuit constituting the semiconductor device is limited. (So-called “wiring delay” occurs). Therefore, it becomes necessary to use wiring made of a material such as copper (Cu) having lower electric resistance than aluminum. Cu has a lower electrical resistance than aluminum, so wiring delay is reduced. Has a characteristic that flows smoothly.
上記のような電気抵抗が低い銅等の材料を使用するに際しては、 絶縁膜と して、 電気が 「よ り漏れにくい絶縁膜」 を使用する必要が ある。 このよ うな電気の通り易い C u配線と、 電気の漏れにくい絶 縁膜を組み合わせことによ り、 極めて高速で動作する半導体デパイ スを作製することができるからである。  When using a material such as copper having a low electric resistance as described above, it is necessary to use an “insulating film that is less likely to leak electricity” as the insulating film. By combining such a Cu wiring that easily conducts electricity and an insulating film that is less likely to leak electricity, a semiconductor device that operates at an extremely high speed can be manufactured.
従来のアルミ二ゥム配線の時代には、 絶縁膜と して S i 02 膜 ( 比誘電率 = 4. 1 ) が使用されていたが、 C u配線を使用する場合 には、 これよ り も遙かに低い比誘電率 (L o w_ k ) の絶縁膜が必 要となる。 一般に L o w _ k膜といえば、 比誘電率が 3. 0以下の 膜を意味する。 In the era of conventional aluminum wiring, an SiO 2 film (relative permittivity = 4.1) was used as an insulating film. An insulating film with a much lower dielectric constant (Low_k) is required. Generally, a Low_k film means a film having a relative dielectric constant of 3.0 or less.
このよ うな L 0 w - k膜を作製する方法としては、 従来よ り 2つ の方法が知られている。 その一つは、 C V D装置を使う方法である 。 この方法は、 品質のよい L o w— k膜を与えることができるとさ れているが、 当然ながら、 L 0 w— k膜作製の生産性は低く、 従つ てランニングコス トは高い。 他の方法は、 スピンコータ等を用いて 、 液体等の流動性を有する L o w— k材料を基材等の上に塗布する 方法である (いわゆる S O D (Spin On Dielectric) 絶縁膜を形成 する方法) 。  Conventionally, two methods have been known for producing such an L0 w-k film. One method is to use a CVD device. It is said that this method can provide a high-quality Low-k film, but, of course, the productivity of the L0w-k film production is low and the running cost is high. Another method is to apply a low-k material having fluidity such as a liquid onto a substrate or the like using a spin coater or the like (a method of forming a so-called SOD (Spin On Dielectric) insulating film). .
このよ うなコーティング法によれば、 ランニングコス トおよび生 産性が優れるという利点が得られる。  According to such a coating method, advantages such as excellent running cost and productivity can be obtained.
上記コーティ ング法においては、 基材等の上に塗布された塗布膜 を硬化させる工程'(架橋等の反応に基づく キュア工程) 力 絶縁膜 の膜質を向上させるために実際上は必須である。 しかしながら、 例 えば半導体デパイスを構成する配線層が多層になった場合等に、 該 塗布膜、 ないしはその硬化により形成された絶縁膜に過度な熱履歴 (サーマルパジェッ ト) が加わり、 その結果、 該塗布膜からなる絶 縁膜の劣化が生じ易くなるという問題があった。 発明の開示 In the above coating method, a step of curing a coating film applied on a substrate or the like (a curing step based on a reaction such as cross-linking) is actually essential in order to improve the film quality of the insulating film. However, for example, when the wiring layers constituting the semiconductor device are multi-layered, an excessive heat history (thermal project) is added to the coating film or the insulating film formed by curing the coating film. Absence consisting of the coating film There has been a problem that deterioration of the edge film is likely to occur. Disclosure of the invention
本発明の目的は、 上記した従来技術の欠点を解消した絶縁膜の形 成方法を提供することにある。  An object of the present invention is to provide a method for forming an insulating film which has solved the above-mentioned disadvantages of the prior art.
本発明の他の目的は、 過度な熱履歴が加わることを防止しつつ、 しかも良質な絶縁膜を与えることができる絶縁膜の形成方法を提供 することにある。  Another object of the present invention is to provide a method for forming an insulating film capable of providing a high-quality insulating film while preventing an excessive heat history from being applied.
本発明者は鋭意研究の結果、 低エネルギープラズマを照射して有 機材料含有膜を硬化させることが、 上記目的の達成のために極めて 効果的なことを見出した。  As a result of earnest research, the present inventors have found that irradiating low-energy plasma to cure an organic material-containing film is extremely effective for achieving the above object.
本発明の絶縁膜の形成方法は上記知見に基づく ものであり、 より 詳しくは、 電子デバイス用基材上に配置された硬化性材料含有膜に 対して、 低エネルギープラズマを照射して、 該硬化性材料含有膜を 硬化させることを特徴とするものである。 図面の簡単な説明  The method for forming an insulating film of the present invention is based on the above findings. More specifically, the method comprises irradiating a curable material-containing film disposed on a substrate for an electronic device with low-energy plasma to cure the film. It is characterized in that the conductive material-containing film is cured. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明において好適に使用可能なマイク 口波プラズマ処 理装置の構造を示す概略プロ ック図である。  FIG. 1 is a schematic block diagram showing the structure of a microphone mouth-wave plasma processing apparatus suitably usable in the present invention.
図 2は、 図 1 に示すマイクロ波ブラズマ処理装置に使用されるス 口ッ ト電極の具体的構成例を説明するための概略平面図である。 図 3は、 図 1 に示すマイクロ波プラズマ処理装置に使用される第 1の温度制御装置と温調板の構成を示す概略ブロ ック図である。 図 4は、 第 3の温度制御装置 9 5を説明するための部分拡大断面 図である。  FIG. 2 is a schematic plan view for explaining a specific configuration example of a mouth electrode used in the microwave plasma processing apparatus shown in FIG. FIG. 3 is a schematic block diagram showing a configuration of a first temperature control device and a temperature control plate used in the microwave plasma processing apparatus shown in FIG. FIG. 4 is a partially enlarged cross-sectional view for explaining the third temperature control device 95.
図 5は、 図 1 に示すマイク口波プラズマ装置の温調板の変形例を 示す部分拡大断面図である。 図中における符号の意味は、 以下の通りである。 FIG. 5 is a partially enlarged sectional view showing a modification of the temperature control plate of the microphone mouth wave plasma device shown in FIG. The meanings of the symbols in the figure are as follows.
1 0…マイク ロ波源  1 0… Microwave source
2 0…アンテナ収納部材 20… Antenna storage member
2 2…波長短縮部材 2 2 ... wavelength shortening member
2 4…スロッ ト電極  2 4… Slot electrode
2 5…スリ ッ ト  2 5… Slit
2 8…誘電体 2 8 ... dielectric
3 0…第 1の温度制御装置  3 0… First temperature control device
3 2…温調板 3 2 ... Temperature control plate
3 6…温度センサ  3 6… Temperature sensor
3 8 …ヒータ装置  3 8… Heating device
3 9…水源  3 9… water source
4 0…処理室  4 0… Processing room
4 2…熱板  4 2… Hot plate
5 0…反応ガス供給ノズル  50 ... Reaction gas supply nozzle
5 8…反応ガス源 5 8… Reaction gas source
6 0…真空ポンプ  6 0… Vacuum pump
7 0…第 2の温度制御装置  7 0 ... second temperature control device
7 2…温度センサ 発明を実施するための最良の形態 7 2… Temperature sensor BEST MODE FOR CARRYING OUT THE INVENTION
以下、 必要に応じて図面を参照しつつ本発明を更に具体的に説明 する。 以下の記載において量比を表す 「部」 および 「%」 は、 特に 断らない限り質量基準とする。  Hereinafter, the present invention will be described more specifically with reference to the drawings as necessary. In the following description, “parts” and “%” representing quantitative ratios are based on mass unless otherwise specified.
(絶縁膜の形成方法)  (Method of forming insulating film)
本発明の絶縁膜の形成方法においては、 電子デバイス用基材上に 配置された硬化性の材料を含む有機材料含有膜に対して、 低ェネル ギープラズマを照射して、 該硬化性材料含有膜を硬化させる。 In the method of forming an insulating film according to the present invention, an organic material-containing film including a curable material disposed on a substrate for an electronic device is reduced in energy. Irradiation with a plasma is performed to cure the curable material-containing film.
(電子デバイス用基材)  (Substrate for electronic devices)
本発明において使用可能な上記の電子デパイス用基材は特に制限 されず、 公知の電子デバイス用基材の 1種または 2種以上の組合せ から適宜選択して使用することが可能である。 このよ うな電子デバ イス用基材の例としては、 例えば、 半導体材料、 液晶デバイス材料 等が挙げられる。 半導体材料の例と しては、 例えば、 単結晶シリ コ ンを主成分とする材料等が挙げられる。  The above-mentioned substrate for electronic deposition which can be used in the present invention is not particularly limited, and may be appropriately selected from one or a combination of two or more known substrates for electronic devices. Examples of such a substrate for an electronic device include a semiconductor material and a liquid crystal device material. Examples of the semiconductor material include, for example, a material containing single crystal silicon as a main component.
(電子デバイス用基材上)  (On the substrate for electronic devices)
本発明において、 「電子デバイス用基材上」 とは、 形成すべき絶 縁膜が、 電子デバイス用基材の上方 (すなわち、 該基材の電子デバ ィスを構成する各層を形成する側の上方) に位置していれば足りる 。 換言すれば、 その間に他の絶縁層、 導体層 (例えば、 C u層) 、 半導体層等が配置されていてもよい。 また、 本発明で形成すべき絶 縁膜を含む、 各種絶縁層、 導体層 (例えば、 C u層) 、 半導体層等 が、 必要に応じて、 複数配置されていてもよいことは、 もちろんで ¾>る。  In the present invention, “on the electronic device substrate” means that the insulating film to be formed is above the electronic device substrate (that is, on the side of the substrate on which the layers constituting the electronic device are to be formed). It is sufficient if it is located above. In other words, another insulating layer, a conductor layer (for example, a Cu layer), a semiconductor layer, or the like may be disposed therebetween. It is needless to say that a plurality of insulating layers, conductor layers (for example, Cu layers), semiconductor layers, and the like, including the insulating film to be formed in the present invention, may be arranged as necessary. ¾>
(硬化性材料)  (Curable material)
本発明において使用可能な硬化性材料は特に制限されないが、 C u等の電導性の良好な配線材料と組み合わせにおいて好適な点から は、 硬化後に誘電率が 3以下の絶縁膜を与える硬化性材料が好まし レヽ。  The curable material that can be used in the present invention is not particularly limited, but from the viewpoint of being suitable in combination with a wiring material having good conductivity such as Cu, a curable material that gives an insulating film having a dielectric constant of 3 or less after curing. Is preferred.
このような硬化性材料と しては、 例えば、 誘電率が 3以下の低誘 電率特性の有機絶縁膜を用いることができ、 例えば P AE— 2 (Sh umacher社製)、 H S G - R 7 (Hitachi Chemical社製) 、 F L AR E ( Aplied Signal社製) 、 : B C B (Dow Chemical社製) 、 S I L K (Dow Chemical社製) 、 Speed Film (W. L . G o r e社製) な どの有機ポリマーを用いることができる。 As such a curable material, for example, an organic insulating film having a low dielectric constant having a dielectric constant of 3 or less can be used. For example, PAE-2 (manufactured by Shumacher), HSG-R7 (Hitachi Chemical), FLARE (Aplied Signal), BCB (Dow Chemical), SILK (Dow Chemical), Speed Film (W.L. Gore) Any organic polymer can be used.
(硬化性材料の配置方法)  (Placement method of curable material)
上記の硬化性材料を電子デバイス用基材上に配置すべき方法は、 特に制限されないが流動性を有する硬化性材料の溶液ないし分散液 を前記電子デバイス用基材上に塗布することが好ましい。 均一性の 点からは、 この塗布は、 スピンコートであることが好ましい。  The method for disposing the curable material on the substrate for electronic devices is not particularly limited, but it is preferable to apply a solution or dispersion of the curable material having fluidity to the substrate for electronic devices. From the viewpoint of uniformity, this coating is preferably spin coating.
(膜厚)  (Thickness)
本発明において、 プラズマ照射による硬化前後の膜厚は特に制限 されないが、 下記のような膜厚が好適に使用可能である。  In the present invention, the film thickness before and after curing by plasma irradiation is not particularly limited, but the following film thickness can be suitably used.
<硬化前の膜厚 >  <Thickness before curing>
好ましく は、 1 0 0〜 1 0 0 0 n m程度、 更に好ましく は 4 0 0 〜 6 0 0 n m程度  Preferably about 100 to 100 nm, more preferably about 400 to 600 nm
く硬化後の膜厚 >  Film thickness after curing>
好ましく は、 数% (例えば 5〜 6 %) 膜厚が減少する程度、  Preferably, the thickness is reduced by several% (for example, 5 to 6%),
(低エネルギープラズマ)  (Low energy plasma)
本発明においては、 上記した硬化性の塗布膜に対して、 低ェネル ギープラズマを照射する。 ここに、 「低エネルギープラズマ」 とは 、 電子温度が 2 e V以下であるものをいう。  In the present invention, the above-mentioned curable coating film is irradiated with low energy plasma. Here, "low-energy plasma" refers to a plasma having an electron temperature of 2 eV or less.
(プラズマ処理条件)  (Plasma processing conditions)
本発明の下地膜作製においては、 形成されるべき絶縁膜の特性の 点からは、 下記のプラズマ処理条件条件が好適に使用できる。  In the preparation of the base film of the present invention, the following plasma processing conditions can be suitably used in view of the characteristics of the insulating film to be formed.
希ガス (例えば、 K r 、 A r 、 H eまたは X e ) : 1 0〜 3 0 0 O s c c m、 より好ましく は 2 0 0〜 5 0 0 s c c m、  Noble gases (e.g., Kr, Ar, He or Xe): 100-300 Os ccm, more preferably 200-500 Scsm,
N 2 : 1 0〜 1 0 0 0 s c c m、 よ り好ましく は 1 0 0〜 2 0 0 s c c m、  N 2: 100 to 1000 sccm, more preferably 100 to 200 sccm,
温度 : 室温 ( 2 5 °C) 〜 5 0 0 °C、 よ り好ましくは室温〜 4 0 0 °C、 特に好ましくは 2 5 0〜 3 5 0 °C 圧力 : 0. 1〜: L 0 0 0 P a、 よ り好ましく は:!〜 1 0 0 P a、 特に好ましくは 1〜 1 O P a Temperature: room temperature (25 ° C) to 500 ° C, more preferably room temperature to 400 ° C, particularly preferably 250 ° to 350 ° C Pressure: 0.1 to: L0000Pa, more preferably:! ~ 100 Pa, particularly preferably 1-1 OP a
マイクロ波 : 1〜 1 0 W/ c m2、 より好ましくは 2〜 5 W/ c m2、 特に好ましく は 3〜 4 WZ c m2 Microwave: 1 to 10 W / cm 2 , more preferably 2 to 5 W / cm 2 , particularly preferably 3 to 4 WZ cm 2
処理時間 : 1 0〜 3 0 0秒、 よ り好ましく は 6 0〜 1 2 0秒  Processing time: 10 to 300 seconds, more preferably 60 to 120 seconds
(好適な条件の例)  (Example of suitable conditions)
本発明においては、 例えば、 下記条件が好適に使用可能である。  In the present invention, for example, the following conditions can be suitably used.
マイクロ波 : 2 k W/ c m2 Microwave: 2 kW / cm 2
ガス : A r 1 0 0 0 s c c m + N2 1 0 0 s c c m、 また は、 Gas: A r 1 0 0 0 sccm + N 2 1 0 0 sccm, or,
K r 1 0 0 0 s c c m + N2 l O O s c c m 圧力 : 1 3. 3〜 1 3 3 P a K r 1 0 0 sccm + N 2 l OO sccm Pressure : 13.3〜1 3 3 Pa
基材温度 : 3 5 0土 5 0 °C  Base material temperature: 350 ° C 50 ° C
処理時間 : 6 0〜 1 2 0秒  Processing time: 60 to 120 seconds
(絶縁膜の好適な特性)  (Suitable characteristics of insulating film)
本発明によれば、 下記のように好適な特性を有する硬化された絶 縁膜を容易に形成することができる。  According to the present invention, it is possible to easily form a cured insulating film having suitable characteristics as described below.
本発明においては、 上記した低エネルギープラズマの照射が可能 である限り、 使用可能なプラズマは特に制限されない。 サーマルパ ジエツ トが実質的に低減された硬化膜が容易に得られる点からは、 電子温度が比較的に低く、 且つ高密度なプラズマを用いることが好 ましい。 サーマルバジェッ トが実質的に低減された硬化膜を形成す ることにより、 膜の剥がれや、 C u等の絶縁膜へのシミ出しを抑制 することができ、 したがって高品質の絶縁膜を形成することが可能 となる。 特に、 4 0 0 °C以下の温度で硬化性材料に対して低ェネル ギープラズマ処理を行った場合には、 特にダメージの少ない絶縁膜 を得ることができる。 (好適なプラズマ) In the present invention, usable plasma is not particularly limited as long as the low-energy plasma irradiation is possible. From the viewpoint that a cured film having substantially reduced thermal budget can be easily obtained, it is preferable to use plasma having a relatively low electron temperature and high density. By forming a cured film with a substantially reduced thermal budget, peeling of the film and bleeding of the insulating film such as Cu can be suppressed, thus forming a high-quality insulating film. It is possible to do. In particular, when low-energy plasma treatment is performed on a curable material at a temperature of 400 ° C. or lower, an insulating film with particularly small damage can be obtained. (Preferred plasma)
本発明において好適に使用可能なプラズマの特性は、 以下の通り である。  The characteristics of the plasma that can be suitably used in the present invention are as follows.
電子温度 : 1 e V〜 2 e V  Electron temperature: 1 eV to 2 eV
密度 : 1 E 1 2〜 1 E 1 3  Density: 1 E1 2 to 1 E1 3
プラズマ密度の均一性 : ± 5 %以下  Plasma density uniformity: ± 5% or less
(平面アンテナ部材)  (Flat antenna member)
本発明の絶縁膜の形成方法においては、 複数のスロ ッ トを有する 平面アンテナ部材を介してマイクロ波を照射することにより電子温 度が低くかつ高密度なプラズマを形成することが好ましい。 本発明 においては、 このよ うな優れた特性を有するプラズマを用いて絶縁 膜の形成を行った場合、 プラズマダメージが特に小さく、 かつ低温 で反応性の高いプロセスが可能となる。 本発明においては、 更に、 In the method of forming an insulating film according to the present invention, it is preferable to form a plasma having a low electron temperature and a high density by irradiating a microwave through a planar antenna member having a plurality of slots. In the present invention, when an insulating film is formed using plasma having such excellent characteristics, a process with particularly small plasma damage and high reactivity at low temperatures can be performed. In the present invention,
(従来のプラズマを用いた場合に比べ) 平面アンテナ部材を介して マイクロ波を照射することによ り、 良質な絶縁膜の形成が容易であ るという利点が得られる。 By irradiating microwaves through a planar antenna member (compared to the case of using conventional plasma), there is obtained an advantage that a high-quality insulating film can be easily formed.
(プラズマ照射装置の一態様)  (One mode of plasma irradiation device)
以下、 添付図面を参照して、 プラズマ照射装置と して使用可能な 、 例示的なマイ クロ波プラズマ装置 1 0 0について説明する。 なお Hereinafter, an exemplary microwave plasma apparatus 100 that can be used as a plasma irradiation apparatus will be described with reference to the accompanying drawings. Note that
、 各図において同一の参照符号は同一部材を表している。 従来のマ イク口波は 1〜 1 0 0 GH zの周波数をいうが、 本発明のマイク ロ 波はこれに限らず、 およそ 5 0 ΜΗ ζ〜 1 0 0 GH zのものをいう In the drawings, the same reference numerals indicate the same members. The conventional microphone mouth wave refers to a frequency of 1 to 100 GHz, but the microwave of the present invention is not limited to this, and refers to a frequency of approximately 50 GHz to 100 GHz.
ここで、 図 1 は、 マイク ロ波プラズマ装置 1 0 0の概略ブロック 図である。 本実施例のマイクロ波プラズマ装置 1 0 0は、 マイクロ 波源 1 0 と反応ガス供給ノズル 5 0 と真空ポンプ 6 0 とに接続されHere, FIG. 1 is a schematic block diagram of the microwave plasma apparatus 100. The microwave plasma apparatus 100 of the present embodiment is connected to a microwave source 10, a reaction gas supply nozzle 50, and a vacuum pump 60.
、 アンテナ収納部材 2 0 と、 第 1の温度制御装置 3 0 と、 処理室 4 0 と、 第 2の温度制御装置 7 0 とを有している。 , Antenna housing member 20, first temperature control device 30, processing chamber 4 0 and a second temperature control device 70.
マイク 口波源 1 0は、 例えば、 マグネ ト ロンからなり、 通常 2 . 4 5 G H zのマイクロ波 (例えば、 5 kW) を発生することができ る。 マイクロ波は、 その後、 図示しないモー ド変換器によ り伝送形 態が TM、 T E又は T E Mモー ドなどに変換される。 なお、 図 1で は、 発生したマイクロ波がマグネ ト ロ ンへ戻る反射波を吸収するァ ィソ レータゃ、 負荷側とのマッチングをとるための E Hチューナ又 はスタブチューナは省略されている。  The microphone mouth-wave source 10 is made of, for example, a magnetron, and can generate a microwave (for example, 5 kW) of usually 2.45 GHz. Thereafter, the transmission mode of the microwave is converted into a TM, TE, or TEM mode by a mode converter (not shown). In Fig. 1, an oscillator ゃ to absorb the reflected wave of the generated microwave returning to the magnetron, and an EH tuner or stub tuner for matching with the load side are omitted.
了ンテナ収納部材 2 0には波長短縮部材 2 2が収納され、 波長短 縮部材 2 2に接触してス ロ ッ ト電極 2 4がアンテナ収納部材 2 0 の 底板と して構成されている。 ァンテナ収納部材 2 0には熱伝導率が 高い材料 (例えば、 アルミ ニウム) が使用されており、 また、 後述 するように、 温調板 3 2 と接触している。 従って、 アンテナ収納部 材 2 0の温度は温調板 3 2の温度と略同じ温度に設定される。  The antenna shortening member 22 is housed in the antenna housing member 20, and the slot electrode 24 is configured as a bottom plate of the antenna housing member 20 in contact with the wavelength shortening member 22. The antenna housing member 20 is made of a material having a high thermal conductivity (for example, aluminum), and is in contact with the temperature control plate 32 as described later. Therefore, the temperature of the antenna housing member 20 is set to substantially the same temperature as the temperature of the temperature control plate 32.
波長短縮部材 2 2には、 マイクロ波の波長を短くするために所定 の誘電率を有すると共に熱伝導率が高い所定の材料が選ばれる。 処 理室 4 0に導入されるプラズマ密度を均一にするには、 後述するス ロッ ト電極 2 4に多くのスリ ッ ト 2 5を形成する必要がある。 波長 短縮部材 2 2は、 ス ロ ッ ト電極 2 4に多く のスリ ッ ト 2 5を形成す ることを可能にする機能を有する。 波長短縮部材 2 2 としては、 例 えば、 アルミナ系セラミ ック、 S i N、 A 1 Nを使用することがで きる。 例えば、 1 1^は比誘電率 £ t が約 9であり、 波長短縮率 n = 1 / ( ε t ) 1 / 2 = 0 . 3 3である。 これによ り、 波長短縮部 材 2 2を通過したマイクロ波の速度は 0 . 3 3倍となり波長も 0 . 3 3倍となり、 後述するス ロ ッ ト電極 2 4 のス リ ッ ト 2 5 の間隔を 短くすることができ、 よ り多くのスリ ッ ト 2 5が形成されることを 可能にしている。 ス ロ ッ ト電極 2 4は、 波長短縮部材 2 2にねじ止めされており、 例えば、 直径 5 0 c m , 厚さ 1 m m以下の円筒状銅板から構成され る。 スロッ ト電極 2 4は、 図 2に示すよ うに、 中心から少し外側へ 、 例えば、 数 c m程度離れた位置から開始されて多数のスリ ッ ト 2 5が渦卷状に次第に周縁部に向けて形成されている。 As the wavelength shortening member 22, a predetermined material having a predetermined dielectric constant and a high thermal conductivity is selected in order to shorten the wavelength of the microwave. In order to make the density of the plasma introduced into the processing chamber 40 uniform, it is necessary to form many slits 25 in a slot electrode 24 described later. The wavelength shortening member 22 has a function of enabling a large number of slits 25 to be formed in the slot electrode 24. As the wavelength shortening member 22, for example, alumina-based ceramic, SiN, and A1N can be used. For example, 1 1 ^ is the dielectric constant £ t of about 9, the wavelength shortening ratio n = 1 / (ε t) 1/2 = 0. 3 3. As a result, the speed of the microwave passing through the wavelength shortening member 22 becomes 0.33 times and the wavelength becomes 0.333 times, and the slit 25 of the slot electrode 24 described later is used. Can be shortened, and more slits 25 can be formed. The slot electrode 24 is screwed to the wavelength shortening member 22 and is made of, for example, a cylindrical copper plate having a diameter of 50 cm and a thickness of 1 mm or less. As shown in FIG. 2, the slot electrodes 24 are slightly outward from the center, for example, starting from a position about several centimeters away, and a number of slits 25 gradually spiral toward the peripheral edge. Is formed.
図 2においては、 ス リ ッ ト 2 5は、 2回渦巻されている。 本実施 例では、 略 T字状にわずかに離間させて配置した一対のス リ ッ ト 2 5 A及び 2 5 Bを組とするス リ ッ ト対を上述したように配置するこ とによってス リ ッ ト群を形成している。 各ス リ ッ ト 2 5 A 2 5 B の長さ L 1はマイクロ波の管内波長; Lの略 1 1 6から 1 Z 2の範 囲内に設定されると共に幅は 1 m m程度に設定され、 ス リ ツ ト渦卷 の外輪と内輪との間隔 L 2は僅かな調整はあるが管内波長 λ と略同 一の長さに設定されている。 即ち、 ス リ ッ トの長さ L 1は、 次の式 で示される範囲内に設定される。  In FIG. 2, the slit 25 is swirled twice. In the present embodiment, the slit is formed by arranging a pair of slits 25A and 25B, which are a pair of slits 25A and 25B arranged slightly apart in a substantially T shape as described above. A lit group is formed. The length L1 of each slit 25A25B is the guide wavelength of the microwave; L is set within the range of approximately 116 to 1Z2, and the width is set to about 1 mm. The distance L2 between the outer ring and the inner ring of the slit spiral is set to be approximately the same as the guide wavelength λ, although there are slight adjustments. That is, the length L1 of the slit is set within the range shown by the following equation.
(数 1 ) ε, :比誘電率 (Equation 1) ε,: dielectric constant
Figure imgf000012_0001
Figure imgf000012_0001
このように各ス リ ッ ト 2 5 Α 2 5 Βを形成することによ り、 処 理室 4 0には均一なマイク口波の分布を形成することが可能になる 。 渦卷状スリ ッ トの外側であつて円盤状スロ ッ ト電極 2 4の周縁部 にはこれに沿って幅数 m m程度のマイク 口波電力反射防止用放射素 子 2 6が形成される場合もある (省略も可能) 。 これにより、 スロ ッ ト電極 2 4のアンテナ効率を上げている。 なお、 本実施例のスロ ッ ト電極 2 4のスリ ッ トの模様は単なる例示であり、 任意のスリ ッ ト形状 (例えば、 L字状など) を有する電極をス ロ ッ ト電極として 利用することができることはいうまでもない。  By forming each of the slits 25 {25} in this manner, it is possible to form a uniform distribution of the microphone mouth wave in the processing room 40. When a microphone having a width of about several mm is formed along the outer periphery of the disk-shaped slot electrode 24 along the outer periphery of the spiral slit to prevent radiation of the microphone mouth wave power reflection. There is also (can be omitted). As a result, the antenna efficiency of the slot electrode 24 is increased. Note that the slit pattern of the slot electrode 24 of this embodiment is merely an example, and an electrode having an arbitrary slit shape (for example, an L shape) is used as the slot electrode. It goes without saying that it can be done.
アンテナ収納部材 2 0には第 1の温度制御装置 3 0が接続されて いる。 第 1 の温度制御装置 3 0は、 マイクロ熱によるアンテナ収納 部材 2 0及びこの近傍の構成要素の温度変化が所定の範囲になるよ うに制御する機能を有する。 第 1の温度制御装置 3 0は、 図 3に示 すよ うに、 温調板 3 2 と、 封止部材 3 4 と、 温度センサ 3 6 とヒー タ装置 3 8 とを有し、 水道などの水源 3 9から冷却水を供給される 。 制御の容易性から、 水源 3 9から供給される冷却水の温度は恒温 であることが好ましい。 温調板 3 2は、 例えば、 ステンレスなど熱 伝導率がよく、 流路 3 3を加工しやすい材料が選択される。 流路 3 3は、 例えば、 矩形状の温調板 3 2を縦横に貫通し、 ねじなどの封 止部材 3 4を貫通孔にねじ込むことによつて形成することができる 。 もちろん、 図 3に拘らず、 温調板 3 2 と流路 3 3それぞれは任意 の形状を有することができる。 冷却水の代わりに他の種類の冷媒 ( アルコール、 ガルデン、 フロン等) を使用することができるのはも ちろんである。 The first temperature control device 30 is connected to the antenna housing member 20. I have. The first temperature control device 30 has a function of controlling the temperature change of the antenna housing member 20 and the components in the vicinity of the antenna housing member 20 due to micro heat within a predetermined range. As shown in FIG. 3, the first temperature control device 30 has a temperature control plate 32, a sealing member 34, a temperature sensor 36 and a heater device 38, and Cooling water is supplied from water source 39. For ease of control, the temperature of the cooling water supplied from the water source 39 is preferably constant. As the temperature control plate 32, for example, a material such as stainless steel, which has good thermal conductivity and is easy to process the flow path 33, is selected. The flow path 33 can be formed, for example, by vertically and horizontally penetrating a rectangular temperature control plate 32 and screwing a sealing member 34 such as a screw into a through hole. Of course, regardless of FIG. 3, each of the temperature control plate 32 and the flow path 33 can have an arbitrary shape. Of course, other types of refrigerants (alcohol, Galden, Freon, etc.) can be used instead of cooling water.
温度センサ 3 6は、 P T Cサーミ スタ、 赤外線センサなど周知の センサを使用することができる。 なお、 熱電対も温度センサ 3 6使 用することができるが、 マイクロ波の影響を受けないように構成す ることが好ましい。 温度センサ 3 6は流路 3 3に接続してもよいし 、 接続していなくてもよい。 代替的に、 温度センサ 3 6は、 アンテ ナ収納部材 2 0、 波長短縮部材 2 2及び/又はス ロ ッ ト電極 2 4の 温度を測定してもよい。  As the temperature sensor 36, a known sensor such as a PTC thermistor or an infrared sensor can be used. Although a thermocouple can also use the temperature sensor 36, it is preferable that the thermocouple be configured so as not to be affected by microwaves. The temperature sensor 36 may or may not be connected to the flow path 33. Alternatively, the temperature sensor 36 may measure the temperature of the antenna housing member 20, the wavelength shortening member 22, and / or the slot electrode 24.
ヒータ装置 3 8は、 例えば、 温調板 3 2の流路 3 3に接続された 水道管の周りに卷かれたヒータ線などと してから構成される。 ヒー タ線に流れる電流の大きさを制御することによって温調板 3 2の流 路 3 3を流れる水温を調節することができる。 温調板 3 2は熱伝導 率が高いので流路 3 3を流れる水の水温と略同じ温度に制御される ことができる。 温調板 3 2はアンテナ収納部材 2 0に接触しており、 アンテナ収 納部材 2 0 と波長短縮部材 2 2は熱伝導率が高い。 この結果、 温調 板 3 2の温度を制御することによつて波長短縮部材 2 2 とス ロ ッ ト 電極 2 4の温度を制御するこ とができる。 The heater device 38 is configured, for example, as a heater wire wound around a water pipe connected to the flow path 33 of the temperature control plate 32. By controlling the magnitude of the current flowing through the heater wire, the temperature of the water flowing through the channel 33 of the temperature control plate 32 can be adjusted. Since the temperature control plate 32 has a high thermal conductivity, the temperature of the water flowing through the flow path 33 can be controlled to be substantially the same as the temperature of the water. The temperature control plate 32 is in contact with the antenna housing member 20, and the antenna housing member 20 and the wavelength shortening member 22 have high thermal conductivity. As a result, the temperature of the wavelength shortening member 22 and the temperature of the slot electrode 24 can be controlled by controlling the temperature of the temperature control plate 32.
波長短縮部材 2 2 とス ロ ッ ト電極 2 4は、 温調板 3 2などがなけ れば、 マイクロ波源 1 0 の電力(例えば、 5 k W )を長時間加えるこ とによ り、 波長短縮部材 2 2 とス ロ ッ ト電極 2 4での電力ロスから 電極自体の温度が上昇する。 この結果、 波長短縮部材 2 2 とス ロ ッ ト電極 2 4が熱膨張して変形する。  Without the temperature control plate 32, the wavelength shortening member 22 and the slot electrode 24 can be controlled by applying the power of the microwave source 10 (for example, 5 kW) for a long time. The temperature of the electrode itself rises due to the power loss in the shortening member 22 and the slot electrode 24. As a result, the wavelength shortening member 22 and the slot electrode 24 are thermally expanded and deformed.
例えば、 ス ロ ッ ト電極 2 4は、 熱膨張によ り最適なス リ ッ ト長さ が変化して後述する処理室 4 0内における全体のプラズマ密度が低 下したり部分的にプラズマ密度が集中したりする。 全体のプラズマ 密度が低下すれば半導体ゥェハ Wの処理速度が変化する。 その結果 、 プラズマ処理が時間的に管理して、 所定時間 (例えば、 2分) 経 過すれば処理を停止して半導体ウェハ Wを処理室 4 0から取り出す という ように設定した場合、 全体のプラズマ密度が低下すれば所望 の処理 (エッチング深さや成膜厚さ) が半導体ウェハ Wに形成され ていない場合がある。 また、 部分的にプラズマ密度が集中すれば、 部分的に半導体ゥ ハ Wの処理が変化してしまう。 このようにス ロ ッ ト電極 2 4が温度変化によ り変形すればプラズマ処理の品質が低 下する。  For example, the slot length of the slot electrode 24 changes due to the thermal expansion, and the overall plasma density in the processing chamber 40 described below decreases or partially decreases. Or concentrate. If the overall plasma density decreases, the processing speed of the semiconductor wafer W changes. As a result, when the plasma processing is temporally controlled, the processing is stopped after a predetermined time (for example, 2 minutes) has elapsed, and the semiconductor wafer W is taken out of the processing chamber 40. If the density decreases, the desired processing (etching depth or film thickness) may not be formed on the semiconductor wafer W in some cases. Further, if the plasma density is partially concentrated, the processing of the semiconductor wafer W is partially changed. Thus, if the slot electrode 24 is deformed due to the temperature change, the quality of the plasma processing is reduced.
更に、 温調板 3 2がなければ、 波長短縮部材 2 2 とス ロ ッ ト電極 2 4 の材質が異なり、 また、 両者はねじ止めされているから、 ス ロ ッ ト電極 2 4が反ることになる。 この場合も同様にプラズマ処理の 品質が低下することが理解されるであろう。  Further, if the temperature control plate 32 is not provided, the material of the wavelength shortening member 22 and the material of the slot electrode 24 are different, and the slot electrode 24 is warped because both are screwed. Will be. It will be understood that the quality of the plasma treatment is also reduced in this case.
一方、 ス ロ ッ ト電極 2 4は、 温度が一定であれば高温下に配置さ れても、 変形を生じない。 また、 プラズマ C V D装置においては、 処理室 4 0に水分が液状又は霧状で存在すれば半導体ゥェハ Wの膜 中に不純物と して混入されることになるためできるだけ温度を上げ ておく必要がある。 また、 処理室 4 0 と後述する誘電体 2 8 との間 を密封するォーリ ング 9 0などの部材は 8 0〜 1 0 0 °C程度の耐熱 性を有することを考慮すると、 温調板 3 2 (即ち、 スロ ッ ト電極 2 4 ) は、 例えば、 7 0 °Cを基準に ± 5 °C程度となるように制御され る。 7 0 °Cなどの設定温度と ± 5 °Cなどの許容温度範囲は要求され る処理や構成部材の耐熱性その他によって任意に設定することがで きる。 On the other hand, the slot electrode 24 does not deform even if it is disposed at a high temperature if the temperature is constant. In plasma CVD equipment, If water is present in the processing chamber 40 in a liquid or mist state, it will be mixed as an impurity into the film of the semiconductor wafer W, so that the temperature must be raised as much as possible. Further, considering that a member such as a casing 90 for sealing between the processing chamber 40 and a dielectric 28 described later has a heat resistance of about 80 to 100 ° C., the temperature control plate 3 2 (that is, the slot electrode 24) is controlled to be, for example, about ± 5 ° C. with reference to 70 ° C. The set temperature such as 70 ° C and the allowable temperature range such as ± 5 ° C can be arbitrarily set depending on the required processing, heat resistance of components, and the like.
この場合、 第 1の温度制御装置 3 0は、 温度センサ 3 6の温度情 報を得て、 温調板 3 2の温度が 7 0 °C土 5 °Cになるようにヒータ装 置 3 8に供給する電流を (例えば、 可変抵抗などを使用して) 制御 する。 スロ ッ ト電極 2 4は、 7 0 °Cで使用されることを前提に、 即 ち、 1 0 °Cの雰囲気下に置かれた時に最適なス リ ッ ト長さを有する ように設計される。 代替的に、 温度センサ 3 6が温調板 3 2に配置 される場合には、 温調板 3 2からス ロ ッ ト電極 2 4へあるいはこの 逆へ熱が伝搬するには時間がかかるから 7 0 °C ± 1 0 °Cにするなど よ り広い許容範囲を設定してもよい。  In this case, the first temperature control device 30 obtains the temperature information of the temperature sensor 36 and sets the heater device 38 so that the temperature of the temperature control plate 32 becomes 70 ° C. and 5 ° C. Control the current supplied to the (for example, using a variable resistor). The slot electrode 24 is designed to be used at 70 ° C, that is, designed to have the optimum slit length when placed in an atmosphere at 10 ° C. You. Alternatively, when the temperature sensor 36 is disposed on the temperature control plate 32, it takes time for heat to propagate from the temperature control plate 32 to the slot electrode 24 or vice versa. A wider allowable range such as 70 ° C ± 10 ° C may be set.
第 1 の温度制御装置 3 0は、 最初は、 室温下に置かれた温調板 3 2の温度は 7 ◦ °Cよ り も低いからヒータ装置 3 8を最初に駆動して 水温を 7 0 °C程度にして温調板 3 2に供給してもよい。 代替的に、 マイク 口熱による温度上昇を 7 0 °C付近になるまで温調板 3 2に水 を流さなくてもよい。 従って、 図 3に示す例示的な温度制御機構は 水源 3 9からの水量を調節するマスフローコントローラと開閉弁と を含んでいてもよい。 温調板 3 2の温度が 7 5 °Cを超えた場合には 、 例えば、 1 5 °C程度の水を水源 3 9から供給して温調板 3 2の冷 却を開始し、 その後、 温度センサ 3 6が 6 5 °Cを示したときにヒー タ装置 3 8を駆動して温調板 3 2の温度が 7 0 °C ± 5 °Cになるよう に制御する。 第 1の温度制御装置 3 0は、 上述のマスフローコント ローラと開閉弁を利用することによって、 例えば、 1 5 °C程度の水 を水源 3 9から供給して温調板 3 2の冷却を開始し、 その後、 温度 センサ 3 6が 7 0 °Cを示したときに水の供給を停止するなど様々な 制御方法を採用することができる。 First, the first temperature control device 30 first operates the heater device 38 to lower the water temperature by 70% because the temperature of the temperature control plate 32 placed at room temperature is lower than 7 ° C. It may be supplied to the temperature control plate 32 at about ° C. Alternatively, it is not necessary to supply water to the temperature control plate 32 until the temperature rise due to the heat of the microphone reaches around 70 ° C. Accordingly, the exemplary temperature control mechanism shown in FIG. 3 may include a mass flow controller that regulates the amount of water from the water source 39 and an on-off valve. When the temperature of the temperature control plate 32 exceeds 75 ° C, for example, water of about 15 ° C is supplied from the water source 39 to start cooling the temperature control plate 32, and thereafter, When the temperature sensor 36 indicates 65 ° C, The temperature control device 32 is driven to control the temperature of the temperature control plate 32 to be 70 ° C. ± 5 ° C. The first temperature controller 30 uses the mass flow controller and the on-off valve described above to supply, for example, about 15 ° C water from a water source 39 to start cooling the temperature control plate 32. Thereafter, when the temperature sensor 36 indicates 70 ° C., various control methods such as stopping supply of water can be adopted.
このよ う に、 第 1 の温度制御装置 3 0は、 波長短縮部材 2 2 とス ロッ ト電極 2 4が所定の設定温度を中心とする所定の許容温度範囲 になるように温度制御をするという点でこれらを設定せずに単に冷 却するといぅ特開平 3— 1 9 1 0 7 3号の冷却手段と相違する。 こ れにより、 処理室 4 0における処理の品質を維持することができる 。 例えば、 スロ ッ ト電極 2 4は、 7 ◦ °Cの雰囲気下に置かれた時に 最適なスリ ッ ト長さを有するように設計された場合に、 これを単に 1 5 °C程度に冷却するだけでは最適な処理環境を得るのに無意味で あることが理解されるであろう。 '  As described above, the first temperature control device 30 controls the temperature so that the wavelength shortening member 22 and the slot electrode 24 are in a predetermined allowable temperature range centered on the predetermined set temperature. In this respect, cooling is simply performed without setting them. This is different from the cooling means disclosed in Japanese Patent Application Laid-Open No. 3-191703. Thereby, the quality of the processing in the processing chamber 40 can be maintained. For example, if the slot electrode 24 is designed to have an optimal slit length when placed in an atmosphere of 7 ° C, it is simply cooled to about 15 ° C. It will be appreciated that alone is not meaningful for obtaining an optimal processing environment. '
また、 第 1の温度制御装置 3 0は、 温調板 3 2を流れる水の温度 を制御することによつて波長短縮部材 2 2 とスロ ッ ト電極 2 4の温 度を同時に制御している。 これは、 温調板 3 2、 アンテナ収納部材 2 0及び波長短縮部材 2 2を熱伝導率の高い材料で構成したことに よるものである。 かかる構成を採用することにより、 これら 3つの 温度制御を 1の装置で兼用することができるので複数の装置を要し ない点で装置全体の大型化とコス トアップを防止することができる 。 なお、 温調板 3 2は、 温調手段の単なる一例であり、 冷却ファン などその他の冷却手段を採用することができることはいうまでもな レ、。  The first temperature control device 30 controls the temperature of the wavelength shortening member 22 and the temperature of the slot electrode 24 simultaneously by controlling the temperature of the water flowing through the temperature control plate 32. . This is because the temperature control plate 32, the antenna housing member 20, and the wavelength shortening member 22 are made of a material having high thermal conductivity. By employing such a configuration, these three temperature controls can be shared by one device, so that the size and cost of the entire device can be prevented in that a plurality of devices are not required. Note that the temperature control plate 32 is merely an example of a temperature control means, and it goes without saying that other cooling means such as a cooling fan can be employed.
次に、 図 4を参照して、 第 3の温度制御装置 9 5について説明す る。 ここで、 図 4は、 第 3の温度制御装置 9 5を説明するための部 分拡大断面図である。 第 3の温度制御装置 9 5は、 誘電体 2 8の周 辺を冷却水や冷媒等を利用して温度制御するものである。 第 3の温 度制御装置 9 5は、 第 1 の温度制御装置のよ う に、 温度センサ、 ヒ ータ装置を利用して同様に構成することができるのでその詳細な説 明は省略する。 Next, the third temperature control device 95 will be described with reference to FIG. Here, FIG. 4 is a section for explaining the third temperature control device 95. It is a minute enlarged sectional view. The third temperature control device 95 controls the temperature of the periphery of the dielectric 28 using cooling water, a coolant, or the like. Like the first temperature control device, the third temperature control device 95 can be similarly configured using a temperature sensor and a heater device, and thus the detailed description thereof is omitted.
本態様では、 温調板 3 2 とァンテナ収納部材 2 0は別個の部材で あつたが、 温調板 3 2の機能をアンテナ収納部材 2 0にもたせても よい。 例えば、 アンテナ収納部材 2 0の上面及び 又は側面に流路 3 2を形成するこ とによ りァンテナ収納部材 2 0を直接冷却するこ とができる。 また、 図 5に示すよ うに、 アンテナ収納部材 2 0の側 面に流路 3 3に類似の流路 9 9を有する温調板 9 8を形成すれば、 波長短縮部材 2 2 とスロ ッ ト電極 2 4 とを同時に冷却することも可 能である。 ここで、 図 5は、 図 1に示すマイクロ波プラズマ装置 1 0 0の温調板 3 2の変形例を示す部分拡大断面図である。 また、 ス ロッ ト電極 2 4の周囲に温調板を設けたり、 若しく は、 スリ ッ ト 2 5の配置を妨げないようにスロ ッ ト電極 2 4 自体に流路を形成する こともできる。  In this embodiment, the temperature control plate 32 and the antenna storage member 20 are separate members, but the function of the temperature control plate 32 may be provided to the antenna storage member 20. For example, by forming the flow path 32 on the upper surface and / or the side surface of the antenna housing member 20, the antenna housing member 20 can be directly cooled. Further, as shown in FIG. 5, if a temperature control plate 98 having a flow path 99 similar to the flow path 33 is formed on the side surface of the antenna housing member 20, the wavelength shortening member 22 and the slot can be formed. It is also possible to cool the electrodes 24 simultaneously. Here, FIG. 5 is a partially enlarged sectional view showing a modification of the temperature control plate 32 of the microwave plasma device 100 shown in FIG. In addition, a temperature control plate may be provided around the slot electrode 24, or a flow path may be formed in the slot electrode 24 itself so as not to hinder the arrangement of the slit 25. .
誘電体 2 8はスロ ッ ト電極 2 4 と処理室 4 0 との間に配置されて いる。 スロ ッ ト電極 2 4 と誘電体 2 8は、 例えば、 ロウによ り強固 にかつ機密に面接合される。 代替的に、 焼成されたセラミ ック製の 誘電体 2 8の裏面に、 スク リーン印刷などの手段によ り銅薄膜を、 ス リ ッ トを含むスロ ッ ト電極 2 4の形状にパターン形成して、 これ を焼き付けるように銅箔のスロ ッ ト電極 2 4を形成してもよい。 誘 電体 2 8 と処理室 4 0はォ一リ ング 9 0によって接合されている。 誘電体 2 8の周辺を例えば 8 0 °C〜 1 0 0 °Cに温調する第 3の温度 制御装置 9 5が設けられる場合には、 図 4に示すよ うに構成される 。 第 3の温度制御装置 9 5は温調板 3 2 と同様に誘電体 2 8 を取り 囲む流路 9 6を有している。 このよ う に第 3 の温度制御装置は、 ォ 一リ ング 9 0の近傍に設けられているため、 誘電体 2 8及びスロ ッ ト電極 2 4を温調すると共にォ一リ ング 9 0の温調も効果的に行う ことができる。 誘電体 2 8は、 窒化アルミニウム (A 1 N ) などか らなり、 減圧又は真空環境にある処理室 4 0の圧力がス口ッ ト電極 2 4に印加されてスロ ッ ト電極 2 4が変形したり、 スロ ッ ト電極 2 4が処理室 4 0に剥き出しになつてスパッタされたり銅汚染を発生 したりすることを防止している。 必要があれば、 誘電体 2 8を熱伝 導率の低い材質で構成することによって、 スロ ッ ト電極 2 4が処理 室 4 0の温度によ り影響を受けるのを防止してもよい。 The dielectric 28 is disposed between the slot electrode 24 and the processing chamber 40. The slot electrode 24 and the dielectric 28 are surface-bonded, for example, firmly and confidentially by a brazing. Alternatively, a copper thin film is patterned on the back surface of the fired ceramic dielectric 28 by means of screen printing or the like to form a slot electrode 24 including a slit. Then, a slot electrode 24 made of a copper foil may be formed so as to be baked. The dielectric 28 and the processing chamber 40 are joined by a cooling ring 90. When a third temperature control device 95 for controlling the temperature around the dielectric 28 to, for example, 80 ° C. to 100 ° C. is provided, the configuration is as shown in FIG. The third temperature control device 95 removes the dielectric material 28 similarly to the temperature control plate 32. It has a surrounding channel 96. Since the third temperature control device is provided near the ring 90 in this way, the temperature of the dielectric 28 and the slot electrode 24 is controlled and the temperature of the ring 90 is controlled. Temperature control can also be performed effectively. The dielectric material 28 is made of aluminum nitride (A1N) or the like, and the pressure of the processing chamber 40 in a reduced pressure or vacuum environment is applied to the slot electrode 24 to deform the slot electrode 24. This prevents the slot electrode 24 from being exposed to the processing chamber 40 and being sputtered or causing copper contamination. If necessary, the slot 28 may be prevented from being affected by the temperature of the processing chamber 40 by forming the dielectric 28 with a material having a low thermal conductivity.
選択的に、 誘電体 2 8は、 波長短縮部材 2 2 と同様に、 熱伝導率 の高い材質 (例えば、 A 1 N ) で形成するこ とができる。 この場合 は、 誘電体 2 8の温度を制御するこ とによってスロ ッ ト電極 2 4の 温度制御を行う ことができ、 スロ ッ ト電極 2 4を介して波長短縮部 材 2 2の温度制御を行う ことができる。 この場合、 誘電体 2 8の内 部にマイ ク ロ波の処理室 4 0への導入を妨げないように流路を形成 することも可能である。 なお、 上述した温度制御は任意に組み合わ せることもできる。  Alternatively, the dielectric material 28 can be formed of a material having high thermal conductivity (for example, A 1 N), like the wavelength shortening member 22. In this case, the temperature of the slot electrode 24 can be controlled by controlling the temperature of the dielectric material 28, and the temperature control of the wavelength shortening member 22 can be performed through the slot electrode 24. It can be carried out. In this case, it is possible to form a flow path inside the dielectric material 28 so as not to hinder the introduction of the microwave into the processing chamber 40. The above-described temperature control can be arbitrarily combined.
処理室 4 0は、 側壁や底部がアルミニゥムなどの導体によ り構成 されて、 全体が筒状に成形されており、 内部は後述する真空ポンプ 6 0によ り所定の減圧又は真空密閉空間に維持されることができる 。 処理室 4 0内には、 熱板 4 2 とその上に被処理体である半導体ゥ ェハ Wが収納されている。 なお、 図 1においては、 半導体ウェハ W を固定する静電チヤックゃクランプ機構などは便宜上省略されてい る。  The processing chamber 40 has a side wall and a bottom portion formed of a conductor such as aluminum, and is entirely formed in a cylindrical shape. Can be maintained. In the processing chamber 40, a heating plate 42 and a semiconductor wafer W as an object to be processed are stored thereon. In FIG. 1, an electrostatic chuck / clamp mechanism for fixing the semiconductor wafer W is omitted for convenience.
熱板 4 2は、 ヒータ装置 3 8 と同様の構成を有して、 半導体ゥュ ハ Wの温度制御を行う。 例えば、 プラズマ C V D処理においては、 熱板 4 2は、 半導体ウェハ Wを例示的に約 4 5 0 °Cに加熱する。 ま た、 プラズマエッチング処理においては、 熱板 4 2は、 半導体ゥェ ハ Wを例示的に約 8 0 °C以下に加熱する。 熱板 4 2によるこれらの 加熱温度はプロセスによ り異なる。 いずれにしろ、 熱板 4 2は、 半 導体ゥ ハ Wに不純物としての水分が付着 .混入しないように半導 体ウェハ Wを加熱する。 第 2の温度制御装置 7 0は、 熱板 4 2の温 度を測定する温度センサ 7 2が測定した温度に従って熱板 4 2に流 れる加熱用電流の大きさを制御することができる。 The heating plate 42 has a configuration similar to that of the heater device 38 and controls the temperature of the semiconductor wafer W. For example, in plasma CVD processing, The hot plate 42 heats the semiconductor wafer W to, for example, about 450 ° C. In the plasma etching process, the hot plate 42 heats the semiconductor wafer W to about 80 ° C. or less, for example. The heating temperature of the heating plate 42 depends on the process. In any case, the heat plate 42 heats the semiconductor wafer W so that moisture as an impurity adheres to the semiconductor layer W. The second temperature control device 70 can control the magnitude of the heating current flowing through the hot plate 42 according to the temperature measured by the temperature sensor 72 that measures the temperature of the hot plate 42.
処理室 4 0の側壁には、 反応ガスを導入するための石英パイプ製 ガス供給ノズル 5 0が設けられ、 このノズル 5 0は、 ガス供給路 5 2によ りマスフ ローコ ン ト ローラ 5 4及び開閉弁 5 6を介して反応 ガス源 5 8に接続されている。 例えば、 窒化シリ コ ン膜を堆積させ よう とする場合には、 反応ガスとして所定の混合ガス (即ち、 ネオ ン、 キセノ ン、 ァノレゴン、 ヘリ ウム、 ラ ドン、 ク リ プ ト ンのいずれ かに N 2 と H 2 を加えたもの) に N H 3 や S i H 4 ガスなどを混合 したものが選択されることができる。 A gas supply nozzle 50 made of quartz pipe for introducing a reaction gas is provided on a side wall of the processing chamber 40, and the nozzle 50 is connected to a mass flow controller 54 and a gas flow path 52 by a gas supply path 52. It is connected to a reaction gas source 58 through an on-off valve 56. For example, when a silicon nitride film is to be deposited, a predetermined mixture gas (that is, one of neon, xenon, anoregon, helium, radon, and crypton) is used as a reaction gas. A mixture of N 2 and H 2 ) and NH 3 or SiH 4 gas can be selected.
真空ポンプ 6 0は、 処理室 4 0の圧力を所定の圧力 (例えば、 0 . 1〜数 l O m T o r r ) まで真空引きすることができる。 なお、 図 1 においては、 排気系の詳細な構造も省略されている。  The vacuum pump 60 can evacuate the pressure of the processing chamber 40 to a predetermined pressure (for example, 0.1 to several lOmTorr). In FIG. 1, the detailed structure of the exhaust system is also omitted.
(プラズマ処理装置の動作)  (Operation of plasma processing equipment)
次に、 以上のように構成された本実施例のマイク ロ波プラズマ処 理装置 1 0 0の動作について説明する。 まず、 通常処理室 4 0の側 壁に設けられている図示しないゲー トパルプを介して半導体ウェハ Wを搬送アームによ り処理室 4 0に収納する。 その後、 図示しない リ フタピンを上下動させることによつて半導体ゥェハ Wを所定の载 置面に配置する。  Next, the operation of the microwave plasma processing apparatus 100 of the present embodiment configured as described above will be described. First, the semiconductor wafer W is housed in the processing chamber 40 by a transfer arm via gate pulp (not shown) provided on the side wall of the normal processing chamber 40. Thereafter, the semiconductor wafer W is arranged on a predetermined mounting surface by vertically moving a lifter pin (not shown).
次に、 処理室 4 0内を所定の処理圧力、 例えば、 5 0 m T o r r に維持してノズル 5 0から、 例えば、 アルゴンおよび窒素の混合ガ スを混合した一以上の反応ガス源 5 8からマスフローコント ローラ 5 4及び開閉弁 5 6を介して流量制御しつつ処理室 4 0に導入され る。 Next, a predetermined processing pressure, for example, 50 mTorr, is set in the processing chamber 40. And at least one reaction gas source 58 mixed with a mixed gas of argon and nitrogen through the mass flow controller 54 and the on-off valve 56 while controlling the flow rate from the nozzle 50. Introduced to 0.
処理室 4 0 の温度は 7 0 °C程度になるように第 2 の温度制御装置 7 0 と熱板 4 2によ り調整される。 また、 第 1の温度制御装置 3 0 は、 温調板 3 2 の温度が 7 0 °C程度になるよ うにヒータ装置 3 8を 制御する。 これによ り、 温調板 3 2を介して波長短縮部材 2 2 とス ロ ッ ト電極 2 4 の温度も 7 0 °C程度に維持される。 ス ロ ッ ト電極 2 4は 7 0 °Cで最適のス リ ッ ト長を有するよ うに設計されている。 ま た、 スロ ッ ト電極 2 4は ± 5 °C程度の温度誤差が許容範囲であると いう ことが予め分かっているものとする。 プラズマが発生する際に は、 スロッ ト電極がプラズマによる熱で加熱されるのでスロ ッ トも 所定の温度以下になった時にマイク口波を供給するよ うにしてブラ ズマ立上げ時の熱を抑制するように制御してもよい。  The temperature of the processing chamber 40 is adjusted by the second temperature controller 70 and the hot plate 42 so as to be about 70 ° C. Further, the first temperature control device 30 controls the heater device 38 so that the temperature of the temperature control plate 32 becomes about 70 ° C. Thereby, the temperature of the wavelength shortening member 22 and the slot electrode 24 via the temperature control plate 32 is also maintained at about 70 ° C. The slot electrode 24 is designed to have an optimum slit length at 70 ° C. In addition, it is assumed that it is known in advance that the slot electrode 24 has an allowable temperature error of about ± 5 ° C. When plasma is generated, the slot electrode is heated by the heat generated by the plasma. It may be controlled so as to suppress it.
一方、 マイクロ波源 1 0からのマイクロ波を図示しない矩形導波 管や同軸導波管などを介してアンテナ収納部材 2 0内の波長短縮部 材 2 2に、 例えば、 T E Mモードなどで導入する。 波長短縮部材 2 2を通過したマイク ロ波はその波長が短縮されてスロ ッ ト電極 2 4 に入射し、 ス リ ッ ト 2 5から処理室 4 0に誘電体 2 8 を介して導入 される。 波長短縮部材 2 2 とス ロ ッ ト電極 2 4は温度制御されてい るので、 熱膨張などによる変形はなく、 ス ロ ッ ト電極 2 4は最適な ス リ ッ ト長さを維持することができる。 これによつてマイクロ波は 、 均一に (即ち、 部分的集中なしに) かつ全体と して所望の密度で (即ち、 密度の低下なしに) 処理室 4 0に導入されることができる 継続的な使用によ り、 温調板 3 2 の温度が 7 5 °Cよ り も上昇すれ ば第 1の温度制御装置 3 0は水源 3 9よ り 1 5 °C程度の冷却水を温 調板 3 2に導入することによ り これを 7 5 °C以内になるように制御 する。 同様に、 処理開始時や過冷却によ り温調板 3 2の温度が 6 5 °C以下になれば第 1 の温度制御装置 3 0はヒータ装置 3 8を制御し て水源 3 9から温調板 3 2に導入される水温を上げて温調板 3 2の 温度を 6 5 °C以上にすることができる。 On the other hand, microwaves from the microwave source 10 are introduced into the wavelength shortening member 22 in the antenna housing member 20 via, for example, a rectangular waveguide or a coaxial waveguide (not shown) in, for example, a TEM mode. The microwave that has passed through the wavelength shortening member 22 has its wavelength shortened, enters the slot electrode 24, and is introduced from the slit 25 into the processing chamber 40 via the dielectric 28. . Since the wavelength shortening member 22 and the slot electrode 24 are temperature-controlled, there is no deformation due to thermal expansion, etc., and the slot electrode 24 can maintain an optimal slit length. it can. This allows microwaves to be introduced into the processing chamber 40 uniformly (ie, without partial concentration) and at the desired overall density (ie, without loss of density). The temperature of the temperature control plate 32 rises above 75 ° C For example, the first temperature control device 30 controls the temperature of the cooling water to be within 75 ° C by introducing cooling water of about 15 ° C from the water source 39 to the temperature control plate 32. Similarly, when the temperature of the temperature control plate 32 becomes 65 ° C. or lower at the start of the treatment or due to supercooling, the first temperature control device 30 controls the heater device 38 to control the temperature from the water source 39. The temperature of the temperature control plate 32 can be raised to 65 ° C. or higher by increasing the temperature of the water introduced into the control plate 32.
一方、 温調板 3 2による過冷却によつて処理室 4 0の温度が所定 温度以下になつたことを温度センサ 7 2が検知すれば、 水分が不純 物としてウェハ Wに付着 ' 混入することを防ぐため第 2の温度制御 装置 7 0は熱板 4 2を制御して処理室 4 0の温度を制御することが できる。  On the other hand, if the temperature sensor 72 detects that the temperature of the processing chamber 40 has become equal to or lower than the predetermined temperature due to the supercooling by the temperature control plate 32, the water adheres to the wafer W as an impurity and enters the wafer W. To prevent this, the second temperature control device 70 can control the temperature of the processing chamber 40 by controlling the hot plate 42.
その後、 マイクロ波は、 反応ガスをプラズマ化して、 電子デパイ ス用基材上に配置された硬化性材料含有膜に対して、 低エネルギー プラズマを照射し、 該硬化性材料含有膜を硬化させる。 この硬化処 理は、 例えば、 予め設定された所定時間だけ行われてその後、 半導 体ウェハ Wは上述の図示しないゲートバルブから処理室 4 0の外へ 出される。 処理室 4 0には所望の密度のマイク ロ波が均一に供給さ れるのでゥヱハ Wには所望の厚さの膜が均一に形成されることにな る。 また、 処理室 4 0の温度は水分などがウェハ Wに混入すること のない温度に維持されるので所望の成膜品質を維持することができ る。  Thereafter, the microwave converts the reactive gas into plasma, and irradiates the curable material-containing film disposed on the substrate for electron deposition with low-energy plasma to cure the curable material-containing film. This curing process is performed, for example, for a predetermined time set beforehand, and then the semiconductor wafer W is taken out of the processing chamber 40 from the above-described gate valve (not shown). Microwaves having a desired density are uniformly supplied to the processing chamber 40, so that a film having a desired thickness is uniformly formed on the substrate W. Further, since the temperature of the processing chamber 40 is maintained at a temperature at which moisture and the like do not enter the wafer W, a desired film forming quality can be maintained.
以上、 本発明において好適に使用可能な装置の態様を説明したが 、 本発明はその要旨の範囲内で種々の変形及び変更が可能である。 例えば、 本発明のマイクロ波プラズマ処理装置 1 0 0は電子サイク ロ ト ロン共鳴の利用を妨げるものではないため、 所定の磁場を発生 させるコイルなどを有してもよい。 また、 本実施例のマイクロ波プ ラズマ処理装置 1 0 0はプラズマ C V D装置と して説明されている が、 マイ ク ロ波プラズマ処理装置 1 0 0は半導体ウェハ Wをエッチ ングした り ク リーニングしたりする場合にも使用するこ とができる こ とはいうまでもない。 更に、 本発明で処理される被処理体は半導 体ウェハに限られず、 L C Dなどを含むものである。 産業上の利用可能性 As described above, the embodiments of the device that can be suitably used in the present invention have been described, but the present invention can be variously modified and changed within the scope of the gist. For example, since the microwave plasma processing apparatus 100 of the present invention does not hinder the use of electron cyclotron resonance, it may include a coil for generating a predetermined magnetic field. Further, the microwave plasma processing apparatus 100 of this embodiment is described as a plasma CVD apparatus. However, it goes without saying that the micro-wave plasma processing apparatus 100 can also be used when etching or cleaning the semiconductor wafer W. Further, the object to be processed in the present invention is not limited to a semiconductor wafer, but includes an LCD and the like. Industrial applicability
上述したよ う に本発明によれば、 過度な熱履歴が加わるこ とを防 止しつつ、 しかも良質な絶縁膜を与えるこ とができる絶縁膜の形成 方法が提供される。  As described above, according to the present invention, there is provided a method for forming an insulating film capable of providing a high-quality insulating film while preventing an excessive heat history from being applied.

Claims

求 の Sought
1 . 電子デパイス用基材上に配置された硬化性材料含有膜に対し て、 低エネルギープラズマを照射して、 該硬化性材料含有膜を硬化 させるこ とを特徴とする絶縁膜の形成方法。 1. A method for forming an insulating film, which comprises irradiating a curable material-containing film disposed on a substrate for electron deposition with low-energy plasma to cure the curable material-containing film.
2 . 前記硬化性材料が、 有機の硬化性材料である請求項 1 に記載 胄  2. The cord according to claim 1, wherein the curable material is an organic curable material.
の絶縁膜の形成方法。 Method of forming an insulating film.
3 . 前記硬化により得られた絶縁膜の誘電率が 3以下である請求 項 1 または 2に記載の絶縁膜の形成方法。  3. The method for forming an insulating film according to claim 1, wherein a dielectric constant of the insulating film obtained by the curing is 3 or less.
4 . 前記低エネルギープラズマが、 複数のス ロ ッ トを有する平面 アンテナ部材を介するマイクロ波照射に基づく プラズマである請求 項 1〜 3のいずれかに記載の絶縁膜の形成方法。  4. The method for forming an insulating film according to claim 1, wherein the low-energy plasma is plasma based on microwave irradiation through a planar antenna member having a plurality of slots.
5 . 硬化性材料含有膜が、 流動性を有する該材料の溶液または分 散液を前記電子デバイス用基材上にコーティングすることにより配 置されたもの  5. A film containing a curable material, which is disposed by coating a solution or a dispersion of the material having fluidity on the substrate for an electronic device.
である請求項 1〜 4のいずれかに記載の絶縁膜の形成方法。 The method for forming an insulating film according to claim 1, wherein:
6 . 硬化性材料含有膜が、 前記電子デバイス用基材上にス ピンコ ー トによ り配置されたものである請求項 5に記載の絶縁膜の形成方 法。  6. The method of forming an insulating film according to claim 5, wherein the curable material-containing film is disposed on the substrate for an electronic device by spin coating.
7 . 前記硬化により形成された絶縁膜が、 層間絶縁膜である請求 項 1〜 6のいずれかに記載の絶縁膜の形成方法。  7. The method for forming an insulating film according to any one of claims 1 to 6, wherein the insulating film formed by the curing is an interlayer insulating film.
8 . 前記プラズマを、 3 0 0〜 4 0 0 °Cの温度で硬化性材料含有 膜に照射する請求項 1〜 7のいずれかに記載の絶縁膜の形成方法。  8. The method for forming an insulating film according to any one of claims 1 to 7, wherein the curable material-containing film is irradiated with the plasma at a temperature of 300 to 400 ° C.
PCT/JP2003/009696 2002-07-30 2003-07-30 Method for forming insulating layer WO2004012252A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004524318A JP4580235B2 (en) 2002-07-30 2003-07-30 Formation method of insulating film
AU2003252352A AU2003252352A1 (en) 2002-07-30 2003-07-30 Method for forming insulating layer
US11/041,303 US7569497B2 (en) 2002-07-30 2005-01-25 Method and apparatus for forming insulating layer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-221585 2002-07-30
JP2002221585 2002-07-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/041,303 Continuation-In-Part US7569497B2 (en) 2002-07-30 2005-01-25 Method and apparatus for forming insulating layer

Publications (1)

Publication Number Publication Date
WO2004012252A1 true WO2004012252A1 (en) 2004-02-05

Family

ID=31184867

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/009696 WO2004012252A1 (en) 2002-07-30 2003-07-30 Method for forming insulating layer

Country Status (5)

Country Link
JP (1) JP4580235B2 (en)
KR (1) KR100701359B1 (en)
CN (1) CN100382251C (en)
AU (1) AU2003252352A1 (en)
WO (1) WO2004012252A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10804077B2 (en) 2017-02-01 2020-10-13 Tokyo Electron Limited Microwave plasma source, microwave plasma processing apparatus and plasma processing method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104183541B (en) * 2013-05-22 2017-03-01 中芯国际集成电路制造(上海)有限公司 The method repairing medium K value
CN105499069B (en) * 2014-10-10 2019-03-08 住友重机械工业株式会社 Membrane formation device and film forming method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57103333A (en) * 1980-12-18 1982-06-26 Toshiba Corp Manufacture of semiconductor device
JPH08236520A (en) * 1994-11-03 1996-09-13 Korea Electron Telecommun Formation of insulation layer of semiconductor device
JPH10150036A (en) * 1996-11-18 1998-06-02 Fujitsu Ltd Formation of low permittivity insulating film and semiconductor device using the film
WO2000018847A1 (en) * 1998-09-25 2000-04-06 Catalysts & Chemicals Industries Co., Ltd. Coating fluid for forming low-permittivity silica-based coating film and substrate with low-permittivity coating film
WO2001070628A2 (en) * 2000-03-20 2001-09-27 Dow Corning Corporation Plasma processing for porous silica thin film
US6399520B1 (en) * 1999-03-10 2002-06-04 Tokyo Electron Limited Semiconductor manufacturing method and semiconductor manufacturing apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3566046B2 (en) * 1997-10-02 2004-09-15 アルプス電気株式会社 Plasma processing device and sputtering device
TW439197B (en) * 1997-10-31 2001-06-07 Dow Corning Electronic coating having low dielectric constant
JP4222707B2 (en) * 2000-03-24 2009-02-12 東京エレクトロン株式会社 Plasma processing apparatus and method, gas supply ring and dielectric

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57103333A (en) * 1980-12-18 1982-06-26 Toshiba Corp Manufacture of semiconductor device
JPH08236520A (en) * 1994-11-03 1996-09-13 Korea Electron Telecommun Formation of insulation layer of semiconductor device
JPH10150036A (en) * 1996-11-18 1998-06-02 Fujitsu Ltd Formation of low permittivity insulating film and semiconductor device using the film
WO2000018847A1 (en) * 1998-09-25 2000-04-06 Catalysts & Chemicals Industries Co., Ltd. Coating fluid for forming low-permittivity silica-based coating film and substrate with low-permittivity coating film
US6399520B1 (en) * 1999-03-10 2002-06-04 Tokyo Electron Limited Semiconductor manufacturing method and semiconductor manufacturing apparatus
WO2001070628A2 (en) * 2000-03-20 2001-09-27 Dow Corning Corporation Plasma processing for porous silica thin film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10804077B2 (en) 2017-02-01 2020-10-13 Tokyo Electron Limited Microwave plasma source, microwave plasma processing apparatus and plasma processing method

Also Published As

Publication number Publication date
JP4580235B2 (en) 2010-11-10
CN1692478A (en) 2005-11-02
AU2003252352A1 (en) 2004-02-16
CN100382251C (en) 2008-04-16
KR100701359B1 (en) 2007-03-28
JPWO2004012252A1 (en) 2006-01-05
KR20050026018A (en) 2005-03-14

Similar Documents

Publication Publication Date Title
KR101243632B1 (en) Substrate processing apparatus and method of manufacturing semiconductor device
JP4256763B2 (en) Plasma processing method and plasma processing apparatus
WO2006092985A1 (en) Microwave plasma processing device
TWI733838B (en) Plasma film forming device and substrate mounting table
CN101471277A (en) Electrostatic chuck and apparatus for treating substrate including the same
US6736930B1 (en) Microwave plasma processing apparatus for controlling a temperature of a wavelength reducing member
US20190237326A1 (en) Selective film forming method and film forming apparatus
TW201203365A (en) Silicon oxide film forming method, and plasma oxidation apparatus
WO2008038787A1 (en) Method for forming silicon oxide film, plasma processing apparatus and storage medium
WO2008038788A1 (en) Method for forming silicon oxide film, plasma processing apparatus and storage medium
TW200805501A (en) Method and apparatus for forming silicon oxide film
JP2002231637A (en) Plasma processor
US8609552B2 (en) Method for controlling dangling bonds in fluorocarbon films
US7569497B2 (en) Method and apparatus for forming insulating layer
WO2004012252A1 (en) Method for forming insulating layer
TW462091B (en) Plasma process apparatus
JP7005367B2 (en) Boron-based film film forming method and film forming equipment
JP4226135B2 (en) Microwave plasma processing apparatus and method
JP2019102508A (en) Method and apparatus for forming boron-based film
WO2004012251A1 (en) Plasma processing apparatus and plasma processing method
WO2022163357A1 (en) Film formation method and film formation apparatus
WO2022102463A1 (en) Substrate treatment method and substrate treatment device
WO2022264839A1 (en) Vacuum treatment device and oxidizing gas removing method
TWI469199B (en) Method for controlling dangling bonds in fluorocarbon films
JP2004193262A (en) Insulating material and insulating film forming method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004524318

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20038124831

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11041303

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020057001481

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020057001481

Country of ref document: KR

122 Ep: pct application non-entry in european phase