JPH10150036A - Formation of low permittivity insulating film and semiconductor device using the film - Google Patents

Formation of low permittivity insulating film and semiconductor device using the film

Info

Publication number
JPH10150036A
JPH10150036A JP8306781A JP30678196A JPH10150036A JP H10150036 A JPH10150036 A JP H10150036A JP 8306781 A JP8306781 A JP 8306781A JP 30678196 A JP30678196 A JP 30678196A JP H10150036 A JPH10150036 A JP H10150036A
Authority
JP
Japan
Prior art keywords
substrate
film
thin film
insulating film
plasma treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8306781A
Other languages
Japanese (ja)
Other versions
JP3485425B2 (en
Inventor
Tomoko Katayama
倫子 片山
Shunichi Fukuyama
俊一 福山
Yoshihiro Nakada
義弘 中田
Jo Yamaguchi
城 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP30678196A priority Critical patent/JP3485425B2/en
Publication of JPH10150036A publication Critical patent/JPH10150036A/en
Application granted granted Critical
Publication of JP3485425B2 publication Critical patent/JP3485425B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02321Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour

Abstract

PROBLEM TO BE SOLVED: To form the insulating film, which has low permittivity and insulating property, heat resistance and moisture resistance at the same time, by forming the thin film of organic silicide in a substrate state, and then performing fluorine plasma treatment of the thin film with the substrate set at the specified temperature. SOLUTION: The thin film of organic silicide compound is formed on a substrate by a spin coating method and the like. Then, the substrate temperature is set at 80-250 deg.C, and fluorine plasma treatment is performed by using F2 gas, NF3 gas and the like. Thus, the heat resistance of the thin film is made excellent by increasing the fluorine formation over the entire body of the thin film. Furthermore, the insulating film is made to be the fluorocarbon-type silicon film, the increase of the permittivity by moisture absorption is suppressed, oxygen plasma resistance is imparted furthermore, and the low-permittivity insulating film having high reliability can be formed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体装置におけ
る絶縁膜形成方法に関する。本発明の絶縁膜形成方法に
よれば、下地凹凸を有する基板の多層配線、例えばI
C,LSI等の集積度の高い半導体装置の多層配線を形
成する際に、低誘電率で且つ下地段差を平坦化しつつ優
れた絶縁性、耐熱性、耐湿性を有する層間絶縁膜を形成
することができ、それにより半導体装置の信頼性を高め
ることができる。
The present invention relates to a method for forming an insulating film in a semiconductor device. According to the method of forming an insulating film of the present invention, a multilayer wiring of a substrate having a base unevenness, for example, I
When forming a multilayer wiring of a semiconductor device having a high degree of integration such as C, LSI, etc., it is necessary to form an interlayer insulating film having a low dielectric constant and excellent insulation, heat resistance and moisture resistance while flattening a step of a base. Accordingly, the reliability of the semiconductor device can be improved.

【0002】[0002]

【従来の技術】最近の半導体装置の集積度の向上に伴
い、素子形成後の表面段差が大きくなるとともに、配線
の微細化による配線容量の低下を防ぐために配線を厚く
する必要に迫られ、配線後の段差も激しくなる傾向があ
る。このため、多層配線を形成する上で優れた平坦性が
得られる層間絶縁膜の形成方法が必要とされている。
2. Description of the Related Art With the recent improvement in the degree of integration of semiconductor devices, the surface steps after element formation have increased, and it has been necessary to increase the thickness of wiring in order to prevent a reduction in wiring capacitance due to finer wiring. Later steps also tend to be severe. For this reason, there is a need for a method of forming an interlayer insulating film that can obtain excellent flatness in forming a multilayer wiring.

【0003】一方、配線遅延(T)は、配線抵抗(R)
と配線間の容量(C)に影響を受け、T=1/2RCl
2 (lは配線長)で表され、またC=εo εr (S/
d)(Sは電極面積、εo は真空の誘電率、dは膜厚)
であって容量は誘電率(εr )に比例する。従って、配
線遅延を少なくするには、層間絶縁膜の低誘電率化が有
効となる。
On the other hand, the wiring delay (T) is the wiring resistance (R)
And the capacitance (C) between the wirings, T = 1 / 2RCl
2 (l wiring length) is represented by, also C = ε o ε r (S /
d) (S is the electrode area, ε o is the dielectric constant of vacuum, d is the film thickness)
And the capacitance is proportional to the dielectric constant (ε r ). Therefore, in order to reduce the wiring delay, it is effective to lower the dielectric constant of the interlayer insulating film.

【0004】従来、層間絶縁膜の材料としては、二酸化
珪素、窒化珪素、PSG等の無機膜、あるいはポリイミ
ド、シリコーン樹脂などの有機系高分子絶縁材料、又は
これらの積層体が用いられてきた。二酸化珪素(SiO
2 )は、化学気相成長(CVD)で製造される材料で最
も誘電率が低く、その誘電率は約4である。低誘電率C
VD膜として検討されているSiOFは、誘電率が約
3.5〜3.8であるが、吸湿性であるため誘電率が上
昇しやすいという問題がある。
Conventionally, as a material of the interlayer insulating film, an inorganic film such as silicon dioxide, silicon nitride, or PSG, an organic polymer insulating material such as polyimide or silicone resin, or a laminate thereof has been used. Silicon dioxide (SiO
2 ) has the lowest dielectric constant of a material manufactured by chemical vapor deposition (CVD), and its dielectric constant is about 4. Low dielectric constant C
SiOF, which has been studied as a VD film, has a dielectric constant of about 3.5 to 3.8, but has a problem that the dielectric constant is liable to increase because it is hygroscopic.

【0005】比較的誘電率が低いとされている有機系高
分子材料は、低誘電率の層間絶縁膜材料として広く導入
が検討されているが、多層配線工程におけるレジスト剥
離のための酸素プラズマ処理において有機基が酸化さ
れ、それによる膜からの脱ガスのため膜が収縮する原因
となり、また膜に歪みができてクラックを生じるという
欠点を有している。また、酸素プラズマ処理において酸
化分解をおこさない膜としてポリテトラフルオロエチレ
ンが知られているが、これは耐熱性に難があり、すなわ
ち熱膨張しやすく、熱処理で分解するという問題があ
る。また、有機ケイ素化合物の低誘電率化として室温に
おけるフッ素プラズマ処理も検討されてきたが、吸湿性
や誘電率の上昇、また耐熱性等の課題があった。そこ
で、信頼性という点でより特性の優れた材料が要求され
ている。
An organic polymer material having a relatively low dielectric constant has been widely considered for introduction as an interlayer insulating film material having a low dielectric constant. In this method, the organic groups are oxidized, which causes the film to shrink due to degassing from the film, and has the disadvantage that the film is distorted and cracks occur. In addition, polytetrafluoroethylene is known as a film that does not undergo oxidative decomposition in oxygen plasma treatment, but has a problem in that it has poor heat resistance, that is, easily expands thermally, and is decomposed by heat treatment. In addition, fluorine plasma treatment at room temperature has been studied to reduce the dielectric constant of the organosilicon compound. However, there have been problems such as an increase in hygroscopicity and dielectric constant, and heat resistance. Therefore, there is a demand for a material having better characteristics in terms of reliability.

【0006】[0006]

【発明が解決しようとする課題】このように、ポリイミ
ド、シリコーン樹脂に代表される低誘電率の有機系高分
子材料は、多層配線工程における酸素プラズマ処理で有
機基が酸化されることによる欠点、すなわち膜からの脱
ガスに起因する不良の発生、膜の歪みに起因するクラッ
クの発生という欠点を有している。一方、従来から低誘
電率無機膜を形成する方法として用いられてきたCVD
法は、真空系など高価な装置が必要であり、しかもシラ
ンのように爆発性の原料、あるいはテトラエチルオルト
シリケート(TEOS)のように毒性の高い原料を使用
するという欠点がある。また、有機ケイ素化合物の室温
でのフッ素プラズマ処理についても検討されているが、
この場合には誘電率の上昇、耐熱性が劣る等の課題があ
った。
As described above, low dielectric constant organic polymer materials represented by polyimide and silicone resin are disadvantageous in that organic groups are oxidized by oxygen plasma treatment in a multilayer wiring process. In other words, there is a defect that defects are generated due to degassing from the film and cracks are generated due to distortion of the film. On the other hand, CVD which has been conventionally used as a method of forming a low dielectric constant inorganic film is used.
The method requires expensive equipment such as a vacuum system, and has the drawback of using explosive raw materials such as silane or highly toxic raw materials such as tetraethyl orthosilicate (TEOS). In addition, fluorine plasma treatment of organosilicon compounds at room temperature has been studied,
In this case, there were problems such as an increase in the dielectric constant and poor heat resistance.

【0007】本発明の目的は、これらの欠点を解消し
て、従来の膜に比べて低誘電率であると同時に、絶縁
性、耐熱性、耐湿性を備えた絶縁膜の形成方法を提供す
ることにある。
An object of the present invention is to solve these disadvantages and to provide a method for forming an insulating film having a lower dielectric constant than conventional films and at the same time having insulation, heat resistance and moisture resistance. It is in.

【0008】[0008]

【課題を解決するための手段】本発明の低誘電率絶縁膜
形成方法は、基板上に有機珪素化合物の薄膜を形成し、
次に基板温度80〜250℃で当該薄膜をフッ素プラズ
マ処理することを特徴とする。
The method of forming a low dielectric constant insulating film according to the present invention comprises forming a thin film of an organosilicon compound on a substrate,
Next, the thin film is subjected to a fluorine plasma treatment at a substrate temperature of 80 to 250 ° C.

【0009】本発明によれば、基礎材料となる有機珪素
化合物の平坦性に優れた特性を受け継いだまま有機珪素
化合物をフッ素化して低誘電率化が行えるため、高速デ
バイスの層間絶縁膜として特に適した低誘電率膜が形成
でき、しかもこの膜は耐熱性、平坦性、絶縁性に優れて
いる。また、フッ素プラズマ処理によるフッ素化によ
り、その後の処理工程で使用される酸素プラズマ処理に
対する耐性も付与できる。
According to the present invention, a low dielectric constant can be obtained by fluorinating an organosilicon compound while inheriting excellent flatness characteristics of an organosilicon compound as a base material. A suitable low dielectric constant film can be formed, and this film is excellent in heat resistance, flatness, and insulation. Further, fluorination by the fluorine plasma treatment can also impart resistance to an oxygen plasma treatment used in a subsequent treatment step.

【0010】本発明は更に、本発明の方法により得られ
た低誘電率絶縁膜を層間絶縁膜又は半導体素子の保護膜
として含む半導体装置を提供する。すなわち、本発明に
よる一つに半導体装置は、基板とその上に形成された多
層配線層とを含み、この多層配線層の層間絶縁膜が、基
板上に形成した有機珪素化合物の薄膜を80〜250℃
の基板温度でフッ素プラズマ処理して得られたものであ
る半導体装置である。本発明によるもう一つの半導体装
置は、半導体素子を含む基板を有し、当該半導体素子の
保護膜が、基板上に形成した有機珪素化合物の薄膜を8
0〜250℃の基板温度でフッ素プラズマ処理して得ら
れたものである半導体装置である。
The present invention further provides a semiconductor device including the low dielectric constant insulating film obtained by the method of the present invention as an interlayer insulating film or a protective film of a semiconductor element. That is, one of the semiconductor devices according to the present invention includes a substrate and a multilayer wiring layer formed thereon, and the interlayer insulating film of the multilayer wiring layer has a thickness of 80 to 200 μm on the substrate. 250 ° C
A semiconductor device obtained by performing a fluorine plasma treatment at a substrate temperature. Another semiconductor device according to the present invention has a substrate including a semiconductor element, and the protective film of the semiconductor element includes a thin film of an organosilicon compound formed on the substrate.
This is a semiconductor device obtained by performing a fluorine plasma treatment at a substrate temperature of 0 to 250 ° C.

【0011】[0011]

【発明の実施の形態】本発明において使用される基板
は、半導体装置の製造用に使用される任意の基板でよ
い。本発明が特に有効な基板は、ICやLSI等の集積
度の高い半導体装置の製造で使用される、表面に段差を
有する基板である。そのような表面段差のある基板に対
して本発明の方法を適用すると、基板表面を効果的に平
坦化しつつ、低誘電率の絶縁膜を形成することができ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The substrate used in the present invention may be any substrate used for manufacturing a semiconductor device. A substrate to which the present invention is particularly effective is a substrate having a step on its surface, which is used in the manufacture of highly integrated semiconductor devices such as ICs and LSIs. When the method of the present invention is applied to a substrate having such a surface step, an insulating film having a low dielectric constant can be formed while effectively flattening the substrate surface.

【0012】本発明で使用する有機珪素化合物は、シロ
キサン結合を含まなければどのようなものでもよい。シ
ロキサン結合を含む化合物は、フッ素プラズマ処理にお
いて分解して有効な絶縁膜を形成できないため、使用す
べきでない。使用可能な有機珪素化合物の例を挙げる
と、次式
The organosilicon compound used in the present invention may be any compound as long as it does not contain a siloxane bond. A compound containing a siloxane bond should not be used because it cannot be decomposed in a fluorine plasma treatment to form an effective insulating film. Examples of usable organosilicon compounds include the following formula:

【0013】[0013]

【化3】 Embedded image

【0014】のポリカルボシラン、又は次式A polycarbosilane of the following formula:

【0015】[0015]

【化4】 Embedded image

【0016】のポリカルボシラスチレンである。上記の
式(1)の単位と式(2)の単位を含むコポリマーを使
用することも可能である。
Is a polycarbosilastyrene. It is also possible to use copolymers comprising units of the above formula (1) and units of the formula (2).

【0017】上記のポリカルボシランの式において、R
1 は炭素原子数1〜4の二価の炭化水素基であり、R2
とR3 は水素又は炭素原子数1〜4の一価の炭化水素基
(例として、メチル基、エチル基、プロピル基、ブチル
基等のアルキル基)であり、nは正の数である。R2
3 は同じであっても異なっていてもよい。R1
2 、R3 の炭素原子数が上記の上限より多くなると、
分子が大きくなって熱処理などの工程での収縮が大きく
なり、歪の原因となる。nの値は特に限定されないが、
ポリカルボシランが基板上に塗布するのに都合のよい特
性(特に粘度特性)を有するような値である。
In the above formula of polycarbosilane, R
1Is a divalent hydrocarbon group having 1 to 4 carbon atoms;Two
And RThreeIs hydrogen or a monovalent hydrocarbon group having 1 to 4 carbon atoms
(Examples include methyl, ethyl, propyl, butyl
And n is a positive number. RTwoWhen
RThreeMay be the same or different. R1,
R Two, RThreeWhen the number of carbon atoms is larger than the above upper limit,
Large molecules cause large shrinkage in processes such as heat treatment
And causes distortion. Although the value of n is not particularly limited,
Polycarbosilane is a convenient feature to apply on the substrate.
It is a value having properties (especially viscosity characteristics).

【0018】上記のポリカルボシラスチレンの式におい
て、R4 は炭素原子数1〜4の二価の炭化水素基であ
り、R5 は水素又は炭素原子数1〜4の一価の炭化水素
基(例として、メチル基、エチル基、プロピル基、ブチ
ル基等のアルキル基)であり、mは正の数である。
4 、R5 の炭素原子数が上記の上限より多くなると、
分子が大きくなって熱処理などの工程での収縮が大きく
なり、歪の原因となる。mの値は特に限定されないが、
ポリカルボシラスチレンが基板上に塗布するのに都合の
よい特性(特に粘度特性)を有するような値である。
In the above formula of polycarbosilastyrene, R 4 is a divalent hydrocarbon group having 1 to 4 carbon atoms, and R 5 is hydrogen or a monovalent hydrocarbon group having 1 to 4 carbon atoms. (For example, an alkyl group such as a methyl group, an ethyl group, a propyl group, and a butyl group), and m is a positive number.
When the number of carbon atoms of R 4 and R 5 exceeds the above upper limit,
The molecules become large and the shrinkage in a process such as heat treatment increases, which causes distortion. Although the value of m is not particularly limited,
The value is such that the polycarbosilastyrene has characteristics (particularly, viscosity characteristics) that are convenient for coating on the substrate.

【0019】本発明において用いられるポリカルボシラ
ンやポリカルボシラスチレンは、国内及び国外の製造業
者から入手できる出発原料から、常用の重合方法を使用
して製造することができる。例えば、ポリシランを出発
原料とし、不活性雰囲気中での加熱により対応のポリマ
ーにすることができる。あるいは、ポリシランを例えば
ポリジフェニルシロキサンのような触媒の存在下で不活
性雰囲気中で加熱して対応のポリマーを得ることもでき
る。更に、ポリカルボシラン等は商業的に入手すること
もできる。
The polycarbosilane and polycarbosilastyrene used in the present invention can be produced from starting materials available from domestic and foreign manufacturers using conventional polymerization methods. For example, a corresponding polymer can be obtained by using polysilane as a starting material and heating in an inert atmosphere. Alternatively, the polysilane can be heated in an inert atmosphere in the presence of a catalyst such as polydiphenylsiloxane to obtain the corresponding polymer. Further, polycarbosilane and the like can be obtained commercially.

【0020】基板上に有機珪素化合物の薄膜を形成する
には、スピンコート法を利用することができる。スピン
コート法は、表面に大きな段差のある基板上に平坦化し
た膜を形成するのに有利である。本発明により形成する
絶縁膜を基板の平坦化用よりも主として低誘電率の膜と
して利用するような場合には、スピンコート法以外に
も、適当な出発モノマーから化学気相成長(CVD)法
により有機珪素化合物の薄膜を形成することができる。
In order to form a thin film of an organosilicon compound on a substrate, a spin coating method can be used. The spin coating method is advantageous for forming a flattened film on a substrate having a large step on the surface. In the case where the insulating film formed by the present invention is mainly used as a film having a lower dielectric constant than that for flattening a substrate, a chemical vapor deposition (CVD) method from an appropriate starting monomer may be used in addition to the spin coating method. Thus, a thin film of an organosilicon compound can be formed.

【0021】基板上に形成した有機珪素化合物の薄膜
を、次に基板温度を80〜250℃としてフッ素プラズ
マ処理にかける。80℃より低い温度でフッ素プラズマ
処理した場合には、フッ素の拡散が薄膜の内部にまで容
易に及ぶことができず、薄膜の全体的なフッ素化を達成
できない。250℃より高い温度で処理すると、薄膜の
骨格に影響し、エッチングが先行してしまう。
The thin film of the organosilicon compound formed on the substrate is then subjected to a fluorine plasma treatment at a substrate temperature of 80 to 250 ° C. When the fluorine plasma treatment is performed at a temperature lower than 80 ° C., the diffusion of fluorine cannot easily reach the inside of the thin film, and the entire fluorination of the thin film cannot be achieved. If the treatment is performed at a temperature higher than 250 ° C., the skeleton of the thin film is affected, and the etching precedes.

【0022】フッ素プラズマ処理は、プラズマ源として
好ましくは例えばF2 ガスやNF3ガスのようなものを
使って行われる。フッ素とともに炭素を含むガスをプラ
ズマ源として使用することもできるが、この場合には薄
膜のフッ素化の速度が低下する。このほかの処理条件
は、使用するプラズマ発生装置やプラズマ源のガスの種
類等に応じて、適宜決定することができる。
The fluorine plasma treatment is preferably performed using a plasma source such as F 2 gas or NF 3 gas. A gas containing carbon together with fluorine can be used as the plasma source, but in this case, the fluorination rate of the thin film is reduced. Other processing conditions can be determined as appropriate according to the type of plasma generator used, the type of gas in the plasma source, and the like.

【0023】有機珪素化合物の薄膜を形成した基板を、
フッ素プラズマ処理を施す前に熱処理して、有機珪素化
合物の塗布に用いた溶媒を気化させて薄膜を乾燥させる
ことができる。この熱処理は、有機珪素化合物の酸化防
止のため不活性雰囲気中で行うのが好ましい。酸化され
た有機珪素化合物は、エッチングが先行する。
A substrate on which a thin film of an organosilicon compound is formed,
Heat treatment is performed before the fluorine plasma treatment, and the thin film can be dried by evaporating the solvent used for applying the organic silicon compound. This heat treatment is preferably performed in an inert atmosphere to prevent oxidation of the organic silicon compound. The oxidized organosilicon compound is preceded by etching.

【0024】本発明では、80〜250℃の基板温度で
有機珪素化合物のフッ素プラズマ処理を行うことで、薄
膜の全体に及ぶフッ素化(有機珪素化合物の構造中の水
素のフッ素での置換)が行われ、すなわちフッ素化度が
高くなって、薄膜は耐熱性に優れたものとなる。また、
本発明によりフッ素プラズマ処理後の絶縁膜はフルオロ
カーボン系のシリコン膜となることから、吸湿による誘
電率の上昇が抑えられ、更に酸素プラズマ耐性が付与さ
れる。そのため、本発明によれば信頼性の高い低誘電率
絶縁膜の形成が可能になる。
In the present invention, the fluorination (substitution of hydrogen in the structure of the organosilicon compound by fluorine) over the entire thin film is performed by performing the fluorine plasma treatment of the organosilicon compound at a substrate temperature of 80 to 250 ° C. As a result, the degree of fluorination increases, and the thin film becomes excellent in heat resistance. Also,
According to the present invention, since the insulating film after the fluorine plasma treatment becomes a fluorocarbon-based silicon film, an increase in dielectric constant due to moisture absorption is suppressed, and oxygen plasma resistance is further provided. Therefore, according to the present invention, a highly reliable low dielectric constant insulating film can be formed.

【0025】本発明の方法では、フッ素プラズマ処理す
る薄膜として、平坦性に優れた有機珪素化合物の薄膜を
使用するため、それのフッ素プラズマ処理によってやは
り平坦性に優れた低誘電率膜が得られ、この膜はフッ素
化の効果として絶縁性が向上し、そして耐熱性にも優れ
ている。そのため、本発明ほ方法により形成された低誘
電率絶縁膜は、特に高速の要求される、半導体集積回路
等の半導体装置の層間絶縁膜として有効である。
In the method of the present invention, since a thin film of an organosilicon compound having excellent flatness is used as the thin film to be subjected to the fluorine plasma treatment, a low dielectric constant film also having excellent flatness can be obtained by the fluorine plasma treatment. This film has an improved insulating property as an effect of fluorination, and is also excellent in heat resistance. Therefore, the low dielectric constant insulating film formed by the method of the present invention is effective as an interlayer insulating film of a semiconductor device such as a semiconductor integrated circuit, which requires a particularly high speed.

【0026】本発明により形成された低誘電率絶縁膜
は、半導体集積回路等の半導体装置に限らず、薄膜回路
基板の表面平坦化層や絶縁層としても同様に有効であ
る。また、半導体素子の保護膜としても有効である。
The low dielectric constant insulating film formed according to the present invention is not limited to a semiconductor device such as a semiconductor integrated circuit, but is similarly effective as a surface flattening layer and an insulating layer of a thin film circuit board. It is also effective as a protective film for a semiconductor element.

【0027】[0027]

【実施例】次に、実施例により本発明を更に説明する。
言うまでもなく、本発明はこれらの実施例により限定さ
れるものではない。
Next, the present invention will be further described with reference to examples.
Needless to say, the present invention is not limited by these examples.

【0028】〔実施例1〕シリコン基板上にスピンコー
ト法によりポリカルボシランのキシレン溶液を塗布し、
窒素雰囲気中で乾燥させて1μm厚の薄膜を形成した。
使用したポリカルボシランは次の式で表される。
Example 1 A xylene solution of polycarbosilane was applied on a silicon substrate by spin coating.
It was dried in a nitrogen atmosphere to form a thin film having a thickness of 1 μm.
The used polycarbosilane is represented by the following formula.

【0029】[0029]

【化5】 Embedded image

【0030】次いで、下記の条件でフッ素プラズマ処理
を施し、フルオロカーボン系シリコン被膜を得た。
Next, a fluorine plasma treatment was performed under the following conditions to obtain a fluorocarbon silicon coating.

【0031】 使用装置: ダウンフロー型プラズマ発生装置 高周波出力: 1.5kW ガス: NF3 、1.0Torr、500sccm 基板温度: 170℃ 処理時間: 3分Device used: Downflow type plasma generator High frequency output: 1.5 kW Gas: NF 3 , 1.0 Torr, 500 sccm Substrate temperature: 170 ° C. Processing time: 3 minutes

【0032】こうして得られたフッ素化された膜におい
てクラックの発生は見られなかった。この膜上に電極を
形成し、誘電率を測定した結果、2.3であった。ま
た、大気中に1週間放置した後に誘電率を測定した結
果、吸湿による誘電率の上昇は見られなかった。また、
窒素雰囲気中で熱処理を施した結果、昇温脱ガス分析装
置(TDS)で測定した耐熱性は400℃であった。
No cracking was observed in the fluorinated film thus obtained. An electrode was formed on this film, and the dielectric constant was measured to be 2.3. Further, as a result of measuring the dielectric constant after being left in the air for one week, no increase in the dielectric constant due to moisture absorption was observed. Also,
As a result of performing the heat treatment in a nitrogen atmosphere, the heat resistance measured by a thermal degassing analyzer (TDS) was 400 ° C.

【0033】〔参考例〕ポリカルボシラン薄膜のフッ素
プラズマ処理を基板温度を室温として行ったことを除い
て、実施例1と同様にフッ素化した絶縁膜を形成した。
この膜においてクラックの発生は見られなかった。測定
された誘電率は2.6であった。大気中に1週間放置し
た後に誘電率を測定した結果、誘電率の上昇が見られ
た。耐熱性は300℃であった。
Reference Example A fluorinated insulating film was formed in the same manner as in Example 1, except that the fluorine plasma treatment of the polycarbosilane thin film was performed at a substrate temperature of room temperature.
No crack was observed in this film. The measured dielectric constant was 2.6. As a result of measuring the dielectric constant after being left in the air for one week, an increase in the dielectric constant was observed. Heat resistance was 300 ° C.

【0034】〔実施例2〕5個のリングオーシュレータ
を形成した基板上に、実施例1と同様の条件で絶縁膜を
形成し、そしてリングオーシュレータが直列に接続する
ようにスルーホール形成後、この絶縁膜上の2層目配線
まで形成した基板を作製した。比較用に、絶縁膜として
TEOSから形成したSiO2 膜を用いた同様の基板を
作製した。それぞれの基板の配線遅延を比較した結果、
本発明による絶縁膜を用いた基板は比較用の基板より約
25%の配線遅延短縮が可能であることがわかった。
[Embodiment 2] On a substrate on which five ring insulators are formed, an insulating film is formed under the same conditions as in Embodiment 1, and after forming through holes so that the ring insulators are connected in series. Then, a substrate on which up to the second layer wiring on the insulating film was formed was manufactured. For comparison, a similar substrate using an SiO 2 film formed of TEOS as an insulating film was manufactured. As a result of comparing the wiring delay of each board,
It has been found that the substrate using the insulating film according to the present invention can reduce the wiring delay by about 25% compared to the comparative substrate.

【0035】〔実施例3〕プラズマ処理を80℃の基板
温度で施したこと除き、実施例1を繰り返した。得られ
た絶縁膜にクラックの発生は認められなかった。誘電率
の測定値は2.5であった。大気中に1週間放置した後
に誘電率を測定した結果、誘電率の上昇は認められなか
った。耐熱性は350℃であった。
Example 3 Example 1 was repeated except that the plasma treatment was performed at a substrate temperature of 80 ° C. No crack was observed in the obtained insulating film. The measured value of the dielectric constant was 2.5. As a result of measuring the dielectric constant after leaving it in the air for one week, no increase in the dielectric constant was recognized. Heat resistance was 350 ° C.

【0036】〔実施例4〕プラズマ処理を80℃の基板
温度で施したこと除き、実施例2を繰り返した。TEO
Sから形成したSiO2 膜を絶縁膜として用いた比較用
の基板と比較して、本発明による絶縁膜を用いた基板で
は約15%の配線遅延短縮が可能であった。
Example 4 Example 2 was repeated except that the plasma treatment was performed at a substrate temperature of 80 ° C. TEO
Compared with the comparative substrate using the SiO 2 film formed from S as the insulating film, the wiring delay can be reduced by about 15% in the substrate using the insulating film according to the present invention.

【0037】〔実施例5〕プラズマ処理を250℃の基
板温度で施したこと除き、実施例1を繰り返した。得ら
れた絶縁膜にクラックの発生は認められなかった。誘電
率の測定値は2.2であった。大気中に1週間放置した
後に誘電率を測定した結果、誘電率の上昇は認められな
かった。耐熱性は450℃であった。
Example 5 Example 1 was repeated except that the plasma treatment was performed at a substrate temperature of 250 ° C. No crack was observed in the obtained insulating film. The measured value of the dielectric constant was 2.2. As a result of measuring the dielectric constant after leaving it in the air for one week, no increase in the dielectric constant was recognized. Heat resistance was 450 ° C.

【0038】〔実施例6〕プラズマ処理を250℃の基
板温度で施したこと除き、実施例2を繰り返した。TE
OSから形成したSiO2 膜を絶縁膜として用いた比較
用の基板と比較して、本発明による絶縁膜を用いた基板
では約25%の配線遅延短縮が可能であった。
Example 6 Example 2 was repeated except that the plasma treatment was performed at a substrate temperature of 250 ° C. TE
Compared with a comparative substrate using an SiO 2 film formed from an OS as an insulating film, the substrate using the insulating film according to the present invention was able to reduce the wiring delay by about 25%.

【0039】[0039]

【発明の効果】以上の説明から明らかなように、本発明
によれば、低誘電率で耐熱性に優れ、且つ下地段差平坦
化能力に優れた、信頼性の高い絶縁膜を得ることが可能
になる。そして本発明により形成した低誘電率絶縁膜を
利用すれば、信頼性の向上した高速デバイスを実現する
ことが可能になる。
As is apparent from the above description, according to the present invention, it is possible to obtain a highly reliable insulating film having a low dielectric constant, excellent heat resistance, and excellent flattening ability of an underlying step. become. If a low dielectric constant insulating film formed according to the present invention is used, a high-speed device with improved reliability can be realized.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中田 義弘 神奈川県川崎市中原区上小田中4丁目1番 1号 富士通株式会社内 (72)発明者 山口 城 神奈川県川崎市中原区上小田中4丁目1番 1号 富士通株式会社内 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Yoshihiro Nakata 4-1-1, Kamidadanaka, Nakahara-ku, Kawasaki-shi, Kanagawa Prefecture Inside Fujitsu Limited (72) Inventor Shiro Yamaguchi 4-1-1 Kamiodanaka, Nakahara-ku, Kawasaki-shi, Kanagawa Prefecture No. 1 Inside Fujitsu Limited

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 基板上に有機珪素化合物の薄膜を形成
し、次に基板温度80〜250℃で当該薄膜をフッ素プ
ラズマ処理することを特徴とする低誘電率絶縁膜の形成
方法。
1. A method for forming a low dielectric constant insulating film, comprising: forming a thin film of an organosilicon compound on a substrate; and subjecting the thin film to fluorine plasma treatment at a substrate temperature of 80 to 250 ° C.
【請求項2】 前記フッ素プラズマ処理をF2 ガス又は
NF3 ガスを使用して行う、請求項1記載の方法。
2. The method according to claim 1, wherein the fluorine plasma treatment is performed using F 2 gas or NF 3 gas.
【請求項3】 前記有機珪素化合物が次式 【化1】 のポリカルボシラン(この式のR1 は炭素原子数1〜4
の二価の炭化水素基であり、R2 とR3 は水素又は炭素
原子数1〜4の一価の炭化水素基であり、nは正の数で
ある)、又は次式 【化2】 のポリカルボシラスチレン(この式のR4 は炭素原子数
1〜4の二価の炭化水素基であり、R5 は水素又は炭素
原子数1〜4の一価の炭化水素基であり、mは正の数で
ある)である、請求項1又は2記載の方法。
3. The organic silicon compound represented by the following formula: (Wherein R 1 is a C 1-4 carbon atom)
Wherein R 2 and R 3 are hydrogen or a monovalent hydrocarbon group having 1 to 4 carbon atoms, and n is a positive number), or the following formula: Wherein R 4 is a divalent hydrocarbon group having 1 to 4 carbon atoms, R 5 is hydrogen or a monovalent hydrocarbon group having 1 to 4 carbon atoms, Is a positive number).
【請求項4】 前記フッ素プラズマ処理を行う前に前記
有機珪素化合物の薄膜を不活性雰囲気で熱処理する、請
求項1から3までのいずれか一つに記載の方法。
4. The method according to claim 1, wherein the thin film of the organosilicon compound is heat-treated in an inert atmosphere before performing the fluorine plasma treatment.
【請求項5】 基板とその上に形成された多層配線層と
を含み、この多層配線層の層間絶縁膜が基板上に形成し
た有機珪素化合物の薄膜を80〜250℃の基板温度で
フッ素プラズマ処理して得られた膜である半導体装置。
5. A method according to claim 1, further comprising a substrate and a multilayer wiring layer formed thereon, wherein an interlayer insulating film of said multilayer wiring layer forms a thin film of an organosilicon compound formed on the substrate by fluorine plasma at a substrate temperature of 80 to 250 ° C. A semiconductor device which is a film obtained by processing.
【請求項6】 半導体素子を含む基板を有し、当該半導
体素子の保護膜が基板上に形成した有機珪素化合物の薄
膜を80〜250℃の基板温度でフッ素プラズマ処理し
て得られた膜である半導体装置。
6. A substrate having a semiconductor element, wherein a protective film of the semiconductor element is a film obtained by subjecting a thin film of an organosilicon compound formed on the substrate to a fluorine plasma treatment at a substrate temperature of 80 to 250 ° C. A semiconductor device.
JP30678196A 1996-11-18 1996-11-18 Method for forming low dielectric constant insulating film and semiconductor device using this film Expired - Fee Related JP3485425B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30678196A JP3485425B2 (en) 1996-11-18 1996-11-18 Method for forming low dielectric constant insulating film and semiconductor device using this film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30678196A JP3485425B2 (en) 1996-11-18 1996-11-18 Method for forming low dielectric constant insulating film and semiconductor device using this film

Publications (2)

Publication Number Publication Date
JPH10150036A true JPH10150036A (en) 1998-06-02
JP3485425B2 JP3485425B2 (en) 2004-01-13

Family

ID=17961192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30678196A Expired - Fee Related JP3485425B2 (en) 1996-11-18 1996-11-18 Method for forming low dielectric constant insulating film and semiconductor device using this film

Country Status (1)

Country Link
JP (1) JP3485425B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6255732B1 (en) 1998-08-14 2001-07-03 Nec Corporation Semiconductor device and process for producing the same
WO2004012252A1 (en) * 2002-07-30 2004-02-05 Tokyo Electron Limited Method for forming insulating layer
US6716770B2 (en) 2001-05-23 2004-04-06 Air Products And Chemicals, Inc. Low dielectric constant material and method of processing by CVD
US7074489B2 (en) 2001-05-23 2006-07-11 Air Products And Chemicals, Inc. Low dielectric constant material and method of processing by CVD
US7569497B2 (en) 2002-07-30 2009-08-04 Tokyo Electron Limited Method and apparatus for forming insulating layer
CN102427027A (en) * 2011-07-22 2012-04-25 上海华力微电子有限公司 Process method for improving thermal stability of semiconductor autocollimation nickel silicide
WO2017046921A1 (en) * 2015-09-17 2017-03-23 株式会社日立国際電気 Semiconductor device manufacturing method, substrate processing apparatus, and recording medium

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6255732B1 (en) 1998-08-14 2001-07-03 Nec Corporation Semiconductor device and process for producing the same
KR100358545B1 (en) * 1998-08-14 2002-10-25 닛뽕덴끼 가부시끼가이샤 Semiconductor device and process for producing the same
US6479407B2 (en) * 1998-08-14 2002-11-12 Nec Corporation Semiconductor device and process for producing the same
US6716770B2 (en) 2001-05-23 2004-04-06 Air Products And Chemicals, Inc. Low dielectric constant material and method of processing by CVD
US7074489B2 (en) 2001-05-23 2006-07-11 Air Products And Chemicals, Inc. Low dielectric constant material and method of processing by CVD
WO2004012252A1 (en) * 2002-07-30 2004-02-05 Tokyo Electron Limited Method for forming insulating layer
US7569497B2 (en) 2002-07-30 2009-08-04 Tokyo Electron Limited Method and apparatus for forming insulating layer
EP1918415A1 (en) 2002-12-12 2008-05-07 Air Products and Chemicals, Inc. Low dielectric constant material and method of processing by CVD
CN102427027A (en) * 2011-07-22 2012-04-25 上海华力微电子有限公司 Process method for improving thermal stability of semiconductor autocollimation nickel silicide
WO2017046921A1 (en) * 2015-09-17 2017-03-23 株式会社日立国際電気 Semiconductor device manufacturing method, substrate processing apparatus, and recording medium
JPWO2017046921A1 (en) * 2015-09-17 2018-07-05 株式会社日立国際電気 Semiconductor device manufacturing method, substrate processing apparatus, and recording medium
US10784116B2 (en) 2015-09-17 2020-09-22 Kokusai Electric Corporation Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium

Also Published As

Publication number Publication date
JP3485425B2 (en) 2004-01-13

Similar Documents

Publication Publication Date Title
JP3418458B2 (en) Method for manufacturing semiconductor device
JP3568537B2 (en) Electron beam processed film for microelectronic structure
JP4090740B2 (en) Integrated circuit manufacturing method and integrated circuit
JP2003501518A (en) Low dielectric constant polyorganosilicon coating derived from polycarbosilane
US20100317179A1 (en) Method for making integrated circuit device
JP2008520100A (en) Ultraviolet-assisted pore sealing of porous low-k dielectric films
US6338868B1 (en) Method for the formation of a siliceous coating film
JP2005517784A (en) Organosiloxane
US6764718B2 (en) Method for forming thin film from electrically insulating resin composition
US5906859A (en) Method for producing low dielectric coatings from hydrogen silsequioxane resin
US6235353B1 (en) Low dielectric constant films with high glass transition temperatures made by electron beam curing
JP3485425B2 (en) Method for forming low dielectric constant insulating film and semiconductor device using this film
JPH1140554A (en) Insulating film forming material, and method for forming insulating film and semiconductor device using it
Hendricks et al. Synthesis and characterization of fluorinated poly (arylethers): organic polymers for IC IMD
JP2004296476A (en) Method of manufacturing semiconductor device
US7090896B2 (en) Process for producing dielectric layers by using multifunctional carbosilanes
KR19980071624A (en) Composition for forming silica thin film and method for forming same
JP2000340651A (en) Manufacture of film having low dielectric constant
JPH11111712A (en) Low-dielectric constant insulating film, manufacture thereof and semiconductor device using the film
JPH0950993A (en) Formation of insulating film and semiconductor device
JP3489946B2 (en) Method for forming insulating film of semiconductor device and material for forming insulating film
JPH07242747A (en) Organosilicon polymer and semiconductor device
JP3169565B2 (en) Low dielectric constant insulating film and method of forming the same, and semiconductor device and method of manufacturing the same
JP2000021872A (en) Low-dielectric const. resin compsn., method of forming low-dielectric const. insulation film and manufacturing semiconductor device
EP1460685A1 (en) Semiconductor device and method of manufacturing the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030916

LAPS Cancellation because of no payment of annual fees