WO2004011412A1 - カルボン酸の製造方法 - Google Patents

カルボン酸の製造方法 Download PDF

Info

Publication number
WO2004011412A1
WO2004011412A1 PCT/JP2003/009376 JP0309376W WO2004011412A1 WO 2004011412 A1 WO2004011412 A1 WO 2004011412A1 JP 0309376 W JP0309376 W JP 0309376W WO 2004011412 A1 WO2004011412 A1 WO 2004011412A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
acid
carbon atoms
carboxylic acid
alicyclic
Prior art date
Application number
PCT/JP2003/009376
Other languages
English (en)
French (fr)
Inventor
Kazuhiko Sato
Youko Usui
Original Assignee
National Institute Of Advanced Industrial Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002216841A external-priority patent/JP3772210B2/ja
Priority claimed from JP2002216692A external-priority patent/JP3772209B2/ja
Application filed by National Institute Of Advanced Industrial Science And Technology filed Critical National Institute Of Advanced Industrial Science And Technology
Priority to CNB038178044A priority Critical patent/CN1313428C/zh
Priority to AU2003248099A priority patent/AU2003248099A1/en
Priority to US10/522,367 priority patent/US7186858B2/en
Priority to EP03771303A priority patent/EP1544190B1/en
Publication of WO2004011412A1 publication Critical patent/WO2004011412A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/31Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation of cyclic compounds with ring-splitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten

Definitions

  • the present invention is used as a plasticizer, a lubricant, a heat transfer medium, a dielectric medium, a fiber, a copolymer, a paint, a surfactant, a fungicide, an insecticide, an adhesive, etc. in various industries including the chemical industry.
  • carboxylic acids which are important intermediates in the synthesis of widely used and useful substances such as diesters, polyesters and polyamides, is discussed in more detail in cycloaliphatic alcohols or cycloaliphatic ketones and peroxides.
  • the present invention relates to a novel method for producing carboxylic acid by the reaction of an aqueous hydrogen solution. Background art
  • Methods for producing carboxylic acids by oxidizing alcohols include nitric acid (Org. Synth., 5, 9-11, Org. Synth., Coll. Vol. 1, 18-20, Compt. Rend., 1919, 168, 1324-1326, J. Chem. Soc, 1942, 559-562, J. Chem. Soc., Perkin Trans. II, 1985, 1677-1682), Chromic acid (Org. Synth., Coll. Vol. 4) , 19-21) or permanganic acid-based realm (Chem. Ber., 1908, 41, 575, Chem. Ber "1922, 55B, 3526-3536) or the like as an oxidizing agent.
  • These methods have a large impact on the environment in terms of the generation of highly toxic by-products and the corrosiveness of the oxidizing agent, and are not industrially superior processes.
  • Oxygen and hydrogen peroxide are inexpensive and non-corrosive, and have little environmental load because they have no or no harmful by-products after the reaction, and are excellent in industrial use. It can be said.
  • a polar solvent is used as a method for obtaining carboxylic acid using hydrogen peroxide as an oxidizing agent.
  • a homogeneous solution of cyclohexanol and hydrogen peroxide is prepared in advance, and this homogeneous solution is reacted in the presence of a catalyst such as a metal oxide of Group VI of the periodic table to produce adipic acid.
  • a method has been proposed (Japanese Patent Laid-Open No. 54-135720).
  • the yield of adipic acid by this method is estimated to be at most about 50%, and it cannot be said that it is still sufficient as an industrial method for producing carboxylic acid, and cyclohexanol is dissolved in aqueous hydrogen peroxide.
  • Nitric acid (Chem. Ber 1894, 27, 1542-1546) is used as an oxidizing agent to produce carboxylic acids by oxidizing ketones.
  • this method involves the danger of explosion during the reaction. After the reaction, nitrogen oxides, which are toxic gases, are by-produced.
  • the reaction using potassium permanganate as an oxidizing agent (J. Chem. Soc, 1956, 4232-4237) requires post-treatment using sulfuric acid after the reaction, and the operation is dangerous and complicated. In the presence of sulfuric acid or perchloric acid, coumaric acid (Helv. Chimica Acta., 1948, 31, 422-426, J. Am. Chem.
  • a homogeneous solution of cyclohexanone and hydrogen peroxide is prepared in advance using a polar solvent, and this homogeneous solution is reacted in the presence of a catalyst such as a metal oxide of Group 6 of the periodic table.
  • a method for producing adipic acid has been proposed (Japanese Patent Application Laid-Open No. 54-135720).
  • the yield of adipic acid by this method is estimated to be about 50% at most, and it cannot be said that it is still sufficient as an industrial method for producing carboxylic acid, and cyclohexanone is dissolved in an aqueous hydrogen peroxide solution. Since it is essential to use a polar solvent such as acetic acid or t-butyl alcohol to obtain a homogeneous solution, a means for removing the desired product, adipic acid, is required. Reaction operations and equipment are complicated, and the effects and toxicity of polar organic solvents on the environment and the human body have been pointed out. Disclosure of the invention
  • the present invention has been made to overcome the above-mentioned problems of the prior art, and provides a high yield of carboxylic acid from alicyclic alcohols or alicyclic ketones under mild reaction conditions.
  • the reaction operation is simple, the solvent removal operation after the reaction is completed is unnecessary, and the effect on the environment and the human body and the toxicity are extremely small. It is very similar to alicyclic alcohols or lipophilic ketones.
  • An object of the present invention is to provide a safe, simple, and efficient method for producing a carboxylic acid by reacting with an aqueous hydrogen oxide solution.
  • the inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, a conventional method of performing an oxidation reaction in a homogeneous solution system of a polar solvent solution of an alicyclic alcohol or an alicyclic ketone and an aqueous hydrogen peroxide solution. If instead of the reaction method, a reaction using a heterogeneous solution system of an aqueous hydrogen peroxide solution and an alicyclic alcohol-based or alicyclic ketone-based solution is selected, unlike conventional common-sense technical knowledge, They have found that carboxylic acids can be produced safely and simply in high yield, and have completed the present invention.
  • An alicyclic alcoholic oil solution or an alicyclic ketone oily solution is reacted with an aqueous hydrogen peroxide solution in a heterogeneous solution system in the presence of a catalyst containing a Group 6 metal compound of the periodic table.
  • a method for producing a carboxylic acid is reacted with an alicyclic alcoholic oil solution or an alicyclic ketone oily solution in the presence of a catalyst containing a Group 6 metal compound of the periodic table.
  • the alicyclic alcohol has the following general formula (1)
  • n represents an integer of 1 to 18,
  • R 2 , R 3 and R 4 represent a hydrogen atom, a hydroxy group, a halogen atom, a carboxyl group, an alkyl group having 1 to 4 carbon atoms, and a carbon number 1-4 alkoxyl group, a cycloalkyl group having 3 to 7 carbon atoms, Ariru group, Ararukiru group, a Ashiru group or Ashirokishi group may be the same or different.
  • R 1 and R 2, R 1 And R 3 , R 1 and R 4 , R 2 and R 3 , R 2 and R 4, or R 3 and R 4 may be bonded to each other to form a carbocyclic ring.
  • n represents an integer of 1 to 18, and RR 2 , R 3 and R 4 represent a hydrogen atom, a hydroxy group, a halogen atom, a carboxyl group, an alkyl group having 1 to 4 carbon atoms, and 1 carbon atom.
  • R 1 , R 2 , R 1 and R 4 represent an alkoxy group, a cycloalkyl group having 3 to 7 carbon atoms, an aryl group, an aralkyl group, an acyl group or an acyloxy group, which may be the same or different from each other.
  • R 3 , R 1 and R 4 , R 2 and R 3 , R 2 and R 4, or R 3 and R 4 may be bonded to each other to form a carbocyclic ring, and these rings further have 1 to 4 carbon atoms. Or an alkyl group having 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a cycloalkyl group having 3 to 7 carbon atoms, an aryl group, an aralkyl group, a carboxyl group or a halogen atom. 3.
  • the method for producing a carboxylic acid by oxidizing an alicyclic alcohol or an alicyclic ketone using hydrogen peroxide comprises the step of: conducting the oxidation reaction in the presence of a catalyst containing a Group 6 metal compound of the periodic table. It is characterized in that it is carried out in a heterogeneous solution of an aqueous solution of hydrogen peroxide and an alicyclic alcohol or alicyclic ketone oil solution.
  • a polar solvent such as acetic acid or t-butyl alcohol is used.
  • a homogeneous solution of cyclohexanol or cyclohexanone and hydrogen peroxide is prepared in advance, and this homogeneous solution is reacted in the presence of a catalyst such as a metal oxide of Group 6 of the periodic table to produce adipic acid. Process is adopted.
  • the present inventors have sought various studies, experiments, and theoretical considerations from the viewpoint of protecting the environment and the human body from the oxidation reaction more efficiently, and as a result, the oil containing hydrogen peroxide as an oxidizing agent has been studied.
  • the oxidation reaction with a cyclic alcohol or an alicyclic ketone is not a homogeneous solution, unlike the common general knowledge of the art, but a heterogeneous solution system of an alicyclic alcohol oily solution or an alicyclic ketone and an aqueous hydrogen peroxide solution. It was found that the carboxylic acid yield significantly improved when carried out in, and also contributed significantly to the reduction of environmental load.
  • n represents an integer of 1 to 18
  • R 1 R 2 , R 3 and R 4 represent a hydrogen atom, a hydroxy group, a halogen atom, a carboxyl group, an alkyl group having 1 to 4 carbon atoms, carbon atom Number 1 ⁇
  • R 1 and R 2 , R 1 and R 3 , R 1 and R 4 , R 2 and R 3 , R 2 and R 4 or R 3 and R 4 may be bonded to each other to form a carbocyclic ring
  • These rings are substituted with an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a cycloalkyl group having 3 to 7 carbon atoms, an aryl group, an aralkyl group, a carboxyl group or a halogen atom. Is also good. )
  • alicyclic alcohol represented by the general formula (I) include, for example, cyclobutanol, cyclohexanol, cyclohexanol, cyclohepanol, cycloxanol, cyclononanol, cyclodecanol Nord, cyclohexane, cyclododecanol, cyclotridecanol, cyclotridecanol, cyclotetradecanol, cyclopentene decanol, cyclohexadenicol, cycloheptanecanol, cyclooctadecanol, cyclononadecanol, cycloicosanol, Cyclohexonicol, 1-methylcyclopentanol, 2-methylcyclopentanol, 1,2-dimethylcyclopentanol, 1,3-dimethylcyclopentanol, 1,4-dimethylcyclopentanol , 2,
  • Alcohols preferably used in the present invention are cyclopentanol and cyclohexanol.
  • alicyclic ketone used in the method of the present invention a conventionally known general alicyclic ketone can be used, and is not particularly limited, but an alicyclic ketone represented by the following general formula (2) Formula ketones are preferably used.
  • n represents an integer of 1 to 18
  • RRR 3 and R 4 represent a hydrogen atom, a hydroxy group, a halogen atom, a carboxyl group, an alkyl group having 1 to 4 carbon atoms,
  • R 1 and R 2 , R 1 and R 3 , R 1 and R 4 , R 2 and R 3 , R 2 and R 4 or R 3 and R 4 may be bonded to each other to form a carbocyclic ring.
  • these rings are substituted with an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a cycloalkyl group having 3 to 7 carbon atoms, an aryl group, an aralkyl group, a carboxyl group or a halogen atom. You may. )
  • alicyclic ketone represented by the general formula (2) include, for example, cyclobutanone, cyclopenone, cyclohexanone, cyclohepnone, cyclooctane, cyclononanone, cyclodecanone, cycloundecanone, cyclone Dodecano Cyclodedecanone, cyclotetradecane, cyclopentecanone, cyclohexadecanone, cyclohepdecanone, cyclohepcanone, cyclononadecanone, cycloicosanone, cyclohexanosanone, 1-methylcyclopentanone, 2-methylcyclopentanone Pennone, 1,2-dimethylcyclopentanone, 1,3-dimethylcyclopentanone, 1,4-dimethylcyclopentanone, 2,3-dimethylcyclopentanone, 1,2,3-trimethylcyclo Penynone, 1,2,4-trimethylcyclopentene, 1,
  • a carboxylic acid can be obtained in a high yield from an alicyclic alcohol or an alicyclic ketone under mild reaction conditions, the reaction operation is simple, and the solvent is removed after the reaction is completed.
  • a safe, simple, and efficient method for the production of carboxylic acids by the reaction of alicyclic alcohols or alicyclic ketones with aqueous hydrogen peroxide which eliminates the need for operation and has minimal impact on the environment and the human body Therefore, it is extremely important to carry out the oxidation reaction in a heterogeneous solution system without using an organic solvent as much as possible.
  • the alicyclic alcohol or alicyclic ketone described above needs to be used as its own oily solution if it can be separated from the aqueous solution of hydrogen peroxide as an oxidizing agent.
  • Oily solutions of alicyclic alcohols or alicyclic ketones include oily solutions of alicyclic alcohols or alicyclic ketones themselves as well as non-polar solvents such as hydrocarbons that are incompatible with water.
  • An alicyclic alcohol or an alicyclic ketone may be used in an oily solvent solution, but from the viewpoint of reducing the environmental burden and removing the solvent as described above, the alicyclic alcohol or the alicyclic ketone itself may be used in an oily solvent solution. It is most desirable to use a solution.
  • the oxidizing agent used in the method of the present invention is hydrogen peroxide, and is used in the form of an aqueous solution in practice.
  • the concentration of the aqueous hydrogen peroxide solution is not particularly limited, since an oxidation reaction of an alicyclic alcohol or an alicyclic ketone occurs depending on the concentration, but is generally 1 to 80% by weight, preferably 30 to 80% by weight. It is selected from the range of ⁇ 60% by weight.
  • the amount of the aqueous hydrogen peroxide solution is not limited, but is generally selected from the range of 3.0 to 30.0 equivalents, preferably 3.3 to 8.0 equivalents to the alicyclic alcohol.
  • the catalyst used in the method of the present invention is mainly a metal compound of Group 6 of the periodic table.
  • a metal compound include at least one metal compound selected from chromium, molybdenum, and tungsten.
  • chromium compound a chromium compound which forms chromium anion in water, for example, chromic acid, chromium dioxide, chromium trisulfide, chromium hexachloride, phosphorus chromic acid, ammonium chromate, potassium chromate Hydrate, sodium chromate hydrate, etc., but chromic acid, chromium trioxide, and phosphochromic acid are preferred.
  • molybdenum compounds compounds that form molybdate anion in water, such as molybdate, molybdenum trioxide, molybdenum trisulfide, molybdenum hexachloride, phosphomolybdic acid, ammonium molybdate, potassium molybdate dihydrate, and sodium molybdate Examples thereof include dihydrate, and molybdic acid, molybdenum trioxide, and phosphomolybdic acid are preferable.
  • tungsten compound a compound that produces anion tungstate in water, for example, tungstic acid, tungsten trioxide, tungsten trisulfide, tungsten hexachloride, phosphotungstic acid, ammonium tungstate, potassium potassium stearate Examples thereof include dihydrate and sodium tungstate dihydrate. Tungstic acid, tungsten trioxide and phosphotungstic acid are preferred. These Group 6 metal compounds of the periodic table may be used alone or in combination of two or more. The amount used is not particularly limited, but is usually selected from the range of 0.0001 to 20 mol%, preferably 0.01 to 10 mol%, relative to the raw material alicyclic alcohol or alicyclic ketone.
  • the catalyst used in the production method of the present invention is mainly composed of the above-mentioned metal compound of Group 6 of the periodic table, but it is also possible to use an auxiliary catalyst such as phosphoric acid if necessary.
  • the reaction conditions of the method of the present invention are not particularly limited, but usually the reaction is carried out at a temperature of 30 to 120 ° C, preferably 50 to 10 CTC.
  • the reaction pressure may be any of normal pressure, increased pressure, and reduced pressure, but is preferably performed at normal pressure.
  • the addition of the raw material, the oxidizing agent and the catalyst may be performed.
  • the order and reaction mode are not particularly limited, but usually, an alicyclic alcohol or an alicyclic ketone is added to an aqueous hydrogen peroxide solution containing a catalyst to form a heterogeneous mixture of these in advance, and then these The reaction is carried out while stirring.
  • an alicyclic alcohol is converted to a corresponding glutaric acid or adipic acid. And the like can be obtained in high yield.
  • n, RR 2 and R 3 represent the same meaning as described above.
  • R 4 represents a carboxyl group, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, and 3 to 7 carbon atoms.
  • a cycloalkyl group, an aryl group, an aralkyl group, an acyl group or an acyloxy group which may be the same or different, and, and, and, and, R 2 and R 3 , R 2 and R 4 or R 3 and R 4 may be bonded to each other to form a carbocyclic ring, and furthermore, these rings are an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, and 3 to 7 carbon atoms. May be substituted with a cycloalkyl group, an aryl group, an aralkyl group, a carboxyl group or a halogen atom.
  • carboxylic acids obtained by the method of the present invention include, for example, succinic acid, glucuric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, pendecanedioic acid, brassic acid, tridecanedioic acid , Tetradecandioic acid, pendecanedioic acid, hexadecanedioic acid, heptadecandionic acid, okdecanedioic acid, nonadecanedioic acid, icosandioic acid, henicosandioic acid, 5-oxohexanoic acid, 2-methylglucuric acid , 4-Methyl_5-oxohexanoic acid, 3-Methyl-15-oxohexanoic acid, 2-Methyl-5-oxohexanoic acid, 2,3-Dimethylglutaric acid,
  • a mixed solution containing the generated carboxylic acid is added.
  • concentration the desired carboxylic acid can be obtained with high yield and high selectivity by separating and purifying by ordinary methods such as recrystallization, distillation, sublimation and the like.
  • H 2 W0 4 (25.0 mg, 0.100 mmol), 30% aqueous hydrogen peroxide solution (5.1 mL, 44 mmol) and consequent opening pen Yunoichiru (0.91 mL, 10 mmol) were mixed and 20 hours at 90 ° C Stirred. After the completion of the reaction, the resultant was cooled to room temperature. The yield of glutaric acid was determined by GLC using methyl as the internal standard after methylation with trimethylsilyldiazomethane, and found to be 91%.
  • H 2 W0 4 (25.0 mg, 0.100 mmol), was mixed with 30% aqueous hydrogen peroxide solution (5.1 mL, 44 mmol) and cyclo to cyclohexanone (1.0 mL, 10 mmol), and stirred at 90 for 20 h.
  • the same operation as in Example 1 was performed and quantification by GLC was performed. As a result, the yield of adipic acid was 99%.
  • Example 2 instead of cyclohexanol, a solution of cyclohexanol (1.06 mL, 10 mmol) dissolved in t-butyl alcohol (3 mL) was used. According to the same operation and quantification by GLC, the yield of adipic acid was 52%.
  • Example 5 t-butyl alcohol (3 mL) was used instead of cyclohexanone Using a cyclohexanone (1.0 mL, 10 mmol) solution dissolved in water, the oxidation reaction in a homogeneous solution was performed in the same manner as in Example 2 and quantified by GLC. The yield of adipic acid was 5%. 2%.
  • Carboxylic acids such as glutaric acid and adipic acid, which are important intermediates in the synthesis of diesters, polyesters and polyamides, which are useful substances widely used in various industrial fields, under mild reaction conditions and high yield. Can be obtained at a rate.
  • the method of the present invention does not use an organic solvent, an acid, or a base, so that the reaction operation is simple, the solvent removal operation after the reaction is completed is unnecessary, and the effect on the environment and the human body is extremely small. It also has the effect of reducing the load on the carboxylic acid, and the carboxylic acid can be produced safely, simply and efficiently.
  • the method of the present invention is an invention having a great effect industrially.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

温和な反応条件下で、脂環式アルコール類からカルボン酸を高収率で得ることができると共に反応操作が簡便で反応終了後の溶媒除去操作を不要とし、かつ環境や人体への影響・毒性がきわめて小さい、脂環式アルコール類と過酸化水素水溶液との反応による安全かつ簡便で効率的なカルボン酸の製造方法を提供する。そのために脂環式アルコール油性溶液と過酸化水素水溶液とを、周期律表第6族金属化合物を含む触媒の存在下、不均一溶液系で反応させる。

Description

明細書
カルボン酸の製造方法
技術分野
本発明は、 可塑剤、 潤滑剤、 伝熱媒体、 誘電媒体、 繊維、 共重合体、 塗料、 界面活性剤、 防カビ薬、 殺虫剤、 接着剤等として化学工業をはじめ、 各種の産業 分野で幅広く用いられる有用な物質であるジエステル、 ポリエステル及びポリア ミ ドの合成における重要な中間体であるカルボン酸の製造方法に閧し、 更に詳し くは、 脂環式アルコール又は脂環式ケトンと過酸化水素水溶液の反応によるカル ボン酸の新規な製造法に関するものである。 背景技術
アルコール類を酸化してカルボン酸を製造する方法としては、 硝酸 (Org. Synth., 5, 9—11、 Org. Synth., Coll. Vol. 1, 18 —20、 Compt. Rend., 1919, 168, 1324一 1326、 J. Chem. Soc, 1942, 559—562、 J. Chem. Soc., Perkin Trans. II, 1985, 1677 - 1682) 、 クロム酸 (Org. Synth., Coll. Vol. 4, 19 —21 ) 又は過マンガン酸力リゥム (Chem. Ber., 1908, 41, 575、 Chem. Ber" 1922, 55B, 3526—3536) 等を酸化剤とし て用いる方法が知られているが、 これらの方法は、 毒性の高い副生物の発生、 酸 化剤の腐食性等の点で環境に与える負荷が大きく、 工業的に優れたプロセスとは 言い難い。
これに対して、 酸素や過酸化水素は、 安価で腐食性がなく、 反応後の副生物は 皆無又は無害な水であるために環境負荷が小さく、 工業的に利用するのに優れた 酸化剤ということができる。
酸素を酸化剤とするアルコール類からカルボン酸を製造する方法としては、 触 媒として白金担持触媒を用いる方法が既に提案されている (Appl. Cat. A, 1996, 135, L7 - L11 ) 。
だが、 この方法は酸素を加圧下として、 反応温度を高温 ( 1 5 0 °C以上) で行 わなければならず、 しかも得られるカルボン酸の選択率も低く、 5 0 %程度に過 ぎない。
一方、 過酸化水素を酸化剤としてカルボン酸を得る方法としては、 極性溶媒を 用い、 シクロへキサノールと過酸化水素との均一溶液を予め調製しておき、 この 均一溶液を周期律表第 V I族の金属酸化物等の触媒の存在下で反応させてアジピ ン酸を製造する方法が提案されている (特開昭 5 4 - 1 3 5 7 2 0号公報) 。 しかしながら、 この方法によるアジピン酸の収率はせいぜい 50%程度と推定さ れ、 工業的なカルボン酸の製造方法としては未だ充分なものとはいえず、 また過 酸化水素水溶液にシクロへキサノールを溶解させて均一溶液とするために、 酢酸 や t—ブチルアルコールなどの極性溶媒の使用が不可欠とされていることから、 目的生成物であるアジピン酸を単離する際にその除去手段が必要となり、 反応操 作や装置が煩雑となる上、 極性有機溶媒自身の環境及び人体への影響 ·毒性も指 摘されるに至っている。
また、 ケトン類を酸化してカルボン酸を製造する方法としては、 硝酸 (Chem. Ber 1894, 27, 1542 -1546)が酸化剤として用いられているが、 この手法は反応中の 爆発の危険性が高く、 また反応後には有毒ガスである窒素酸化物が副生する。 過 マンガン酸カリウムを酸化剤とする反応 (J. Chem. Soc, 1956, 4232 -4237)では、 反 応後に硫酸を用いた後処理が必要であり、 操作が危険で煩雑である。 硫酸又は過 塩素酸存在下、 ク口ム酸 (Helv. Chimica Acta., 1948, 31, 422 -426、 J. Am. Chem. Soc, 1967, 89, 6691 -6695)を、 または超酸化力リゥム(Tetrahedron Lett" 1978, 3689 -3690) を酸化剤として用いる方法が知られているが、 これらの反応では酸化剤の腐食性 、 酸又はベンゼン溶媒の使用といった問題点が挙げられる。 上記の酸化剤を用い てケトン類からカルボン酸を製造するプロセスは、 環境に与える負荷が大きく、 工業的に優れた方法とは言い難い。 ' これに対して、 酸素や過酸化水素は、 安価で腐食性がなく、 反応後の副生物は 皆無又は無害な水であるために環境負荷が小さく、 工業的に利用するのに優れた 酸化剤ということができる。
酸素を酸化剤としてケトン類からカルボン酸を製造する方法は既に知られてい るが (Chem. Ber., 1892, 25, 1271 -1277、 Chem. Ber., 1892, 25, 2095 -2102、 J. Chem.
Soc, 1909, 95, 166 -171、 J. Org. Chem., 1965, 30, 3768 -3771)、 これらの方法では基 質に対して大過剰の強塩基が必要である。 また、 マンガンやコバルト塩等の金属 触媒存在下、 酸素を酸化剤としてケトン類からのカルボン酸の生成が報告されて いる(USP2005183 号明細書、 USP2316543 号明細書、 特開平 13-213841、 WOP2001-87815号明細書) が、 これらの方法では溶媒量の酢酸を用いないと、 力 ルボン酸が得られない。 さらに、 鉄又はバナジウム触媒を用いて酸素酸化を行つ た場合 (J. Org. Chem" 1983, 48, 1133 -1135、 J. Org. Chem" 1993, 58, 5663 -5665 ケ トンの 位に電子供与性置換基が結合していないと転化率が低い。 さらに鉄触媒 を用いる反応ではべンゼン溶媒が必要である。
一方、 過酸化水素を酸化剤としてカルボン酸を得る方法としてば、 周期律表第 3族や 1 3族の金属化合物を触媒量用いる方法が提案されているが (W 0 P 2 0 0 0 - 5 3 5 9 3明細書)、 この方法で得られる生成物は、 カルボン酸ではなくェ ステル又はラクトン化合物である。
また、 極性溶媒を用い、 シクロへキサノンと過酸化水素との均一溶液を予め調 製しておき、 この均一溶液を周期律表第 6族の金属酸化物等の触媒の存在下で反 応させてアジピン酸を製造する方法が提案されている (特開昭 5 4 - 1 3 5 7 2 0号公報) 。
しかしながら、 この方法によるアジピン酸の収率はせいぜい 50%程度と推定さ れ、 工業的なカルボン酸の製造方法としては未だ充分なものとはいえず、 また過 酸化水素水溶液にシクロへキサノンを溶解させて均一溶液とするために、 酢酸や t—ブチルアルコールなどの極性溶媒の使用が不可欠とされていることから、 目的 生成物であるアジピン酸を単離する際にその除去手段が必要となり、 反応操作や 装置が煩雑となる上、 極性有機溶媒自身の環境及び人体への影響 ·毒性も指摘さ れるに至っている。 発明の開示
本発明は、 上記のような従来技術の問題点を克服するためになされたものであ つて、 温和な反応条件下で、 脂環式アルコール類又は脂環式ケトン類からカルボ ン酸を高収率で得ることができると共に反応操作が簡便で反応終了後の溶媒除去 操作を不要とし、 かつ環境や人体への影響,毒性がきわめて小さい、 脂環式アル コール類又は脂璟式ケトン類と過酸化水素水溶液との反応による安全かつ簡便で 効率的なカルボン酸の製造方法を提供することをその目的とする。 本発明者らは、 前記課題を解決するために鋭意研究した結果、 脂環式アルコー ル又は脂環式ケトン類の極性溶媒溶液と過酸化水素水溶液との均一溶液系で酸化 反応を行う従来の反応方法に代えて、 過酸化水素水溶液と脂環式アルコール油性 又は脂環式ケトン油性溶液との不均一溶液系を用いる反応を選定すると、 従来の 常識的な技術的知見とは異なり、 対応するカルボン酸が高収率で安全かつ簡便に 製造し得ることを見いだし、 本発明を完成するに至った。
即ち、 本発明によれば、 以下の発明が提供される。
( 1 ) 脂環式アルコール油性溶液又は脂環式ケトン油性溶液と過酸化水素水溶液 とを、 周期律表第 6族金属化合物を含む触媒の存在下、 不均一溶液系で反応させ ることを特徴とするカルボン酸の製造方法。
( 2 ) 周期律表第 6族金属化合物が、 クロム、 モリブデン及びタングステンから 選ばれた少なくとも一種の金属化合物であることを特徴とする上記 ( 1 ) に記載 のカルボン酸の製造方法。
( 3 ) 脂環式アルコールが下記一般式 ( 1 )
Figure imgf000005_0001
(式中、 nは 1〜 1 8の整数を示し、 、 R2、 R3及び R4は、 水素原子、 ヒドロキ シ基、 ハロゲン原子、 カルボキシル基、 炭素数 1〜4のアルキル基、 炭素数 1〜 4のアルコキシ基、 炭素数 3〜 7のシクロアルキル基、 ァリール基、 ァラルキル 基、 ァシル基またはァシロキシ基を示し、 同一でも相異なっていてもよい。 また 、 R1と R2、 R1と R3、 R1と R4、 R2と R3、 R2と R4又は R3と R4は互いに結合して 炭素環を形成していてもよく、 更にこれらの環は炭素数 1〜4のアルキル基、 炭 素数 1〜4のアルコキシ基、 炭素数 3〜 7のシクロアルキル基、 ァリール基、 ァ ラルキル基、 カルボキシル基またはハロゲン原子で置換されていてもよい。 )
( 4 ) 脂環式ケトンが下記一般式 ( 2 )
Figure imgf000006_0001
(式中、 nは 1〜 1 8の整数を示し、 R R2、 R3及び R4は、 水素原子、 ヒドロキ シ基、 ハロゲン原子、 カルボキシル基、 炭素数 1〜4のアルキル基、 炭素数 1〜 4のアルコキシ基、 炭素数 3〜 7のシクロアルキル基、 ァリール基、 ァラルキル 基、 ァシル基またはァシロキシ基を示し、 同一でも相異なっていてもよい。 また 、 R1と R2、 R1と R3、 R1と R4、 R2と R3、 R2と R4又は R3と R4は互いに結合して 炭素環を形成していてもよく、 更にこれらの環は炭素数 1〜4のアルキル基、 炭 素数 1〜4のアルコキシ基、 炭素数 3〜 7のシクロアルキル基、 ァリ一ル基、 ァ ラルキル基、 カルボキシル基またはハロゲン原子で置換されていてもよい。 ) で表される化合物であることを特徴とする請求項 1又は 2に記載のカルボン酸 の製造法。
( 5 ) カルボン酸がグル夕ル酸又はアジピン酸であることを特徴とする上記 ( 1 ) 乃至 (4 ) 何れかに記載のカルボン酸の製造方法。 発明を実施するための最良の形態
本発明に係る過酸化水素を用いる脂環式アルコール又は脂環式ケトンの酸化反 応によるカルボン酸の製造方法は、 該酸化反応を、 周期律表第 6族金属化合物を 含む触媒の存在下、 過酸化水素水溶液と脂環式アルコール又は脂環式ケトン油性 溶液との不均一溶液中で行うことを特徴としている。
従来、 液液反応においては、 原料同士、 あるいは原料と酸化剤、 反応促進剤な どの反応試薬とが相溶性を持たない場合には、 反応を円滑に進めるために原料と 反応試薬等とが相互に溶解する溶媒を用いて、 両者の均一な溶液を予め調製し、 しかる後反応させるプロセスが選択率、 収率などの点で有利であるとされていた 脂環式アルコールや脂環式ケトンと過酸化水素との反応によるカルボン酸の合 成反応においても、 前記したように、 この発想が踏襲され、 特開昭 5 4— 1 3 5 7 2 0号公報記載の発明においても、 酢酸や t—ブチルアルコールのような極性 溶媒を用い、 シクロへキサノール又はシクロへキサンノンと過酸化水素との均一 溶液を予め調製しておき、 この均一溶液を周期律表第 6族の金属酸化物等の触媒 の存在下で反応させてァジピン酸を製造するプロセスが採られている。
本発明者等は、 かかる酸化反応を更に効率的にかつ環境 ·人体の保護の観点か ら、 種々様々な研究 ·実験、 理論的考察を模索した結果、 この過酸化水素を酸化 剤とする脂環式アルコール又は脂環式ケトンとの酸化反応は、 従来の技術常識と は異なり、 均一溶液系ではなく、 脂環式アルコール油性溶液又は脂環式ケトンと 過酸化水素水溶液との不均一溶液系で行なった場合には、 カルボン酸の収率が著 しく向上し、 しかも環境負荷の軽減に著しく貢献することを知見した。 このよう な知見は従来の技術常識では到底予期できるものではなく、 本発明者の弛まぬ実 験研究の積み重ねによってはじめて見い出された特異的な現象である。 · 本発明の不均一溶液系での酸化反応が、 カルボン酸の大幅な収率アップにつな がる理論的解明は現時点では明らかとなっていないが、 油性溶液中では触媒活性 種の溶媒和による活性低下が起こらない、 或いは何らかの理由によつて水一油相 界面で反応が大幅に促進される等に起因するところが多いものと推定される。 本発明方法で用いる原料としては、 従来公知の一般的な脂璟式アルコール又は 脂環式ケトンを使用することができ、 特に制限されるものではないが、 脂環式ァ ルコールとしては、 下記一般式 ( 1 ) で表される脂環式アルコールが好ましく用 いられる。
Figure imgf000007_0001
(式中、 nは 1〜 1 8の整数を示し、 R1 R2、 R3及び R4は、 水素原子、 ヒドロキ シ基、 ハロゲン原子、 カルボキシル基、 炭素数 1〜4のアルキル基、 炭素数 1〜
4のアルコキシ基、 炭素数 3〜 7のシクロアルキル基、 ァリール基、 ァラルキル 基、 ァシル基またはァシロキシ基を示し、 同一でも相異なっていてもよい。 また
、 R1と R2、 R1と R3、 R1と R4、 R2と R3、 R2と R4又は R3と R4は互いに結合して 炭素環を形成していてもよく、 これらの環は炭素数 1〜4のアルキル基、 炭素数 1〜4のアルコキシ基、 炭素数 3〜 7のシクロアルキル基、 ァリール基、 ァラル キル基、 カルボキシル基またはハロゲン原子で置換されていてもよい。 )
一般式 (I) で表される脂環式アルコールの具体例としては、 例えば、 シクロ ブ夕ノーノレ、 シクロ ン夕ノール、 シク口へキサノーノレ、 シクロヘプ夕ノーノレ、 シクロォク夕ノール、 シクロノナノール、 シクロデカノール、 シクロゥンデカノ —ル、 シクロドデカノ一ル、 シクロトリデカノ一ル、 シクロテトラデカノ一ル、 シクロペン夕デカノール、 シクロへキサデ力ノール、 シクロヘプ夕デカノール、 シクロォクタデカノール、 シクロノナデカノール、 シクロイコサノ一ル、 シクロ へニコサノール、 1—メチルシクロペン夕ノール、 2ーメチルシクロペンタノ一 ル、 1,2—ジメチルシクロペン夕ノール、 1,3—ジメチルシクロペン夕ノール 、 1,4ージメチルシクロペン夕ノール、 2,3—ジメチルシクロペン夕ノール、 1,2,3—トリメチルシクロペン夕ノール、 1,2,4—トリメチルシクロペン夕ノ —ル、 1,2, 3,4—テトラメチルシクロペンタノ一ル、 1ーメチルシクロへキサ ノール、 2—メチルシクロへキサノール、 3ーメチルシクロへキサノール、 1, 2—ジメチルシクロへキサノール、 1,3—ジメチルシクロへキサノール、 1 , 4 ージメチルシクロへキサノール、 1, 5—ジメチルシクロへキサノール、 2,3- ジメチルシクロへキサノール、 2, 4—ジメチルシクロへキサノール、 1,2,3 - トリメチルシクロへキサノール、 1,2,4 - トリメチルシクロへキサノール、 1, 2,5—トリメチルシクロへキサノール、 1, 3,4—トリメチルシクロへキサノー ル、 1,3,5—トリメチルシクロへキサノール、 2,3,4—トリメチルシクロへキ サノール、 1, 2,3,4—テトラメチルシクロへキサノール、 1,2,3,5ーテトラ メチルシクロへキサノール、 1,2,4,5—テトラメチルシクロへキサノール、 1, 2,3,4,5一ペンタメチルシクロへキサノール、 1ーメチルシクロヘプ夕ノ一ル 、 1—メチルシクロォク夕ノール、 1—メチルシクロノナノ一ル、 1—メチルシ クロデカノール、 1—メチルシクロウンデカノール、 1—メチルシクロ ドデカノ ール、 1—メチルシクロ トリデカノ一ル、 1ーメチルシクロテトラデカノール、 1ーメチルシクロペンタデカノ一ル、 1ーメチルシクロへキサデカノ一ル、 1一 メチルシクロへプ夕デカノ一ル、 1ーメチルシクロォク夕デカノ一ル、 1ーメチ ルシクロノナデカノ一ル、 1ーメチルシクロイコサノール、 1ーメチルシクロへ ニコサノール、 1一フエニルシクロへキサノ一ル、 1—ベンジルシクロへキサノ ール、 1 , 2ーシクロへキサンジオール、 1—クロロシクロペン夕ノール、 1― ブロモシクロペン夕ノール、 1—クロ口シクロへキサノール、 1—ブロモシクロ へキサノール、 シクロペン夕ノール一 1一力ルボン酸、 シクロへキサノール一 1 一力ルボン酸、 1—ァセチルシクロペン夕ノ一ル、 1—ァセチルシクロへキサノ
—ル等が挙げられる。 本発明で好ましく使用されるアルコールはシクロペンタノ ール、 シクロへキサノールである。
本発明方法で用いる脂環式ケトンとしては、 従来公知の一般的な脂璟式ケトン を使用することができ、 特に制限されるものではないが、 下記一般式 (2 ) で表 される脂環式ケトンが好ましく用いられる。
Figure imgf000009_0001
(式中、 nは 1〜 1 8の整数を示し、 R R R3及び R4は、 水素原子、 ヒドロキ シ基、 ハロゲン原子、 カルボキシル基、 炭素数 1〜4のアルキル基、 炭素数 1〜
4のアルコキシ基、 炭素数 3 ~ 7のシクロアルキル基、 ァリール基、 ァラルキル 基、 ァシル基またはァシロキシ基を示し、 同一でも相異なっていてもよい。 また 、 R1と R2、 R1と R3、 R1と R4、 R2と R3、 R2と R4又は R3と R4は互いに結合して 炭素環を形成していてもよく、 これらの環は炭素数 1〜4のアルキル基、 炭素数 丄〜 4のアルコキシ基、 炭素数 3〜 7のシクロアルキル基、 ァリール基、 ァラル キル基、 カルボキシル基またはハロゲン原子で置換されていてもよい。 )
一般式 (2 ) で表される脂環式ケトンの具体例としては、 例えば、 シクロブ夕 ノン、 シクロペン夕ノン、 シクロへキサノン、 シクロヘプ夕ノン、 シクロォク夕 ノン、 シクロノナノン、 シクロデカノン、 シクロウンデカノン、 シクロ ドデカノ ン、 シクロ トリデカノン、 シクロテトラデカノン、 シクロペン夕デカノン、 シク 口へキサデカノン、 シクロへプ夕デカノン、 シクロォク夕デカノン、 シクロノナ デカノン、 シクロイコサノン、 シクロへニコサノン、 1—メチルシクロペンタノ ン、 2—メチルシクロペン夕ノン、 1,2—ジメチルシクロペン夕ノン、 1,3 - ジメチルシクロペン夕ノン、 1,4—ジメチルシクロペンタノン、 2, 3—ジメチ ルシクロペン夕ノン、 1,2,3—トリメチルシクロペン夕ノン、 1 , 2, 4一卜リメ チルシクロペン夕ノン、 1,2, 3, 4—テトラメチルシクロペン夕ノン、 1ーメチ ルシクロへキサノン、 2—メチルシクロへキサノン、 3ーメチルシクロへキサノ ン、 1,2—ジメチルシクロへキサノン、 1,3ージメチルシクロへキサノン、 1, 4—ジメチルシクロへキサノン、 1 , 5—ジメチルシクロへキサノン、 2 , 3—ジ メチルシクロへキサノン、 2,4ージメチルシクロへキサノン、 1, 2 , 3—トリメ チルシクロへキサノン、 1, 2,4ートリメチルシクロへキサノン、 1, 2, 5—卜リ メチルシクロへキサノン、 1,3,4—トリメチルシクロへキサノン、 1,3,5 - h リメチルシクロへキサノン、 2,3,4—トリメチルシクロへキサノン、 1,2,3, 4ーテトラメチルシクロへキサノン、 1,2,3,5—テトラメチルシクロへキサノ ン、 1,2,4,5—テトラメチルシクロへキサノン、 1,2,3,4,5—ペンタメチル シクロへキサノン、 1ーメチルシクロヘプ夕ノン、 1—メチルシクロォクタノン 、 1ーメチルシクロノナノン、 1—メチルシクロデカノン、 1—メチルシクロウ ンデカノン、 1ーメチルシクロ ドデカノン、 1ーメチルシクロ トリデカノン、 1 —メチルシクロテトラデカノン、 1—メチルシクロペン夕デカノン、 1一メチル シクロへキサデカノン、 1—メチルシクロへプ夕デカノン、 1ーメチルシクロォ ク夕デカノン、 1ーメチルシクロノナデカノン、 1—メチルシクロイコサノン、 1ーメチルシクロへニコサノン、 1一フエニルシクロへキサノン、 1—ベンジル シクロへキサノン、 1、 2-シクロへキサンジオン、 1—ヒドロキシシクロへキサ ノン、 1 -クロロシクロペン夕ノン、 1 -プロモシクロペン夕ノン、 1—クロロシ クロへキサノン、 1—ブロモシクロへキサノン、 シクロペン夕ノン- 1一力ルボン 酸、 シクロへキサノン一 1一力ルボン酸、 1ーァセチルシクロペン夕ノン、 1一 ァセチルシクロへキサノン等が挙げられる。 本発明で好ましく使用されるケトン は、 シクロペン夕ノン、 シクロへキサノン、 シクロヘプ夕ノン、 シクロォク夕ノ ン等である。
本発明においては、 上記したように、 温和な反応条件下で、 脂環式アルコール 又は脂環式ケトンからカルボン酸を高収率で得ることができると共に反応操作が 簡便で反応終了後の溶媒除去操作を不要とし、 かつ環境や人体への影響 ·毒性が きわめて小さい、 脂環式アルコール類又は脂環式ケトン類と過酸化水素水溶液と の反応による安全かつ簡便で効率的なカルボン酸の製造方法を提供することをそ の目的としていることから、 上記酸化反応を可能な限り有機溶媒を使用すること なく不均一溶液系で行うことが極めて重要となる。
したがって、 上記した脂環式アルコール又は脂環式ケトンは、 酸化剤である過 酸化水素水溶液相とは分相となるようにできればそれ自体の油性溶液として用い ることが必要である。
脂環式アルコール又は脂環式ケトンの油性溶液としては、 脂環式アルコール又 は脂環式ケトンそれ自体の油性溶液の他、 水と相溶のない炭化水素などの非極性 溶媒中に溶解させた脂環式アルコール又は脂環式ケトンの油性溶媒溶液が挙げら れるが、 前記した環境負荷の軽減や溶媒除去操作の観点からみて、 脂環式アルコ ール又は脂環式ケトンそれ自体の油性溶液を用いることが最も望ましい。
本発明方法で用いる酸化剤は、 過酸化水素であり、 実施に当たってはその水溶 液の形態で用いられる。 過酸化水素水溶液の濃度は、 その濃度に応じて脂環式ァ ルコール又は脂環式ケトンの酸化反応は生起するので、 特に制限はないが、 一般 的には 1〜80重量%、 好ましくは 30〜60重量%の範囲から選ばれる。
また、 過酸化水素水溶液の使用量にも制限はないが、 一般的には脂環式アルコー ルに対して 3.0〜30.0当量、 好ましくは 3.3〜8.0当量の範囲から選ばれる。
本発明方法で用いる触媒は、 周期律表第 6族金属化合物を主体とするものであ る。 このような金属化合物としては、 クロム、 モリブテン及び夕ングステンから 選ばれた少なくとも一種の金属化合物を挙げることができる。
具体的には、 クロム化合物としては、 水中でクロム酸ァニオンを生成するクロ ム化合物、 例えばクロム酸、 Ξ酸化クロム、 三硫化クロム、 六塩化クロム、 リン クロム酸、 クロム酸アンモニゥム、 クロム酸カリウム二水和物、 クロム酸ナトリ ゥムニ水和物等が挙げられるが、 クロム酸、 三酸化クロム、 リンクロム酸が好ま しい。
モリブデン化合物としては、 水中でモリブデン酸ァニオンを生成する化合物、 例えばモリブデン酸、 三酸化モリブデン、 三硫化モリブデン、 六塩化モリブデン 、 リンモリブデン酸、 モリブデン酸アンモニゥム、 モリブデン酸カリウム二水和 物、 モリブデン酸ナトリウム二水和物等が挙げられるが、 モリブデン酸、 三酸化 モリブデン、 リンモリブデン酸が好ましい。
夕ングステン化合物としては、 水中でタングステン酸ァ二オンを生成する化合 物であり、 例えばタングステン酸、 三酸化タングステン、 三硫化タングステン、 六塩化タングステン、 リンタングステン酸、 タングステン酸アンモニゥム、 夕ン グステン酸カリウム二水和物、 タングステン酸ナトリウム二水和物等が挙げられ るが、 タングステン酸、 三酸化タングステン、 リンタングステン酸が好ましい。 これらの周期律表第 6族金属化合物は単独で使用しても、 二種以上を併用して も良い。 また、 その使用量に特に制限はないが、 通常、 原料の脂環式アルコール 又は脂環式ケトンに対して 0.0001〜20モル%、 好ましくは 0.01〜10モル%の範 囲から選ばれる。
本発明の製造方法で用いる触媒は、 前記した周期律表第 6族金属化合物が主体 とするものであるが、 必要に応じ、 リン酸等の補助触媒等を使用することも可能 である。
本発明方法の反応条件には、 特に制約ないが、 通常、 反応は 30〜120°C、 好ま しくは 50〜: 10CTCの範囲で行われる。 反応圧力は常圧、 加圧、 減圧のいずれでも 良いが、 常圧で行うことが好ましい。
また、 本発明の製造方法においては、 反応系中で過酸化水素水溶液と脂環式ァ ルコール又は脂環式ケトンとが不均一溶液を形成する方法であれば、 原料、 酸化 剤及び触媒の添加順序や反応態様に特に制限はないが、 通常、 触媒を混合した過 酸化水素水溶液に脂環式アルコール又は脂璟式ケトンを添加し、 あらかじめこれ らの不均一混合物を形成しておき、 ついでこれらを撹拌しながら反応させる方法 が採られる。
本発明の製造方法においては、 前記した特有な酸化反応プロセスを採ることに より、 たとえば、 脂環式アルコールからこれに対応するグルタル酸やアジピン酸 などのカルボン酸を高収率で得ることができる。
具体的には、 前記一般式 ( 1 ) の脂璟式アルコール及び前記一般式 (2 ) にお いて、 R4が水素原子、 ヒドロキシ基又はハロゲン原子であるアルコールからは、 下記一般式 (3 )
Figure imgf000013_0001
(式中、 n、 R R2及び R3は前記と同じ意味を表す。 )
で表されるジカルボン酸を得ることができる。
また、 前記一般式 ( 1 ) の脂環式アルコール及び一般式 (2 ) の脂環式ケトン において、 R4が水素原子、 ヒドロキシ基又はハロゲン原子以外の基である場合に は、 下記一般式 (4 )
Figure imgf000013_0002
(式中、 n、 R\ R2及び R3は前記と同じ意味を表す。 R4はカルボキシル基、 炭素 数 1〜4のアルキル基、 炭素数 1〜4のアルコキシ基、 炭素数 3〜7のシクロア ルキル基、 ァリ一ル基、 ァラルキル基、 ァシル基またはァシロキシ基を示し、 同 一でも相異なっていてもよい。 また、 と 、 と 、 と 、 R2と R3、 R2 と R4又は R3と R4は互いに結合して炭素環を形成していてもよく、更にこれらの 環は炭素数 1〜4のアルキル基、 炭素数 1〜4のアルコキシ基、 炭素数 3〜7の シクロアルキル基、 ァリ一ル基、 ァラルキル基、 カルボキシル基またはハロゲン 原子で置換されていてもよい。 ) .
で表されるケトカルボン酸を得ることができる。 本発明方法で得られるカルボン酸の具体例としては、 例えば、 コハク酸、 グル 夕ル酸、 アジピン酸、 ピメリン酸、 スベリン酸、 ァゼライン酸、 セバシン酸、 ゥ ンデカンジオン酸、 ブラシル酸、 トリデカンジオン酸、 テトラデカンジオン酸、 ペン夕デカンジオン酸、 へキサデカンジオン酸、 ヘプ夕デカンジオン酸、 ォク夕 デカンジオン酸、 ノナデカンジオン酸、 ィコサンジオン酸、 へニコサンジオン酸 、 5—ォキソへキサン酸、 2—メチルグル夕ル酸、 4—メチル _ 5—ォキソへキ サン酸、 3—メチル一 5—ォキソへキサン酸、 2 _メチル _ 5—ォキソへキサン 酸、 2, 3—ジメチルグルタル酸、 3,4—ジメチル _ 5—ォキソへキサン酸、 2, 4—ジメチル— 5—ォキソへキサン酸、 2,3—ジメチルー 5—ォキソへキサン酸 、 2,3,4一トリメチル一 5—ォキソへキサン酸、 6—ォキソヘプタン酸、 2— メチルアジピン酸、 3—メチルアジピン酸、 5—メチル一 6—ォキソヘプタン酸 、 4—メチル _ 6—ォキソヘプ夕ン酸、 3—メチル一 6—ォキソヘプタン酸、 2 ーメチルー 6—ォキソヘプ夕ン酸、 2,3—ジメチルアジピン酸、 2, 4—ジメチ ルアジピン酸、 4, 5—ジメチルー 6—ォキソヘプタン酸、 3,5—ジメチルー 6 —ォキソヘプタン酸、 2, 5—ジメチル _ 6—ォキソヘプタン酸、 2,3—ジメチ ル一 6—ォキソヘプタン酸、 3,4—ジメチルー 6 _ォキソヘプタン酸、 2,4— ジメチル一 6—ォキソヘプタン酸、 2,3,4—トリメチルアジピン酸、 3,4,5— トリメチルー 6—ォキソヘプ夕ン酸、 2,4, 5—トリメチル一 6—ォキソヘプ夕 ン酸、 2,3,4—トリメチル— 6—ォキソヘプタン酸、 2,3,5 _トリメチルー 6 —ォキソヘプタン酸、 2, 3,4, 5—テトラメチル一 6—ォキソヘプタン酸、 7— ォキソオクタン酸、 8—ォキソノナン酸、 9—ォキソデカン酸、 10—ォキソゥ ンデカン酸、 1 1一才キソドデカン酸、 1 2—ォキソトリデカン酸、 13—ォキ ソテトラデカン酸、 14—ォキソペン夕デカン酸、 1 5—ォキソへキサデカン酸 、 16—ォキソヘプ夕デカン酸、 17—ォキソォク夕デカン酸、 18—才キソノ ナデカン酸、 1 9ーォキソィコサン酸、 20—ォキソへニコサン酸、 2 1—ォキ ソドコサン酸、 6—フエニル— 6—ォキソへキサン酸、 7—フエニル一 6—ォキ ソヘプ夕ン酸等が挙げられる。 この中でも、 グルタル酸、 アジピン酸等が好まし く合成される。
本発明方法においては、 前記反応終了後、 生成したカルボン酸を含む混合液を 濃縮後、 再結晶や蒸留、 昇華等の通常の方法によって分離精製することにより、 高収率、 高選択率で目的とするカルボン酸を得ることができる。
実施例
本発明を以下の実施例によってさらに具体的に説明するが、 本発明はこれらの実 施例により何ら限定されるものではない。
実施例 1
H2W04 (25.0 mg, 0.100 mmol)、 30%過酸化水素水溶液 (5.1 mL, 44 mmol)及びシク 口ペン夕ノ一ル (0.91 mL, 10 mmol)を混合し、 90°Cで 20時間撹拌した。 反応終了 後、 室温まで冷却した。 グルタル酸の収率を、 トリメチルシリルジァゾメタンで メチル化した後にビフエニルを内部標準として GLCで決定したところ、 91%であ つ 7こ。
実施例 2
H2W04 (25.0 mg, 0.100 mmol)、 30%過酸化水素水溶液 (5.1 mL, 44 mmol) 及びシ クロへキサノール (1.06 mL, 10 mmol)を混合し、 90°Cで 20時間撹拌した。 実施例 1と同様の操作を行い GLCによる定量を行ったところ、アジピン酸の収率は 89% であった。
実施例 3
H2W04 (2.50 g, 0.010 mol)、 30%過酸化水素水溶液 (510 mL, 4.4 mol) 及びシク口 へキサノール (101 mL, 1.0 mol)を混合し、 90 °Cで 20時間撹拌した。 0 °Cにてー晚 静置したところ、 白色結晶が析出した。 得られた結晶を減圧ろ過によりろ別し、 冷水 (20 mL)で洗浄した。ヨウ化力リゥムデンプン紙を用いてろ液が過酸化物反応 を示さないことを確認し、 真空乾燥を行った。 アジピン酸の白色結晶が 85% (125 g, 0.85 mol)の収率で得られた。
実施例 4
H2W04 (25.0 mg, 0.100 mmol)、 30%過酸化水素水溶液( 3 . 7 mL, 3 3 mmol) 及ぴシクロペン夕ノン . 0 mL, 10 mmol)を混合し、 90°Cで 20時間撹拌した。 反応終了後、 室温まで冷却した。 グル夕ル酸の収率を、 トリメチルシリルジァゾ メタンでメチル化した後にビフエニルを内部標準として GLCで決定したところ、 9 8 %であった。 実施例 5
H2W04 (25.0 mg, 0.100 mmol)、 30%過酸化水素水溶液 (5.1 mL, 44 mmol) 及びシ クロへキサノン (1.0 mL, 10 mmol)を混合し、 90 で 20時間撹拌した。 実施例 1 と同様の操作を行い GLCによる定量を行ったところ、アジピン酸の収率は 9 9 % であった。
実施例 6
H2W04 (2.50 g, 0.010 mol)、 30%過酸化水素水溶液( 3 7 0 mL, 3 . 3 mol) 及 びシクロへキサノン(1 0 0 mL, 0 . 9 6 6 mol)を混合し、 90°Cで 20時間撹拌 した。 o°c にてー晚静置したところ、 白色結晶が析出した。 得られた結晶を減圧 ろ過によりろ別し、冷水 (20 mL)で洗浄した。 ヨウ化カリウムデンプン紙を用いて ろ液が過酸化物反応を示さないことを確認し、 真空乾燥を行った。 アジピン酸の 白色結晶が 9 2 % ( 1 3 0 g, 0 . 8 9 9 mol)の収率で得られた。
実施例 7
H2W04 (25.0 mg, 0.100 mmol)、 30%過酸化水素水溶液( 3 . 7 mL, 3 3 mmol) 及びシクロヘプ夕ノン(1 . 2 mL, 10 mmol)を混合し、 90 °Cで 20時間撹拌した 。実施例 1と同様の操作を行い GLCによる定量を行ったところ、 ピメリン酸の収 率は 8 1 %であった。
実施例 8
H2W04 (25.0 mg, 0.100 mmol)、 30%過酸化水素水溶液( 3 . 7 mL, 3 3 mmol) 及びシクロォク夕ノン( 1 . 3 mL, 10 mmol)を混合し、 90 °Cで 20時間撹拌した 。実施例 1と同様の操作を行い GLCによる定量を行ったところ、スペリン酸の収 率は 8 5 %であった。
比較例 1
実施例 2において、 シクロへキサノールに代えて、 t—ブチルアルコール(3 mL ) に溶かしたシクロへキサノール (1.06 mL, 10 mmol)溶液を用い、均一溶液中での酸 化反応を実施例 2に準じた操作で行い、 GLCによる定量を行ったところ、 アジピ ン酸の収率は 5 2 %であった。
比較例 2
実施例 5において、 シクロへキサノンに代えて、 t一ブチルアルコール(3 mL) に溶かしたシクロへキサノン(1.0 mL, 10 mmol)溶液を用い、 均一溶液中での酸化 反応を実施例 2に準じた操作で行い、 GLCによる定量を行ったところ、 アジピン 酸の収率は 5 2 %であった。
産業上の利用可能性
本発明方法によれば、 可塑剤、 潤滑剤、 伝熱媒体、 誘電媒体、 繊維、 共重合体 、 塗料樹脂、 界面活性剤、 防カビ薬、 殺虫剤、 接着剤等として化学工業をはじめ 、 各種の産業分野で幅広く用いられる有用な物質であるジエステル、 ポリエステ ル及びポリアミ ドの合成における重要な中間体である、 グルタル酸やアジピン酸 などのカルボン酸を、 温和な反応条件下で、 かつ高収率で得ることができる。 また、 本発明方法は、 有機溶媒、 酸及び塩基は使用しないため、 反応操作が簡 便で反応終了後の溶媒除去操作等を不要とすると共に環境や人体への影響 ·毒性 がきわめて小さく、 環境に対する負荷を軽減する効果も有し、 安全かつ簡便で効 率的にカルボン酸を製造することができる。
したがって、 本発明方法は工業的に多大な効果をもたらす発明ということがで きる。

Claims

請求の範囲
1 . 脂環式アルコール油性溶液又は脂環式ケトン油性溶液と過酸化水素水溶液 とを、 周期律表第 6族金属化合物を含む触媒の存在下、 不均一溶液系で反応させ ることを特徴とするカルボン酸の製造方法。
2 . 周期律表第 6族金属化合物が、 クロム、 モリブデン及びタングステンから 選ばれた金属化合物の少なくとも一種であることを特徴とする請求の範囲第 1項 に記載のカルボン酸の製造方法。
3 . 脂環式アルコールが下記一般式 ( 1 )
Figure imgf000018_0001
(式中、 nは 1〜 1 8の整数を示し、 、 R2、 R3及び R4は、 水素原子、 ヒドロキ シ基、 ハロゲン原子、 カルボキシル基、 炭素数 1〜4のアルキル基、 炭素数 1〜 4のアルコキシ基、 炭素数 3〜 7のシクロアルキル基、 ァリ一ル基、 ァラルキル 基、 ァシル基またはァシロキシ基を示し、 同一でも相異なっていてもよい。 また 、 R1と R2、 R1と R3、 R1と R4、 R2と R3、 R2と R4又は R3と R4は互いに結合して 炭素環を形成していてもよく、 更にこれらの環は炭素数 1〜4のアルキル基、 炭 素数 1〜4のアルコキシ基、 炭素数 3〜 7のシクロアルキル基、 ァリ一ル基、 ァ ラルキル基、 カルボキシル基またはハロゲン原子で置換されていてもよい。 ) で表される化合物であることを特徴とする請求の範囲第 1項又は第 2項に記載 のカルボン酸の製造方法。
4 . 脂環式ケトンが下記一般式 ( 2 )
Figure imgf000019_0001
(式中、 nは 1〜 1 8の整数を示し、 R R2、 及び R4は、 水素原子、 ヒドロキ シ基、 ハロゲン原子、 カルボキシル基、 炭素数 1〜4のアルキル基、 炭素数 1〜 4のアルコキシ基、 炭素数 3〜 7のシクロアルキル基、 ァリール基、 ァラルキル 基、 ァシル基またはァシロキシ基を示し、 同一でも相異なっていてもよい。 また 、 R1と R2、 R1と R3、 R1と R4、 R2と R3、 R2と R4又は R3と R4は互いに結合して 炭素環を形成していてもよく、 更にこれらの環は炭素数 1〜4のアルキル基、 炭 素数 1〜4のアルコキシ基、 炭素数 3〜 7のシクロアルキル基、 ァリール基、 ァ ラルキル基、 カルボキシル基またはハロゲン原子で置換されていてもよい。 ) で表される化合物であることを特徴とする請求の範囲第 1項又は第 2項に記載 のカルボン酸の製造法。
5 . カルボン酸がグルタル酸又はアジピン酸であることを特徴とする請求の範囲 第 1項乃至第 4項何れかに記載のカルボン酸の製造方法。
PCT/JP2003/009376 2002-07-25 2003-07-24 カルボン酸の製造方法 WO2004011412A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CNB038178044A CN1313428C (zh) 2002-07-25 2003-07-24 制备羧酸的方法
AU2003248099A AU2003248099A1 (en) 2002-07-25 2003-07-24 Method for producing carboxylic acid
US10/522,367 US7186858B2 (en) 2002-07-25 2003-07-24 Method for producing carboxylic acid
EP03771303A EP1544190B1 (en) 2002-07-25 2003-07-24 Method for producing carboxylic acids

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002216841A JP3772210B2 (ja) 2002-07-25 2002-07-25 カルボン酸の製造方法
JP2002216692A JP3772209B2 (ja) 2002-07-25 2002-07-25 カルボン酸の製造法
JP2002-216841 2002-07-25
JP2002-216692 2002-07-25

Publications (1)

Publication Number Publication Date
WO2004011412A1 true WO2004011412A1 (ja) 2004-02-05

Family

ID=31190294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/009376 WO2004011412A1 (ja) 2002-07-25 2003-07-24 カルボン酸の製造方法

Country Status (5)

Country Link
US (1) US7186858B2 (ja)
EP (1) EP1544190B1 (ja)
CN (1) CN1313428C (ja)
AU (1) AU2003248099A1 (ja)
WO (1) WO2004011412A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8017793B2 (en) 2004-05-14 2011-09-13 Shionogi & Co., Ltd. Oxidation of alcohol with use of hydrogen peroxide and tungsten catalyst

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7497827B2 (en) * 2004-07-13 2009-03-03 Dexcom, Inc. Transcutaneous analyte sensor
CN102260157B (zh) * 2010-05-27 2013-11-27 中国石油化工股份有限公司 一种氧化环酮制备相应二酸的方法
WO2016104474A1 (ja) 2014-12-26 2016-06-30 花王株式会社 環状ジケトン化合物の製造方法
JP6780774B2 (ja) * 2017-03-31 2020-11-04 ダイキン工業株式会社 フルオロポリマーの製造方法、重合用界面活性剤及び界面活性剤の使用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4319286B1 (ja) * 1965-10-20 1968-08-21
JPS54135720A (en) 1978-04-14 1979-10-22 Yasutaka Ishii Manufacture of adipic acid
WO2000053593A1 (fr) 1999-03-11 2000-09-14 Daicel Chemical Industries, Ltd. Procede de preparation d'esters ou lactones

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1069631C (zh) * 1997-03-11 2001-08-15 中国石化辽阳石油化纤公司 一种获取己二酸和二元酸的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4319286B1 (ja) * 1965-10-20 1968-08-21
US3590080A (en) 1965-10-20 1971-06-29 Courtaulds Ltd Manufacture of omega-hydroxy acids
JPS54135720A (en) 1978-04-14 1979-10-22 Yasutaka Ishii Manufacture of adipic acid
WO2000053593A1 (fr) 1999-03-11 2000-09-14 Daicel Chemical Industries, Ltd. Procede de preparation d'esters ou lactones

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
ISHII ET AL., CHEM. LETT., 1978, pages 611 - 614
NOMIYA ET AL., POLYHEDRON, vol. 3, 1984, pages 607 - 610
See also references of EP1544190A4 *
USUI; SATO, GREEN CHEMISTRY, vol. 5, 2003, pages 373 - 375
WANG ET AL., HUAXUE SHIJIE, vol. 43, no. 9, 2002, pages 484 - 486
ZHANG ET AL., PETROLEUM SCIENCE & TECHNOLOGY, vol. 21, 2003, pages 275 - 282
ZHANG ET AL., SCIENCE & TECHNOLOGY IN CHEMICAL INDUSTRY, vol. 10, no. 5, 2002, pages 4 - 6
ZHANG SHI-GANG ET AL.: "Green catalytic oxidation of cyclohexanone to adipic acid", SCIENCE & TECHNOLOGY IN CHEMICAL INDUSTRY, vol. 10, no. 5, 2002, pages 4 - 6, 16, XP002973982 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8017793B2 (en) 2004-05-14 2011-09-13 Shionogi & Co., Ltd. Oxidation of alcohol with use of hydrogen peroxide and tungsten catalyst

Also Published As

Publication number Publication date
EP1544190B1 (en) 2011-08-31
EP1544190A4 (en) 2006-07-05
AU2003248099A1 (en) 2004-02-16
CN1313428C (zh) 2007-05-02
CN1671642A (zh) 2005-09-21
US7186858B2 (en) 2007-03-06
US20050215817A1 (en) 2005-09-29
EP1544190A1 (en) 2005-06-22

Similar Documents

Publication Publication Date Title
DE602005001366T2 (de) Verfahren zur Herstellung von Cycloalkanol und/oder Cycloalkanon
JP3073961B2 (ja) シクロアルカンの酸化法
JP2006504781A (ja) カルボン酸の製造方法
US6762319B1 (en) Hydrocarbon, alcohol and/or ketone oxidation method
WO2004011412A1 (ja) カルボン酸の製造方法
KR20080020594A (ko) 물에서 p-크실렌의 액상 산화에 의한 p-톨루엔산의제조방법
JP3772209B2 (ja) カルボン酸の製造法
JP3772210B2 (ja) カルボン酸の製造方法
WO2006104411A1 (fr) Procede de fabrication de 2-methyl-1,4-naphthoquinone
JP3345943B2 (ja) ケトンの製造方法
US7109379B2 (en) Method for producing carbonyl compound
JP2003128614A (ja) カルボニル化合物の製造方法
JP3564838B2 (ja) シクロアルカノールとシクロアルカノンの製造方法
JP2004501887A (ja) 炭化水素、アルコール及び(又は)ケトンの酸化方法
JP3564816B2 (ja) シクロアルカノール及びシクロアルカノンを製造する方法
JP4374838B2 (ja) ラクトン類、エステル類またはカルボン酸類の製造方法とその触媒
JP4434751B2 (ja) カルボン酸の製造方法
JP2002524545A (ja) 炭化水素の直接酸化から得られるカルボン酸を分離精製する方法
JPH04108758A (ja) カルボン酸の製造方法
JPS59164737A (ja) ヒドロペルオキシドの分解によるケトンおよびアルコ−ルの製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20038178044

Country of ref document: CN

Ref document number: 10522367

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003771303

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 237/CHENP/2005

Country of ref document: IN

WWP Wipo information: published in national office

Ref document number: 2003771303

Country of ref document: EP