WO2004005846A1 - シアリング干渉計の校正方法、投影光学系の製造方法、投影光学系、及び投影露光装置 - Google Patents

シアリング干渉計の校正方法、投影光学系の製造方法、投影光学系、及び投影露光装置 Download PDF

Info

Publication number
WO2004005846A1
WO2004005846A1 PCT/JP2003/008588 JP0308588W WO2004005846A1 WO 2004005846 A1 WO2004005846 A1 WO 2004005846A1 JP 0308588 W JP0308588 W JP 0308588W WO 2004005846 A1 WO2004005846 A1 WO 2004005846A1
Authority
WO
WIPO (PCT)
Prior art keywords
shearing interferometer
optical system
calibrating
index
projection optical
Prior art date
Application number
PCT/JP2003/008588
Other languages
English (en)
French (fr)
Inventor
Zhigiang Liu
Katsumi Sugisaki
Kazuya Ota
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to AU2003281312A priority Critical patent/AU2003281312A1/en
Publication of WO2004005846A1 publication Critical patent/WO2004005846A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70591Testing optical components
    • G03F7/706Aberration measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02055Reduction or prevention of errors; Testing; Calibration
    • G01B9/0207Error reduction by correction of the measurement signal based on independently determined error sources, e.g. using a reference interferometer
    • G01B9/02072Error reduction by correction of the measurement signal based on independently determined error sources, e.g. using a reference interferometer by calibration or testing of interferometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02097Self-interferometers
    • G01B9/02098Shearing interferometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
    • G01J9/02Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength by interferometric methods
    • G01J9/0215Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength by interferometric methods by shearing interferometric methods

Definitions

  • the present invention relates to a method for calibrating a shearing interferometer applied to a shearing interferometer, a method for manufacturing a projection optical system, a projection optical system, and a projection exposure apparatus.
  • a sealing interferometer for example, the one described in Japanese Patent Application No. 2002-304131 as a conventional example
  • a sealing interferometer for example, the one described in Japanese Patent Application No. 2002-304131 as a conventional example
  • a shearing interferometer detects interference fringes generated by a measurement light beam transmitted through an object or reflected from an object to be inspected, using a two-dimensional detector such as a CCD camera.
  • a two-dimensional detector such as a CCD camera.
  • the two wavefronts that generate the interference fringes are both the wavefronts of the same measurement light beam that has passed through the test object.
  • a half mirror, a diffraction grating, or the like is used as a splitting unit for splitting (shearing) the wavefront of the measurement light beam passing through the test object into two. If the division direction (shear direction) and the division amount (shear amount) of the divided wavefront are known, the transmitted wavefront of the test object and the reflection of the test surface can be obtained from the interference fringe data output from the detector. The wavefront can be restored.
  • the restored wavefront is obtained as a measurement result indicating the aberration of the optical system.
  • the quality of the optical system is determined based on the quality of the restored wavefront.
  • the shear amount in the shear direction of the shearing interferometer a calculated value obtained in advance from data of each optical element or the like is used.
  • An object of the present invention is to provide a method of calibrating a shearing interferometer capable of accurately measuring the split direction (shear direction) and the Z or the split amount (shear amount) of the wavefront of the shearing interferometer with high accuracy.
  • Another object of the present invention is to provide a method of manufacturing a projection optical system capable of manufacturing a high-performance projection optical system using a shearing interferometer, a high-performance projection optical system, and a high-performance projection exposure apparatus. To provide.
  • the calibration method of the shearing interferometer according to the present invention includes a dividing unit that divides a wavefront of a measurement light beam incident on a test object into two, and a detector that detects an interference fringe formed by the two wavefronts deviated by the division.
  • a method of calibrating a shearing interferometer that measures the direction and Z or the amount of division of the wavefront of the shearing interferometer, the index having a predetermined aperture pattern before splitting.
  • a calculation procedure for obtaining the division direction and Z or the division amount of the wavefront based on the difference from the output.
  • the shear direction and / or shear amount of the shearing interferometer can be measured with high accuracy.
  • the opening pattern is a striped pattern arranged at a uniform or non-uniform pitch. If such a pattern is used, moire fringes containing information on the shear direction and the shear amount appear in the image. From the image, the shear direction and the Z or shear amount can be determined with high accuracy.
  • the opening pattern is a symmetric pattern with respect to the center point. If such a pattern is used, the calculation of the shear direction and / or the shear amount is facilitated.
  • the shear amount and the Z or shear direction can be obtained with high accuracy regardless of the two-dimensional resolution of the detector.
  • the width of the opening of the index is changeable, and in the image forming procedure, by changing the width of the opening, the width of two images of the opening is changed on the detector.
  • the width of the opening at the time of transition between when the two images overlap and when the two images do not overlap on the detector is referenced. . In this way, the shear amount and / or the shear direction can also be obtained.
  • the method for manufacturing a projection optical system according to the present invention includes: a method for manufacturing a projection optical system including a measurement procedure for inspecting or measuring an optical system constituting a part or all of the projection optical system with a shearing interferometer.
  • the method of calibrating the shearing interferometer of the present invention detects the splitting direction and / or the amount of splitting of the wavefront in the shearing interferometer, detects interference fringes in the optical system by the shearing interferometer, and detects the detected splitting direction. And / or inspecting or measuring the optical system based on the division amount and the detected interference fringes. Therefore, a high-performance projection optical system can be manufactured.
  • the projection optical system of the present invention is manufactured by the method of manufacturing a projection optical system of the present invention. Therefore, it has high performance.
  • a projection exposure apparatus includes the projection optical system according to the present invention. Therefore, it has high performance.
  • FIG. 1 is a diagram illustrating a shearing interferometer.
  • FIG. 2 is a diagram illustrating a method of calibrating the shearing interferometer according to the first embodiment.
  • FIG. 3 is a diagram illustrating moire fringes that occur in the method of calibrating the shearing interferometer according to the first embodiment.
  • FIG. 4 is a diagram illustrating a calibration method of the shearing interferometer according to the second embodiment.
  • FIG. 5 is a diagram illustrating moire fringes that occur in the method of calibrating the shearing interferometer according to the second embodiment.
  • FIG. 6 is a diagram illustrating a method of calibrating the shearing interferometer according to the third embodiment.
  • FIG. 7 is a diagram comparing changes in the images 35-1 and 35-2 when the position Y of the index 35 is changed from Y 0 to Y n in the third embodiment.
  • FIG. 8 is a diagram showing a change waveform of the output I of the pixel ⁇ ⁇ ⁇ ⁇ in the third embodiment.
  • FIG. 9 shows images 35 a— 1, 35 b— 1, 35 a—2, and 35 b when the position ⁇ of the index 35 is changed from ⁇ 0 to ⁇ ⁇ in the application example of the third embodiment. It is a figure which compares the state of change of 3 5 b-2.
  • FIG. 10 is a diagram for explaining the indicators 45 of the fourth embodiment.
  • FIG. 11 is a diagram showing a state of changes of images 45-1 and 45-2 when the width d of the slit in the Y direction is changed from dmax to 0 in the fourth embodiment. .
  • FIG. 12 is a diagram illustrating a method of adjusting the shearing interferometer according to the fifth embodiment.
  • FIG. 13 is a diagram showing an example of the configuration of the mask 51 of the fifth embodiment.
  • FIG. 14 is a diagram showing another example of the configuration of the mask 51 of the fifth embodiment.
  • FIG. 15 is a schematic configuration diagram of a projection exposure apparatus according to the sixth embodiment. BEST MODE FOR CARRYING OUT THE INVENTION
  • the shear direction and shear amount of the shearing interferometer are measured with high accuracy by applying the shearing interferometer calibration method of the present invention.
  • the test object is a projection optical system (for example, EUVL) PL of a projection exposure apparatus, and a system configured to measure the transmitted wavefront of the entire projection optical system PL.
  • EUVL projection optical system
  • FIG. 1 is a diagram illustrating a shearing interferometer. Note that the present invention can be applied to any of the cases where the shear direction is the horizontal direction (perpendicular to the optical axis), the vertical direction (the optical axis direction), and the radial direction of the light beam. Showed a lateral shearing interferometer that is mainly applied to EUVL measurements.
  • This shearing interferometer causes a spherical wave (measurement light beam L) diverging from one point on the object plane (reticle surface R) of the projection optical system PL to enter the projection optical system PL.
  • the measurement light beam L is generated by, for example, arranging the pinhole substrate 13 on the reticle surface R and condensing the light beam emitted from the light source at the pinhole position of the pinhole substrate 13.
  • the reference numeral 14 in FIG. 1 is a light condensing optical system that condenses the light beam emitted from the light source at the pinhole position.
  • the measurement light beam L transmitted through the projection optical system PL is focused on the object plane (wafer surface W) of the projection optical system PL.
  • the wavefront of the measurement light beam L after passing through the projection optical system PL is the transmitted wavefront to be measured by the shearing interferometer.
  • a diffraction grating 11 is arranged on the image plane (wafer surface W) side of the projection optical system PL (for example, between the converging position of the measurement light beam L and the projection optical system PL).
  • the beam front of the measurement light beam L to be split in the horizontal direction generates two light beams L 1 and L 2 (the light beam L 1 and the light beam L 2 are, for example, 0th-order diffracted light generated in the diffraction grating 11, And 1st-order diffracted light.)
  • the wavefront shape of the light beam L1 and the wavefront shape of the light beam L2 are all the same as the wavefront shape of the measurement light beam L after passing through the projection optical system PL.
  • An imaging surface of a two-dimensional detector such as the CCD camera 12 is disposed at a position where the wavefront of the light beam L1 and the wavefront of the light beam L2 overlap to generate interference fringes. From the interference fringes detected by the CCD camera 12, the transmitted wavefront of the projection optical system PL is restored.
  • a mask is arranged on the exit side of the diffraction grating 11 to cut off the extra light (not shown).
  • the most effective mask is located near the focal point of the light beams Ll and L2 (that is, near the wafer surface W), and has an aperture only at the focal point of the light beams Ll and L2. Is a mask having.
  • the transmitted wavefront of the projection optical system PL is often represented by the pupil coordinates of the projection optical system PL. Therefore, since the wavefront shape at the pupil position is often calculated, the imaging surface of the CCD camera 12 in the shearing interferometer is set at the pupil position of the projection optical system PL ( That is, it is assumed that it is arranged at a position conjugate with the position of the aperture stop (the same applies to each embodiment described later).
  • FIG. 2 is a diagram illustrating a method of calibrating the shearing interferometer of the present embodiment.
  • the pupil of the projection optical system PL is used in the measurement light beam L before division.
  • the index 15 is a spatial filter that blocks some light beams of the measurement light beam L.
  • the opening pattern is a striped pattern arranged at a uniform or non-uniform pitch.
  • the aperture pattern of the index 15 is a concentric pattern that is denser nearer to the periphery. This pattern is expressed by equation (1).
  • ((X, Y) is the coordinates of the center of each stripe of the aperture pattern (the coordinate origin is on the optical axis), k is an arbitrary constant, and N is an integer greater than 0.
  • this is the same as the equation showing the diffraction pattern of a general sphere generating zone plate.
  • this pattern is arranged at the pupil position of the projection optical system PL, an image as shown in FIG. 2B is formed on the imaging surface of the CCD camera 12.
  • the shear direction and the shear amount can be easily obtained as follows.
  • the light flux L1 is reflected on the imaging surface of the CCD camera 12 by the image 15-1 of the index 15 formed by the light flux L1 and the index 15-1 formed by the light flux L2. Images 15-2 overlap with each other.
  • FIG. 3 is a diagram showing only the moire fringes of FIG. 2 (b).
  • Moiré fringes are fringes formed by connecting adjacent bright parts (or dark parts), and “interference fringes” formed by light arriving at the same place in the same phase and amplifying each other's amplitude. Is different. Since the aperture pattern of the index 15 is represented by the equation (1), the moiré fringes are linear (stripes) with equal pitch. The shear direction and the shear amount can be obtained from the pitch P of the moire fringes and the direction of the fringes.
  • the shear direction can be regarded as the direction orthogonal to the Moiré fringes.
  • the shear amount s is expressed by the following equation (2) with respect to the pitch; p.
  • image data of an image formed by superimposing the images 15-1 and 15-2 is obtained. Further, by processing the acquired image data, only the moiré fringes shown in FIG. 3 are extracted, the shear direction is obtained from the direction of the fringes, and the pitch p of the fringes is referred to from the equation (2). Find the shear direction and shear amount s.
  • the spatial frequency of the moire fringes is sufficiently lower than the spatial frequencies of the individual fringes of the images 15-1 and 15-2 of the index 15, only the high-frequency components from the image data in the image processing are used. If the processing for removing the moiré is performed, the above-described extraction of the moiré fringes can be performed extremely easily.
  • the pitch p of moiré fringes can be done by measuring the distance between the centers of two adjacent bright parts of moiré fringes or the distance between the centers of two adjacent dark parts of moiré fringes.
  • the pitch P can be determined with higher accuracy by measuring the distance between the centers of the stripes of two bright parts separated from each other and the distance between the centers of the stripes of two dark parts separated from each other.
  • the shear direction and shear amount of the shearing interferometer can be actually measured with high accuracy.
  • index 15 see Fig. 2 (a) and equation (1)
  • equation (2) the shear direction and shear amount can be easily and reliably obtained by equation (2) and the like.
  • the projection optical system PL is arranged in the shearing interferometer as in the measurement, so that the wavefront of the light beam L1 and the wavefront of the light beam L2 are respectively applied to the projection optical system.
  • the aberration component of the PL is superimposed.
  • the usual measurement aims to measure the transmitted wavefront of the projection optical system PL and to know the aberration component superimposed on the transmitted wavefront.
  • the interference fringes corresponding to the aberration components are undulated and superimposed. I have.
  • the spatial frequency of this undulation is sufficiently lower than the spatial frequency of the moiré fringes.
  • the index 15 having the same aperture pattern as that of the zone plate is used.
  • this index 15 is not used as a diffractive optical element, the density of the aperture pattern (formula (1) ) Is determined by the value of k in), the shear amount and shear direction described above need only be high enough to be obtained with sufficient accuracy (that is, moiré fringes can be detected with sufficient accuracy).
  • the index 15 when it is difficult to directly place the index 15 at the pupil position of the projection optical system PL, the index 15 is moved to another position (for example, the measurement light beam L before entering the projection optical system PL). It is only necessary to place an index and project the index at the pupil position.
  • the aperture pattern of the index at this time is set such that the pattern projected on the pupil position of the projection optical system PL has a desired pattern (FIG. 2 (a)). Needless to say, if the arrangement position of the index is conjugate to the pupil position, the aperture pattern of the index may be the same as that in Fig. 2 (a).
  • the shear direction and the shear amount of the shearing interferometer are measured with high accuracy by applying the shearing interferometer calibration method of the present invention.
  • FIG. 4 is a diagram illustrating a calibration method of the shearing interferometer of the present embodiment. The difference from the first embodiment is that an index 25 as shown in FIG. 4A is used instead of the index 15.
  • the aperture pattern of the index 25 of the present embodiment is a radial pattern composed of a plurality of bands extending radially from concentric circles. The angle between adjacent bands in this pattern Is uniform.
  • FIG. 5 is a diagram showing only the moiré fringes of FIG. 4 (b).
  • the moiré fringes consist of a number of figure-eight patterns that are concentric and have different sizes.
  • the shear direction can be regarded as a direction horizontal to the first symmetry axis L0 that divides the two ring portions of the figure-eight pattern from each other.
  • shear amount s is expressed by equation (3) for a figure-eight pattern.
  • N is the figure-shaped pattern number. As shown in FIG. 5, the numbers N are set to 0, 1, 2, 2 and 3 in order from the one with the largest ring.
  • H N is the height of one of the limbs of the figure 8 pattern with reference to the first symmetry axis L 0 ( ⁇ , the height measured to the center of the stripe of the figure 8 pattern). is there.
  • 0 is the angle ⁇ between adjacent bands of the index 25 (see Fig. 4 (a)).
  • the same image processing as in the first embodiment is performed on the image data 25-1 and 25-2 of the index 25 acquired from the CCD camera 12 to extract the moire fringes.
  • obtains the Xia direction from its first axis of symmetry L 0 also obtains the Xia amount s by referring to the height h N-shape pattern of a predetermined th 8 from equation (3).
  • the measurement of the height h N is simply the height of one limb of a specific figure-eight pattern based on the first symmetry axis of the Moiré fringe.
  • The may be measured, preferably, better to measure the overall height 2 h N-shape pattern of the 8, height with high precision! ⁇ Can be sought.
  • the shearing interferometer in which the shear direction is the horizontal direction has been described.
  • the present invention can be applied to a vertical direction and a radial direction.
  • the aperture pattern of the index described above is particularly suitable when the shear direction is horizontal (shear in the shear direction is simple). Is what you want)
  • an opening pattern suitable for each shear direction is selected. In this case, it is preferable that the stripes are formed.
  • FIG. 6 A third embodiment of the present invention will be described based on FIGS. 6, 7, 8, and 9.
  • FIG. 10 the shear amount of the shearing interferometer of the present invention is measured with high accuracy by applying the shearing interferometer calibration method of the present invention.
  • FIG. 6 is a diagram illustrating a method of calibrating the shearing interferometer of the present embodiment.
  • the shearing interferometer shown in FIG. 6 is the same as the shearing interferometer shown in FIG.
  • the index 35 is used instead of the index 15 (hereinafter, the insertion position is the same as the insertion position of the first embodiment. This is the pupil position of PL.
  • the index 35 is also a spatial filter that blocks a part of the light beam of the measurement light beam L, similarly to the index 15 of the first embodiment.
  • the opening pattern of the index 35 does not need to be striped like the opening pattern of the index 15 of the first embodiment, and may have at least an edge (a boundary between the light-shielding portion and the opening). .
  • a slit plate having a slit, a circular light shield plate, a rectangular light shield plate, or the like can be used.
  • a light-shielding plate use its periphery as an edge.
  • a rectangular light shielding plate is used as an index 35 as shown in FIG. 6 (the reference numeral 35a is an edge).
  • the posture of the index 35 is maintained such that the edge 35a intersects a specific measured direction (here, the Y direction perpendicular to the optical axis direction Z as shown in FIG. 6).
  • the index 35 is moved in the measurement direction (here, the Y direction) and is gradually inserted into the measurement light beam L at the pupil of the projection optical system PL.
  • the pupil is scanned in the measured direction (here, the Y direction) by the edge 35 a of the index 35.
  • the image 35-1 of the edge 35a due to the light beam L1 and the image 35-5 of the edge 35a due to the light beam L2 appear on the imaging surface of the CCD camera 12 as shown in the lower right of FIG. — Scanned with 2.
  • FIG. 7 is a diagram for comparing how the images 35-1 and 35-2 change when the position Y of the index 35 is changed from YO to Yn.
  • the upper part shows the edge 35 a in the measurement light beam L when the index 35 is at each position
  • the middle part shows the image 35 1 formed by the light flux L 1 at that time
  • the lower part shows the light flux L at that time.
  • the dotted lines in the middle and lower parts are the areas corresponding to the luminous fluxes L2 and L1, respectively.
  • the image 35-1 and the image 35-2 on the imaging surface of the CCD camera 12 have the same position in the measurement direction (here, the Y direction). shift depending on Xia amount s gamma has occurred.
  • reference numeral ⁇ denotes a certain pixel on the imaging surface of the CCD camera 12. Focusing on this pixel P, when this pixel P is scanned to the negative image 35-1 (the state indicated by “*” in FIG. 7), the position Y of the index 35 is Y 1 and the same pixel When P is scanned by the other image 35-2 (indicated by “*” in FIG. 7), the position Y of the index 35 is Y 2.
  • the difference IY 1—Y 2 I between the position Y 1 and the position Y 2 is the shear amount s Y (expressed as the distance on the pupil of the projection optical system PL) in the measurement direction (here, the Y direction). It is.
  • the light beams 2 and L1 are shielded one by one, and the index 35 is moved in each state. Then, the output I of the pixel P of the CCD camera 12 during each movement is sampled. As a result, a correspondence relationship between the position Y of the index 35 and the output I of the pixel P is obtained.
  • Fig. 8 (a) shows the change waveform of the output I of the pixel P sampled when the light beam L2 is shielded and only the light beam L1 is passed
  • Fig. 8 (b) shows the light beam 6 shows a change waveform of the output I of the pixel P sampled when only the light beam L2 is passed while light is blocked at 1.
  • the value of the output I is totally different. This is because there is a luminance difference between the light flux L1 and the light flux L2.
  • the shapes of the steps Dl and D2 are the same as each other.
  • the waveform shown by the data sampled for the light beam L1 (FIG. 8 (a)) and the waveform shown by the data sampled for the light beam L2 (FIG. 8 (b)) refers to the, the stepped portion D 1 of the one waveform, the difference IY 1-Y 2 I position indicator 35 between the stepped difference portion D 2 of the other waveform, Ru calculated as Xia amount s gamma.
  • the sampled data is discrete, the least-squares method is applied to the data to accurately determine the waveform indicated by the data, and the detection accuracy of the steps D l and D 2, It is preferable to increase the detection accuracy of ⁇ 1— ⁇ 2 I.
  • the index 35 is moved and the luminance change (change in the output I) of the minute area (pixel P) at that time is sampled.
  • the shear amount s Y can be acquired with sufficiently high accuracy regardless of the two-dimensional resolution of the CCD camera 12.
  • the index 35 is moved only once, and the light flux L 1
  • the method of switching between the index 3 and the light beam L2 or the method of moving the index 35 only once with the light beam passing through both 1 and L2 can be applied.c
  • the index 3 Regarding the position Y of 5 it is sufficient to at least recognize the amount of movement of the index 35 between the steps D 1 and D 2 shown in FIG. 8 without recognizing the absolute position.
  • the data is constructed by the time t instead of the position Y (or the moving amount), May be managed. Incidentally, it is easier to manage at time t.
  • the present embodiment can be applied to simultaneously measure the shear direction and the shear amount of the shearing interferometer. .
  • the pupil of the projection optical system P L runs simultaneously on two edges extending in different directions from each other.
  • the edge 35a and another edge 35b perpendicular to the edge 35a run as shown in the upper part of FIG.
  • the moving direction of the index 35 is a direction that intersects both the edge 35 a and the edge 35 b. +
  • the pixel P ′ whose output change is to be sampled is not a single pixel, but at least a first pixel arranged in a path through which the images 35 a-1 and .35 a-2 pass; It is the second pixel arranged in the path through which the images 35b-1 and 35b_2 pass.
  • Fig. 9 shows how the images 35a—1, 35b—1, 35a—2, and 35b—2 change when the position Y of the index 35 is changed from Y0 to Yri. It is a figure to compare.
  • the upper row shows the edges 35 a and 35 in the measurement light beam L when the index 35 is at each position.
  • the middle row shows the images 35 a-1 and 35 b-1 formed by the light flux L 1 at that time.
  • the lower part shows the images 35a-2 and 35b-2 formed by the light beam L2 at that time.
  • the dotted lines in the middle and lower stages are the areas corresponding to the light beams L2 and L1, respectively.
  • reference characters P a and P b denote a pixel column including the first pixel and a pixel column including the second pixel.
  • the pixel array Pa When the pixel array Pa is scanned with the image 35a-1 (“*” in FIG. 9), the pixel array Pa is scanned with the image 35a-2 (“**” in FIG. 9). )), When the pixel row Pb is scanned with the image 35b-1 (“*” in FIG. 9), and when the pixel row Pb is scanned with the image 35b-2 (“FIG. 9”).
  • the shear direction and the shear amount can be calculated with high accuracy from the relationship between the positions (Y 1, Y 2 a, Y l, ⁇ 2 b) of the index 35 in each of the above.
  • FIG. 10 A fourth embodiment of the present invention will be described based on FIG. 10 and FIG.
  • the shear direction and the shear amount of the shearing interferometer (see FIG. 1) of the present invention are applied by applying the method of calibrating the shearing interferometer of the present invention. Is measured with high precision.
  • an index 45 shown in FIG. 10 is used in place of the index 15 (hereinafter referred to as an insertion).
  • the position is the pupil position of the projection optical system PL, similarly to the insertion position in the first embodiment.
  • the index 45 is also a spatial filter that blocks a part of the light beam of the measurement light beam L, similarly to the index 15 of the first embodiment.
  • the index 45 is an openable / closable slit plate, and the slit width is configured to be changeable.
  • the index 45 shown in FIG. 10 indicates two directions crossing each other (hereinafter referred to as X direction and Y direction orthogonal to each other) in order to measure shear amounts (s x , s Y ) in two directions. Each can be opened and closed.
  • Such an index 45 is, for example, a combination of an open / close slit plate 45 Y capable of opening and closing in the Y direction and an open / close slit plate 45 X capable of opening and closing in the X direction.
  • the openable slit plates 45Y and 45X are each driven by a drive mechanism (not shown).
  • a case where the shear amount s Y in the Y direction is measured will be described.
  • the method of measuring the shear amount s x in the X direction differs from the following description in that the openable slit plate 45X is driven instead of the openable slit plate 45Y.
  • the output of the CCD camera 12 is sampled while the width of the slit in the Y direction is changed by driving the openable / closable slit plate 45Y.
  • both the light beam L1 and the light beam L2 are simultaneously passed without light shielding. Therefore, as shown in the lower part of FIG. 11, a slit image 45-1 by the light beam L1 and a slit image 45-2 by the light beam 2 are simultaneously formed on the imaging surface of the CCD camera 12 as shown in the lower part of FIG. Is done.
  • FIG. 11 is a diagram showing a state of change of the images 45-11 and 45-2 when the width d of the slit in the Y direction is changed from dmax to 0.
  • the upper part shows the slits in the measurement light beam L when the width d in the Y direction of the openable slit plate 45Y of the index 45 is at each value.
  • the lower part shows the images 45-1 and 45-2 at that time. It is a state.
  • the width of the image 45-1 and the width of the image 45-2 both decrease.
  • Shiaringu amount s gamma good based on the output of the CCD camera 1 2 sampled to obtain the width d of the slit, such as the image 45- 1 and the image 45- 2 contacts just is regarded it as Shiaringu amount s gamma good (above, description of the measurement of the ⁇ direction Xia amount s gamma. also X direction Xia amount s chi is measured in the same manner.).
  • the pupil width (diameter of the aperture) of the projection optical system PL can be measured.
  • the width d of the slit is gradually reduced from the fully opened state (the state in which the measurement light beam L is not blocked at all), and the output of the CCD camera 12 at that time is sampled. Based on the sampled output of the CCD camera 12, the width D of the slit when the edge of the slit image 45-1, 45-2 first appears is determined. This value D is regarded as the diameter of the opening of the projection optical system PL.
  • the projection optical system PL is The projection optical system PL may be provided with the openable / closable slit plates 45Y and 45X, or such detachable slit plates.
  • FIG. 12 A fifth embodiment of the present invention will be described based on FIGS. 12, 13, and 14.
  • FIG. 12 the shearing interferometer is adjusted using the shear direction and / or the shear amount obtained by any of the calibration methods of the above embodiments.
  • FIG. 12 is a diagram for explaining a method of adjusting the shearing interferometer of the present embodiment.
  • the shearing interferometer shown in FIG. 12 is the same as the shearing interferometer shown in FIG. 1 or FIG.
  • the light is disposed near the focal point of the light fluxes Ll and L2 (that is, near the wafer surface W).
  • a mask 51 having openings HI and H2 only at the focal points of the light beams Ll and L2 is used.
  • the interval between the focal points differs depending on the shear amount of the shearing interferometer, it is desirable that the interval between the openings HI and H2 of the mask 51 can also be adjusted.
  • the mask 51 of the present embodiment is configured such that the interval between the two openings HI and H2 is variable.
  • FIG. 13 is a diagram showing an example of the configuration of the mask 51 of the present embodiment.
  • This mask 51 is obtained by, for example, stacking two slit plates 51a and 51b as shown in FIG. 13A.
  • slit plate 51a On one slit plate 51a, at least a pair of non-parallel slits 51a-1'51a-21 are formed.
  • the other slit plate 51b has at least one slit 51b-1.
  • the slit plate 51a and the slit plate 51b are composed of a slit 51b-1 force S2 slits 51a-1 and 51a as shown in Fig. 13 (b). — Stacked to intersect both sides.
  • FIG. 13 (c) the action of such a mask 51 is shown in FIG. 13 (c) at two points where the slit 51b 11 and the slit 51a-1 and 51a-2 intersect. Only the openings H1, H2, and the other portions are equivalent to a mask that is a light shielding portion. If the relative position between the slit ⁇ 5 la and the slit plate 51b is changed, for example, in a direction perpendicular to the slit 51b-1, the distance between the openings HI and H2 changes. I do.
  • the positional relationship between the openings HI and H2 can be adjusted according to the shear amount measured in each of the above embodiments and the like.
  • the aperture Hl and the aperture H2 are made to coincide with the converging point of the light beam L1 and the converging point of the light beam L2, respectively, the effect of the mask 51 is maximized. Therefore, the measurement by the shearing interferometer can be further improved.
  • the two slit plates constituting the mask 51 are not limited to those shown in FIG. 13, and for example, two slit plates as shown in FIG. 14 (a) can be applied.
  • One slit plate 61a shown in FIG. 14 (a) is formed with two parallel slits 61a-1 and 61a-2, and the other slit plate 61a-2.
  • 6 1 b is also formed with two parallel slits 6 1 b-1, 6 1 b-2.
  • FIG. 15 is a schematic configuration diagram of the projection exposure apparatus of the present embodiment.
  • the whole or a part of the projection optical system PL mounted on the projection exposure apparatus is measured or inspected at the time of its manufacture, for example, by a shearing interferometer shown in FIG.
  • the shear direction and / or shear amount of the shearing interferometer is detected by any one of the calibration methods of the above embodiments. Furthermore, during the measurement or inspection, only the interference fringes detected by the shearing interferometer are used. Instead, the wavefront indicating the aberration of the optical system is restored based on the detected shear direction and / or shear amount. Therefore, the measurement or inspection is performed with high accuracy.
  • the projection optical system and / or the projection exposure apparatus will have high performance due to the high accuracy of the measurement or inspection.
  • the projection exposure apparatus includes at least a wafer stage 108, a light source unit 101 for supplying light, and a projection optical system PL.
  • the wafer stage 108 can place the wafer w coated with the photosensitive agent on the surface 108 a.
  • the stage control system 107 controls the position of the wafer stage 108.
  • a reticle is placed on the object plane Pl and the image plane P2 of the projection optical system PL, respectively. :
  • the wafer w is placed.
  • the projection optical system PL has an alignment optical system applied to a scan type projection exposure apparatus.
  • the illumination optical system 102 includes an alignment optical system 103 for adjusting a relative position between the reticle r and the wafer w.
  • the reticle r is for projecting an image of the pattern of the reticle layer r onto the wafer w, and is a reticle stage 105 that can be translated with respect to the surface 108 a of the wafer stage 108. Placed on top.
  • the reticle exchange system 104 exchanges and transports the reticle r set on the reticle stage 105. Further, reticle exchange system 104 includes a stage driver (not shown) for moving reticle stage 105 parallel to surface 108 a of wafer stage 108.
  • the main control unit 109 controls a series of processes from the alignment to the exposure.
  • the shearing interferometer for measuring the transmitted wavefront of the test object has been described.
  • the present invention is also applicable to a shearing interferometer for measuring the reflected wavefront of the test surface. It is.
  • the position of the indicator is the position of the test surface.
  • the index is a spatial filter having a light-shielding part and a non-reflective part as an opening and a reflective part.
  • the calibration method of the shearing interferometer which can measure the split direction (shear direction) and Z or the division amount (shear amount) of the wavefront of a shearing interferometer with high precision is realized.
  • a method of manufacturing a projection optical system capable of manufacturing a high-performance projection optical system using a shearing interferometer, a high-performance projection optical system, and a high-performance projection exposure apparatus are realized. I do.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

本発明の目的は、シアリング干渉計の波面の分割方向(シア方向)及び/又は分割量(シア量)を高精度に実測することにある。本発明のシアリング干渉計の校正方法は、シアリング干渉計の波面の分割方向及び/又は分割量を測定するシアリング干渉計の校正方法であって、所定の開口パターンを有した指標を分割前の測定光束中に挿入することにより、その指標の像を検出器上に2つ形成し、前記検出器上に形成される前記2つの像のずれをその検出器の出力から参照し、そのずれに基づいて前記波面の分割方向及び/又は分割量を求めるものである。

Description

明細書
シァリング干渉計の校正方法、 投影光学系の製造方法、
投影光学系、 及び投影露光装置 技術分野
本発明は、 シァリング干渉計に適用されるシァリング干渉計の校正方法、 投影 光学系の製造方法、 投影光学系、 及び投影露光装置に関する。 背景技術
投影露光装置に搭載される投影光学系など高精度な光学系の測定や検査に、 シ ァリング干渉計 (例えば、 特願 2 0 0 2— 3 0 4 1 3号に従来例として記載され たもの) を適用することが提案された。
シァリング干渉計は、 他の干渉計と同様、 被検物を透過したり、 被検面を反射 したりした測定光束が生成する干渉縞を、 C C Dカメラなどの二次元検出器によ り検出するものであるが、 干渉縞を生成する 2波面が、 何れも被検物を経由した 同じ測定光束の波面である点において、 他の干渉計とは異なる。
よって、 シァリング干渉計には、 被検物を経由した測定光束の波面を 2つに分 割(シァ)するための分割手段としてハーフミラー、回折格子などが使用される。 仮に、 分割された波面の分割方向 (シァ方向) 及び分割量 (シァ量) が既知と なっていれば、 検出器の出力する干渉縞データから、 被検物の透過波面や被検面 の反射波面を復元することができる。
一般に、 光学系の測定では、 その復元した波面が光学系の収差を示す測定結果 として取得され、 光学系の検査では、 その復元した波面の良否によって光学系の 良否が判定される。
因みに、 シァリング干渉計のシァ方向ゃシァ量については、 各光学要素のデー タなどから予め求められた計算値が使用されている。
しかしながら、 計算値を使用すると、 特に高性能が要求される投影光学系に対 しては、 前記波面の凹凸の大きさが十分な精度で復元できずに測定精度や検査精 度が不十分となることが分かった。 発明の開示
本発明の目的は、 シァリング干渉計の波面の分割方向 (シァ方向) 及び Z又は 分割量 (シァ量) を高精度に実測することのできるシァリング干渉計の校正方法 を提供することにある。 .
また、 本発明の目的は、 シァリング干渉計を用いて高性能な投影光学系を製造 することのできる投影光学系の製造方法、 高性能な投影光学系、'及び、 高性能な 投影露光装置を提供することにある。
本発明のシァリング干渉計の校正方法は、 被検物に入射した測定光束の波面を 2つに分割する分割手段と、 その分割によりずれた 2つの波面が成す干渉縞を検 出する検出器とを備えたシァリング干渉計に適用され、 そのシァリング干渉計の 前記波面の分割方向及び Z又は分割量を測定するシァリング干渉計の校正方法で あって、 所定の開口パターンを有した指標を分割前の前記測定光束中に揷入する ことにより、 その指標の像を前記検出器上に 2つ形成する像形成手順と、 前記検 出器上に形成される前記 2つの像のずれをその検出器の出力から参照し、 そのず れに基づいて前記波面の分割方向及び Z又は分割量を求める算出手順とを有する。
したがって、 シァリング干渉計のシァ方向及び/又はシァ量を高精度に実測す ることができる。
好ましくは、 前記開口パターンは、 均一又は不均一なピッチで配置された縞状 のパターンである。 このようなパターンが用いられれば、 シァ方向及びシァ量の 情報を含んだモアレ縞が前記像に現れる。 その像から、 シァ方向及び Z又はシァ 量は高精度に求まる。
さらに好ましくは、 前記開口パターンは、 その中心点に関し対称なパターンで ある。このようなパターンが用いられれば、シァ方向及び/又はシァ量の算出は、 容易化される。
さらに好ましくは、 前記開口パターンは、 その中心に原点を採ったパターン座 標 (X , Y) 、 任意の定数 k、 及ぴ 0より大きい整数 Nに対し、 X 2 + Y 2 = N k で表される同心円状パターンである。 このようなパターンが用いられれば、 シァ 方向及び Zシァ量の算出は、 さらに容易化される。 また、 好ましくは、 前記開口パターンは、 放射状パターンである。 このような パターンが用いられれば、 シァ方向及び z又はシァ量の算出は、 容易化される。 また、 好ましくは、 前記像形成手順では、 前記指標の前記開口のエッジが前記 分割前の前記測定光束の断面を走査するようその指標を移動させることにより、 そのエッジの 2つの像で前記検出器上を走査し、 前記算出手順では、 前記 2つの 像のずれを参照する代わりに、 前記検出器上の所定画素を一方の像が走査すると きと他方の像が走査するときの間における前記指標のずれを参照する。
このようにすれば、 検出器の二次元分解能に依らず高い精度でシァ量及び Z又 はシァ方向を求めることが可能となる。
また、 好ましくは、 前記指標の前記開口の幅は、 変更可能であり、 前記像形成 手順では、 前記開口の幅を変化させることにより、 その開口の 2つの像の幅を前 記検出器上で変化させ、 前記算出手順では、 前記 2つの像のずれを参照する代わ りに、 前記検出器上で前記 2つの像が重複するときと重複しないときとの移行時 における前記開口の幅を参照する。 このようにしてシァ量及ぴ /又はシァ方向を 求めることもできる。
本発明の投影光学系の製造方法は、 投影光学系の一部又は全部を構成する光学 系をシァリング干渉計で検査又は測定する測定手順を含む投影光学系の製造方法 において、 前記測定手順では、 本発明のシァリング干渉計の校正方法により前記 シァリング干渉計における波面の分割方向及び/又は分割量を検出し、 前記シァ リング干渉計により前記光学系について干渉縞を検出し、 前記検出した前記分割 方向及び/又は分割量と、 前記検出した前記干渉縞とに基づいて、 前記光学系を 検査又は測定する。 したがって、 高性能な投影光学系を製造することができる。 · 本発明の投影光学系は、 本発明の投影光学系の製造方法により製造される。 し たがって、 高性能である。
本発明の投影露光装置は、 本発明の投影光学系を搭載する。 したがって、 高性 能である。 図面の簡単な説明
図 1は、 シァリング干渉計を説明する図である。 図 2は、 第 1実施形態のシァリング干渉計の校正方法を説明する図である。 図 3は、 第 1実施形態のシァリング干渉計の校正方法において生起するモアレ 縞を説明する図である。
図 4は、 第 2実施形態のシァリング干渉計の校正方法を説明する図である。 図 5は、 第 2実施形態のシァリング干渉計の校正方法において生起するモアレ 縞を説明する図である。
図 6は、 第 3実施形態のシァリング干渉計の校正方法を説明する図である。 図 7は、 第 3実施形態において、 指標 3 5の位置 Yを Y 0〜Y nまで変化させ たときの像 3 5— 1, 3 5— 2の変化の様子を比較する図である。
図 8は、 第 3実施形態における画素 Ρの出力 Iの変化波形を示す図である。 図 9は、 第 3実施形態の応用例において、 指標 3 5の位置 Υを Υ 0〜Υ ηまで 変化させたときの像 3 5 a— 1 , 3 5 b— 1 , 3 5 a— 2, 3 5 b— 2の変化の 様子を比較する図である。
図 1 0は、 第 4実施形態の指標 4 5を説明する図である。
図 1 1は、 第 4実施形態において、 スリ ッ トの Y方向の幅 dを d max〜0まで 変化させたときの像 4 5— 1、 4 5— 2の変化の様子を示す図である。
図 1 2は、 第 5実施形態のシァリング干渉計の調整方法を説明する図である。 図 1 3は、 第 5実施形態のマスク 5 1の構成の一例を示す図である。
図 1 4は、 第 5実施形態のマスク 5 1の構成の別の例を示す図である。
図 1 5は、 第 6実施形態の投影露光装置の概略構成図である。 発明を実施するための最良の形態
以下、 図面に基づいて本発明の実施形態について説明する。
[第 1実施形態]
図 1、 図 2、 図 3に基づいて本発明の第 1実施形態について説明する。
本実施形態は、 本発明のシァリング干渉計の校正方法を適用して、 シァリング 干渉計のシァ方向及ぴシァ量を高精度に実測するものである。
なお、 ここでは、 被検物が投影露光装置の投影光学系 (例えば、 E U V L ) P Lであり、 その投影光学系 P Lの全体の透過波面を測定するために構成されたシ ァリング干渉計について説明する。
図 1は、 シァリング干渉計を説明する図である。 なお、 本発明は、 シァ方向が 横方向 (光軸に垂直方向) であるもの、 縦方向 (光軸方向) であるもの、 光束の 径方向であるもの何れにも適用可能だが、 図 1には、 E U V Lの測定に主に適用 される、 横方向のシァリング干渉計を示した。
このシァリング干渉計は、 投影光学系 P Lの物体面 (レチクル面 R ) の一点か ら発散する球面波 (測定光束 L ) を、 投影光学系 P Lに入射させる。
この測定光束 Lは、 例えば、 レチクル面 Rにピンホール基板 1 3を配置すると 共に、 光源から射出した光束を、 ピンホール基板 1 3のピンホール位置に集光さ せるなどして生成されたものである (図 1の符号 1 4は、 光源から射出した光束 をピンホール位置に集光する集光光学系である。 ) 。
投影光学系 P Lを透過した測定光束 Lは、 投影光学系 P Lの物体面 (ウェハ面 W) に集光する。 投影光学系 P Lを透過した後の測定光束 Lの波面が、 シアリン グ干渉計が測定すべき透過波面である。
シァリング干渉計は、 投影光学系 P Lの像面 (ウェハ面 W) 側 (例えば、 測定 光束 Lの集光位置と投影光学系 P Lとの間) に回折格子 1 1を配置しており、 集 光する測定光束 Lの波面を横方向に分割して 2つの光束 L 1、L 2を生成する(光 束 L l、 及ぴ光束 L 2は、 例えば、 回折格子 1 1において生起する 0次回折光、 及ぴ 1次回折光である。 ) 。 この光束 L 1の波面、 光束 L 2の波面の形状は、 何 れも、 投影光学系 P Lを透過した後の測定光束 Lの波面形状と同じである。
これら光束 L 1の波面と光束 L 2の波面とが重なって干渉縞を生起する位置に、 C C Dカメラ 1 2などの二次元検出器の撮像面が配置される。 この C C Dカメラ 1 2が検出する干渉縞から、 投影光学系 P Lの透過波面が復元される。
なお、 回折格子 1 1は光束 L l、 L 2以外の余分な光も発生させるので、 その 余分な光をカットするために、 回折格子 1 1の射出側にマスクが配置される (不 図示) 。 因みに、 最も効果的なマスクは、 光束 L l、 L 2の集光点の近傍 (つま り、 ウェハ面 Wの近傍) に配置され、 かつそれら光束 L l、 L 2の集光点にのみ 開口を有したマスクである。
また、 投影光学系 P Lの透過波面は、 投影光学系 P Lの瞳座標で表すことが多 いので (瞳位置における波面形状を求めることが多いので) 、 座標変換の手間を なるべく省くために、 ここでは、 シァリング干渉計における CCDカメラ 1 2の 撮像面は、 投影光学系 P Lの瞳位置 (すなわち開口絞りの位置) と共役な位置に 配置されたとする (後述する各実施形態においても同様。 ) 。
図 2は、 本実施形態のシァリング干渉計の校正方法を説明する図である。 本実施形態のシァリング干渉計の校正方法では、 図 1に示したシァリング干渉 計のシァ量及びシァ方向を実測するために、 分割前の測定光束 L中、 特に、 ここ では投影光学系 P Lの瞳位置に、 図 2 (a) に示すような指標 1 5を挿入する。 指標 1 5は、 測定光束 Lの一部の光線を遮光する空間フィルタである。 その開 口パターンは、 均一又は不均一なピッチで配置された縞状のパターンである。 さらに、 本実施形態では、 指標 1 5の開口パターンは、 図 2 (a) に示すよう に、 周辺に近いほど密となった同心円状パターンとされる。 このパターンを式で 示すと式 (1) のとおりである。
X2 + Y2 = Nk ■ ■ · (1)
伹し (X, Y) は、 開口パターンの各縞の中心の座標 (座標原点は光軸上) 、 kは任意の定数、 Nは 0より大きい整数である。
因みに、 これは、 一般の球面発生用ゾーンプレートの回折パターンを示す式と 同じである。 投影光学系 P Lの瞳位置にこのパターンが配置されたときには、 C CDカメラ 1 2の撮像面には図 2 (b)に示すような像が形成される。このとき、 シァ方向及びシァ量を以下のようにして簡単に求めることが可能である。
図 2 (b) に示すように、 光束 L 1が CCDカメラ 1 2の撮像面では、 光束 L 1が形成する指標 1 5の像 1 5— 1と、 光束 L 2が形成する指標 1 5の像 1 5— 2とが互いにずれて重なる。
図 2 (a) に示すように指標 1 5の開口パターンは縞状なので、 その像には、 図 2 (b) に明らかなようなモアレ縞が現れる。 図 3は、 図 2 (b) のモアレ縞 のみを示す図である。
ここで、 「モアレ縞」 とは、 近接する明部同士 (又は暗部同士) をつなげてで きる縞であり、 同じ場所に同位相で到達した光が互いの振幅を増幅させてできる 「干渉縞」 とは異なる。 指標 1 5の開口パターンが式 (1 ) で表されることから、 このモアレ縞は、 等 ピッチの直線状 (ストライプ状) となる。 シァ方向及びシァ量は、 このモアレ縞 のピッチ P.及び縞の方向から求められる。
先ず、 シァ方向は、 モアレ縞に直交する方向とみなせる。 また、 シァ量 sは、 ピッチ; pに対し式 (2 ) で表される。
s = k Z ( 2 p ) ■ ■ · ( 2 )
本実施形態では、 指標 1 5を挿入した状態における C C Dカメラ 1 2の出力か ら、 それら像 1 5— 1、 1 5— 2が重なってできる像の画像データを取得する。 さらに、 取得した画像データを画像処理することにより図 3に示すモアレ縞の みを抽出し、 その縞の方向からシァ方向を求め、 また、 その縞のピッチ pを参照 して式 (2 ) からシァ方向及びシァ量 sを求める。
なお、 モアレ縞の空間周波数は、 指標 1 5の像 1 5— 1、 1 5— 2の個々の縞 の空間周波数よりも十分に小さいので、 前記画像処理において前記画像データか ら高周波数成分のみを除去する処理を行えば、 前記したモアレ縞の抽出を、 極め て簡単に行うことができる。
また、 モアレ縞のピッチ pの測定は、 簡単には、 モアレ縞の隣接する 2つの明 部の縞中心同士の間隔、 又はモアレ縞の隣接する 2つの暗部の縞中心同士の間隔 を測定すればよいが、 互いに離れた 2つの明部の縞中心同士の間隔や、 互いに離 れた 2つの暗部の縞中心同士の間隔などを測定した方が、 より高い精度でピッチ Pを求めることができる。
以上、 本実施形態のシァリング干渉計の校正方法によれば、 シァリング干渉計 のシァ方向及ぴシァ量を高精度に実測することができる。 特に、 その際の指標と して指標 1 5 (図 2 ( a ) 、 式 (1 ) 参照) を使用するので、 式 (2 ) などによ り簡単かつ確実にシァ方向及ぴシァ量が求まる。
なお、 このシァリング干渉計の校正時は、 測定時と同様にシァリング干渉計内 に投影光学系 P Lが配置されているので、光束 L 1の波面、光束 L 2の波面には、 それぞれ投影光学系 P Lの収差成分が重畳されている (因みに、 通常の測定は、 投影光学系 P Lの透過波面を測定し、 その透過波面に重畳されている収差成分を 知ることを目的としている。 ) 。 このため、 指標 1 5の像 1 5— 1、 1 5— 2が重なってできる像には、 それぞ れ図示しなかったが、 その収差成分に応じた干渉縞がうねりとなって重畳されて いる。 このうねりの空間周波数は、 モアレ縞の空間周波数と比較すると十分に低 い。
よって、 上記画像処理の際には、 低い空間周波成分を除去することでこのうね りを除去して、 モアレ縞をより高精度に抽出することが好ましい。
なお、 本実施形態では、 ゾーンプレートと同じ開口パターンの指標 1 5が使用 されるが、 この指標 1 5は回折光学素子として使用される訳ではないので、 その 開口パターンの形成密度 (式 (1 ) 中の kの値により決まる) については、 上記 したシァ量及ぴシァ方向が十分な精度で求められる程度 (つまり、 モアレ縞が十 分な精度で検出できる程度) に高ければよい。
また、 本実施形態において、 投影光学系 P Lの瞳位置に指標 1 5を直接配置す ることが困難な場合、 別の位置 (例えば、 投影光学系 P Lに入射する前の測定光 束 L ) に指標を配置し、 その指標を瞳位置に投影すればよい。 このときの指標の 開口パターンは、 投影光学系 P Lの瞳位置に投影されるパターンが所望のパター ン (図 2 ( a ) ) となるよう、 設定される。 言うまでもないが、 指標の配置位置 が瞳位置と共役であれば、 その指標の開口パターンは図 2 ( a ) と同じでよい。
[第 2実施形態]
図 4、 図 5に基づいて本発明の第 2実施形態について説明する。
本実施形態は、 第 1実施形態と同様、 本発明のシァリング干渉計の校正方法を 適用して、 シァリング干渉計のシァ方向及びシァ量を高精度に実測するものであ る。
なお、 ここでは、 第 1実施形態との相違点についてのみ説明し、 同じ部分につ いては説明を省略する。
図 4は、 本実施形態のシァリング干渉計の校正方法を説明する図である。 第 1実施形態との相違点は、 指標 1 5に代えて、 図 4 ( a ) に示すような指標 2 5が使用される点にある。
本実施形態の指標 2 5の開口パターンは、 同心から放射状に延びる複数の帯か らなる放射状パターンである。 このパターンにおいて隣接する帯同士の成す角度 は均一である。
このとき、 光束 L 1が C CDカメラ 1 2の撮像面上に形成するこの指標 2 5の 像 2 5— 1と、 及び光束 L 2が C CDカメラ 1 2の撮像面上に形成するこの指標 2 5の像 2 5— 2とが成すモアレ縞は、 図 4 (b) のようになる。 図 5は、 図 4 (b ) のモアレ縞のみを示す図である。
図 5に示したように、 モアレ縞は、 同心、 かつ互いに大きさの異なる複数の 8 の字状パターンからなる。
このとき、 シァ方向は、 8の字状パターンの 2つの輪部を互いに分断する第 1 の対称軸 L 0に水平な方向とみなせる。
また、 シァ量 sは、 8の字状パターンに対し、 式 (3 ) で表される。
s =N Θ ■ hN ■ · · ( 3 )
伹し、 Nは 8の字状パターンの番号である。 図 5中に示したように、 その輪部 の大きいものから順に、 その番号 Nを 0 , 1 , 2, ■ ■ ■ とする。 また、 hNは、 8の字状パターンの一方の輪部の第 1の対称軸 L 0を基準とした高さ (伹し、 8 の字状パターンの縞中心までを計った高さ) である。 また、 0は、 指標 2 5の互 いに隣接する帯同士の成す角度 Θである (図 4 ( a ) 参照) 。
よって、 本実施形態では、 C CDカメラ 1 2から取得した指標 2 5の像 2 5— 1、 2 5— 2の画像データに第 1実施形態と同様の画像処理を施してモアレ縞を 抽出し、 その第 1の対称軸 L 0からシァ方向を求め、 また、 所定番目の 8の字状 パターンの高さ hNを参照して式 (3) からシァ量 sを求める。
なお、 高さ hNの測定は、 簡単には、 モアレ縞の第 1の対称軸を基準とした特 定の 8の字状パターンの一方の輪部の高さ
Figure imgf000011_0001
を測定すればよいが、 好ましくは、 その 8の字状パターンの全体の高さ 2 hNを測定した方が、高い精度で高さ !^を 求めることができる。
[上記各実施形態の補足]
なお、 以上の説明では、 シァ方向が横方向であるようなシァリング干渉計を説 明したが、 縦方向であるものゃ径方向であるものにも適用できる。 伹し、 上記説 明した指標の開口パターン (図 2 ( a ) 、 図 4 ( a ) 参照) は、 シァ方向が横方 向であるときに特に適したもの(シァ方向ゃシァ量が簡単に求まるもの)なので、 縦方向ゃ径方向である場合、 開口パターンはそれぞれのシァ方向に適したものが 選択されることが好ましい。 なお、 その場合も、 縞状であることが好ましい。
[第 3実施形態]
図 6、 図 7、 図 8、 図 9に基づいて本発明の第 3実施形態について説明する。 本実施形態は、 本発明のシァリング干渉計の校正方法を適用して、 本発明のシ アリング干渉計のシァ量を高精度に実測するものである。
なお、 ここでは、 第 1実施形態との相違点についてのみ説明し、 同じ部分につ いては説明を省略する。
先ず、 簡単のため、 特定の被測定方向のシァ量を測定する場合について説明す る。
図 6は、 本実施形態のシァリング干渉計の校正方法を説明する図である。 図 6 に示すシァリング干渉計は、 図 1に示したシァリング干渉計と同じである。
本実施形態の校正方法では、 第 1実施形態の校正方法とは異なり、 指標 1 5に 代えて指標 3 5使用する (以下、 挿入位置は、 第 1実施形態の挿入位置と同様、 投影光学系 P Lの瞳位置とする。 ) 。
この指標 3 5も、 第 1実施形態の指標 1 5と同様、 測定光束 Lの一部の光線を 遮光する空間フィルタである。
但し、 指標 3 5の開口パターンは、 第 1実施形態の指標 1 5の開口パターンの ように縞状である必要はなく、 少なくともエッジ (遮光部と開口との境界) を有 していればよい。
このような指標 3 5としては、 スリ ッ トを有したスリ ッ ト板、 円径の遮光板、 長方形の遮光板などが使用可能である。 なお、 遮光板を使用する場合は、 その周 縁をエッジとして使用する。 以下、 図 6中に示すように長方形の遮光板を指標 3 5として使用する (符号 3 5 aは、 エッジである。 ) 。
先ず、 指標 3 5の姿勢は、 特定の被測定方向 (ここでは、 図 6中に示すように 光軸方向 Zに垂直な Y方向) にエッジ 3 5 aが交差するよう保たれる。
そして、 その指標 3 5を被測定方向 (ここでは、 Y方向) に移動させて投影光 学系 P Lの瞳における測定光束 Lに徐々に挿入する。 これにより、 瞳は、 指標 3 5のエッジ 3 5 aによって被測定方向 (ここでは、 Y方向) に走査される。 このとき、 C CDカメラ 1 2の撮像面上は、 図 6右下に示すように、 光束 L 1 によるエッジ 3 5 aの像 35— 1と、 光束 L 2によるエッジ 3 5 aの像 3 5— 2 とで走査される。
図 7は、 指標 3 5の位置 Yを YO〜Ynまで変化させたときの像 3 5— 1 , 3 5— 2の変化の様子を比較する図である。
上段は、 指標 3 5が各位置にあるときの測定光束 L内のエッジ 3 5 aの様子、 中段はそのときに光束 L 1が成す像 3 5 _ 1の様子、 下段はそのときに光束 L 2 が成す像 3 5— 2の様子である。 なお、 中段、 下段に点線で示すのは、 それぞれ 光束 L 2、 L 1に対応する領域である。
指標 3 5の位置 Yが同じであったとしても、 CCDカメラ 1 2の撮像面上にお ける像 3 5— 1と像 3 5— 2とには、 被測定方向 (ここでは Y方向) のシァ量 s γに応じてずれが生じている。
図 7中に符号 Ρで示すのは、 CCDカメラ 1 2の撮像面上の或る画素である。 この画素 Pに着目すると、 この画素 Pがー方の像 3 5— 1に走査されるとき (図 7中 「*」 で示す状態) の指標 3 5の位置 Yは Y 1であり、 同じ画素 Pが他方の 像 3 5— 2に走査されるとき (図 7中 「* *」 で示す状態) の指標 3 5の位置 Y は Y 2である。
この位置 Y 1と位置 Y 2との差 I Y 1— Y 2 Iが、 被測定方向 (ここでは Y方 向) のシァ量 sY (投影光学系 P Lの瞳上での距離で表したもの) である。
これを高精度に検出するべく、 本実施形態では、 光束 2、 L 1を一方ずつ遮 光し、 それぞれの状態で指標 3 5を移動させる。 そして、 各移動中における CC Dカメラ 1 2の画素 Pの出力 Iをサンプリングする。 これによつて、 指標 3 5の 位置 Y—画素 Pの出力 Iの対応関係が得られる。
図 8 (a) に示すのは、 光束 L 2を遮光して光束 L 1のみを通過させたときに サンプリングされた画素 Pの出力 Iの変化波形、 図 8 (b) に示すのは、 光束し 1を遮光して光束 L 2のみを通過させたときにサンプリングされた画素 Pの出力 Iの変化波形である。
2つの波形においてそれぞれ出力 Iの急激に変換する箇所(段差部 D 1, D 2) 力 それぞれ画素 Pがェッジ 3 5 aの像 3 5— 1, 3 5 - 2で走査された状態(図 7の 「*」 「* *」 ) に対応する。
ここで、 2つの波形を比較すると、 全体的に出力 Iの値が異なる。 これは、 光 束 L 1と光束 L 2との間に輝度差が生じているからである。 し力 し、 2つの波形 を比較すると、 段差部 D l, D 2の形状自体は、 互いに同じとなる。
この事実を利用し、 本実施形態では、 光束 L 1についてサンプリングしたデー タが示す波形 (図 8 ( a ) ) と、 光束 L 2についてサンプリングしたデータが示 す波形 (図 8 ( b ) ) とを参照し、 一方の波形の段差部 D 1と、 他方の波形の段 差部 D 2との間の指標 3 5の位置の差 I Y 1— Y 2 I を、 シァ量 s γとして求め る。
' ここで、 サンプリングしたデータは離散的であるので、 そのデータに最小自乗 法を適用してそのデータの示している波形を正確に求め、 段差部 D l, D 2の検 出精度、 ひいては I Υ 1— Υ 2 I の検出精度を高めることが好ましい。
以上、 本実施形態では、 シァ量 s Yを取得するに当たり、 指標 3 5を移動させ ると共にそのときの微小領域 (画素 P ) の輝度変化 (出力 Iの変化) をサンプリ ングするので、 その単位移動量当たりのサンプリング数さえ十分に多くすれば、 C C Dカメラ 1 2の二次元分解能に依らず、 十分に高い精度でシァ量 s Yを取得 できる。
なお、 本実施形態におけるデータのサンプリング方法については、 図 8 ( a ) ( b ) それぞれの波形を個別に得られるのであれば、 指標 3 5の移動を 1回だけ 行い、 その途中で光束 L 1と光束 L 2とを切り替える方法や、 光束し 1と L 2と の双方を通過させた状態で指標 3 5の移動を 1回だけ行う方法なども適用できる c また、 本実施形態では、 指標 3 5の位置 Yについては、 その絶対的な位置を認 識しなくとも、 少なくとも図 8に示す段差部 D 1, D 2との間での指標 3 5の移 動量さえ認識できればよい。
また、 本実施形態では、 指標 3 5の位置 Y (又は移動量) と時間 tとの関係が 既知であれば、 位置 Y (又は移動量) の代わりに時間 tによって前記データを構 築し、 管理してもよい。 因みに、 時間 tで管理する方が簡便である。
また、 本実施形態において、 投影光学系 P Lの瞳位置に指標 3 5を直接挿入す ることが困難な場合、 瞳の共役位置に揷入し、 その像を瞳位置に投影することに (第 3実施形態の応用例)
なお、 上記の説明は、 特定の被測定方向についてのシァ量 s γしか求めていな いが、 本実施形態を応用してシァリング干渉計のシァ方向とシァ量とを同時に測 定することもできる。
この方法では、 互いに別の方向に延びる 2つのエッジで同時に投影光学系 P L の瞳を走查する。 例えば、 図 6に示した指標 3 5を用い、 図 9の上段に示すよう にエッジ 3 5 aとそれに垂直な別のエッジ 3 5 bとで走查する。
この場合、 指標 3 5の移動方向は、 これらエッジ 3 5 aとエッジ 3 5 bとの双 方に交差する方向とされる。 +
このとき、 C CDカメラ 1 2の撮像面上は、 光束 L 1によるエッジ 3 5 a、 3 5 bの像 3 5 a _ l、 3 5 b— 1、 及び光束 L 2によるエッジ 3 5 a、 3 5 bの 像 3 5 a— 2、 3 5 b— 2で走査される。
また、 出力変化をサンプリングすべき画素 P'は、 単一の画素でなく、 少なくと も像 3 5 a— 1,. 3 5 a— 2の通過する経路に配置された第 1の画素と、 像 3 5 b— 1, 3 5 b _2の通過する経路に配置された第 2の画素となる。
このようにすれば、 その移動方向を基準としたシァ方向とシァ量とを同時に求 めることができる。
図 9は、 指標 3 5の位置 Yを Y 0〜Yriまで変化させたときの像 3 5 a— 1, 3 5 b— 1 , 3 5 a— 2, 3 5 b— 2の変化の様子を比較する図である。
上段は、 指標 3 5が各位置にあるときの測定光束 L内のエッジ 3 5 a, 3 5 の様子、 中段はそのときに光束 L 1が成す像 3 5 a— 1、 3 5 b— 1の様子、 下 段はそのときに光束 L 2が成す像 3 5 a— 2、 3 5 b— 2の様子である。 なお、 中段、 下段に点線で示すのは、 それぞれ光束 L 2、 L 1に対応する領域である。 また、 図 9に符号 P a , P bで示すのは、 前記第 1の画素を含む画素列、 前記 第 2の画素を含む画素列である。
因みに、 画素列 P aは、 移動方向 (==基準方向) に対しエッジ 3 5 aが成す角 度と同角度で配置された画素列であり、 画素列 P bは、 移動方向 (二基準方向) に対しエッジ 3 5 bが成す角度と同角度で配置された画素列である。 例えば、 指標 3 5を移動させたときに、 画素列 P aの出力と画素列 P bの出力 とをそれぞれサンプリングし、 各画素の出力波形を比較する。
そして、 画素列 P aが像 3 5 a— 1で走査されたとき (図 9の 「 *」 ) 、 画素 列 P aが像 3 5 a— 2で走査されたとき (図 9の 「* *」 ) 、 画素列 P bが像 3 5 b - 1で走査されたとき (図 9の 「 *」 ) 、 画素列 P bが像 3 5 b— 2で走査 されたとき (図 9の 」 ) のそれぞれにおける指標 3 5の各位置 (Y 1 , Y 2 a , Y l, Υ 2 b ) の関係などから、 シァ方向とシァ量とを高精度に算出す ることができる。
[第 4実施形態]
図 1 0、 図 1 1に基づいて本発明の第 4実施形態について説明する。
本実施形態は、 本発明のシァリング干渉計の校正方法を適用して、 本発明のシ ァリング干渉計 (図 1参照) のシァ方向及びシァ量 (ここではそれらを示す情報 として、 2方向のシァ量) を高精度に実測するものである。
なお、 ここでは、 第 1実施形態との相違点についてのみ説明し、 同じ部分につ いては説明を省略する。
本実施形態のシァリング干渉計の校正方法では、 第 1実施形態のシァリング干 渉計の校正方法とは異なり、 指標 1 5に代えて図 1 0に示すような指標 4 5使用 する (以下、 挿入位置は、 第 1実施形態の挿入位置と同様、 投影光学系 P Lの瞳 位置とする。 ) 。
この指標 4 5も、 第 1実施形態の指標 1 5と同様、 測定光束 Lの一部の光線を 遮光する空間フィルタである。
但し、 指標 4 5は、 開閉式のスリット板であり、 そのスリット幅が変更可能に 構成されている。
なお、 図 1 0に示す指標 4 5は、 2方向のシァ量 (s x , s Y) を測定するため に、 互いに交差する 2方向 (以下、 互いに直交する X方向及び Y方向とする。 ) にそれぞれ開閉可能である。 このような指標 4 5は、 Y方向に開閉可能な開閉式 スリツト板 4 5 Yと、 X方向に開閉可能な開閉式スリット板 4 5 Xとを組み合わ せたものなどである。 なお、 開閉式スリット板 4 5 Y, 4 5 Xは、 それぞれ不図 示の駆動機構により駆動される。 以下、 Y方向のシァ量 sYを測定する場合について説明する。 X方向のシァ量 s xを測定する方法は、 開閉式スリット板 45 Yに代えて開閉式スリット板 4 5 Xが駆動される点において以下の説明と異なる。
先ず、 開閉式スリット板 45 Yを駆動してスリットの Y方向の幅を変化させつ つ、 CCDカメラ 1 2の出力をサンプリングする。 本実施形態では、 このときに 光束 L 1と光束 L 2との何れも遮光せずに同時に通過させる。 よって、 CCD力 メラ 1 2の撮像面上には、 図 1 1の下段に示すように光束 L 1によるスリ ッ トの 像 45— 1、 光束 2によるスリ ットの像 45— 2が同時に形成される。
図 1 1は、 スリツトの Y方向の幅 dを dmax~0まで変化させたときの像 45 一 1、 45— 2の変化の様子を示す図である。
上段は、 指標 45の開閉式スリツト板 45 Yの Y方向の幅 dが各値にあるとき の測定光束 L内のスリ ッ トの様子、 下段はそのときの像 45— 1, 45— 2の様 子である。
図 1 1に明らかなように、スリットの幅 dが狭まるに従って、像 45— 1の幅, 像 45— 2の幅は共に狭まる。 そして、 最初は互いに重複していた像 45— 1, 45— 2は、 スリツトの幅 dがシァ量 sYに丁度等しくなつたときに重複しなく なり、 像 45— 1の縁と像 45— 2の縁とが接する。
よって、 本実施形態では、 サンプリングした CCDカメラ 1 2の出力に基づい て、 像 45— 1と像 45— 2とが丁度接するようなスリッ の幅 dを求め、 それ をシァリング量 s γとみなせばよい (以上、 Υ方向のシァ量 s γの測定の説明。 X 方向のシァ量 s χも同様に測定される。 ) 。
なお、 本実施形態を応用すれば、 投影光学系 P Lの瞳の幅 (開口の径) を測定 することもできる。
すなわち、 スリ ッ トの幅 dを全開の状態 (測定光束 Lを何ら遮光しない状態) から徐々に狭めると共に、 そのときの CCDカメラ 1 2の出力をサンプリングす る。 サンプリングされた CCDカメラ 1 2の出力に基づいて、 スリ ッ トの像 4 5 - 1, 45— 2の縁が最初に現れるときのスリットの幅 Dを求める。この値 Dを、 投影光学系 P Lの開口の径とみなす。
なお、 本実施形態の校正方法を実現するに当たり、 投影光学系 P Lに対し予め 開閉式スリ ッ ト板 45 Y, 45 Xを備えたり、 それらスリ ッ ト板が着脱可能なよ うに投影光学系 P Lを構成してもよい。
[第 5実施形態]
図 1 2、 図 1 3、 図 1 4に基づいて本発明の第 5実施形態について説明する。 本実施形態では、 上記各実施形態の何れかの校正方法により求めたシァ方向及 び/又はシァ量を利用して、 シァリング干渉計を調整する。
図 1 2は、 本実施形態のシァリング干渉計の調整方法を説明する図である。 図 1 2に示すシァリング干渉計も、 図 1又は図 6に示すシァリング干渉計と同 じである。
第 1実施形態のところで述べたが、 回折格子 1 1から射出する余分な光をカツ トするために、 光束 L l、 L 2の集光点の近傍 (つまり、 ウェハ面 Wの近傍) に 配置され、 かつそれら光束 L l、 L 2の集光点にのみ開口 HI, H 2を有したマ スク 5 1が使用される。
伹し、 その集光点の間隔は、 シァリング干渉計のシァ量により異なるので、 マ スク 5 1の開口 HI, H 2の間隔も調整可能であることが望ましい。
そこで、 本実施形態のマスク 5 1は、 2つの開口 H I , H2の間隔が可変とな るよう構成される。
図 1 3は、 本実施形態のマスク 5 1の構成の一例を示す図である。
このマスク 5 1は、例えば図 1 3 (a)に示すような 2枚のスリット板 5 1 a、 5 1 bを重ねたものである。
一方のスリット板 5 1 aには、 少なくとも互いに非平行な一対のスリット 5 1 a— 1 ' 5 1 a— 2 1が形成されている。 他方のスリット板 5 1 bには、 少なく とも 1本のスリット 5 1 b— 1が形成されている。
これらスリット板 5 1 aとスリツト板 5 1 bとは、 図 1 3 (b) に示すように スリ ッ ト 5 1 b— 1力 S 2本のスリ ッ ト 5 1 a— 1, 5 1 a— 2の双方に交差する よう重ねられる。
このようなマスク 5 1の作用は、 図 1 3 ( c ) に示すように、 スリ ッ ト 5 1 b 一 1とスリ ッ ト 5 1 a— 1, 5 1 a— 2とが交差する 2箇所にのみ開口 H 1, H 2を有し、 かつそれ以外の箇所は遮光部となったマスクと等価である。 そして、 スリ ッ ト扳 5 l aとスリ ッ ト板 5 1 bとの相対位置を、 例えばスリッ ト 5 1 b— 1に垂直な方向に変化させれば、 それら開口 HI, H 2の間隔は変化 する。
よって、 このマスク 5 1を使用すれば、 上記各実施形態などで測定されたシァ 量に応じて、 開口 H I, H 2の配置関係を調整することができる。
この際、 開口 H l、 開口 H2を、 光束 L 1の集光点、 光束 L 2の集光点にそれ ぞれ一致させれば、 マスク 5 1の効果が最大に得られる。 よって、 シァリング干 渉計による測定をさらに高精度化することが可能となる。
なお、 マスク 5 1を構成する 2つのスリ ッ ト板については、 図 1 3に示したも のに限らず、例えば、図 14 (a)に示すような 2つのスリット板も適用できる。 図 14 (a) に示した一方のスリ ッ ト板 6 1 aには、 互いに平行な 2本のスリ ット 6 1 a— 1, 6 1 a— 2が形成されており、 他方のスリット板 6 1 bにも、 互いに平行な 2本のスリット 6 1 b— 1, 6 1 b - 2が开成されている。
図 14 (b ) に示すように、 これらのスリット板 6 1 a、 6 l bを重ねてその 面内で一方を回転させれば、 開口 Hl、 H 2の間隔を変化させることができる。 なお、 図 1 3 ( c ) に示すように、 これらスリ ッ ト 6 1 b— 1、 6 1 b— 2, 6 1 a— 1 , 6 1 a— 2の交差箇所は 4箇所あるので、 必要な 2つの開口 H 1 , H 2以外の開口については遮光することが好ましい (なお、 それら開口が必要な 2つの開口 H I, H 2と十分に離れていれば、 遮光しなくてもよいことは言うま でもない。 ) 。
[第 6実施形態]
図 1 5に基づいて本発明の第 6実施形態について説明する。
図 1 5は、 本実施形態の投影露光装置の概略構成図である。
この投影露光装置に搭載された投影光学系 P Lの全部又は一部の光学系は、 そ の製造時、 例えば、 図 1に示したシァリング干渉計によって測定又は検査されて いる。
また、 その測定又は検査に先行して、 そのシァリング干渉計のシァ方向及び/ 又はシァ量は、 上記各実施形態の何れかの校正方法により検出されている。 さらに、 その測定又は検査時には、 シァリング干渉計が検出する干渉縞だけで なく、 前記検出したシァ方向及び/又はシァ量に基づいて、 光学系の収差を示す 波面が復元される。 よって、 その測定又は検査は、 高精度に行われる。
そして、 投影光学系 P Lの少なく とも何れかの面、 及び/又は投影露光装置の 何れかの箇所は、 その測定結果に応じて調整される。
前記調整の方法がたとえ従来と同じであったとしても、 測定又は検査が高精度 な分だけ、 投影光学系及び/又は投影露光装置は高性能になる。
なお、 投影露光装置は、 少なくともウェハステージ 1 0 8と、 光を供給するた めの光源部 1 0 1と、 投影光学系 P Lとを含む。 ここで、 ウェハステージ 1 0 8 は、 感光剤を塗布したウェハ wを表面 1 0 8 a上に置くことができる。 また、 ス テージ制御系 1 0 7は、 ウェハステージ 1 0 8.の位置を制御する。 また投影光学 系 P Lの物体面 P l、 及ぴ像面 P 2に、 それぞれレチクル!:、 ウェハ wが配置さ れる。 さらに投影光学系 P Lは、 スキャンタイプの投影露光装置に応用されるァ ライメント光学系を有する。 さらに照明光学系 1 0 2は、 レチクル rとウェハ w との間の相対位置を調節するためのァライメント光学系 1 0 3を含む。 レチクル rは、 該レチタノレ rのパターンのイメージをウェハ w上に投影するためのもので あり、 ウェハステージ 1 0 8の表面 1 0 8 aに対して平行移動が可能であるレチ クルステージ 1 0 5上に配置される。 そしてレチクル交換系 1 0 4は、 レチクル ステージ 1 0 5上にセットされたレチクル rを交換し運搬する。 またレチクル交 換系 1 0 4は、 ウェハステージ 1 0 8の表面 1 0 8 aに対し、 レチクルステージ 1 0 5を平行移動させるためのステージドライバー (不図示) を含む。 また、 主 制御部 1 0 9は位置合わせから露光までの一連の処理に関する制御を行う。
[上記各実施形態の捕足]
なお、 上記各実施形態では、 被検物 (投影光学系 P L ) の透過波面を測定する シァリング干渉計について説明したが、 被検面の反射波面を測定するシァリング 干渉計にも本発明は適用可能である。 その場合、 指標の配置位置は、 その被検面 の配置位置であることが好ましい。 また、 指標は、 開口及び反射部として遮光部 及び非反射部を有した空間フィルタとなる。 産業上の利—用の可能性 本発明によれば、 シァリング干渉計の波面の分割方向 (シァ方向) 及び Z又は 分割量 (シァ量) を高精度に実測することのできるシァリング干渉計の校正方法 が実現する。
また、 本発明によれば、 シァリング干渉計を用いて高性能な投影光学系を製造 することのできる投影光学系の製造方法、 高性能な投影光学系、 及び、 高性能な 投影露光装置が実現する。

Claims

請求の範囲
( 1 ) 被検物に入射した測定光束の波面を 2つに分割する分割手段と、 その分 割によりずれた 2つの波面が成す干渉縞を検出する検出器とを備えたシァリング 干渉計に適用され、 そのシァリング干渉計の前記波面の分割方向及び/又は分割 量を測定するシァリング干渉計の校正方法であって、
所定の開口パターンを有した指標を分割前の前記測定光束中に挿入することに より、 その指標の像を前記検出器上に 2つ形成する像形成手順と、
前記検出器上に形成される前記 2つの像のずれをその検出器の出力から参照し、 そのずれに基づいて前記波面の分割方向及び/又は分割量を求める算出手順と を有したことを特徴とするシァリング干渉計の校正方法。
( 2 ) 請求項 1に記載のシァリング干渉計の校正方法において、
前記開口パターンは、 均一又は不均一なピツチで配置された縞状のパターンで ある
ことを特徴とするシァリング干渉計の校正方法。
( 3 ) 請求項 2に記載のシァリング干渉計の校正方法において、
前記開口パターンは、 その中心点に関し対称なパターンである
ことを特徴とするシァリング干渉計の校正方法。
( 4 ) 請求項 3に記載のシァリング干渉計の校正方法において、
前記開口パターンは、
その中心に原点を採ったパターン座標 (X , Y) 、 任意の定数 k、 及び 0より 大きい整数 Nに対し、
X 2 + Y 2 = N k
で表される同心円状パターンである
ことを特徴とするシァリング干渉計の校正方法。
( 5 ) 請求項 3に記載のシァリング干渉計の校正方法において、
前記開口パターンは、 放射状パターンである
ことを特徴とするシァリング干渉計の校正方法。
( 6 ) 請求項 1に記載のシァリング干渉計の校正方法において、
前記像形成手順では、 前記指標の前記開口のェッジが前記分割前の前記測定光束の断面を走査するよ うその指標を移動させることにより、 そのエッジの 2つの像で前記検出器上を走 査し、
前記算出手順では、
前記 2つの像のずれを参照する代わりに、 前記検出器上の所定画素を一方の像 が走査するときと他方の像が走査するときの間における前記指標のずれを参照す る
ことを特徴とするシァリング干渉計の校正方法。
( 7 ) 請求項 1に記載のシァリング干渉計の校正方法において、
前記指標の前記開口の幅は、 変更可能であり、
前記像形成手順では、
前記開口の幅を変化させることにより、 その開口の 2つの像の幅を前記検出器 上で変化させ、
前記算出手順では、
前記 2つの像のずれを参照する代わりに、 前記検出器上で前記 2つの像が重複 するときと重複しないときとの移行時における前記開口の幅を参照する
ことを特徴とするシァリング干渉計の校正方法。
( 8 ) 投影光学系の一部又は全部を構成する光学系をシァリング干渉計で検査 又は測定する測定手順を含む投影光学系の製造方法において、
前記測定手順では、
請求項 1〜請求項 7の何れか一項に記載のシァリング干渉計の校正方法により 前記シァリング干渉計における波面の分割方向及ぴ Z又は分割量を検出し、 前記シァリング干渉計により前記光学系について干渉縞を検出し、
前記検出した前記分割方向及び/又は分割量と、 前記検出した前記干渉縞とに 基づいて、 前記光学系を検査又は測定する
ことを特徴とする投影光学系の製造方法。
( 9 ) 請求項 8に記載の投影光学系の製造方法により製造されたことを特徴と する投影光学系。
( 1 0 ) 請求項 9に記載の投影光学系を搭載したことを特徴とする投影露光装
zz
88S800/C00Zdf/X3d 9t8S00請 OAV
PCT/JP2003/008588 2002-07-08 2003-07-07 シアリング干渉計の校正方法、投影光学系の製造方法、投影光学系、及び投影露光装置 WO2004005846A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003281312A AU2003281312A1 (en) 2002-07-08 2003-07-07 Shearing interferometer calibrating method, production method for projection optical system, projection opticalsystem, and projection exposure system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002198901A JP2004037429A (ja) 2002-07-08 2002-07-08 シアリング干渉計の校正方法、投影光学系の製造方法、投影光学系、及び投影露光装置
JP2002-198901 2002-07-08

Publications (1)

Publication Number Publication Date
WO2004005846A1 true WO2004005846A1 (ja) 2004-01-15

Family

ID=30112438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/008588 WO2004005846A1 (ja) 2002-07-08 2003-07-07 シアリング干渉計の校正方法、投影光学系の製造方法、投影光学系、及び投影露光装置

Country Status (3)

Country Link
JP (1) JP2004037429A (ja)
AU (1) AU2003281312A1 (ja)
WO (1) WO2004005846A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1724642A2 (en) * 2005-05-17 2006-11-22 Canon Kabushiki Kaisha Wavefront-aberration measuring device and exposure apparatus including the device
CN103674493A (zh) * 2013-12-04 2014-03-26 中国科学院上海光学精密机械研究所 光栅剪切干涉仪波像差检测的系统误差的消除方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4769448B2 (ja) * 2004-10-08 2011-09-07 キヤノン株式会社 干渉計を備えた露光装置及びデバイス製造方法
JP4600047B2 (ja) * 2005-01-13 2010-12-15 株式会社ニコン 波面収差測定方法、波面収差測定装置、投影露光装置、投影光学系の製造方法
US7518703B2 (en) * 2005-06-28 2009-04-14 Asml Netherlands B.V. Lithographic apparatus and method
FR2890461B1 (fr) * 2005-09-05 2008-12-26 Sagem Defense Securite Obturateur et illuminateur d'un dispositif de photolithographie
JP5725874B2 (ja) * 2011-01-14 2015-05-27 キヤノン株式会社 シアリング干渉測定装置およびその校正方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62129732A (ja) * 1985-12-02 1987-06-12 Kyocera Corp シエアリング干渉計
US20010028462A1 (en) * 1998-09-22 2001-10-11 Nikon Corporation Interferometer system and method of manufacturing projection optical system using same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62129732A (ja) * 1985-12-02 1987-06-12 Kyocera Corp シエアリング干渉計
US20010028462A1 (en) * 1998-09-22 2001-10-11 Nikon Corporation Interferometer system and method of manufacturing projection optical system using same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1724642A2 (en) * 2005-05-17 2006-11-22 Canon Kabushiki Kaisha Wavefront-aberration measuring device and exposure apparatus including the device
EP1724642A3 (en) * 2005-05-17 2007-08-22 Canon Kabushiki Kaisha Wavefront-aberration measuring device and exposure apparatus including the device
US7623247B2 (en) 2005-05-17 2009-11-24 Canon Kabushiki Kaisha Wavefront-aberration measuring device and exposure apparatus including the device
CN103674493A (zh) * 2013-12-04 2014-03-26 中国科学院上海光学精密机械研究所 光栅剪切干涉仪波像差检测的系统误差的消除方法
CN103674493B (zh) * 2013-12-04 2016-02-10 中国科学院上海光学精密机械研究所 光栅剪切干涉仪波像差检测的系统误差的消除方法

Also Published As

Publication number Publication date
AU2003281312A1 (en) 2004-01-23
JP2004037429A (ja) 2004-02-05

Similar Documents

Publication Publication Date Title
US6242754B1 (en) Method of detecting position of mark on substrate, position detection apparatus using this method, and exposure apparatus using this position detection apparatus
KR100536632B1 (ko) 리소그래피 장치용 메트롤로지 시스템
US7106444B2 (en) Position measuring device, position measurement method, exposure apparatus, exposure method, and superposition measuring device and superposition measurement method
US6573015B2 (en) Method of measuring optical aberration
JP5967924B2 (ja) 位置検出装置、インプリント装置およびデバイス製造方法
KR19980064642A (ko) 투영광학시스템의 수차측정방법
JPH0445512A (ja) 投影露光装置及び方法
CN108603848B (zh) 用于光学三维形貌测量的方法及系统
KR102262185B1 (ko) 측정 시스템, 리소그래피 시스템 및 타겟을 측정하는 방법
JP2004191092A (ja) 3次元情報取得システム
WO2004005846A1 (ja) シアリング干渉計の校正方法、投影光学系の製造方法、投影光学系、及び投影露光装置
JPH0864500A (ja) 信号処理方法および位置検出光学系の調整方法およびターゲットパターンならびに露光方法および露光装置
WO2021210052A1 (ja) 計測装置、露光装置、および計測方法
CN111649693B (zh) 一种样品形貌测量装置及方法
KR20230112261A (ko) 모아레 패턴을 형성하는 오버레이 마크, 이를 이용한 오버레이 측정방법, 및 반도체 소자의 제조방법
CN114688972B (zh) 检测设备及其检测方法
JPH05291109A (ja) アライメント装置および方法
JP2008077741A (ja) 回折格子の測定装置及び回折格子の測定方法
CN114688973A (zh) 检测设备及其检测方法
JP5391085B2 (ja) 計測方法、計測装置及び露光装置
JPH1154413A (ja) 転写露光方法、転写露光装置及びパターン転写用マスク
JP3106490B2 (ja) 位置合せ装置及びそれを備えた露光装置
JPS63185024A (ja) 露光装置
CN114695154A (zh) 检测设备及其检测方法
JP2012149983A (ja) 変位検出装置、露光装置、及びデバイス製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase