WO2004005828A1 - Wärmetauscher, insbesondere ladeluftküler für kraftfahrzeuge - Google Patents

Wärmetauscher, insbesondere ladeluftküler für kraftfahrzeuge Download PDF

Info

Publication number
WO2004005828A1
WO2004005828A1 PCT/EP2003/005516 EP0305516W WO2004005828A1 WO 2004005828 A1 WO2004005828 A1 WO 2004005828A1 EP 0305516 W EP0305516 W EP 0305516W WO 2004005828 A1 WO2004005828 A1 WO 2004005828A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
housing
medium
exchanger according
exchanger element
Prior art date
Application number
PCT/EP2003/005516
Other languages
English (en)
French (fr)
Inventor
Karsten Emrich
Reinhard Heine
Andre Schairer
Original Assignee
Behr Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Behr Gmbh & Co. Kg filed Critical Behr Gmbh & Co. Kg
Priority to AU2003240716A priority Critical patent/AU2003240716A1/en
Priority to US10/519,709 priority patent/US20050230092A1/en
Priority to EP03730119.9A priority patent/EP1521940B1/de
Priority to JP2004518507A priority patent/JP4411376B2/ja
Publication of WO2004005828A1 publication Critical patent/WO2004005828A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0082Charged air coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/10Particular pattern of flow of the heat exchange media
    • F28F2250/104Particular pattern of flow of the heat exchange media with parallel flow

Definitions

  • Heat exchangers in particular charge air coolers for motor vehicles
  • the invention relates to a heat exchanger, in particular charge air cooler for motor vehicles, preferably for commercial vehicles, with a first header box and with a second header box for a first medium, the two header boxes each having a first media connection for the first medium and communicating with one another via at least one heat exchanger element are and with a, the heat exchanger element receiving, inside a second medium guiding housing, which has second media connections for the second medium.
  • a heat exchanger in particular charge air cooler for motor vehicles, preferably for commercial vehicles, with a first header box and with a second header box for a first medium, the two header boxes each having a first media connection for the first medium and communicating with one another via at least one heat exchanger element are and with a, the heat exchanger element receiving, inside a second medium guiding housing, which has second media connections for the second medium.
  • Such heat exchangers are known. They are used in motor vehicles to provide cooled charge air.
  • the charge air is cooled by means of cooling air, the air flow of the vehicle or ambient air conveyed by a fan being used as cooling air.
  • the two header boxes of the known heat exchanger are connected to one another, for example, via charge air pipes, cooling fins being arranged between the charge air pipes to enlarge the surface area.
  • the cooling air flows through these cooling fins, a housing accommodating the charge air pipes being provided.
  • the housing is formed by housing walls that bridge the space between the two header boxes.
  • the cooling air enters the housing at a lateral distance from one header box at right angles to the longitudinal direction of the charge air pipes, is deflected there by 90 °, flows through the housing in the direction of the charge air pipes and leaves the housing at a distance from the other header box in a direction that is perpendicular to the longitudinal extent of the charge air pipes.
  • the air deflection of the cooling air leads to a relatively large pressure loss.
  • the cooling air does not come into contact with the entire length of the charge air pipes, that is to say that the sections of the charge air pipes adjoining the respective collecting box are not cooled or are not sufficiently cooled by the cooling air. Overall, the efficiency is therefore unsatisfactory.
  • the invention is based on the object of specifying a heat exchanger of the type mentioned at the outset, which provides a very good heat exchange function, in particular cooling capacity, without increasing the size and requiring only a small amount of cooling air.
  • the housing is designed in such a way that at least one collecting box, preferably both collecting boxes, is / are accommodated in its interior at least partially at a distance from the inner wall of the housing, at least in some areas.
  • This design according to the invention makes it possible to place the second media connections in such a way that the full or almost full length of the heat exchanger element, in particular the charge air pipes, is acted upon by the second medium and therefore a correspondingly high degree of efficiency is achieved.
  • the second media connections can, for example, be arranged in the area of the header boxes in such a way that the second medium first flows outside along part of the assigned header box or along the entire header box, then meets the heat exchanger element and carries out the heat exchange there over a correspondingly large distance. If the medium then reaches the area of the other collecting box, it flows there at least for a part of the way outside and leaves the arrangement via the second media connection.
  • the at least partial distance between the inner wall of the housing and at least one, preferably both header tanks ensures that the second medium flows into the housing via the second media connection and to the latter Heat exchange element can get. The same applies to the outflow of the second medium from the housing, that is to say that in such a case the second medium can flow through the heat exchanger element to its end and is only then removed.
  • the housing completely accommodates the collecting boxes.
  • this arrangement offers the aforementioned greatest possible contact distance of the second medium with the heat exchanger element and also opens up the possibility of arranging the second medium connections for the supply and discharge of the second medium in such a way that the lowest possible pressure loss occurs, that is to say the second medium becomes as possible not deflected one or more times in such a direction that there is a noticeable loss of pressure.
  • the two media connections are assigned to the two collecting boxes in such a way that the first collecting box lies between the second media connection and the heat exchanger element and the second collecting box lies between the other second media connection and the heat exchange element.
  • the inflowing second medium first hits the collecting box, flows along or around it, and then reaches the heat exchanger element, from there to the other collecting box, flows along or around it and then reaches the second media connection, which removes the second medium.
  • the flow directions are selected such that the second medium in the region of the second media connections has the same or approximately the same direction as in the heat exchanger element, that is to say that they are not fed in and discharged transversely to the flow in the heat exchanger element as in the prior art, but in the same direction.
  • the flow direction of the first medium in the collecting box is transverse, in particular at right angles, to the flow direction of the first medium in the heat exchanger element.
  • the first medium therefore flows into the first collecting tank and leaves it transversely to the direction of flow in the collecting tank, i.e. is deflected in the collecting tank, in particular deflected at right angles, flows through the heat exchanger element and meets the second collecting tank. This is in turn deflected in the direction of the longitudinal extent of the collecting tank, in particular a right-angled deflection.
  • the first medium then emerges from the second collection box.
  • the deflection or deflections of the first medium are of less importance, since it is preferably the charge air of a charge air cooler forming the heat exchanger, which is present at high pressure and therefore pressure losses due to deflection can be accepted. According to the invention, this does not apply to the second medium, for example for cooling air of the charge air cooler, since this cooling air has a lower pressure, for example if it is a head wind or ambient air conveyed by a fan.
  • the second media connections point in the direction or approximately in the direction of the flow direction of the first medium in the heat exchanger element. This has already been discussed above, that is to say that the second medium flows around the two header boxes when the heat exchanger element flows in or out.
  • the first media connections point transversely, in particular at right angles to the flow direction of the first medium in the heat exchanger element. This has already been done received; After passing the first media connection, the first medium is deflected in the first collecting box, then passes through the heat exchanger element and arrives in the second collecting box and through another deflection to the further first media connection, which drains off the first medium.
  • the housing viewed in cross section — has a bone shape or its shape approximates a bone shape.
  • the first and the second collecting box are arranged in the region of the two thickenings of the bone shape, that is to say each thickening has an associated collecting box, the housing leaving a distance from the respective collecting box, so that the second medium is inside the housing on the outside of the respective collecting box can flow along. Between the two thickenings of the housing forming the bone shape there is a less thick area in which the heat exchanger element is located.
  • the walls of the housing lie closely against the heat exchanger element. These are side walls of the housing and also floor and ceiling walls. This close concern leads to the fact that the second medium comes into intensive heat exchange contact with the second medium without a faulty medium flow occurring, which flows along the inner wall of the housing, but does not get sufficient heat exchange contact with the first medium.
  • the housing forms a housing section of a fan housing of a fan.
  • the heat exchanger according to the invention is therefore integrated in the housing of the fan, that is to say the entire fan housing has the fan wheel of the fan and also the heat exchanger. shear, which results in a very space-saving design.
  • the fan housing can preferably be designed as a spiral housing.
  • the heat exchanger is designed as a countercurrent heat exchanger, that is to say that in the area of the heat exchanger element the first and the second medium flow in opposite directions to one another, so that a high degree of heat exchange is achieved with a low cooling air volume flow.
  • the heat exchanger it is also possible for the heat exchanger to be designed as a direct current heat exchanger, that is to say that the first and the second medium flow in the same direction in the heat exchanger element.
  • there can also be a mixed construction of the two options mentioned that is to say that partial sections are flowed through in countercurrent and other partial sections through cocurrent. Additionally or alternatively, it is also conceivable that a cross-flow heat exchanger is formed.
  • FIG. 1 shows a longitudinal section through a heat exchanger, the shape of which approximates a bone shape
  • Figure 2 is a plan view of the disc contour of a heat exchanger element of a heat exchanger, partly in
  • FIG. 3 shows a further embodiment of a heat exchanger, partially cut away
  • FIG. 4 shows an enlarged detailed view of the heat exchanger from FIG. 3,
  • FIG. 5 shows a section along the line VV in FIG. 2
  • Figure 6 is a section along the line VI-VI in Figure 2 and
  • Figure 7 shows another embodiment of a heat exchanger integrated in the fan housing of a fan.
  • FIG. 1 shows a heat exchanger 1 which serves as an intercooler for a commercial vehicle.
  • the heat exchanger 1 has a first header box 2 and a second header box 3 for a first medium 4 which is spaced apart from it.
  • the first medium 4 is charge air 5.
  • the charge air 5 is to be cooled by means of a second medium 6.
  • the second medium 6 is cooling air 7, which is formed by the airstream and / or is air drawn in by a blower (not shown).
  • the two header boxes 2 and 3 are tubular and have an oval cross section; its longitudinal extent is perpendicular to the plane of the drawing in FIG. 1.
  • the heat exchanger 1 has a housing 8 which — seen in the longitudinal section in FIG. 1 — has a bone shape. Between two thickened areas 9 and 10 of the housing 8 there is a less thick area 11 in which the housing 8 has two flat walls 12, 13. In the thickened areas 9 and 10, the respective flat walls 12 and 13 merge into convexly curved walls 14, 15 and 16, 17, respectively.
  • the housing 8 ends at its ends in areas 18, 19 which - viewed in the longitudinal section in FIG. 1 - is thinner than the area 11 and each have an end face 20 or 21.
  • the convexly curved walls 14, 15, 16 and 17 run at a distance a from the respective collecting box 2 or 3, so that flow paths 22 to 25 are formed in the area of the collecting boxes 1 and 2 in such a way that the outside of the housing 8 can flow around them ,
  • the charge air 5 is fed to the second header box 3 perpendicular to the plane of the drawing in FIG. 1 by means of a first media connection 26, not shown in detail.
  • the charge air 5 thus rises in the second collecting box 3 and is then deflected by 90 ° in the direction of the first collecting box 2. It passes through a heat exchanger element 27 lying between the two header boxes 3, 2. This is indicated by the dashed arrow 28.
  • the heat exchanger element 27 can be of the two, which run parallel to one another Collection boxes 2, 3 communicating connecting air pipes can be formed (not shown).
  • the charge air pipes run at right angles to the longitudinal extensions of the header boxes 2 and 3.
  • cooling air fins can be arranged — to increase the surface area — through which the cooling air 7 flows, opposite to the direction of the charge air 5, so that an intensified Heat exchange takes place in the heat exchanger element 27, which leads to the charge air 5 being cooled by the cooling air 7.
  • the cooling air 7 is let into the interior of the housing 8 by means of a second media connection 30, which is located on the end face 20 of the area 18, in such a way that it passes through the two flow paths 22 and 23 and thus at least partially flows around the second header box 3 ,
  • the cooling air 7 then enters the heat exchanger element 27 and flows through this component in the counterflow principle, that is to say the flow direction of the charge air 5 runs in the opposite direction to the flow direction of the cooling air 7.
  • the cooling air 7 leaves the heat exchanger element 27 in the region of the second header box 3 and flows into it Flow paths 24 and 25 an, that is, the collecting tank 3 is flowed around on both sides.
  • the cooling air 7 then arrives at the end face 21 of the area 19, where a second media connection 31 is formed for removing the cooling air 7. It can be seen very clearly from FIG. 1 that the cooling air 7 does not undergo any significant deflection in the area of the heat exchanger 1, and certainly not in the area of the heat exchanger element 27.
  • the flow around the two header boxes 2 and 3 takes place with a certain change in direction of the cooling air 7, but this does not result in any significant pressure loss, since a laminar flow can be formed.
  • the two second media connections 30 and 31 thus point in the direction of the flow direction of charge air 5 of cooling air 7 within the heat exchanger element 27.
  • FIG. 2 shows a plan view of a disk contour of the heat exchanger element 27, that is to say the heat exchanger element 27 is realized in a stacked disk design.
  • individual panes profiled aluminum sheets
  • the cup / thread is placed on the cup / thread and then the next pair of edges on the edge etc. and soldered.
  • a cooling air fin 32, a charge air fin 33 and then again a cooling air fin 32 and — subsequently — a charge air fin 33 etc. are formed alternately in the heat exchanger element 27 according to FIG.
  • the flow path for the charge air 5 in the region of the heat exchanger element 27 is created by stacking two half shells 34, 35 on top of one another.
  • the adjacent charge air fin 33 is at a distance from the first-mentioned charge air fin 33, so that a cooling air fin 32 is formed between them, through which the cooling air 7 can flow in countercurrent.
  • the Charge air fins 33 are connected to one another there to form the collecting tank 2 or 3, so that the charge air 5 penetrates the cooling air fins 32 in a sealed-off manner and flows into the areas of the charge air fins 33 and then — as it were into the sheet plane of FIG. 6 — divides the heat exchanger element accordingly 27 enforced. The same is done in the area of the other collection box; there the charge air is brought together again and discharged together.
  • the cooling air fins 32 are connected to the flow paths 22 to 25, that is to say they are passed through by the cooling air 5.
  • FIGS. 3 and 4 show the overall structure of a heat exchanger 1 described above in the form of a stacked disk.
  • FIG. 3 shows the housing 8 which surrounds the heat exchanger element 27, the housing 8 having the second media connections 30 and 31 at diametrically opposite ends. Furthermore, the first media connections 26 and 29 can be seen, which lead to the collecting boxes 2, 3.
  • charge air 5 coming from the heat exchanger element 27 is led from the charge air ribs 33 and is discharged from the collecting box 2 in accordance with the arrows 35.
  • the cooling air fins 32 lying between the charge air fins 33 lead - according to the counterflow principle - cooling air 7 according to the arrows 36.
  • FIG. 7 shows a fan 37 with fan housing 38 and impeller 39.
  • a heat exchanger element 27 according to the exemplary embodiments described above is integral with the fan housing 38 at least partially recorded in such a way that cooling air 7 guided inside the fan housing 38 can flow through the heat exchanger element 27 according to the arrows shown in FIG. 7. Due to the stacked construction, the heat exchanger element 27 has integrated collecting boxes 2 and 3 and cooling air fins 32 between them and charge air fins 33, so that a charge air flow guided there is cooled by the cooling air 7.
  • the housing 38 is preferably designed as a spiral housing 40.

Abstract

Die Erfindung betrifft einen Wärmetauscher, insbesondere Ladeluftkühler für Kraftfahrzeuge, bevorzugt für Nutzfahrzeuge, mit einem ersten Sammelkasten und mit einem zweiten Sammelkasten für ein erstes Medium, wobei die beiden Sammelkästen jeweils einen ersten Medienanschluss für das erste Medium aufweisen und über mindestens ein Wärmetauscherelement miteinander kommunizierend verbunden sind und mit einem, das Wärmetauscherelement aufnehmenden, im Inneren ein zweites Medium führenden Gehäuse, das zweite Medienanschlüsse für das zweite Medium aufweist. Es ist vorgesehen, dass das Gehäuse (8) derart ausgebildet ist, dass in seinem Inneren mindestens ein Sammelkasten (2,3), vorzugsweise beide Sammelkästen (2,3), zumindest teilweise mit zumindest bereichsweise vorliegendem Abstand zur Gehäuseinnenwund mit aufgenommen ist/sind.

Description

Wärmetauscher, insbesondere Ladeluftkühler für Kraftfahrzeuge
B e s c h r e i b u n g
Die Erfindung betrifft einen Wärmetauscher, insbesondere Ladeluftkühler für Kraftfahrzeuge, bevorzugt für Nutzfahrzeuge, mit einem ersten Sammelkasten und mit einem zweiten Sammelkasten für ein erstes Medium, wobei die beiden Sammelkästen jeweils einen ersten Medienanschluss für das erste Medium aufweisen und über mindestens ein Wärmetauscherelement miteinander kommunizierend verbunden sind und mit einem, das Wärmetauscherelement aufnehmenden, im Inneren ein zweites Medium führendes Gehäuse, das zweite Medienanschlüsse für das zweite Medium aufweist.
Derartige Wärmetauscher sind bekannt. Sie dienen in Kraftfahrzeugen zur Bereitstellung gekühlter Ladeluft. Die Ladeluft wird mittels Kühlluft abgekühlt, wobei als Kühlluft der Fahrtwind des Fahrzeugs oder von einem Lüfter geförderte Umgebungsluft eingesetzt wird. Die beiden Sammelkästen des bekannten Wärmetauschers sind beispielsweise über Ladeluftrohre miteinander verbunden, wobei -zur Oberflächenvergrößerung- zwischen den Ladeluftrohren Kühlrippen angeordnet sind. Diese Kühlrippen werden von der Kühlluft durchströmt, wobei ein die Ladeluftrohre aufnehmendes Gehäuse vorge- sehen ist. Das Gehäuse wird von Gehäusewandungen gebildet, die den Zwischenraum zwischen den beiden Sammelkästen überbrücken. Die Kühlluft tritt quer zum Längserstreckungsverlauf der Ladeluftrohre in das Gehäuse mit seitlichem Abstand zum einen Sammelkasten ein, wird dort um 90° umgelenkt, durchströmt das Gehäu- se in Richtung der Ladeluftrohre und verlässt das Gehäuse mit Abstand zum anderen Sammelkasten in einer Richtung, die rechtwinklig zur Längserstreckung der Ladeluftrohre steht. Die erwähnte Luft- umlenkung der Kühlluft führt zu einem relativ großen Druckverlust. Ferner gelangt die Kühlluft nicht mit der gesamten Länge der Ladeluftrohre in Kontakt, das heißt, die an den jeweiligen Sammelkasten angrenzenden Abschnitte der Ladeluftrohre werden nicht oder nicht hinreichend von der Kühlluft gekühlt. Insgesamt liegt daher ein nicht befriedigender Wirkungsgrad vor.
Der Erfindung liegt die Aufgabe zu Grunde, einen Wärmetauscher der eingangs genannten Art anzugeben, der ohne Bauformvergröße- rung und bei nur geringem Kühlluftbedarf eine sehr gute Wärmetauschfunktion, insbesondere Kühlleistung, erbringt.
Diese Aufgabe wird erfindungsgemäß dadurch gelöst, dass das Gehäuse derart ausgebildet ist, dass in seinem Inneren mindestens ein Sammelkasten, vorzugsweise beide Sammelkästen, zumindest teilweise mit zumindest bereichsweise vorliegendem Abstand zur Gehäuseinnenwand mit aufgenommen ist/sind. Diese erfindungsgemäße Bauweise ermöglicht es, die zweiten Medienanschlüsse derart zu platzieren, dass die volle oder die fast volle Länge des Wärmetau- scherelements, insbesondere der Ladeluft-Rohre, vom zweiten Medium beaufschlagt werden und daher ein entsprechend hoher Wirkungsgrad erzielt ist. Die zweiten Medienanschlüsse können beispielsweise im Bereich der Sammelkästen derart angeordnet sein, dass das zweite Medium zunächst außen entlang an einem Teil des zugeordneten Sammelkastens oder entlang des gesamten Sammelkastens strömt, dann auf das Wärmetauscherelement trifft und dort über eine entsprechend große Strecke die Wärmetauschung vornimmt. Gelangt das Medium dann in den Bereich des anderen Sammelkastens, so strömt es dort zumindest eine Teilstrecke außen entlang und verlässt die Anordnung über den zweiten Medienan- schluss. Durch den zumindest bereichsweise vorliegenden Abstand der Gehäuseinnenwand zu mindestens einem, vorzugsweise beiden Sammelkästen, ist sichergestellt, dass das zweite Medium über den zweiten Medienanschluss in das Gehäuse einströmen und zu dem Wärmetauschelement gelangen kann. Entsprechendes gilt für das Ausströmen des zweiten Mediums aus dem Gehäuse, das heißt, das zweite Medium kann in einem solchen Falle das Wärmetauscherelement bis zu seinem Ende hin beströmen und wird erst dann abge- führt.
Nach einer Weiterbildung der Erfindung ist vorgesehen, dass das Gehäuse die Sammelkästen vollständig aufnimmt. Diese Anordnung bietet einerseits die erwähnte größtmögliche Kontaktstrecke des zweiten Mediums mit dem Wärmetauscherelement und eröffnet ferner die Möglichkeit, die zweiten Medienanschlüsse für das Zuführen und das Abführen des zweiten Mediums derart anzuordnen, dass ein möglichst geringer Druckverlust auftritt, das heißt, das zweite Medium wird möglichst nicht ein- oder mehrfach derart stark in seiner Richtung umgelenkt, dass sich ein spürbarer Druckverlust einstellt. Insbesondere kann vorgesehen sein, dass die zwei Medienanschlüsse den beiden Sammelkästen derart zugeordnet sind, dass der erste Sammelkasten zwischen dem zweiten Medienanschluss und dem Wärmetauscherelement und der zweite Sammelkasten zwischen dem anderen zweiten Medienanschluss und dem Wärmetauschelement liegt. Das einströmende zweite Medium trifft in einem solchen Falle zunächst auf den Sammelkasten, strömt an diesem entlang oder umströmt ihn, und gelangt dann zu dem Wärmetauscherelement, von dort auf den anderen Sammelkasten, strömt dort entlang oder umströmt diesen und gelangt dann zum zweiten Medienanschluss, der das zweite Medium abführt. Die Strömungsrichtungen sind derart gewählt, dass das zweite Medium im Bereich der zweiten Medienanschlüsse die gleiche oder etwa die gleiche Richtung aufweist wie im Wärmetauscherelement, das heißt, sie werden nicht -wie im Stand der Technik- quer zur Strömung im Wärmetauscherelement zu- und abgeführt, sondern in gleicher Richtung. Dementsprechend tritt nur ein geringer Druckverlust auf, insbesondere wenn das Umströmungsprofil des jeweiligen Sammelkastens derart ausgestaltet wird, dass das Entlangströmen oder Umströmen des jeweiligen Sammelkastens laminar erfolgt, also eine im Wesentlichen wirbelfreie Strömung des zweiten Mediums vorliegt.
Nach einer Weiterbildung der Erfindung ist vorgesehen, dass die Strömungsrichtung des ersten Mediums in dem Sammelkasten quer, insbesondere rechtwinklig, zur Strömungsrichtung des ersten Mediums im Wärmetauscherelement verläuft. Das erste Medium strömt daher in den ersten Sammelkasten ein und verlässt diesen quer zur Strömungsrichtung im Sammelkasten, wird also im Sammelkasten umgelenkt, insbesondere rechtwinklig umgelenkt, durchströmt das Wärmetauscherelement und trifft auf den zweiten Sammelkasten. In diesem erfolgt wiederum eine Umlenkung in Richtung der Längserstreckung des Sammelkastens, insbesondere eine rechtwinklige Umlenkung. Das erste Medium tritt dann aus dem zweiten Sammel- kästen aus. Die Umlenkung oder Umlenkungen des ersten Mediums sind weniger von Bedeutung, da es sich dabei vorzugsweise um die Ladeluft eines den Wärmetauscher bildenden Ladeluftkühlers handelt, die mit hohem Druck ansteht und daher umlenkungsbedingte Druckverluste hingenommen werden können. Dies gilt erfindungs- gemäß nicht für das zweite Medium, beispielsweise für Kühlluft des Ladeluftkühlers, da diese Kühlluft einen geringeren Druck aufweist, beispielsweise wenn es sich um Fahrtwind handelt oder um von einem Lüfter geförderte Umgebungsluft.
Vorteilhaft ist es, wenn die zweiten Medienanschlüsse in Richtung oder etwa in Richtung der Strömungsrichtung des ersten Mediums im Wärmetauscherelement weisen. Hierauf wurde vorstehend schon eingegangen, das heißt, das zweite Medium umspült die beiden Sammelkästen beim Anströmen beziehungsweise Abströmen des Wärmetauscherelements.
Es kann vorgesehen sein, dass die ersten Medienanschlüsse quer, insbesondere rechtwinklig zur Strömungsrichtung des ersten Mediums im Wärmetauscherelement weisen. Auch hierauf wurde bereits eingegangen; das erste Medium wird nach Passieren des ersten Medienanschlusses im ersten Sammelkasten umgelenkt, passiert dann das Wärmetauscherelement und gelangt in den zweiten Sammelkasten und durch nochmalige Umlenkung zum weiteren ersten Medienanschluss, der das erste Medium ableitet.
Insbesondere kann vorgesehen sein, dass das Gehäuse -im Querschnitt gesehen- eine Knochenform aufweist oder in seiner Formgebung einer Knochenform angenähert ist. Im Bereich der beiden Ver- dickungen der Knochenform sind der erste und der zweite Sammelkasten angeordnet, das heißt, jede Verdickung weist einen zugeordneten Sammelkasten auf, wobei das Gehäuse zum jeweiligen Sammelkasten einen Abstand belässt, so dass im Gehäuseinneren das zweite Medium außen am jeweiligen Sammelkasten entlangströmen kann. Zwischen den beiden, die Knochenform bildenden Verdickungen des Gehäuses liegt ein weniger dicker Bereich, in dem sich das Wärmetauscherelement befindet.
Nach einer Weiterbildung der Erfindung ist vorgesehen, dass die Wandungen des Gehäuses eng am Wärmetauscherelement anliegen. Es handelt sich dabei um Seitenwandungen des Gehäuses und auch Boden- und Deckenwandungen. Dieses enge Anliegen führt dazu, dass das zweite Medium in intensivem Wärmetauschkontakt mit dem zweiten Medium gelangt, ohne dass ein Fehlmediumstrom entsteht, der entlang der Innenwandung des Gehäuses strömt, jedoch dabei keinen hinreichenden Wärmetauschkontakt mit dem ersten Medium erhält.
Nach einer Weiterbildung der Erfindung kann vorgesehen sein, dass das Gehäuse einen Gehäuseabschnitt eines Lüftergehäuses eines Lüfters bildet. Mithin ist der erfindungsgemäße Wärmetauscher in dem Gehäuse des Lüfters integriert, das heißt, das gesamte Lüftergehäuse weist das Lüfterrad des Lüfters und auch den Wärmetau- scher auf, wodurch eine sehr raumsparende Bauform erzielt ist. Das Lüftergehäuse kann bevorzugt als Spiralgehäuse ausgebildet sein.
Besonders bevorzugt ist es, wenn der Wärmetauscher als Gegen- strom-Wärmetauscher ausgebildet ist, das heißt, im Bereich des Wärmetauscherelements strömen das erste und das zweite Medium gegensinnig zueinander, so dass ein hoher Wärmetauschgrad bei niedrigem Kühlluft-Volumen- strom erzielt ist. Alternativ ist es jedoch auch möglich, dass der Wärmetauscher als Gleichstrom-Wärmetauscher ausgebildet ist, das heißt, das erste und das zweite Medium strömen im Wärmetauscherelement in dieselbe Richtung. Schließlich kann es auch eine gemischte Bauform der beiden genannten Möglichkeiten geben, das heißt, Teilabschnitte werden im Gegenstrom und andere Teilab- schnitte im Gleichstrom durchströmt. Zusätzlich oder alternativ ist es auch denkbar, dass ein Kreuzstrom-Wärmetauscher ausgebildet ist.
Die Zeichnungen veranschaulichen die Erfindung anhand von Ausführungsbeispielen, und zwar zeigt:
Figur 1 einen Längsschnitt durch einen Wärmetauscher, dessen Formgebung einer Knochenform angenähert ist,
: Figur 2 eine Draufsicht auf die Scheibenkontur eines Wärme- tauscherelements eines Wärmetauschers, teilweise im
Schnitt,
Figur 3 eine weitere Ausführungsform eines Wärmetauschers, teilweise aufgeschnitten,
Figur 4 eine vergrößerte Detailansicht des Wärmetauschers der Figur 3,
Figur 5 ein Schnitt entlang der Linie V-V in Figur 2, Figur 6 ein Schnitt entlang der Linie Vl-Vl in Figur 2 und
Figur 7 ein weiteres Ausführungsbeispiel eines Wärmetauschers integriert in das Lüftergehäuse eines Lüfters.
Die Figur 1 zeigt einen Wärmetauscher 1 , der als Ladeluftkühler eines Nutzfahrzeugs dient. Der Wärmetauscher 1 weist einen ersten Sammelkasten 2 und einen mit Abstand dazu liegenden zweiten Sammelkasten 3 für ein erstes Medium 4 auf. Beim ersten Medium 4 handelt es sich Ladeluft 5. Die Ladeluft 5 soll mittels eines zweiten Mediums 6 gekühlt werden. Beim zweiten Medium 6 handelt es sich um Kühlluft 7, die vom Fahrtwind gebildet und/oder von einem nicht dargestellten Gebläse angesaugte Luft ist. Die beiden Sammelkäs- ten 2 und 3 sind rohrförmig, mit ovalem Querschnitt ausgebildet; ihre Längserstreckung verläuft senkrecht zur Zeichenebene der Figur 1.
Der Wärmetauscher 1 besitzt ein Gehäuse 8, das -im Längsschnitt der Figur 1 gesehen- eine Knochenform aufweist. Zwischen zwei verdickten Bereichen 9 und 10 des Gehäuses 8 liegt ein weniger dicker Bereich 11 , in dem das Gehäuse 8 zwei ebene Wandungen 12, 13 aufweist. In den verdickten Bereichen 9 und 10 geht die jeweilige ebene Wandung 12 und 13 in konvex gebogene Wandungen 14, 15 beziehungsweise 16, 17 über. Das Gehäuse 8 läuft an seinen Enden in Bereiche 18, 19 aus, die -im Längsschnitt der Figur 1 betrachtet- dünner als der Bereich 11 ist und jeweils eine Stirnseite 20 beziehungsweise 21 besitzen. Die konvex gebogenen Wandungen 14, 15, 16 und 17 verlaufen mit Abstand a zu dem jeweiligen Sammelkasten 2 beziehungsweise 3, so dass Strömungswege 22 bis 25 im Bereich der Sammelkästen 1 und 2 derart ausgebildet sind, dass letztere innerhalb des Gehäuses 8 außen umströmt werden können. Die verdickten Bereiche 9 und 10, die zur Bildung der Knochenform führen, machen dies möglich. Dem zweiten Sammelkasten 3 wird -senkrecht zur Zeichenebene der Figur 1- die Ladeluft 5 mittels eines ersten, nicht näher dargestellten Medienanschlusses 26 zugeführt. Die Ladeluft 5 steigt somit im zweiten Sammelkasten 3 auf und wird dann um 90° in Richtung auf den ersten Sammelkasten 2 umgelenkt. Sie passiert ein zwischen den beiden Sammelkästen 3, 2 liegendes Wärmetauscherelement 27. Dies ist mittels des gestrichelten Pfeils 28 angedeutet. Nach Passieren des Wärmetauscherelements 27 tritt die Ladeluft 5 in den ersten Sammelkasten 2 ein, wird dort um 90° nach unten abgelenkt und verlässt den Sammelkasten 2 mittels eines nicht näher dargestellten, ersten Medienanschlusses 29. Das Wärmetauscherelement 27 kann vom parallel zueinander verlaufenden, die beiden Sammelkästen 2, 3 kommunizierend verbindenden Ladeluftrohren gebildet sein (nicht näher dargestellt). Die Ladeluftrohre verlaufen rechtwink- lig zu den Längserstreckungen der Sammelkästen 2 und 3. Zwischen den einzelnen, beabstandet zueinander liegenden Ladeluftrohren können -zur Oberflächenvergrößerung- Kühlluftrippen angeordnet sein, die entgegengesetzt zur Richtung der Ladeluft 5 von der Kühlluft 7 durchströmt werden, so dass ein intensiver Wärmeaus- tausch im Wärmetauscherelement 27 stattfindet, der dazu führt, dass die Ladeluft 5 von der Kühlluft 7 gekühlt wird. Hierzu wird die Kühlluft 7 mittels eines zweiten Medienanschlusses 30, der sich an der Stirnseite 20 des Bereichs 18 befindet, in das Innere des Gehäuses 8 eingelassen, derart, dass sie die beiden Strömungswege 22 und 23 passiert und somit den zweiten Sammelkasten 3 zumindest teilweise umspült. Die Kühlluft 7 tritt dann in das Wärmetauscherelement 27 ein und durchströmt im Gegenstromprinzip dieses Bauelement, das heißt, die Strömungsrichtung der Ladeluft 5 verläuft entgegengesetzt zur Strömungsrichtung der Kühlluft 7. Die Kühlluft 7 verlässt das Wärmetauscherelement 27 im Bereich des zweiten Sammelkastens 3 und strömt in die Strömungswege 24 und 25 ein, das heißt, der Sammelkasten 3 wird beidseitig umströmt. Die Kühlluft 7 gelangt dann zur Stirnseite 21 des Bereichs 19, wo ein zweiter Medienanschluss 31 zur Abführung der Kühlluft 7 ausgebildet ist. Der Figur 1 ist sehr deutlich zu entnehmen, dass die Kühlluft 7 keine wesentliche Umlenkung im Bereich des Wärmetauschers 1 und schon gar nicht im Bereich des Wärmetauscherelements 27 erfährt. Das Umströmen der beiden Sammelkästen 2 und 3 erfolgt zwar mit einer gewissen Richtungsänderung der Kühlluft 7, die jedoch keinen nennenswerten Druckverlust mit sich bringt, da eine laminare Strömung ausgebildet werden kann. Die beiden zweiten Medienanschlüsse 30 und 31 weisen somit in Richtung der Strömungsrichtung von Ladeluft 5 von Kühlluft 7 innerhalb des Wärmetauscherelements 27.
Die Figur 2 zeigt eine Draufsicht auf eine Scheibenkontur des Wärmetauscherelements 27, das heißt, das Wärmetauscherelement 27 ist in Stapelscheibenbauweise realisiert. Hierzu werden einzelne Scheiben (profilierte Aluminiumbleche) im Wechsel aufeinandergelegt, die -zur Ausbildung des Anschlusses und zur Ausbildung der beiden Sammelkästen 2 und 3- mit Näpfen und Durchzügen versehen sind. Dies ist grundsätzlich bekannt. Beim Aufeinanderstapeln wird Napf/Durchzug auf Napf/Durchzug und dann das nächste Paar Rand auf Rand usw. gelegt und verlötet. Durch dieses Aufeinanderstapeln wird bei dem Wärmetauscherelement 27 gemäß Figur 5 abwechselnd eine Kühlluftrippe 32, eine Ladeluftrippe 33 und dann wieder eine Kühlluftrippe 32 und -darauffolgend- eine Ladeluftrippe 33 usw. ausgebildet. Aus der Figur 5 ist erkennbar, dass durch Aufeinanderlegen zweier Halbschalen 34, 35 der Strömungsweg für die Ladeluft 5 im Bereich des Wärmetauscherelements 27 erstellt wird. Die benachbarte Ladeluftrippe 33 weist einen Abstand zur erstgenannten Ladeluftrippe 33 auf, so dass dazwischen eine Kühlluftrippe 32 ausgebildet wird, die von der Kühlluft 7 im Gegenstrom durchströmt werden kann. Um im Bereich der Sammelkästen 2 und 3 die Ladeluft 5 und die Kühlluft 7 ihren jeweiligen Strömungswegen innerhalb des Wärmetauscherelements 27 zuführen zu können, ist - gemäß der Scheibenbauweise der Figur 6- vorgesehen, dass die Ladeluftrippen 33 dort -zur Ausbildung des Sammelkastens 2 beziehungsweise 3- miteinander verbunden sind, so dass die Ladeluft 5 die Kühlluftrippen 32 abgeschottet durchsetzt und in die Bereiche der Ladeluftrippen 33 einströmt und dann -quasi in die Blattebene der Figur 6 hinein- entsprechend aufgeteilt das Wärmetauscherelement 27 durchsetzt. Entsprechendes erfolgt im Bereich des anderen Sammelkastens; dort wird die Ladeluft wieder zusammengeführt und gemeinsam abgeführt. Die Kühlluftrippen 32 stehen mit den Strömungswegen 22 bis 25 in Verbindung, das heißt, sie werden von der Kühlluft 5 passiert.
Aus den Figuren 3 und 4 geht der Gesamtaufbau eines vorstehend beschriebenen Wärmetauschers 1 in Stapelscheibenbauform näher hervor. Die Figur 3 zeigt das Gehäuse 8, das das Wärmetauscher- element 27 umgibt, wobei das Gehäuse 8 an einander diametral gegenüber liegenden Enden die zweiten Medienanschlüsse 30 und 31 aufweist. Ferner sind die ersten Medienanschlüsse 26 und 29 erkennbar, die zu den Sammelkästen 2, 3 führen.
Der Figur 4 ist zu entnehmen, dass vom Wärmetauscherelement 27 kommende Ladeluft 5 von den Ladeluftrippen 33 herangeführt und -entsprechend der Pfeile 35- von dem Sammelkasten 2 abgeführt wird. Die zwischen den Ladeluftrippen 33 liegenden Kühlluftrippen 32 hingegen führen -nach dem Gegenstromprinzip- Kühlluft 7 gemäß der Pfeile 36.
Auch beim Ausführungsbeispiel der Figuren 2 bis 4 ist sichergestellt, dass die Kühlluft 7 zum Eintritt in das Wärmetauscherelement 27 nicht oder nur unwesentlich umgelenkt werden muss, so dass nur geringe Druckverluste auftreten.
Die Figur 7 zeigt einen Lüfter 37 mit Lüftergehäuse 38 und Laufrad 39. In das Lüftergehäuse 38 ist ein Wärmetauscherelement 27 gemäß der vorstehend beschriebenen Ausführungsbeispiele integral zumindest teilweise derart aufgenommen, dass innerhalb des Lüftergehäuses 38 geführte Kühlluft 7 das Wärmetauscherelement 27 gemäß der aus Figur 7 hervorgehenden Pfeile durchströmen kann. Das Wärmetauscherelement 27 weist aufgrund der Stapelbauweise integrierte Sammelkästen 2 und 3 und dazwischenliegende Kühlluftrippen 32 sowie Ladeluftrippen 33 auf, so dass ein dort geführter Ladeluftstrom von der Kühlluft 7 gekühlt wird. Das Gehäuse 38 ist vorzugsweise als Spiralgehäuse 40 ausgebildet.

Claims

P a t e n t a n s p r ü c h e
1. Wärmetauscher, insbesondere Ladeluftkühler für Kraftfahrzeuge, bevorzugt für Nutzfahrzeuge, mit einem ersten Sam- melkasten und mit einem zweiten Sammelkasten für ein erstes Medium, wobei die beiden Sammelkästen jeweils einen ersten Medienanschluss für das erste Medium aufweisen und über mindestens ein Wärmetauscherelement miteinander kommunizierend verbunden sind und mit einem, das Wärme- tauscherelement aufnehmenden, im Inneren ein zweites Medium führenden Gehäuse, das zweite Medienanschlüsse für das zweite Medium aufweist, dadurch gekennzeichnet, dass das Gehäuse (8) derart ausgebildet ist, dass in seinem Inneren mindestens ein Sammelkasten (2,3), vorzugsweise beide Sammelkästen (2,3), zumindest teilweise mit zumindest bereichsweise vorliegendem Abstand zur Gehäuseinnenwand mit aufgenommen ist/sind.
2. Wärmetauscher nach Anspruch 1 , dadurch gekennzeichnet, dass das Gehäuse (8) die Sammelkästen (2,3) vollständig aufnimmt.
3. Wärmetauscher nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die zweiten Medienanschlüs- se (30,31) den beiden Sammelkästen (2,3) derart zugeordnet sind, dass der erste Sammelkasten (2) zwischen einem zweiten Medienanschluss (30) und dem Wärmetauscherelement (27) und der zweite Sammelkasten (3) zwischen dem anderen zweiten Medienanschluss (31) und dem Wärmetauscherelement (27) liegt.
4. Wärmetauscher nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Strömungsrichtung des ersten Mediums (4) in den Sammelkästen (2,3) quer, insbesondere rechtwinklig, zur Strömungsrichtung des ersten Mediums (4) im Wärmetauscherelement (27) verläuft.
5. Wärmetauscher nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die zweiten Medienanschlüsse (30,31) in Richtung oder etwa in Richtung der Strömungsrichtung des ersten Mediums (4) im Wärmetauscherelement (27) weisen.
6. Wärmetauscher nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die ersten Medienanschlüsse (26,29) quer, insbesondere rechtwinklig, zur Strömungsrichtung des ersten Mediums (4) im Wärmetauscherelement (27) weisen.
7. Wärmetauscher nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die ersten Medienanschlüsse (26,29) in Richtung oder etwa in Richtung der Längserstre- ckung der Sammelkästen (2,3) weisen.
8. Wärmetauscher nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der jeweilige erste Medienanschluss (26,29) mit der Längserstreckung des zugehörigen ersten beziehungsweise zweiten Sammelkastens (2,3) fluchtet.
9. Wärmetauscher nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Gehäuse (8) -im Längs- schnitt gesehen- eine Knochenform aufweist oder in seiner Formgebung einer Knochenform angenähert ist.
10. Wärmetauscher nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Wandungen (12,13) und zugehörige Boden- und Deckenwandungen des Gehäuses (8) eng am Wärmetauscherelement (27) anliegen.
11. Wärmetauscher nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Gehäuse (8) einen Gehäuseabschnitt eines Lüftergehäuses (38) eines Lüfters (37) bildet.
12. Wärmetauscher nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Lüftergehäuse (38) als
Spiralgehäuse (40) ausgebildet ist.
13. Wärmetauscher nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass er als Gegenstrom- Wärmetauscher ausgebildet ist.
14. Wärmetauscher nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass er als Gleichstrom- Wärmetauscher ausgebildet ist.
PCT/EP2003/005516 2002-07-04 2003-05-26 Wärmetauscher, insbesondere ladeluftküler für kraftfahrzeuge WO2004005828A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2003240716A AU2003240716A1 (en) 2002-07-04 2003-05-26 Heat exchanger, particularly a charge-air cooler for motor vehicles
US10/519,709 US20050230092A1 (en) 2002-07-04 2003-05-26 Heat exchanger, particularly a charge-air cooler for motor vehicles
EP03730119.9A EP1521940B1 (de) 2002-07-04 2003-05-26 Wärmetauscher, insbesondere ladeluftkühler für kraftfahrzeuge
JP2004518507A JP4411376B2 (ja) 2002-07-04 2003-05-26 自動車用熱交換器、特に給気冷却器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10230852.7 2002-07-04
DE10230852A DE10230852A1 (de) 2002-07-04 2002-07-04 Wärmetauscher, insbesondere Ladeluftkühler für Kraftfahrzeuge

Publications (1)

Publication Number Publication Date
WO2004005828A1 true WO2004005828A1 (de) 2004-01-15

Family

ID=29761780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/005516 WO2004005828A1 (de) 2002-07-04 2003-05-26 Wärmetauscher, insbesondere ladeluftküler für kraftfahrzeuge

Country Status (6)

Country Link
US (1) US20050230092A1 (de)
EP (2) EP1521940B1 (de)
JP (1) JP4411376B2 (de)
AU (1) AU2003240716A1 (de)
DE (1) DE10230852A1 (de)
WO (1) WO2004005828A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6997248B2 (en) 2004-05-19 2006-02-14 Outokumpu Oyj High pressure high temperature charge air cooler
US8225852B2 (en) 2008-04-30 2012-07-24 Dana Canada Corporation Heat exchanger using air and liquid as coolants

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004001462A1 (de) 2004-01-08 2005-08-18 Behr Gmbh & Co. Kg Kühlsystem
US20080251242A1 (en) * 2005-10-20 2008-10-16 Behr Gmbh & Co. Kg Heat Exchanger
US9631876B2 (en) * 2013-03-19 2017-04-25 Mahle International Gmbh Heat exchanger
SI3372937T1 (sl) * 2017-03-10 2022-04-29 Alfa Laval Corporate Ab Paket plošč naprave za toplotno izmenjavo in toplotni izmenjevalnik

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2809170A1 (fr) * 2000-05-22 2001-11-23 Denso Corp Echangeur de chaleur a gaz d'echappement
WO2001098723A1 (en) * 2000-06-21 2001-12-27 Serck Heat Transfert Limited Exhaust gas cooler
EP1189008A1 (de) * 2000-09-15 2002-03-20 Toyo Radiator Co., Ltd. Wärmetauscher

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1732938A (en) * 1929-10-22 Ventilator and temperature equalizer
US3953176A (en) * 1973-05-22 1976-04-27 Texas Instruments Incorporated Catalytic converter
DE3444961A1 (de) * 1984-12-10 1986-06-12 Klöckner-Humboldt-Deutz AG, 5000 Köln Waermetauscher fuer zwei medien, insbesondere ein ladeluftkuehler fuer eine brennkraftmaschine
DE4223423A1 (de) * 1992-07-16 1994-01-20 Laengerer & Reich Gmbh & Co Wärmeaustauscher
DE4307503C2 (de) * 1993-03-10 1995-01-19 Mtu Friedrichshafen Gmbh Wärmetauscher, insbesondere Ladeluftkühler einer Brennkraftmaschine
DE4307504C1 (de) * 1993-03-10 1994-09-22 Mtu Friedrichshafen Gmbh Wärmetauscher, insbesondere Ladeluftkühler einer Brennkraftmaschine
DE19547928C2 (de) * 1995-06-30 1999-03-11 Mtu Friedrichshafen Gmbh Plattenwärmetauscher
US6659170B1 (en) * 1996-06-17 2003-12-09 Hemant D. Kale Energy-efficient, finned-coil heat exchanger
DE19734690C2 (de) * 1997-08-11 2000-02-17 Modine Mfg Co Wärmetauscher, beispielsweise luftgekühlter Ladeluftkühler
DE19830846B4 (de) * 1998-07-10 2007-03-15 Behr Gmbh & Co. Kg Wärmetauscher
DE19859675B4 (de) * 1998-12-23 2006-07-20 Behr Gmbh & Co. Kg Wärmetauscher
DE19902504B4 (de) * 1999-01-22 2005-09-22 Behr Gmbh & Co. Kg Wärmeübertrager, insbesondere Ladeluftkühler
DE19927607A1 (de) * 1999-06-17 2000-12-21 Behr Gmbh & Co Ladeluftkühler mit einem Kühlmitteleintritt sowie einem Kühlmittelaustritt
US7077190B2 (en) * 2001-07-10 2006-07-18 Denso Corporation Exhaust gas heat exchanger

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2809170A1 (fr) * 2000-05-22 2001-11-23 Denso Corp Echangeur de chaleur a gaz d'echappement
WO2001098723A1 (en) * 2000-06-21 2001-12-27 Serck Heat Transfert Limited Exhaust gas cooler
EP1189008A1 (de) * 2000-09-15 2002-03-20 Toyo Radiator Co., Ltd. Wärmetauscher

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6997248B2 (en) 2004-05-19 2006-02-14 Outokumpu Oyj High pressure high temperature charge air cooler
US8225852B2 (en) 2008-04-30 2012-07-24 Dana Canada Corporation Heat exchanger using air and liquid as coolants

Also Published As

Publication number Publication date
AU2003240716A1 (en) 2004-01-23
JP2005531747A (ja) 2005-10-20
JP4411376B2 (ja) 2010-02-10
EP1521940B1 (de) 2016-10-12
DE10230852A1 (de) 2004-01-22
EP2410277A1 (de) 2012-01-25
US20050230092A1 (en) 2005-10-20
EP1521940A1 (de) 2005-04-13

Similar Documents

Publication Publication Date Title
EP1626238B1 (de) Wärmetauscher, bestehend aus Flachrohren
EP2044304B1 (de) Wärmetauscher mit kupplungsanschluss, beispielsweise ladeluftkühler, und kupplungsanschluss für wärmetauscher
EP2021717B1 (de) Wärmetauscher für kraftfahrzeuge
EP0521298B1 (de) Wärmetauscher-Vorrichtung für Kältetrockner an Druckluftanlagen
WO2004065876A1 (de) Wärmeübertrager, insbesondere abgaskühler für kraftfahrzeuge
DE69911131T2 (de) Wärmetauscher
DE3536325A1 (de) Waermeaustauscher
EP1724536A2 (de) Wärmetauscher mit Akkumulator
DE102013218174A1 (de) Wärmetauscher
DE102018200809A1 (de) Stapelscheibenwärmetauscher
EP1703242B1 (de) Wärmetauscher, insbesondere Kühlflüssigkeitskühler
DE4009997C2 (de) Verdampfer
EP1203922A2 (de) Kondensator und Rohr dafür
DE102004002252B4 (de) Wärmeübertrager für Fahrzeuge
DE3502619C2 (de)
EP1411310B1 (de) Wärmeübertrager in Serpentinenbauweise
EP2438384B1 (de) Sammelrohr für einen kondensator
EP1521940B1 (de) Wärmetauscher, insbesondere ladeluftkühler für kraftfahrzeuge
DE102004007510B4 (de) Wärmeübertrager, insbesondere Ölkühler für Kraftfahrzeuge
DE102008036614A1 (de) Wärmetauscher
DE102009041406B3 (de) Wärmeübertrager
DE102004003789A1 (de) Wärmetauscher
DE10255487A1 (de) Wärmeübertrager
DE4118289A1 (de) Waermetauscher-vorrichtung fuer kaeltetrockner an druckluftanlagen
DE10352337A1 (de) Vorrichtung zum Austausch von Wärme

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REEP Request for entry into the european phase

Ref document number: 2003730119

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2003730119

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004518507

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10519709

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2003730119

Country of ref document: EP