WO2004005494A1 - Medio de cultivo de células madre-progenitoras autólogas humanas y sus aplicaciones - Google Patents

Medio de cultivo de células madre-progenitoras autólogas humanas y sus aplicaciones Download PDF

Info

Publication number
WO2004005494A1
WO2004005494A1 PCT/ES2003/000285 ES0300285W WO2004005494A1 WO 2004005494 A1 WO2004005494 A1 WO 2004005494A1 ES 0300285 W ES0300285 W ES 0300285W WO 2004005494 A1 WO2004005494 A1 WO 2004005494A1
Authority
WO
WIPO (PCT)
Prior art keywords
autologous
human
cells
progenitor
muscle
Prior art date
Application number
PCT/ES2003/000285
Other languages
English (en)
French (fr)
Inventor
Felipe Prosper Cardoso
Jesús HERREROS GONZALEZ
Juan Carlos Chacques
Original Assignee
Instituto Cientifico Y Tecnologico De Navarra, S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Instituto Cientifico Y Tecnologico De Navarra, S.A. filed Critical Instituto Cientifico Y Tecnologico De Navarra, S.A.
Priority to US10/519,974 priority Critical patent/US20060110368A1/en
Priority to MXPA04012601A priority patent/MXPA04012601A/es
Priority to NZ537397A priority patent/NZ537397A/en
Priority to AU2003240857A priority patent/AU2003240857B2/en
Priority to BR0312365-0A priority patent/BR0312365A/pt
Priority to EP03730223A priority patent/EP1972684A1/en
Priority to JP2004518793A priority patent/JP5379340B2/ja
Publication of WO2004005494A1 publication Critical patent/WO2004005494A1/es
Priority to IL16596904A priority patent/IL165969A0/xx

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0658Skeletal muscle cells, e.g. myocytes, myotubes, myoblasts
    • C12N5/0659Satellite cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/115Basic fibroblast growth factor (bFGF, FGF-2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/90Polysaccharides
    • C12N2501/91Heparin

Definitions

  • the invention relates, in general, to obtaining and manipulating autologous human stem-progenitor cells under conditions that allow their use in cell therapy.
  • the invention relates to an autologous culture medium for the culture of said cells and their use in the cultivation and expansion of said cells as well as compositions containing them.
  • Cell Therapy based on the proven fact that it is possible to have cells, more or less undifferentiated, capable of dividing generating functional differentiated cells, and, in some cases, even regenerating. These include stem cells and progenitor / precursor cells, which, as a whole, will be referred to as stem-progenitor cells. These cells can be found in the embryo and even in adult tissues. Cell therapy, therefore, consists in the transplantation or implantation in the patient of a sufficient quantity of stem-progenitor cells to repair and restore the functionality of a damaged organ.
  • One of the forms of cell therapy proposed is based on the use of progenitor stem cells from the adult, obtained from an animal (xenogeneic cells), from a donor (allogeneic cells), or obtained from the patient himself (autologous cells).
  • autologous stem-progenitor cells would be free of some of the disadvantages of other forms of cell therapy, such as a shortage of donors, the need for immunosuppressive treatment to avoid rejection by the patient, as well as the ethical conditions associated with the use of embryonic cells.
  • CMP Autologous cell cardiomyoplasty
  • the invention generally faces the problem of providing autologous human stem-progenitor cells, suitable for use in cell therapy, and, in particular, the problem of providing a method for proper manipulation of the stem-progenitor cells. that makes them suitable for clinical use, including specific procedures for obtaining, cultivation, purification and expansion.
  • the solution provided by this invention is based on the fact that the inventors have observed that the use of an autologous culture medium, comprising human autologous serum and nutrients, together with an anticoagulant and an agent to reverse the anticoagulation, allows the cultivation in vitro, the purification and expansion of autologous human progenitor stem cells, which can be used in the elaboration of pharmaceutical compositions for the treatment of various pathologies by cell therapy.
  • the invention is illustrated by obtaining an autologous culture medium, comprising nutrients, human autologous serum, heparin and protamine, and its use in the in vitro culture, purification and expansion of human autologous muscle stem-progenitor cells useful for processing. of pharmaceutical compositions suitable for the treatment of both ischemic and idiopathic cardiomyopathies by autologous cellular CMP.
  • One aspect of this invention relates to a cell culture medium.
  • autologous human mother-progenitors comprising autologous human serum and nutrients, together with an anticoagulant and an agent to reverse anticoagulation.
  • the invention relates to a method for the preparation of said culture medium of autologous human progenitor stem cells.
  • the autologous human serum present in said culture medium has been obtained by plasmapheresis.
  • the invention relates to the use of said culture medium for in vitro culture, purification and expansion of autologous human progenitor stem cells.
  • the invention relates to a method for obtaining a composition of autologous human progenitor stem cells, which comprises incubating said autologous human progenitor stem cells in said culture medium and purifying the autologous human progenitor stem cells obtained. .
  • the invention in another aspect, relates to a method for obtaining a composition of human autologous muscle stem-progenitor cells, useful for use in cell therapy, comprising incubating said human autologous muscle stem-progenitor cells in said culture medium. and purify the human autologous muscle progenitor stem cells obtained.
  • the invention relates to a composition enriched in human autologous muscle stem-progenitor cells.
  • the invention in another aspect, relates to a pharmaceutical composition
  • a pharmaceutical composition comprising autologous human muscle stem-progenitor cells, together with one or more pharmaceutically acceptable excipients.
  • the invention relates to a therapeutic method of autologous cellular CMP to create, regenerate and repair dysfunctional myocardial tissue by implanting a pharmaceutical composition comprising autologous muscle stem-progenitor cells, cardiac tissue regenerators, expanded and maintained ex I live in an autologous culture medium.
  • Figure 1 is a bar chart representing the assessment of the left ventricular function by analysis of the left ventricular ejection fraction (LVEF), calculated by two-dimensional echocardiogram (2D) and detection Automatic border (ABD), before the surgical procedure (Basal), at 40 days of follow-up after cell transplantation (40 days) and at 3 months of follow-up (3 months).
  • LVEF left ventricular ejection fraction
  • 2D two-dimensional echocardiogram
  • ABS detection Automatic border
  • Figure 2 shows the evaluation of perfusion by PET with 13 N-ammonium and glucose metabolism by PET 18 F-FDG, before the surgical procedure (Basal) and 3 months after cell transplantation (FU 3 months)
  • Figure 2A Images corresponding to patient No. 5 as a representative example of a patient who received a cell transplant.
  • Figure 2B Images corresponding to the heart of patient No. 9 who did not receive a cell transplant (due to contamination of the skeletal myogenic cell culture). Arrows indicate infarcted tissue, before and after surgery.
  • Autologous culture medium of the invention comprising: a) between 0, 1% and 90% by weight of autologous human serum; b) between 0.1 and 10,000 Ul / ml of heparin; c) between 0.1 and 10,000 Ul / ml protamine; and d) a culture medium with basic nutrients with or without glutamine, in sufficient quantity up to 100% by weight.
  • the autologous culture medium of the invention is a complete culture medium made from autologous human serum obtained from the patient himself subject to the subsequent implantation of the autologous human progenitor stem cells.
  • Autologous human serum if desired, can be subjected to a conventional treatment, for example, heat treatment, in order to inactivate the complement.
  • the human autologous serum can be obtained from the patient subject to the subsequent implantation of the human autologous stem-progenitor cells by any conventional method, for example, from the patient's blood samples or, preferably, by performing a plasmapheresis to said patient.
  • plasmapheresis is performed using heparin as an anticoagulant and protamine sulfate to reverse the anticoagulation
  • plasmapheresis are usually performed using - ACD (Anticoagulant-Citrate-Dextrose solution) [for example, for 1 liter of water citric acid monohydrate (8 g), citrate (22 g) and glucose monohydrate (24 , 5 g)] as anticoagulant.
  • ACD Anticoagulant-Citrate-Dextrose solution
  • This anticoagulant provides calcium chelator, so to reverse the effect of ACD and obtain serum from plasmapheresis, it is necessary to add calcium which interferes later in cell culture.
  • the realization of a plasmapheresis allows to obtain a significantly elevated serum supply, superior to that obtained from the patient's blood samples, since in the plasmapheresis there is no loss of blood from the patient, which is an important benefit for the patient.
  • the use of serum obtained by plasmapheresis with heparin and protamine allows its use in the culture medium without further problems in cell culture.
  • the autologous culture medium of the invention contains the basic nutrients and, optionally, glutamine. There are commercially available means that provide the necessary nutrients for cell culture. In principle, any medium that provides adequate nutrients for cell culture can be used in the present invention. In a particular embodiment, the nutrients are provided by the HAM F12 medium [GIBCO BRL].
  • the autologous culture medium of the invention also contains an antibiotic.
  • an antibiotic selected from penicillin, streptomycin, gentamicin and mixtures thereof.
  • the autologous culture medium of the invention may also contain, if desired, an antifungal agent, for example, amphotericin B, and / or a growth factor, for example, a fibroblast growth factor such as the native or recombinant basic human fibroblast growth (bFGF).
  • an antifungal agent for example, amphotericin B
  • a growth factor for example, a fibroblast growth factor such as the native or recombinant basic human fibroblast growth (bFGF).
  • the autologous culture medium of the invention comprises: 89% by weight of HAM-F12 medium;
  • the invention in another aspect, relates to a method for the preparation of the culture medium of autologous human stem-progenitor cells provided by this invention, which comprises mixing and homogenizing the various components thereof.
  • said autologous human serum is obtained by plasmapheresis, as previously mentioned, using heparin as an anticoagulant to obtain plasma and protamine to reverse the anticoagulation and obtain the serum.
  • the autologous human serum obtained already contains heparin and protamine.
  • the invention relates to the use of the autologous culture medium of the invention for in vitro culture, purification and expansion of autologous human progenitor stem cells.
  • human autologous serum in a culture medium for the expansion of human autologous stem-progenitor cells has numerous advantages, for example, cell expansion can be performed anywhere in the world, without the risk of contamination with prions, viruses or zoonoses. inherent in traditional cell culture techniques that use fetal bovine serum for cell growth.
  • the use of human autologous serum in cultures of human cells instead of bovine serum has numerous advantages since (i) avoids the antigen-antibody reaction, (ii) avoids inflammatory reactions caused by heterologous proteins; and (iii) prevents cell destruction as a result of repeated washes needed by cells grown in bovine serum before administration to humans.
  • the invention relates to a method for the preparation of a composition of autologous human progenitor stem cells, which comprises incubating said autologous progenitor stem cells. human in the autologous culture medium of the invention and purify the autologous human progenitor stem cells obtained.
  • any human autologous progenitor stem cell can be cultured and expanded in the autologous culture medium of the invention, adapting in each case the conditions of the medium and the culture to the specific cell type.
  • said human autologous progenitor stem cells are human autologous muscle progenitor stem cells.
  • Human autologous progenitor stem cells can be obtained by performing a biopsy on the patient himself who is the subject of subsequent implantation of such autologous human progenitor stem cells.
  • the incubation of human autologous stem-progenitor cells in the autologous culture medium of the invention is performed by conditions that allow cell growth and division.
  • the purification of the human autologous progenitor stem cells obtained can be carried out by any conventional method.
  • the purification of said autologous human progenitor stem cells consists of a munopurification and is performed by the use of specific and selective antibodies for said autologous human progenitor stem cells, which allow the identification of characteristic extracellular antigens of said human autologous progenitor stem cells.
  • said specific and selective antibodies to said autologous human progenitor stem cells are linked to magnetic microspheres to purify and enrich human autologous progenitor stem cells by a magnetic cell sorter.
  • Autologous human stem-progenitor cells obtained according to the previously described procedure, can be presented in the form of pharmaceutical compositions, and can be used in gene therapy. 5. Method for obtaining human autologous muscle progenitor stem cells As previously mentioned, in a particular and preferred embodiment of this invention, human autologous progenitor stem cells are human autologous muscle progenitor stem cells (or myogenic cells). .
  • the invention relates to a method for obtaining human autologous muscle stem-progenitor cells, suitable for use in cell therapy, which comprises incubating said human autologous muscle stem-progenitor cells in said culture medium. and purify the obtained human autologous muscle progenitor stem cells.
  • Human autologous muscle progenitor stem cells can be obtained by performing a biopsy on the patient himself subject to the subsequent implantation of such human autologous muscle progenitor stem cells, in particular a skeletal muscle biopsy. Previous studies showed that the administration to the patient, prior to the biopsy, in the biopsy area, of a pharmaceutical composition comprising a pharmacological agent that stimulates the proliferation of human autologous muscle stem-progenitor cells allows to increase the number of said cells at the beginning of the culture.
  • this preconditioning is performed by administration to the patient, before performing the skeletal muscle biopsy, generally in a period of time between 2 days and 15 minutes before performing said biopsy, intramuscularly, in the area where such a biopsy is to be performed, of a pharmaceutical composition comprising said pharmacological agent that stimulates cell proliferation.
  • said pharmacological agent is a local anesthetic, such as lidocaine or bupivacaine, which stimulates the proliferation of myoblasts, which subsequently translates into higher cell culture yield.
  • a skeletal muscle biopsy collects a sample of muscle tissue that undergoes a conventional treatment to digest muscle fibers as described later in more detail.
  • the resulting cell suspension is grown in the autologous culture medium of the invention.
  • the sample extracted by muscle biopsy contains different types of tissues, such as adipocytes, fibroblasts, mesenchymal progenitors, hematopoietic cells.
  • muscle fibers vascular tissue (endothelium, smooth muscle) and, obviously, myoblasts and satellite cells.
  • the initial content in human autologous muscle progenitor stem cells present in the sample of skeletal tissue removed by biopsy, defined as CD56 + / CD45- is less than 10%.
  • stem cells satellite cells
  • differentiate into muscle cells that express the CD56 antigen and that would be muscle progenitors are those that reproduce and differentiate into muscle cells that express the CD56 antigen and that would be muscle progenitors.
  • the differentiation process of this cell type comprises the passage from satellite cell to myoblast, then to immature myocyte, then to mature myocyte and, finally, to myofiber.
  • the muscle progenitors would be myoblasts and myocytes (mature and immature), which can be identified by the presence of the CD56 antigen, the intracytoplasmic expression of demin and the absence of the CD45 antigen (that is, they have a CD56 + / demin + / CD54- phenotype ).
  • myoblasts and myocytes accumulate in the culture medium that are used in the preparation of a pharmaceutical composition to inject human autologous muscle stem-progenitor cells into the patient and that, Once injected, they end their differentiation process in the patient, transforming into muscle fibers or myofibres and developing their function.
  • the incubation of human autologous muscle stem-progenitor cells in the autologous culture medium of the invention is performed by conditions that allow cell expansion (growth and division).
  • the purification of the human autologous muscle progenitor stem cells obtained can be carried out by any conventional method.
  • the purification of said human autologous muscle progenitor stem cells comprises the use of specific and selective antibodies for said autologous human muscular progenitor stem cells, which allow the identification of characteristic extracellular antigens characteristic of said autologous muscle progenitor stem cells.
  • human for example, human anti-CD56 antibodies (CD56 is an extracellular antigen characteristic of skeletal muscle cells) in the absence of the specific antigen of CD45 hematopoietic cells (i.e., cells that manifest a CD56 + / CD45- phenotype are selected).
  • said antibodies are bound to magnetic microspheres to purify and enrich human autologous muscle stem-progenitor cells by a magnetic cell sorter.
  • the cell culture is subjected to a previous pre-seeding step in order to sediment the fibroblasts before proceeding to identify and separate human autologous muscle stem-progenitor cells.
  • the purification of human autologous muscle progenitor stem cells comprises subjecting the cell culture to a pre-seeding step in order to sediment all or part of the fibroblasts present in said cell culture and subsequently identify and separate human autologous muscle stem-progenitor cells by using anti-human CD56 antibodies, optionally, bound to magnetic microspheres, and selecting cells that manifest a CD56 + / CD45- phenotype.
  • composition comprising human autologous muscle progenitor stem cells obtainable according to the method described previously constitutes an additional aspect of this invention.
  • the invention provides a method for obtaining human autologous muscle stem-progenitor cells, from a skeletal muscle tissue biopsy, for the preparation of a pharmaceutical composition, comprising:
  • lidocaine or bupivacaine stimulates the proliferation of stem cells.
  • human autologous muscle progenitors and allows to increase the number of said cells at the beginning of the culture.
  • the culture of human autologous muscle stem-progenitor cells from skeletal muscle in the autologous culture medium of the invention, under conditions that allow the expansion of said cultured autologous human muscle stem-progenitor cells includes performing a series of treatments.
  • Conventional priors for example, washing, removal of adipose tissue, shredding of the muscle, enzymatic dissociation, filtration and collection of the cells by, for example, by sedimentation.
  • a cell suspension containing a large amount of cell detritus is obtained.
  • the remains of cells and fibers are removed and enriched in muscle stem-progenitor cells.
  • the purification of cultured human autologous muscle stem-progenitor cells pursues, among others, the objective of obtaining compositions enriched in autologous human muscle progenitor stem cells substantially free of fibroblasts.
  • the cell culture can be subjected to a first pre-sowing step, by which the fibroblasts settle faster than myoblasts or satellite cells, and to a subsequent process of identification and separation of said autologous muscle progenitor stem cells by any conventional method, for example, by the use of specific and selective antibodies for said cells that allow the identification of characteristic extracellular antigens characteristic of said autologous muscle progenitor stem cells human, such as human anti-CD56 antibodies in the absence of CD45 expression.
  • said antibodies are bound to magnetic microspheres.
  • purified human autologous muscle stem-progenitor cells are collected and, if desired, in case they are not to be used immediately, they are frozen until the preparation of said pharmaceutical composition.
  • the invention in another aspect, relates to a composition enriched in human autologous muscle stem-progenitor cells comprising a significantly elevated amount of said human autologous muscle stem-progenitor cells and an autologous culture medium of the invention.
  • concentration of human autologous muscle stem-progenitor cells in the composition is very important since if the concentration of said cells is less than a certain value, the effectiveness of said composition decreases significantly.
  • compositions with high concentrations of stem-progenitor cells have been described in animal models, the concentrations obtained with human autologous muscle stem-progenitor cells are, in general, approximately 50%.
  • one of the characteristics of the present invention lies in the possibility of obtaining human autologous stem-progenitor cell compositions with a concentration in said cells equal to or greater than 70%, preferably, equal to or greater than 80%, more preferably, equal to or greater than 90%, due to the possibility of enriching the composition by purifying human autologous muscle stem-progenitor cells, for example, by immunopurification of CD56 + / CD45- cells.
  • the method of obtaining said composition comprising autologous human muscle progenitor stem cells, which comprises a prior purification treatment ensures that the concentration of muscle progenitor stem cells in the composition is always equal to or greater than 70%.
  • the invention also satisfies a need demanded by the autologous cellular CMP procedures consisting in obtaining very high levels of human autologous muscle stem-progenitor cells (myoblasts and myocytes) avoiding the presence of other undesirable cell types, for example fibroblasts
  • Said enriched composition of human autologous muscle stem-progenitor cells can be obtained, as previously mentioned, by a first pre-sowing step and a subsequent process of identification and separation of said cells, which have a CD56 + / CD45- phenotype, by antibodies that specifically recognize said human autologous muscle progenitor stem cells, optionally bound to magnetic microspheres.
  • the invention in another aspect, relates to a pharmaceutical composition
  • a pharmaceutical composition comprising autologous human muscle stem-progenitor cells, together with at least one pharmaceutically acceptable excipient.
  • said pharmaceutical composition is suitable for parenteral administration.
  • any pharmaceutically acceptable excipient capable of vehiculizing human autologous muscle progenitor stem cells can be used in the present invention.
  • said pharmaceutical composition comprises albumin which is used as an excipient to resuspend human autologous muscle stem-progenitor cells.
  • the term "pharmaceutical composition” refers to a composition of autologous muscle progenitor stem cells prepared for therapeutic use in a cellular implant, comprising at least 20 million cells, with a density cell of at least 50 million cells / ml and at least 40% of autologous progenitor stem cells CD56 + / CD45-, autologous culture medium of the invention, and at least one pharmaceutically acceptable excipient fam.
  • said pharmaceutical composition comprises between 20 and 200 million cells, with a cell density comprised between 50 and 70 million cells / ml and, at least 70% of autologous progenitor stem cells CD56 + / CD45-, medium of autologous culture of the invention, and, human albumin in an amount comprised between 0.1% and 20% by weight with respect to the total.
  • Human autologous muscle progenitor stem cells obtained according to the previously described procedure, as well as the pharmaceutical compositions containing them, can be used in the preparation of a pharmaceutical composition: for the repair and / or reconstitution of cardiac muscle tissue, and / or for the treatment of post-ischemic heart failure, and / or for the treatment of dilated cardiomyopathy and / or for the treatment of non-ischemic cardiomyopathy. 6. Therapeutic procedure
  • the invention relates to a therapeutic procedure of autologous cellular CMP to create, regenerate and repair dysfunctional myocardial tissue by implanting a pharmaceutical composition comprising autologous human muscle progenitor stem cells, due to its ability to regenerate cardiac tissue. , expanded and maintained ex vivo in an autologous culture medium; said method comprising collecting a sample of material from the body of the patient object of the posterior implant comprising human autologous muscle progenitor stem cells, expanding said cells by culture in an autologous culture medium provided by this invention and implanting the autologous stem-progenitor cells human collected in the patient whose material had previously been extracted containing autologous muscle stem-progenitor cells.
  • the invention provides a therapeutic method of autologous cellular CMP to create, regenerate and repair dysfunctional myocardial tissue by implanting a pharmaceutical composition comprising autologous human muscle progenitor stem cells, cardiac tissue regenerators, expanded and maintained ex I live in an autologous culture medium; and where said procedure comprises the following steps:
  • the patient is taken a biopsy of skeletal muscle taken from a muscle, preferably preconditioned by an intramuscular injection of a local anesthetic, such as lidocaine or bupivacaine;
  • a local anesthetic such as lidocaine or bupivacaine
  • Human autologous muscle progenitor stem cells comprise myoblasts and myocytes (mature and immature) and have the ability to regenerate cardiac tissue when implanted in the heart muscle.
  • the term "myocardial lesions" refers to both ischemic and idiopathic cardiomyopathies.
  • the autologous cellular CMP method according to the present invention is applied to patients with an ischemic cardiomyopathy due to myocardial infarction without the possibility of surgical or percutaneous revascularization, as well as to subsidiary patients of cardiac revascularization.
  • the objective of this autologous cellular CMP would be to limit the expansion of the infarction, cardiac remodeling and myocardial regeneration.
  • the definition of ischemic cardiomyopathy includes patients with right ventricular or left ventricular infarction, in the latter case with the possibility of ischemic regurgitation of the mitral valve.
  • the autologous cellular CMP method according to the present invention is applied to patients with dilated idiopathic cardiomyopathy.
  • the implantation of the pharmaceutical composition of autologous stem-progenitor cells of d) in myocardial lesions is performed by direct injection.
  • direct injection implant refers to an epicardial or endovascular administration of the pharmaceutical composition provided by this invention in patients with ischemic or idiopathic cardiomyopathies.
  • an epicardial or endovascular administration of the pharmaceutical composition of the invention is performed in patients with ischemic cardiomyopathy distributed as follows: approximately 70% in the peripheral area to the infarction and approximately 30% in the central part of the the scar.
  • Epicardial administration can be performed either by conventional surgical exposure or by thoracoscopy.
  • the ischemic area is well exposed allowing injections of the therapeutic composition in the infarcted area and, mostly, in the surrounding area.
  • Injection of the pharmaceutical composition containing autologous human muscle progenitor stem cells provided by this invention can also be performed in the perilesional area.
  • a greater survival of the cells implanted in the peripheral region is achieved by residual irrigation and the existing collateral myocardial revascularization and the high cellular mortality observed in the implants that is observed is partially avoided. performed on the highly fibrotic ischemic scar.
  • the implantation of the pharmaceutical composition of autologous stem-progenitor cells of d) in myocardial lesions is performed by systemic or intracoronary administration through percutaneous venous access.
  • the autologous cellular CMP method according to the present invention is applied to patients with dilated idiopathic cardiomyopathy by performing multiple implants of the pharmaceutical composition provided by the invention between the coronary arteries in the myocardium of the two ventricles.
  • the implant is performed by direct transepicardial injection using said computerized robotic system.
  • the needle is inserted into the myocardium by means of a video-controlled robot arm, the syringe is located outside the chest and is connected to the needle by a small diameter extender tube.
  • the invention proposes to perform periodic injections by means of percutaneous or surgical implant procedures of the autologous stem-progenitor cells of the present invention. Is approach would allow to achieve the objective of the CMP, progressively reducing the infarcted areas or improving the pathological myocardium.
  • the invention includes the creation of a personalized bank of each patient of autologous stem-progenitor cells, originated from isolated and frozen cells during the cell culture procedure of each individual. From the stored autologous stem-progenitor cells, new cell cultures can be expanded for the preparation of new compositions avoiding new biopsies or tissue removal.
  • EXAMPLE 1 This example describes the obtaining and manipulation of human autologous muscle stem-progenitor cells for use in an autologous cellular CMP procedure in order to reverse damaged dysfunctional myocardial tissue in a living histological structure capable of generating systolic pressure and diastolic
  • the patient was injected intramuscularly with a 2% solution of lidocaine, in and around the muscle of the vastus lateralis.
  • the biopsy is performed through a 5 cm incision in the vastus lateralis, and, under sterile conditions, a fragment of 2 to 3 cm 3 of skeletal muscle (about 15 g) is removed.
  • the extracted muscle tissue is fragmented with scissors, introduced into complete culture medium or in a phosphate buffer solution (PBS) and kept at 4 ° C.
  • PBS phosphate buffer solution
  • the procedure for cell isolation and purification and its culture should be started as soon as possible to ensure cell survival.
  • the samples are transported to the Cellular Biology laboratory in an appropriate container at low temperature.
  • venous blood is collected from the patient. With venipuncture 50 tubes of 10 ml are filled for serum collection. After cell sedimentation and fibrin precipitation, under laminar flow cabinet Remove the serum from each tube and collect it in an empty blood bag. Serum samples are taken for hematological and microbiological tests (bacteria and viruses). The serum bag is frozen at -80 ° C waiting to receive the results of the hematological and microbiological tests. Before preparing the culture medium, the serum complement is inactivated
  • the final culture medium contains 10% of the patient's autologous human serum, 89% of HAM-F12 medium (GIBCO BRL, Cat. No. 21765), 1% penicillin / streptomycin, heparin (2 Ul / ml of serum obtained ), protamine (in the form of sulfate) (3 IU per ml of serum obtained) and, optionally, amphotericin B (0.25 mg / ml) and / or 0.1 to 250 pg / ml of recombinant bFGF.
  • the remaining human serum is frozen at -40 ° C pending a new preparation of culture medium.
  • the complement is inactivated again at 56 ° C for 1 hour with subsequent filtration.
  • a dose of 50 Ul / kg of unfractionated sodium heparin is administered to the patient.
  • the plasmapheresis process is performed according to the routine procedure provided for the equipment used. During plasmapheresis the standard anticoagulant is replaced by a physiological solution of 0.9% sodium chloride with heparin as an anticoagulant. The plasma is replaced by 5% albumin. The procedure is completed once the volume of plasma necessary for the preparation of the autologous culture medium is obtained. The amount of heparin in the plasma obtained is calculated based on the plasma volume of the patient and 1.5 IU of protamine is added for each IU of heparin. It stays that way until plasma coagulation occurs. Then the serum is extracted and distributed in small aliquots that are frozen. As with serum obtained from blood samples, also in this case serum samples were analyzed hematologically and microbiologically before being used.
  • the tubes can be placed in an incubator with reciprocating / orbital agitation (ROSI) at 37 ° C. Secondly, it is incubated for 20 minutes with 0.25% trypsin 1 x EDTA (2 ml). The cells are then washed (10 minutes at 300g) and to stop the enzymatic reaction 1 ml of the patient's own serum obtained previously is added. Filtration is done through a 40 ⁇ m mesh (cell stainer nylon). With the fragments that may have remained in the mesh, the digestion procedure is repeated again. Finally, the filtrate cells are collected by sedimentation (20 minutes at 300g) and the supernatant is discarded.
  • ROSI reciprocating / orbital agitation
  • the cells are resuspended in fresh complete culture medium: 10% autologous human serum from the patient, 89% HAM-F12 medium (GLBCO BRL, Cat. No. 21765), 1% penicillin / streptomycin and, optionally, amphotericin B (0.25 mg / ml), which also contains heparin (2 Ul / ml of serum obtained) and protamine (in the form of sulfate) (3 IU per ml of serum obtained), and are sown in jars for cell culture . Then the bottles were incubated for 3 weeks at 37 ° C in a humidified atmosphere with 5% CO 2. The jars are placed in the incubator without level gradient to avoid irregular cell proliferation.
  • the cells are harvested by trypsinization (2 ml of 0.25% »trypsin-EDTA in each bottle for 1 to 5 minutes in the incubator). The complete detachment of the cells is checked by observing the microscope floating cells. The reaction is then stopped by the addition of complete culture medium and the resulting cell suspension is distributed in another 5 bottles.
  • Each step of the cell culture process controls are carried out for bacteria (aerobic and anaerobic tests), viruses and fungi.
  • fibroblasts contaminate crops so it is necessary to remove them to obtain an adequate myoblast expansion.
  • the cultured cells are kept in the incubator for 30 minutes. This period of time is sufficient for the fibroblasts to settle while most (smaller) myoblasts remain in suspension.
  • the cell supernatant is collected and transferred to new culture bottles.
  • the purity of myoblastic cells is assessed by flow cytometry with a human anti-CD56 antibody and intracellular demin staining. Samples with a myoblast purity of less than 50% are subjected to a cell enrichment procedure.
  • CD56 positive cell samples are cryopreserved using 5% DMSO, subjected to a programmed freeze and They are finally stored in liquid nitrogen.
  • the cell concentration will be 25 to 50 million cells for me.
  • the cells are thawed and cultured in myoblast media for later use (percutaneous implant) once the ex vivo expansion has been performed.
  • the cells are harvested and washed in injection medium (0.5% human albumin and complete culture medium) and kept on ice before implantation.
  • injection medium (0.5% human albumin and complete culture medium
  • Flow cytometry assesses the final purity rate of myoblasts. By means of a Malassez cytometer (by staining with trypan blue) the cell concentration and its viability are determined. Also, before implantation, the sterility of the cell culture is evaluated (Gram test).
  • Cellular implant can be performed by epicardial or endovascular administration. Epicardial administration can be performed either by conventional surgical exposure or by thoracoscopy. In the surgical approach (chest or sternotomy classic or mini) the ischemic area is well exposed allowing about 10 injections of cell suspension in the infarcted area and mostly in the surrounding area. For this purpose a curved needle of 23 to 26 G x 4 cm is used. The recommended cell density is between 50 and 70 million cells / ml. The injection is done slowly, for about 15 minutes. After each injection, the needle holes should be blocked by finger pressure (1 to 2 minutes) to prevent regurgitation of the cell suspension.
  • Myoblast implant protocol implant of at least 20 million cells, preferably about 200 million cells cell density: 50 to 70 million cells per culture time: approximately 21 days myoblast concentration: greater than 70% - cell half-life at 2-8 ° C: 96 hours.
  • This example is a phase I / II clinical study conducted to assess the suitability and safety of intramyocardial transplantation of a composition of human autologous muscle progenitor stem cells of the invention to patients who have suffered myocardial infarction.
  • Muscle bopsies were obtained from the vastus lateral under sterile conditions and after a preconditioning with 2% lidocaine hydrochloride.
  • a human autologous culture medium of the invention comprising 79% of HAM-F 12 medium (GIBCO-BRL) supplemented with 20% of the patient's autologous serum (with heparin and protamine) and 1 % penicillin / streptomycin (GIBCO-BRL).
  • the patient's autologous serum was obtained by plasmapheresis, as described in section 1.2 of the previous example, performed the day before obtaining a muscle biopsy (between 800 and 2,135 mL per patient, average: 1,735 mL).
  • the enzymatic digestions were carried out by incubation with trypsin / EDTA (0.5 mg / mL trypsin and 0.53 mM EDTA, GTBCO-BRL) and subsequently with collagenase (0.5 mg / mL, GTBCO-BRL).
  • trypsin / EDTA 0.5 mg / mL trypsin and 0.53 mM EDTA, GTBCO-BRL
  • collagenase 0.5 mg / mL, GTBCO-BRL.
  • the procedure for cell expansion and fibroblast removal was performed as described in the previous example.
  • the purity of myoblastic cells in the harvested ones was assessed by flow cytometry and staining with monoclonal antibodies specific for human N-CAM (CD56), CD45 and demining.
  • the average of myogenic cells obtained per patient was 221 x 10 6 (always within the range 105-390 x 10 6 ), and the average purity of myogenic cells CD56 + / CD45- was 65.6 + 6.4%.
  • the function and viability of the heart muscle was determined by positron emission tomography (PET), echocardiogram and electrocardiogram (Holter-EGC 24 hours).
  • PET positron emission tomography
  • Holter-EGC electrocardiogram
  • the aortocoronary bypass with extracorporeal circulation was performed between 3 and 4 weeks after having performed the muscle biopsy. Patients received an average of 2 grafts (between 1 and 4).
  • the cell was implanted by epicardial administration by at least 10 repeated injections in the infarcted area and surrounding areas, areas that echocardiographically had been identified as hypokinetic, kinetic or dyskinetic.
  • a 23G ophthalmic cannula (Maersk Medical Ltd, Redditch, B98 9NL GB) was used.
  • the areas that were to receive the cell implant were identified by echocardiogram before the surgical procedure in order to assess the contractility of these areas during follow-up after cell transplantation.
  • the patients underwent continuous telemetric monitoring. Blood samples were taken every 6 hours to assess the presence of cardiac necrotic enzymes.
  • methyl prednisolone 500 mg was administered after surgery.
  • a 3-month treatment with oral amiodarone was indicated.
  • PET was monitored (3 months after the transplant), echocardiogram (40 days and 3 months after the transplant).
  • the presence of arrhythmias was also monitored by Holter-ECG (40 days and 3 months after transplantation).
  • the protocol and all the procedures performed were previously approved by the ethical committees of clinical, institutional and regional trials, in accordance with the legally established requirements.
  • a WMSI index was obtained for segments treated with cell implants and another for those not treated.
  • the left ventricular ejection fraction (LVEF) was obtained by an automatic endocardial edge detection (ABD) system (Pérez JE et al. J. Am. Coll. Cardiol. 1992; 19: 336-344) .
  • the regional contractility of each segment was also assessed by colorkinesis and tissue doppler. The assessments were carried out by a double blind procedure (2 independent observers without prior information). The reproducibility within the study for the final diastolic volume in the left ventricle was 2.8 ⁇ 6.4 (CV 5.5%) and for ejection fraction (LVEF) 0.3 + 4.6 (CV 6.6 %).
  • PET positron emission tomography
  • Perfusion and metabolism studies were performed on a PET tomograph (ECAT EXACT HR +, Siemens / CTI Knoxville, USA) that acquires 63 transaxial planes with a spatial resolution between planes of 4.5 mm.
  • the image acquisition protocol in each patient began with a 2-minute transmission study using Germanium-68 sources to position the heart in the field of vision, followed by a 5-minute acquisition to perform the photon attenuation correction.
  • N-ammonium (9.25 MBq / kg, maximum 740 MBq) was then perfused by intravenous injection at a constant flow of 10 ml / min.
  • Dynamic image acquisition began at the time of injection.
  • Serial images were collected for 20 minutes in a dynamic sequence with a variable duration scheme: 12 x 10 s, 4 xlO s, 4 x 30 s, 3x 300 s.
  • PET data acquisition was performed according to a protocol already described in the literature (Muzik O et al. J. Nuc ⁇ . Med. 1993; 34: 336-344).
  • the acquisition of the serial images of the F-FDG began at the time of injection and lasted for 60 minutes (8 x 15 s, 2 x 30 s, 2 x 120 s, 1 x 180 s, 4 x 300 s , 3 x 600 s), following the protocol described by Knuuti et al. Cited above.
  • Heart attack 1 [Angina infarction / Basal dyspnea / FU Bypass
  • LAD left anterior descending artery
  • RC right coronary artery
  • M marginal obtuse artery
  • Dg diagonal coronary artery.
  • LVEF Left ventricular ejection fraction
  • 2D two-dimensional
  • ABD automatic detection of the endocardial edge.
  • Serological analyzes of cardiac and hepatic enzymes showed no significant changes after transplantation and progressively returned to their normal values.
  • protein C was determined, without significant changes observed after transplantation or during follow-up.
  • WMSI at 3 months was significantly reduced compared to baseline rates (before surgery), with a greater reduction in the segments that received cell transplantation (Table 3).
  • the decrease in WMSI is associated with an improvement in the NYHA classification, from a baseline 2.2 + 0.2 to 1.5 ⁇ 0.26 at 3 months (p ⁇ 0.01).
  • Table 3 Regional function (measured by the WMSI index, Wall motion score index)
  • PET positron emission tomography Assessment of blood flow by retention of 13 N-ammonium (ml'g ' ⁇ min 1 ), and glucose metabolism by retention of 18 F-FDG ( ⁇ mol-g ⁇ min 1 )

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Rheumatology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Neurology (AREA)
  • Vascular Medicine (AREA)
  • Urology & Nephrology (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

El medio de cultivo autólogo de células madre-progenitoras autólogas humanas comprende: entre 0,1% y 90% en peso de suero humano autólogo; entre 0,1 y 10.000 UI/ml de heparina; entre 0,1 y 10.000 UI/ml de protamina; y un medio de cultivo con nutrientes básicos con o sin glutamina, en cantidad suficiente hasta el 100% en peso, y es útil para cultivar y expandir células madre-progenitoras autólogas humanas. Composiciones conteniendo dichas células pueden ser implantadas en el paciente mediante un procedimiento de cardiomioplastia celular autóloga para crear, regenerar y reparar tejido miocárdico disfuncional.

Description

MEDIO DE CULTIVO DE CÉLULAS MADRE-PROGENITORAS AUTÓLOGAS HUMANAS Y SUS APLICACIONES
CAMPO DE LA INVENCIÓN
La invención se relaciona, en general, con la obtención y manipulación de células madre-progenitoras autólogas humanas bajo condiciones que permiten su empleo en terapia celular. En particular, la invención se refiere a un medio de cultivo autólogo para el cultivo de dichas células y a su empleo en el cultivo y expansión de dichas células así como a composiciones que las contienen.
ANTECEDENTES DE LA INVENCIÓN
Uno de los mayores retos para la investigación biomédica radica en desarrollar estrategias terapéuticas que permitan reemplazar o reparar las células o tejidos dañados o destraídos en las enfermedades más devastadoras o discapacitantes: enfermedades neurodegenerativas (Parkinson, Alzheimer), diabetes, enfermedades musculares y cardíacas, insuficiencia hepática, etc.
Una de las estrategias terapéuticas más prometedoras es la Terapia Celular, fundamentada en el hecho comprobado de que es posible disponer de células, más o menos indiferenciadas, capaces de dividirse generando células diferenciadas funcionales, y, en algunos casos, incluso de regenerarse. Entre éstas se incluyen las células madre y las células progenitoras/precursoras, que, en su conjunto, serán denominadas células madre-progenitoras. Estas células pueden encontrarse en el embrión e incluso en tejidos adultos. La terapia celular consiste, por tanto, en el trasplante o implante en el paciente de una cantidad de células madre-progenitoras suficiente para reparar y restaurar la funcionalidad de un órgano dañado.
Una de las formas de terapia celular propuestas está basada en el empleo de células-madre progenitoras procedentes del adulto, obtenidas de un animal (células xenogénicas), de un donante (células alogénicas), u obtenidas del propio paciente (células autólogas). El uso de células madre-progenitoras autólogas estaría libre de algunos de los inconvenientes de las otras formas de terapia celular, tales como escasez de donantes, necesidad de tratamiento inmunosupresor para evitar el rechazo por el paciente, así como de los condicionantes éticos asociados con el uso de células embrionarias. Sin embargo, para que la terapia celular se convierta en una realidad es necesario desarrollar un mayor conocimiento sobre cuáles son las células idóneas en cada caso y cómo identificarlas, y también desarrollar procedimientos para una adecuada manipulación de las células madre-progenitoras que las haga idóneas para su uso clínico. La cardiomioplastia (CMP) celular autóloga es un ejemplo concreto de terapia celular para el tratamiento de enfermedades cardíacas (enfermedad isquémica, insuficiencia cardiaca, etc.). Una descripción general actualizada puede encontrarse en Curr. Control. Triáis Cardiovasc Med. 2001; 2:208-210 (D.A. Taylor). Procedimientos y composiciones para el aislamiento, cultivo, expansión y empleo de diferentes células madre-progenitoras útiles en CMP celular pueden encontrarse en US5130141, WO/0107568, WO/0194555, WO79854301, US2001/0038837 y US5543318.
COMPENDIO DE LA INVENCIÓN
La invención se enfrenta, en general, con el problema de proporcionar células madre-progenitoras autólogas humanas, adecuadas para su empleo en terapia celular, y, en particular, con el problema de proporcionar un procedimiento para una adecuada manipulación de las células madre-progenitoras que las haga idóneas para su uso clínico, incluyendo procedimientos específicos para su obtención, cultivo, purificación y expansión. La solución proporcionada por esta invención se basa en el hecho de que los inventores han observado que el empleo de un medio de cultivo autólogo, que comprende suero autólogo humano y nutrientes, junto con un anticoagulante y un agente para revertir la anticoagulación, permite el cultivo in vitro, la purificación y expansión de células madre-progenitoras autólogas humanas, las cuales pueden ser utilizadas en la elaboración de composiciones farmacéuticas para el tratamiento de diversas patologías mediante terapia celular.
La invención se ilustra mediante la obtención de un medio de cultivo autólogo, que comprende nutrientes, suero autólogo humano, heparina y protamina, y su empleo en el cultivo in vitro, purificación y expansión de células madre-progenitoras musculares autólogas humanas útiles para la elaboración de composiciones farmacéuticas adecuadas para el tratamiento de cardiomiopatías tanto isquémicas como idiopáticas mediante CMP celular autóloga.
Un aspecto de esta invención se relaciona con un medio de cultivo de células madre-progenitoras autólogas humanas que comprende suero humano autólogo y nutrientes, junto con un anticoagulante y un agente para revertir la anticoagulación.
En otro aspecto, la invención se relaciona con un método para la preparación de dicho medio de cultivo de células madre-progenitoras autólogas humanas. En una realización particular, el suero humano autólogo presente en dicho medio de cultivo ha sido obtenido por plasmaféresis.
En otro aspecto, la invención se relaciona con el empleo de dicho medio de cultivo para el cultivo in vitro, purificación y expansión de células madre-progenitoras autólogas humanas. En otro aspecto, la invención se relaciona con un método para la obtención de una composición de células madre-progenitoras autólogas humanas, que comprende incubar dichas células madre-progenitoras autólogas humanas en dicho medio de cultivo y purificar las células madre-progenitoras autólogas humanas obtenidas.
En otro aspecto, la invención se relaciona con un método para la obtención de una composición de células madre-progenitoras musculares autólogas humanas, útiles para su empleo en terapia celular, que comprende incubar dichas células madre- progenitoras musculares autólogas humanas en dicho medio de cultivo y purificar las células madre-progenitoras musculares autólogas humanas obtenidas.
En otro aspecto, la invención se relaciona con una composición enriquecida en células madre-progenitoras musculares autólogas humanas.
En otro aspecto, la invención se relaciona con una composición farmacéutica que comprende células madre-progenitoras musculares autólogas humanas, junto con uno o más excipientes farmacéuticamente aceptables.
En otro aspecto, la invención se relaciona con un método terapéutico de CMP celular autóloga para crear, regenerar y reparar tejido miocárdico disfuncional mediante el implante de una composición farmacéutica que comprende células madre-progenitoras musculares autólogas, regeneradoras de tejido cardíaco, expandidas y mantenidas ex vivo en un medio de cultivo autóiogo.
DESCRIPCIÓN DE LAS FIGURAS
La Figura 1 es un diagrama de barras que representa la valoración de la función ventricular izquierda por análisis de la fracción de eyección ventricular izquierda (LVEF), calculada mediante ecocardiograma bidimensional (2D) y de detección automática de bordes (ABD), antes del procedimiento quirúrgico (Basal), a los 40 días de seguimiento después del trasplante celular (40 días) y a los 3 meses del seguimiento (3 meses).
La Figura 2 muestra la valoración de la perfusión mediante PET con 13N-amonio y del metabolismo de glucosa mediante PET 18F-FDG, antes del procedimiento quirúrgico (Basal) y a los 3 meses del trasplante celular (FU 3 meses) Figura 2A: Imágenes correspondientes al paciente N°5 como ejemplo representativo de un paciente que recibió trasplante celular. Figura 2B: Imágenes correspondientes al corazón del paciente N° 9 que no recibió trasplante celular (por contaminación del cultivo de células miogénicas esqueléticas). Las flechas indican tejido infartado, antes y después de la cirugía.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
1. Medio de cultivo autólogo En un primer aspecto, la presente invención se relaciona con un medio de cultivo autólogo de células madre-progenitoras autólogas humanas, en adelante "medio de cultivo autólogo de la invención", que comprende: a) entre 0,1% y 90% en peso de suero humano autólogo; b) entre 0,1 y 10.000 Ul/ml de heparina; c) entre 0,1 y 10.000 Ul/ml de protamina; y d) un medio de cultivo con nutrientes básicos con o sin glutamina, en cantidad suficiente hasta el 100% en peso.
El medio de cultivo autólogo de la invención es un medio de cultivo completo elaborado a partir de suero humano autólogo obtenido del propio paciente objeto del posterior implante de las células madre-progenitoras autólogas humanas. El suero humano autólogo, si se desea, puede ser sometido a un tratamiento convencional, por ejemplo, tratamiento térmico, con el fin de inactivar el complemento.
El suero autólogo humano puede ser obtenido del propio paciente objeto del posterior implante de las células madre-progenitoras autólogas humanas mediante cualquier método convencional, por ejemplo, a partir de muestras sanguíneas del paciente o bien, preferentemente, mediante la realización de una plasmaféresis a dicho paciente. En una realización particular de esta invención, la plasmaféresis se realiza utilizando heparina como anticoagulante y sulfato de protamina para revertir la anticoagulación. Como es conocido, las plasmaféresis se realizan utilizando, habitualmente- ACD (solución Anticoagulante-Citrato-Dextrosa) [por ejemplo, para 1 litro de agua se añade ácido cítrico monohidrato (8 g), citrato (22 g) y glucosa monohidrato (24,5 g)] como anticoagulante. Este anticoagulante aporta quelante del calcio por lo que para revertir el efecto del ACD y obtener suero a partir de la plasmaféresis es necesario añadir calcio lo cual interfiere posteriormente en el cultivo celular. La realización de una plasmaféresis permite obtener un suministro de suero significativamente elevado, superior al obtenido a partir de muestras sanguíneas del paciente, puesto que en la plasmaféresis no hay pérdida de sangre del paciente, lo que supone un beneficio importante para el paciente. Además, la utilización del suero obtenido mediante plasmaféresis con heparina y protamina posibilita su utilización en el medio de cultivo sin problemas posteriores en el cultivo celular.
El medio de cultivo autólogo de la invención contiene los nutrientes básicos y, opcionalmente, glutamina. Existen medios comercialmente disponibles que aportan los nutrientes necesarios para el cultivo celular. En principio, cualquier medio que proporcione los nutrientes adecuados para el cultivo celular puede ser utilizado en la presente invención. En una realización particular, los nutrientes son aportados por el medio HAM F12 [GIBCO BRL].
En una realización particular, el medio de cultivo autólogo de la invención contiene, además, un antibiótico. Prácticamente cualquier antibiótico podría ser utilizado en la presente invención. En una realización particular, el medio de cultivo autólogo de la invención comprende un antibiótico seleccionado entre penicilina, estreptomicina, gentamicina y sus mezclas. Asimismo, el medio de cultivo autólogo de la invención también puede contener, si se desea, un agente antifúngico, por ejemplo, anfotericina B, y/o un factor de crecimiento, por ejemplo, un factor de crecimiento de fibroblastos tal como el factor de crecimiento fibroblástico básico humano (bFGF) nativo o recombinante.
En una realización particular, el medio de cultivo autólogo de la invención comprende: 89% en peso de medio HAM-F12;
10% de suero humano autólogo del paciente; heparina 0,1-10.000 UI/mL; protamina 0,1 a 10.000 UI mL; y 1% de penicilina/estreptomicina y, opcionalmente,
0,25 mg/ml de anfotericina B y/o
0,1 a 250 pg/ml de bFGF recombinante.
2. Método para la preparación del medio de cultivo autólogo de la invención
En otro aspecto, la invención se relaciona con un método para la preparación del medio de cultivo de células madre-progenitoras autólogas humanas proporcionado por esta invención, que comprende mezclar y homogeneizar los distintos componentes del mismo. Ventajosamente, dicho suero humano autólogo se obtiene por plasmaféresis, tal como se ha mencionado previamente, utilizando heparina como anticoagulante para obtener plasma y protamina para revertir la anticoagulación y obtener el suero. De esta manera, el suero humano autólogo obtenido ya contiene la heparina y protamina.
3. Empleo del medio de cultivo autólo o de la invención
En otro aspecto, la invención se relaciona con el empleo del medio de cultivo autólogo de la invención para el cultivo in vitro, purificación y expansión de células madre-progenitoras autólogas humanas.
El empleo de suero autólogo humano en un medio de cultivo para la expansión de células madre-progenitoras autólogas humanas presenta numerosas ventajas, por ejemplo, la expansión celular puede realizarse en cualquier parte del mundo, sin el riesgo de contaminación con priones, virus o zoonosis inherente a las técnicas tradicionales de cultivo celular que utilizan suero bovino fetal para el crecimiento celular. El empleo de suero autólogo humano en cultivos de células humanas en lugar de suero bovino presenta numerosas ventajas ya que (i) evita la reacción antígeno- anticuerpo, (ii) evita las reacciones inflamatorias causadas por proteínas heterólogas; y (iii) evita la destrucción celular como consecuencia de los repetidos lavados que necesitan las células cultivadas en suero bovino antes de su administración a los seres humanos. De hecho, la experiencia clínica actual, con CMP celular autóloga ha demostrado la presencia de arritmias ventriculares malignas en pacientes 2 semanas después de la terapia con células cultivadas en suero bovino complicación que, en el 40% de los casos, ha requerido el implante de desfibriladores. 4. Método para la preparación de una composición de células madre- progenitoras autólogas humanas En otro aspecto, la invención se relaciona con un método para la preparación de una composición de células madre-progenitoras autólogas humanas, que comprende incubar dichas células madre-progenitoras autólogas humanas en el medio de cultivo autólogo de la invención y purificar las células madre-progenitoras autólogas humanas obtenidas.
Prácticamente cualquier célula madre-progenitora autóloga humana puede ser cultivada y expandida en el medio de cultivo autólogo de la invención, adaptando en cada caso las condiciones del medio y del cultivo al tipo celular concreto. No obstante, en una realización particular, que se describirá con detalle en el siguiente apartado, dichas células madre-progenitoras autólogas humanas son células madre-progenitoras musculares autólogas humanas.
Las células madre-progenitoras autólogas humanas pueden obtenerse mediante la realización de una biopsia en el propio paciente objeto del posterior implante de tales células madre-progenitoras autólogas humanas.
La incubación de las células madre-progenitoras autólogas humanas en el medio de cultivo autólogo de la invención se realiza mediante condiciones que permiten el crecimiento y división celular. La purificación de las células madre-progenitoras autólogas humanas obtenidas puede realizarse por cualquier método convencional. En una realización particular, la purificación de dichas células madre-progenitoras autólogas humanas consiste en una i munopurificación y se realiza mediante el empleo de anticuerpos específicos y selectivos para dichas células madre-progenitoras autólogas humanas, que permiten la identificación de antígenos extracelulares característicos de dichas células madre- progenitoras autólogas humanas. Ventajosamente, dichos anticuerpos específicos y selectivos para dichas células madre-progenitoras autólogas humanas están unidos a microesferas magnéticas para purificar y enriquecer las células madre-progenitoras autólogas humanas mediante un clasificador celular magnético. Las células madre-progenitoras autólogas humanas, obtenidas según el procedimiento previamente descrito, pueden presentarse en forma de composiciones farmacéuticas, y pueden ser utilizadas en terapia génica. 5. Método para la obtención de células madre-progenitoras musculares autólogas humanas Como se ha mencionado previamente, en una realización particular y preferida de esta invención, las células madre-progenitoras autólogas humanas son células madre- progenitoras musculares (o células miogénicas) autólogas humanas.
Por tanto, en otro aspecto, la invención se relaciona con un método para la obtención de células madre-progenitoras musculares autólogas humanas, adecuadas para su empleo en terapia celular, que comprende incubar dichas células madre-progenitoras musculares autólogas humanas en dicho medio de cultivo y purificar las células madre- progenitoras musculares autólogas humanas obtenidas.
Las células madre-progenitoras musculares autólogas humanas pueden obtenerse mediante la realización de una biopsia en el propio paciente objeto del posterior implante de tales células madre-progenitoras musculares autólogas humanas, en particular, una biopsia de músculo esquelético. Estudios previos pusieron de manifiesto que la administración al paciente, anterior a la realización de la biopsia, en la zona de la biopsia, de una composición farmacéutica que comprende un agente farmacológico que estimula la proliferación de las células madre-progenitoras musculares autólogas humanas permite incrementar el número de dichas células al inicio del cultivo. En una realización particular, este preacondicionamiento se realiza mediante la administración al paciente, antes de realizar la biopsia de músculo esquelético, generalmente en un periodo de tiempo comprendido entre 2 días y 15 minutos antes de realizar dicha biopsia, por vía intramuscular, en la zona donde se va a realizar tal biopsia, de una composición farmacéutica que comprende dicho agente farmacológico que estimula la proliferación celular. En una realización particular, dicho agente farmacológico es un anestésico local, tal como lidocaína o bupivacaína, que estimula la proliferación de los mioblastos, lo que se traduce posteriormente en un mayor rendimiento del cultivo celular.
Mediante la biopsia de músculo esquelético se recoge una muestra de tejido muscular que se somete a un tratamiento convencional para digerir las fibras musculares tal como se describe posteriormente con más detalle. La suspensión celular resultante se cultiva en el medio de cultivo autólogo de la invención. En general, la muestra extraída mediante la biopsia muscular contiene distintos tipos de tejidos, tales como adipocitos, fibroblastos, progenitores mesenquimales, células hematopoyéticas. fibras musculares, tejido vascular (endotelio, músculo liso) y, obviamente, mioblastos y células satélite. Típicamente, el contenido inicial en células madre-progenitoras musculares autólogas humanas presentes en la muestra de tejido esquelético extraída mediante la biopsia, definidas como CD56+/CD45- es inferior al 10%. Asimismo, existe también un pequeño porcentaje de células madre (células satélite) de muy difícil identificación que son las que se reproducen y diferencian hacia células musculares que expresan el antígeno CD56 y que serían progenitores musculares. Como es conocido, el proceso de diferenciación de este tipo celular comprende el paso de célula satélite a mioblasto, luego a miocito inmaduro, a continuación a miocito maduro y, finalmente a miofibra. Los progenitores musculares serían los mioblastos y los miocitos (maduros e inmaduros), que pueden ser identificados por la presencia del antígeno CD56, la expresión intracitoplasmática de desmina y la ausencia del antígeno CD45 (es decir, presentan un fenotipo CD56+/desmina+/CD54-). Durante el cultivo celular se produce una proliferación de células satélite y mioblastos que se diferencian hasta, como mucho, miocitos. Por tanto, tras la incubación y expansión celular, en el medio de cultivo se acumulan mioblastos y miocitos (maduros e inmaduros) que son utilizados en la elaboración de una composición farmacéutica para inyectar células madre-progenitoras musculares autólogas humanas en el paciente y que, una vez inyectados, terminan su proceso de diferenciación en el propio paciente transformándose en fibras musculares o miofibras y desarrollando su función.
La incubación de las células madre-progenitoras musculares autólogas humanas en el medio de cultivo autólogo de la invención se realiza mediante condiciones que permiten la expansión (crecimiento y división) celular.
La purificación de las células madre-progenitoras musculares autólogas humanas obtenidas puede realizarse por cualquier método convencional. En una realización particular, la purificación de dichas células madre-progenitoras musculares autólogas humanas comprende el empleo de anticuerpos específicos y selectivos para dichas células madre-progenitoras musculares autólogas humanas, que permiten la identificación de antígenos extracelulares característicos de dichas células madre- progenitoras musculares autólogas humanas, por ejemplo, anticuerpos anti-CD56 humano (CD56 es un antígeno extracelular característico de células de músculo esquelético) en ausencia del antígeno especifico de células hematopoyéticas CD45 (es decir, se seleccionan las células que manifiestan un fenotipo CD56+/CD45-). Ventajosamente, dichos anticuerpos están unidos a microesferas magnéticas para purificar y enriquecer las células madre-progenitoras musculares autólogas humanas mediante un clasificador celular magnético. En otra realización particular, el cultivo celular se somete a un paso previo de pre-siembra (pre-plating) con el fin de sedimentar los fibroblastos antes de proceder a identificar y separar las células madre-progenitoras musculares autólogas humanas. En este caso, la purificación de las células madre- progenitoras musculares autólogas humanas comprende someter al cultivo celular a un paso de pre-siembra con el fin de sedimentar la totalidad o parte de los fibroblastos presentes en dicho cultivo celular y, posteriormente, identificar y separar las células madre-progenitoras musculares autólogas humanas mediante el empleo de anticuerpos anti-CD56 humano, opcionalmente, unidos a microesferas magnéticas, y la selección de las células que manifiestan un fenotipo CD56+/CD45-.
La composición que comprende células madre-progenitoras musculares autólogas humanas obtenible según el método descrito previamente constituye un aspecto adicional de esta invención.
Alternativamente, la invención proporciona un procedimiento para la obtención de células madre-progenitoras musculares autólogas humanas, a partir de una biopsia de tejido de músculo esquelético, para la preparación de una composición farmacéutica, que comprende:
a) la realización de una biopsia en un paciente objeto del posterior implante de células madre-progenitoras musculares autólogas humanas para extraer un fragmento de tejido de músculo esquelético que comprende células madre-progenitoras musculares autólogas humanas;
b) el cultivo de dichas células madre-progenitoras musculares autólogas humanas procedentes del músculo esquelético en el medio de cultivo autólogo de la invención, bajo condiciones que permiten la expansión de dichas células madre-progenitoras musculares autólogas humanas cultivadas;
c) la purificación de dichas células madre-progenitoras musculares autólogas humanas cultivadas; y d) la recolección de dichas células madre-progenitoras musculares autólogas humanas purificadas; y, opcionalmente,
e) la congelación de dichas células madre-progenitoras musculares autólogas humanas purificadas hasta la preparación de dicha composición farmacéutica.
Como se ha mencionado previamente, la administración local al paciente, en un periodo de tiempo comprendido entre 2 días y 15 minutos antes de realizar la biopsia muscular, en la zona de la biopsia, de lidocaína o bupivacaína estimula la proliferación de las células madre-progenitoras musculares autólogas humanas y permite aumentar el número de dichas células al inicio del cultivo.
El cultivo de las células madre-progenitoras musculares autólogas humanas procedentes del músculo esquelético en el medio de cultivo autólogo de la invención, bajo condiciones que permiten la expansión de dichas células madre-progenitoras musculares autólogas humanas cultivadas, incluye la realización de una serie de tratamientos previos convencionales, por ejemplo, lavado, eliminación del tejido adiposo, desmenuzamiento del músculo, disociación enzimática, filtración y recogida de las células mediante, por ejemplo, mediante sedimentación. En general, tras la digestión enzimática de las fibras musculares se obtiene una suspensión celular que contiene gran cantidad de detritus celulares. Tras los pases de cultivo se eliminan los restos de células y fibras y se enriquece en células madre-progenitoras musculares.
La purificación de las células madre-progenitoras musculares autólogas humanas cultivadas persigue, entre otros, el objetivo de obtener composiciones enriquecidas en células madre-progenitoras musculares autólogas humanas sustancialmente exentas de fibroblastos. Para ello, el cultivo celular puede ser sometido a un primer paso de pre- siembra (pre-plating), mediante la que sedimentan los fibroblastos de forma más rápida que los mioblastos o células satélites, y a un proceso posterior de identificación y separación de dichas células madre-progenitoras musculares autólogas mediante cualquier método convencional, por ejemplo, mediante el empleo de anticuerpos específicos y selectivos para dichas células que permiten la identificación de antígenos extracelulares característicos de dichas células madre-progenitoras musculares autólogas humanas, tal como anticuerpos anti-CD56 humano en ausencia de expresión de CD45. Ventajosamente, dichos anticuerpos están unidos a unas microesferas magnéticas.
Finalmente, las células madre-progenitoras musculares autólogas humanas purificadas se recolectan y, si se desea, en caso de que no vayan a ser utilizadas inmediatamente, se congelan hasta la preparación de dicha composición farmacéutica.
En otro aspecto, la invención se relaciona con una composición enriquecida en células madre-progenitoras musculares autólogas humanas que comprende una cantidad significativamente elevada de dichas células madre-progenitoras musculares autólogas humanas y un medio de cultivo autólogo de la invención. Como es conocido, la concentración de células madre-progenitoras musculares autólogas humanas en la composición es muy importante ya que si la concentración de dichas células es inferior a un determinado valor, la eficacia de dicha composición disminuye ostensiblemente. Aunque se han descrito en modelos animales composiciones con concentraciones elevadas de células madre-progenitoras, las concentraciones obtenidas con células madre-progenitoras musculares autólogas humanas son, en general, del 50% aproximadamente. Sin embargo, una de las características de la presente invención radica en la posibilidad de obtener composiciones de células madre-progenitoras autólogas humanas con una concentración en dichas células igual o superior al 70%, preferentemente, igual o superior al 80%, más preferentemente, igual o superior al 90%, debido a la posibilidad de enriquecer la composición mediante la purificación de las células madre-progenitoras musculares autólogas humanas, por ejemplo, mediante la inmunopurificación de células CD56+/CD45-. El método de obtención de dicha composición que comprende células madre-progenitoras musculares autólogas humanas, que comprende un tratamiento previo de purificación, permite garantizar que la concentración de células madre-progenitoras musculares en la composición es siempre igual o superior al 70%.
De esta manera, la invención satisface, además, una necesidad demandada por los procedimientos de CMP celular autóloga consistente en obtener niveles muy altos de células madre-progenitoras musculares autólogas humanas (mioblastos y miocitos) evitando la presencia de otros tipos celulares indeseables, por ejemplo, fibroblastos. Dicha composición enriquecida de células madre-progenitoras musculares autólogas humanas puede ser obtenida, tal como se ha mencionado previamente, mediante un primer paso de pre-siembra y un proceso posterior de identificación y separación de dichas células, que presentan un fenotipo CD56+/CD45-, mediante anticuerpos que específicamente reconocen dichas células madre-progenitoras musculares autólogas humanas, opcionalmente unidos a microesferas magnéticas.
En otro aspecto, la invención se relaciona con una composición farmacéutica que comprende células madre-progenitoras musculares autólogas humanas, junto con, al menos, un excipiente farmacéuticamente aceptable. En una realización particular, dicha composición farmacéutica es adecuada para su administración por vía parenteral. En principio, cualquier excipiente farmacéuticamente aceptable capaz de vehiculizar las células madre-progenitoras musculares autólogas humanas puede ser utilizado en la presente invención. En una realización particular, dicha composición farmacéutica comprende albúmina que se utiliza como excipiente para resuspender las células madre- progenitoras musculares autólogas humanas.
Tal como se utiliza en la presente invención el término "composición farmacéutica" se refiere a una composición de células madre-progenitoras musculares autólogas preparada para su uso terapéutico en un implante celular, que comprende, al menos, 20 millones de células, con una densidad celular de, al menos, 50 millones de células/ml y, al menos, 40% de células madre-progenitoras autólogas CD56+/CD45-, medio de cultivo autólogo de la invención, y, al menos, un excipiente fam acéuticamente aceptable. En una realización particular, dicha composición farmacéutica comprende entre 20 y 200 millones de células, con una densidad celular comprendida entre 50 y 70 millones de células/ml y, al menos 70% de células madre-progenitoras autólogas CD56+/CD45-, medio de cultivo autólogo de la invención, y, albúmina humana en una cantidad comprendida entre 0,1% y 20% en peso respecto al total.
Las células madre-progenitoras musculares autólogas humanas, obtenidas según el procedimiento previamente descrito, así como las composiciones farmacéuticas que las contienen, pueden utilizarse en la elaboración de una composición farmacéutica: para la reparación y/o reconstitución de tejido muscular cardíaco, y/o para el tratamiento de la insuficiencia cardíaca post-isquémica, y/o para el tratamiento de la miocardiopatía dilatada y/o para el tratamiento de cardiomiopatía no isquémica. 6. Procedimiento terapéutico
En otro aspecto, la invención se relaciona con un procedimiento terapéutico de CMP celular autóloga para crear, regenerar y reparar tejido miocárdico disfuncional mediante el implante de una composición farmacéutica que comprende células madre- progenitoras musculares autólogas humanas, debido a su capacidad de regenerar tejido cardíaco, expandidas y mantenidas ex vivo en un medio de cultivo autólogo; comprendiendo dicho procedimiento recoger una muestra de material procedente del cuerpo del paciente objeto del implante posterior que comprende células madre- progenitoras musculares autólogas humanas, expandir dichas células mediante cultivo en un medio de cultivo autólogo proporcionado por esta invención e implantar las células madre-progenitoras autólogas humanas recolectadas en el paciente al que previamente se le había extraído dicho material conteniendo las células madre-progenitoras musculares autólogas.
De forma más concreta, la invención proporciona un procedimiento terapéutico de CMP celular autóloga para crear, regenerar y reparar tejido miocárdico disfuncional mediante el implante de una composición farmacéutica que comprende células madre- progenitoras musculares autólogas humanas, regeneradoras de tejido cardíaco, expandidas y mantenidas ex vivo en un medio de cultivo autólogo; y donde dicho procedimiento comprende los siguientes pasos:
a) la toma al paciente de una biopsia de músculo esquelético tomada de un músculo, preferentemente, preacondicionado mediante una inyección intramuscular de un anestésico local, tal como lidocaína o bupivacaína;
b) la preparación de un medio de cultivo de las células madre-progenitoras autólogas humanas a partir de suero autólogo del paciente;
c) la preparación de una composición enriquecida de células madre-progenitoras musculares autólogas a partir de la biopsia de a) y del medio de cultivo de b);
d) la preparación de una composición farmacéutica a partir de la composición de c); y e) el implante de la composición farmacéutica de células madre-progenitoras autólogas de d) en lesiones miocárdicas.
Las células madre-progenitoras musculares autólogas humanas comprenden mioblastos y miocitos (maduros e inmaduros) y tienen la capacidad de regenerar tejido cardíaco cuando se implantan en el músculo cardíaco.
Tal como se utiliza en la presente descripción el término "lesiones miocárdicas" hace referencia tanto a cardiomiopatías isquémicas como idiopáticas. En una aplicación particular, el procedimiento de CMP celular autóloga según la presente invención se aplica a pacientes con una cardiomiopatía isquémica debida a un infarto de miocardio sin posibilidad de revascularización quirúrgica o percutánea, así como a pacientes subsidiarios de revascularización cardíaca. El objetivo de esta CMP celular autóloga sería limitar la expansión del infarto, el remodelado cardíaco y la regeneración del miocardio. La definición de cardiomiopatía isquémica incluye a los pacientes con infarto del ventrículo derecho o del ventrículo izquierdo, en este último caso con posibilidad de regurgitación isquémica de la válvula mitral. En otra aplicación particular, el procedimiento de CMP celular autóloga según la presente invención se aplica a pacientes con una cardiomiopatía idiopática dilatada.
Entre los beneficios de la CMP celular se pueden citar la disminución de fibrosis, la reducción del área de la cicatriz del infarto y la mejora de la elasticidad y propiedades de la pared ventricular (esenciales para restablecer la función diastólica).
En una realización particular, el implante de la composición farmacéutica de células madre-progenitoras autólogas de d) en lesiones miocárdicas se realiza mediante inyección directa. El término "implante mediante inyección directa" tal como se utiliza en la presente invención hace referencia a una administración epicárdica o endovascular de la composición farmacéutica proporcionada por esta invención en pacientes con cardiomiopatías isquémicas o idiopáticas. En una realización particular, se realiza una administración epicárdica o endovascular de la composición farmacéutica de la invención en pacientes con cardiomiopatía isquémica distribuida de la siguiente forma: un 70% aproximadamente en el área periférica al infarto y un 30% aproximadamente en la parte central de la cicatriz. La administración epicárdica puede realizarse bien por exposición quirúrgica convencional o bien por toracoscopia. En la aproximación quirúrgica (toraco/esternotomía clásica o mini) el área isquémica queda bien expuesta permitiendo realizar las inyecciones de la composición terapéutica en la zona infartada y, mayoritariamente, en la zona que la circunda. La inyección de la composición farmacéutica conteniendo células madre-progenitoras musculares autólogas humanas proporcionada por esta invención también puede realizarse en la zona perilesional. Con esta distribución del implante propugnada en la presente invención se consigue una mayor supervivencia de las células implantadas en la región periférica por la irrigación residual y la revascularización miocárdica colateral existente y se evita en parte la elevada mortalidad celular que se observa en los implantes que se realizan en la cicatriz isquémica altamente fibrótica. En otra realización particular, el implante de la composición farmacéutica de células madre-progenitoras autólogas de d) en lesiones miocárdicas se realiza mediante administración sistémica o intracoronaria a través de un acceso venoso percutáneo.
En otra realización particular, el procedimiento de CMP celular autóloga según la presente invención se aplica a pacientes con una cardiomiopatía idiopática dilatada realizándose múltiples implantes de la composición farmacéutica proporcionada por la invención entre las arterias coronarias en el miocardio de los dos ventrículos.
En la actualidad se dispone de nuevos sistemas quirúrgicos computerizados para su uso en cirugía cardíaca. La realización de puentes o bypass coronarios asistidos robóticamente mediante acceso torácico se está incrementando ya que permite una recuperación del paciente rápida y segura con un reducido riesgo de infecciones y un excelente resultado cosmético. En una realización particular, el implante se realiza mediante inyección directa transepicárdica utilizando el mencionado sistema robotizado computerizado. En una realización concreta la aguja se inserta en el miocardio mediante un brazo de robot controlado mediante vídeo, la jeringa se localiza fuera del tórax y se conecta con la aguja mediante un tubo extensor de pequeño diámetro. La ventaja de esta aproximación en pacientes con insuficiencia cardiaca es que el procedimiento terapéutico de CMP celular autóloga puede realizarse de forma segura sin manipulaciones del corazón, evitando el riesgo de alteración hemodinámica y fibrilación ventricular. El efecto beneficioso de la CMP celular podría estar limitado por la tasa de mortalidad de las células inyectadas. Para resolver este problema, la invención propone realizar inyecciones periódicas mediante procedimientos de implante percutáneo o quirúrgicos de las células madre-progenitoras autólogas de la presente invención. Esta aproximación permitiría lograr el objetivo de la CMP, reduciendo progresivamente las áreas infartadas o mejorando el miocardio patológico. Con este fin la invención incluye la creación de un banco personalizado de cada paciente de células madre-progenitoras autólogas, originado a partir de células aisladas y congeladas durante el procedimiento de cultivo celular de cada individuo. A partir de las células madre-progenitoras autólogas almacenadas pueden expandirse nuevos cultivos celulares para la preparación de nuevas composiciones evitando nuevas biopsias o eliminación de tejidos.
Los siguientes ejemplos sirven para ilustrar la invención y no deben ser considerados en sentido limitativo de la misma.
EJEMPLO 1 En este ejemplo se describe la obtención y manipulación de células madre- progenitoras musculares autólogas humanas para su empleo en un procedimiento de CMP celular autóloga con el fin de revertir el tejido miocárdico disfuncional dañado en una estructura histológica viva capaz de generar presión sistólica y diastólica.
1.1 Biopsia de músculo esquelético
Un día antes de proceder a realizar la biopsia quirúrgica se inyectó al paciente, por vía intramuscular, una solución al 2% de lidocaína, en y alrededor del músculo del vasto lateral. La biopsia se realiza mediante una incisión de 5 cm en el vasto lateral, y, en condiciones estériles, se extrae un fragmento de 2 a 3 cm3 de músculo esquelético (unos 15 g). Inmediatamente después se fragmenta el tejido muscular extraído con unas tijeras, se introduce en medio de cultivo completo o en una solución de tampón fosfato (PBS) y se mantiene a 4°C. El procedimiento para el aislamiento y purificación celular y su cultivo se debe comenzar lo antes posibles para garantizar la supervivencia celular. Las muestras se transportan al laboratorio de Biología Celular en un contenedor apropiado y a baja temperatura.
1.2 Preparación del medio de cultivo autólogo A partir de muestras de sangre
En un Centro de Transfusión de Sangre, se recoge sangre venosa del paciente. Mediante venipuntura se rellenan 50 tubos de 10 mi para recogida de suero. Después de la sedimentación celular y precipitación de la fibrina, bajo cabina de flujo laminar se extrae el suero de cada tubo y se recoge en una bolsa de sangre vacía. Se toman muestras de suero para ensayos hematológicos y microbiológicos (bacterias y virus). La bolsa con el suero se congela a -80°C a la espera de recibir los resultados de los ensayos hematológicos y microbiológicos. Antes de preparar el medio de cultivo se inactiva el complemento del suero a
56°C durante 1 hora y se filtra. Parte del suero se combina con el medio de cultivo y se mantiene a 4°C, se calienta hasta 37°C y se filtra antes de añadir al frasco con el cultivo celular. El medio de cultivo final contiene un 10% de suero humano autólogo del paciente, 89% de medio HAM-F12 (GIBCO BRL, Cat. No. 21765), 1% de penicilina/estreptomicina, heparina (2 Ul/ml de suero obtenido), protamina (en forma de sulfato) (3 UI por mi de suero obtenido) y, opcionalmente, anfotericina B (0,25 mg/ml) y/o de 0,1 a 250 pg/ml de bFGF recombinante.
El suero humano restante se congela a -40°C a la espera de una nueva preparación de medio de cultivo. En cada preparación de medio se inactiva nuevamente el complemento a 56°C durante 1 hora con filtrado posterior.
A partir de plasmaféresis inmediatamente antes de iniciar el procedimiento de plasmaféresis se administra al paciente una dosis de 50 Ul/kg de heparina sódica no fraccionada. El proceso de plasmaféresis se realiza según el procedimiento de rutina previsto para el equipo empleado. Durante la plasmaféresis el anticoagulante estándar es sustituido por una solución fisiológica de cloruro sódico 0,9% con heparina como anticoagulante. El plasma se sustituye por albúmina al 5%. El procedimiento se termina una vez obtenido el volumen de plasma necesario para la preparación del medio de cultivo autólogo. Se calcula la cantidad de heparina en el plasma obtenido en función del volumen plasmático del paciente y se añade 1,5 UI de protamina por cada UI de heparina. Se mantiene así hasta que se produce la coagulación del plasma. Entonces se extrae el suero y se distribuye en pequeñas alícuotas que se congelan. Al igual que para el suero obtenido de muestras sanguíneas, también en este caso las muestras de suero se analizaron hematológica y microbiológicamente antes de ser utilizadas. 1.3 Aislamiento de las células satélite y expansión in vitro
Todas las manipulaciones se realizan en condiciones asépticas y utilizando una cabina de flujo laminar. Los fragmentos de músculo esquelético explantado se lavan con PBS. Con unas tijeras se elimina el tejido adiposo y con cuidado se desmenuza el músculo. Los fragmentos de músculo se lavan nuevamente con PBS hasta que el sobrenadante aparezca limpio. Se centrifuga durante 5 minutos a lOOg. El tejido se disocia mediante 2 tratamientos enzimáticos consecutivos: primero las células se incuban con colagenasa IA (1,5 mg/ml/g de tejido) y se dejan incubando durante 1 hora. Cada 10 minutos se agitan los tubos para favorecer mecánicamente la disociación. Alternativamente, los tubos pueden colocarse en un incubador con agitación reciprocante/orbital (ROSI) a 37°C. En segundo lugar se incuba durante 20 minutos con un 0,25% de tripsina 1 x EDTA (2 mi). A continuación se lavan las células (10 minutos a 300g) y para detener la reacción enzimática se añade 1 mi del propio suero del paciente obtenido previamente. Se realiza una filtración a través de una malla 40 μm (cell stainer nylon). Con los fragmentos que hayan podido quedar en la malla se repite nuevamente el procedimiento de digestión. Finalmente las células del filtrado se recogen por sedimentación (20 minutos a 300g) y el sobrenadante se desecha.
Las células se resuspenden en medio de cultivo completo fresco: 10% de suero humano autólogo del paciente, 89% de medio HAM-F12 (GLBCO BRL, Cat. No. 21765), 1% de penicilina/estreptomicina y, opcionalmente, anfotericina B (0,25 mg/ml), que contiene, además, heparina (2 Ul/ml de suero obtenido) y protamina (en forma de sulfato) (3 UI por mi de suero obtenido), y se siembran en frascos para cultivo celular. A continuación, los frascos se incuban durante 3 semanas a 37°C en una atmósfera húmeda y con 5% de CO2. Los frascos se colocan en el incubador sin gradiente de nivel para evitar una proliferación celular irregular. Después de un periodo de incubación de 2 a 3 días se renueva en el medio para eliminar las células sanguíneas y las células muertas. Cuando se llega a la sub-confluencia (50% de confluencia) se realiza un paso de los cultivos (fracción 1:5) para evitar la aparición de diferenciación miogénica a mayores densidades. A confluencias del 50% se requerirán múltiples pasos del cultivo para prevenir que las células mononucleadas se diferencien en miotubos multinucleados.
En cada paso de los cultivos, las células se cosechan por tripsinización (2 mi de 0,25%» tripsina-EDTA en cada frasco durante 1 a 5 minutos en el incubador). El desprendimiento completo de las células se comprueba observando al microscopio las células que flotan. Entonces se detiene la reacción mediante adición de medio de cultivo completo y la suspensión de células resultante se reparte en otros 5 frascos. En cada paso del proceso de cultivo celular se realizan controles para bacterias (ensayos de aerobios y anaerobios), virus y hongos.
1.4 Eliminación de fibroblastos
Normalmente los fibroblastos contaminan los cultivos por lo que es necesario eliminarlos para obtener una expansión de mioblastos adecuada. En el momento de realizar el primer pase, y, después de neutralizar con tripsina, las células cultivadas se mantienen en el incubador durante 30 minutos. Este periodo de tiempo es suficiente para que los fibroblastos sedimenten mientras que la mayoría de los mioblastos (más pequeños) permanecen en suspensión. Se recoge el sobrenadante celular y se transfiere a nuevos frascos de cultivo. La pureza de las células mioblásticas se valora por citometría de flujo con un anticuerpo anti-CD56 humano y tinción de desmina intracelular. Las muestras con una pureza de mioblastos inferior al 50% se someten a un procedimiento de enriquecimiento celular. Para ello, en el momento del segundo pase, después de cosechar las células y antes de resembrarlas, éstas se marcan con un anticuerpo de ratón anti-CD56 humano al que se han unido unas microesferas magnéticas. Mediante una selección positiva realizada con un clasificador celular magnético se tienen poblaciones celulares altamente enriquecidas de mioblastos progenitores de células musculares que expresan CD56 y desmina en más del 90% de las células.
Habitualmente, para obtener la cantidad final de células necesaria se deben realizar varios pases. En general, al cabo de unas 3 semanas, se obtienen más de 200 millones de células. Este número puede escalarse mediante pases en un sistema de cultivo multicadena.
1.5 Aislamiento de células para el banco personalizado
Para cada paciente, durante el proceso de cultivo celular pueden aislarse algunas células que serían congeladas. A partir de esas células almacenadas pueden expandirse nuevos cultivos celulares, para realizar inyecciones intramiocárdicas repetidas periódicas (evitando así el tener que repetir nuevas biopsias). En el momento del segundo pase, algunas muestras de células positivas para CD56 altamente enriquecidas se criopreservan utilizando 5% de DMSO, se someten a una congelación programada y finalmente se almacenan en nitrógeno líquido. La concentración celular será de 25 a 50 millones de células por mi. Cuando sea necesario, las células se descongelan y se cultivan en medio de mioblastos para su posterior utilización (implante percutáneo) una vez se haya realizado la expansión ex vivo.
1.6 Medio de invección
El día del trasplante celular, se cosechan las células y se lavan en medio de inyección (albúmina humana 0,5% y medio de cultivo completo) y se mantienen en hielo antes del implante. Por citometría de flujo se valora la tasa final de pureza de los mioblastos. Mediante un citómetro de Malassez (mediante tinción con tripán blue) se determina la concentración celular y su viabilidad. Asimismo, antes del implante, se valora la esterilidad del cultivo celular (test de Gram).
1.7 Procedimiento de implante celular El implante celular puede realizarse mediante una administración epicárdica o endovascular. La administración epicárdica puede realizarse bien por exposición quirúrgica convencional o bien por toracoscopia. En la aproximación quirúrgica (toraco/esternotomía clásica o mini) el área isquémica queda bien expuesta permitiendo realizar alrededor de 10 inyecciones de suspensión celular en la zona infartada y mayoritariamente en la zona que la circunda. Para este propósito se utiliza una aguja curvada de 23 a 26 G x 4 cm. La densidad celular recomendada está comprendida entre 50 y 70 millones de células/ml. La inyección se realiza lentamente, durante aproximadamente 15 minutos. Después de cada inyección los orificios de la aguja deberán bloquearse mediante presión dactilar (1 a 2 minutos) para evitar que haya una regurgitación de la suspensión celular.
Protocolo de implante de los mioblastos: implante de, al menos, 20 millones de células, preferentemente, unos 200 millones de células densidad celular: 50 a 70 millones de células por mi - tiempo de cultivo: aproximadamente 21 días concentración de mioblastos: superior a 70% - vida media celular a 2-8°C: 96 horas. EJEMPLO 2
Este ejemplo es un estudio clínico en fase I/II realizado para valorar la idoneidad y seguridad del trasplante intramiocárdico de una composición de células madre- progenitoras musculares autólogas humanas de la invención a pacientes que han padecido infarto de miocardio.
MATERIAL Y MÉTODOS
2.1. Selección de pacientes El estudio se realizó sobre un total de 12 pacientes que habían padecido previamente un infarto de miocardio, al menos 4 semanas antes de su inclusión en el protocolo, y que estaban en espera de someterse a un bypass aortocoronario. Para la selección de los pacientes se tuvo en cuenta la edad (comprendida en el rango 30-80 años), la función cardíaca (fracción de eyección ventricular izquierda superior al 25%) y que no tuvieran historia de arritmias malignas o distrofias musculares, ni dieran resultado positivo en las pruebas de disfunción hepática o nefrítica o en pruebas de embarazo, FiTV o hepatitis.
2.2. Biopsia muscular, cultivo y caracterización de las células madre-progenitoras musculares autólogas humanas
La preparación de las células madre-progenitoras musculares autólogas humanas para la composición terapéutica se realizó tal y como se describe en el Ejemplo 1.
Las bíopsias musculares se obtuvieron del vasto lateral en condiciones estériles y después de un preacondicionamiento con 2% lidocaína hidrocloruro. En todo el procedimiento se utilizó un medio de cultivo autólogo humano de la invención que comprendía un 79% de medio HAM-F 12 (GIBCO-BRL) suplementado con un 20% de suero autólogo del paciente (con heparina y protamina) y un 1% de penicilina/estreptomicina (GIBCO-BRL). El suero autólogo del paciente se obtuvo mediante plasmaféresis, tal y como se describe en el apartado 1.2 del ejemplo anterior, realizada el día anterior a la obtención de la biopsia muscular (entre 800 y 2.135 mL por paciente, promedio: 1.735 mL).
Para el aislamiento de las células satélite las digestiones enzimáticas se realizaron mediante incubación con tripsina/EDTA (0,5 mg/mL tripsina y 0,53 mM EDTA, GTBCO-BRL) y posteriormente con colagenasa (0,5 mg/mL, GTBCO-BRL). El procedimiento de expansión celular y eliminación de fibroblastos se realizó como se ha descrito en el ejemplo anterior. La pureza de células mioblásticas en los cosechados se valoró por citometría de flujo y tinción con anticuerpos monoclonales específicos para N-CAM humana (CD56), CD45 y desmina.
El promedio de células miogénicas obtenidas por paciente fue 221 x 106 (siempre dentro del rango 105-390 x 106), y la pureza media de células miogénicas CD56+/CD45- fue 65,6+6,4%.
2.3 Trasplante celular
Antes del procedimiento quirúrgico, para cada paciente se determinó la función y viabilidad del músculo cardíaco mediante tomografϊa de emisión de positrones (PET), ecocardiograma y electrocardiograma (Holter-EGC 24 horas). El bypass aortocoronario con circulación extracorpórea se realizó entre 3 y 4 semanas después de haber realizado la biopsia muscular. Los pacientes recibieron una media de 2 injertos (entre 1 y 4).
Una vez suturados todos los injertos y reestablecido el latido espontáneo del corazón se procedió al implante celular por administración epicárdica mediante al menos 10 inyecciones repetidas en la zona infartada y áreas circundantes, zonas que ecocardiográficamente habían sido identificadas como hipokinéticas, akinéticas o diskinéticas. Para las inyecciones se utilizó una cánula oftálmica 23G (Maersk Medical Ltd, Redditch, B98 9NL GB). Las zonas que iban a recibir el implante celular fueron identificadas mediante ecocardiograma antes del procedimiento quirúrgico con el objetivo de poder evaluar la contractilidad de dichas zonas durante el seguimiento posterior al trasplante celular. Después del procedimiento quirúrgico los pacientes fueron sometidos a una monitorización telemétrica continua. Cada 6 horas se tomaron muestras de sangre para valorar presencia de enzimas necróticas cardíacas. Para prevenir la inflamación se administró metil-prednisolona (500 mg) después de la cirugía. Para prevenir arritmias cardíacas se indicó un tratamiento de 3 meses con amiodarona oral. Para la monitorización de la respuesta al procedimiento de cardiomioplastia realizado se efectuó un seguimiento mediante PET (3 meses después del trasplante), ecocardiograma (a los 40 días y a los 3 meses después del trasplante). Igualmente se monitorizó la presencia de arritmias mediante Holter-ECG (40 días y 3 meses después del trasplante). El protocolo y todos los procedimientos realizados fueron previamente aprobados por los comités éticos de ensayos clínicos, institucional y regional, de acuerdo con los requerimientos legalmente previstos.
Estudios ecocardio ráficos. La contractilidad miocárdica global y regional se midió por ecocardiografía bidimensional (mediante un sistema ultrasonidos Sonos 5500, Philips). El análisis del movimiento de la pared ventricular izquierda regional se realizó conforme al procedimiento descrito por el comité de estándares de la Sociedad Americana de Ecocardiografía (Schiller NB et al. J Am. Soc. Echocardiogr. 1989; 2: 358-367): el ventrículo izquierdo se dividió en 16 segmentos y se valoró para cada segmento el movimiento de la pared como l=normal, 2=hiρokinesia, 3=akinesia, 4=diskinesia. El índice de motilidad regional (wall motion score index, WMSI) se calculó como la suma de los índices de cada segmento dividida por el número de segmentos evaluados. Se obtuvo un índice WMSI para los segmentos tratados con implante celular y otro para los no tratados. La fracción de eyección del ventrículo izquierdo (LVEF) se obtuvo mediante un sistema de detección automática del borde endocárdico (automatic border detection, ABD) (Pérez JE et al. J. Am. Coll. Cardiol. 1992; 19: 336-344). También se valoró la contractilidad regional de cada segmento mediante colorkinesis y doppler tisular. Las valoraciones se realizaron por un procedimiento de doble ciego (2 observadores independientes sin información previa). La reproducibilidad dentro del estudio para el volumen diastólico final en el ventrículo izquierdo fue 2,8±6,4 (CV 5,5%) y para la fracción de eyección (LVEF) 0,3+4,6 (CV 6,6%).
Estudios de tomografía ñor emisión de positrones (PET). Mediante PET se valoró el flujo sanguíneo miocárdico, y el metabolismo de glucosa, antes del tratamiento quirúrgico y a los 3 meses del trasplante celular.
Los estudios de perfusión y metabolismo se realizaron en un tomógrafo PET (ECAT EXACT HR+, Siemens/CTI Knoxville, EE.UU) que adquiere 63 planos transaxiales con una resolución espacial entre planos de 4,5 mm. La producción de los trazadores, para los estudios de metabolismo de glucosa (18F-FDG) y para los de perfusión (13N-amonio), se realizó en el ciclotrón (Cyclone 18/9, Ion Beam Applications, Bélgica) y en el laboratorio de radiofarrnacia del centro. El protocolo de adquisición de imágenes en cada paciente se inició con un estudio de transmisión de 2 minutos utilizando fuentes de germanio-68 para posicionar el corazón en el campo de visión, seguido de una adquisición de 5 minutos para efectuar la corrección de atenuación fotónica. Seguidamente se perfundió N-amonio (9,25 MBq/kg, máximo 740 MBq) mediante inyección intravenosa a un flujo constante de 10 ml/min. La adquisición dinámica de imágenes se inició en el momento de la inyección. Durante 20 minutos se recogieron imágenes seriadas en una secuencia dinámica con esquema de duración variable: 12 x 10 s, 4 xlO s, 4 x 30 s, 3x 300 s. La adquisición de datos del PET se realizó de acuerdo a un protocolo ya descrito en la bibliografía (Muzik O et al. J. Nucí. Med. 1993; 34: 336-344). Una vez obtenidas las imágenes para la valoración de la perfusión se reservó un periodo de 50 minutos para permitir el decay físico de la radiactividad del 13N-amonio (semiperíodo de desintegración 9,9 minutos). Posteriormente se inició la adquisición de imágenes para los estudios metabólicos de glucosa, realizados siguiendo la técnica de clampaje hiperinsulinémico-euglicémico (Knuuti MJ et al. J. Nucí. Med. 1992; 33: 1255-1262). La 18F-FDG se inyectó mediante bolo intravenoso después de estabilizar los niveles de glucosa en un rango comprendido entre 85 y 95 mg/dl 4,6 MBq/kg, máximo 370 MBq). La adquisición de las imágenes seriadas de la F-FDG se inició en el momento de la inyección y se prolongó durante 60 minutos (8 x 15 s, 2 x 30 s, 2 x 120 s, 1 x 180 s, 4 x 300 s, 3 x 600 s), siguiendo el protocolo descrito por Knuuti y colaboradores citado supra.
Finalizada la adquisición de las imágenes se realizó una segmentación de la transmisión previa a la reconstrucción para la corrección de atenuación. Las imágenes del estudio metabólico se reconstruyeron utilizando el procedimiento OSEM (ordered subsets expectation maximisation) con 2 iteraciones y 8 subconjuntos. A todos los estudios (tanto para perfusión como para metabolismo) se les aplicó un filtro gaussiano (Gaussian smoothing filter) de 6 mm FWHM (full width at half máximum). Para el análisis visual las imágenes transaxiales se reorientaron según el eje corto, el eje largovertical y el eje largo horizontal del ventrículo izquierdo.
Finalmente, para el análisis cuantitativo se utilizaron 6 secciones contiguas de la región media del ventrículo izquierdo, en el eje corto. El flujo sanguíneo miocárdico regional (myocardial blood flow, MBF) se calculó en valores absolutos según un modelo de 3 compartimentos (Muzik O et al. J Nucí. Med. 1993; 34: 83-91), y los valores de utilización de glucosa (myocardial glucose utilization rates, rMGU) se estimaron mediante el análisis gráfico de Patlak (Patlak CS et al. J. Cereb. Blood Flow Metab. 1985; 5: 584-590).
RESULTADOS
2.4 Trasplante celular y evolución postquirúrgica
Las características demográficas, clínicas y funcionales de los pacientes en el estudio se recogen en las siguientes Tablas 1 y 2.
Tabla 1 Características de los pacientes
Caso Edad Sexo Local. Evol. Síntomas Cías. NYHA Local.
Infarto 1 [nfarto Angina/disnea Basal/FU Bypass
( ¡meses)
1 63 H Anterior 4 Inestable/III III/II LAD, RC, OM
2 64 H Anterior-apical 6 III/II II/I LAD, OM
3 40 H Inferior 5 Inestable/II II/I RC, LAD
4 55 H Anterior 23 I/I II/I LAD, RC, OM
5 68 H Anterior-apical 168 III/III mili LAD, RC, OM
6 74 M Anterior 10 /III III/III LAD
7 69 H Inferior 125 Inestable/II 11/ LAD, RC, OM, Dg
8 71 H Inferior 108 Inestable/II II I LAD, OM
9 56 H Anterior 120 111/ I/I LAD, Dg, OM
10 74 H Inferior 20 III/II 11/ LAD, OM, Dg, RC
11 68 H Anterior 3 I/I I/I LAD, RC, OM
12 73 H Anterior-apical 146 III/III III/II LAD, Dg, OM
Abreviaturas:
Sexo. H: hombre; M: mujer Clasificación NYHA: Clasificación de la "New York Heart Association".
FU: Evaluación de seguimiento realizada 3 meses después de la cirugía y trasplante celular. Localización de los Bypass. LAD: arteria descendente anterior izquierda; RC: arteria coronaria derecha; M: arteria obtusa marginal; Dg: arteria coronaria diagonal.
Durante la realización del bypass aortocoronario, una vez finalizados los injertos y restaurado el latido espontáneo del corazón, se visualizó el área infartada y se inyectaron entre 3 y 5 mi de solución conteniendo las células miogénicas a una concentración siempre superior a 20 x 106 células/ml Las áreas de inyección se identificaron para el seguimiento ecocardiográfico. Antes de proceder al trasplante e inmediatamente después de recolectar las células para dicho trasplante se realizaron cultivos microbiológicos para prevenir contaminaciones. Por este motivo no se realizó el trasplante al paciente 9, cuyas muestras celulares dieron positivo en la tinción de gram. No obstante, a este paciente también se le realizaron los estudios protocolizados para el seguimiento.
Tabla 2 Datos sobre los trasplantes celulares realizados
Caso Biopsia Cel. Miogénicas LVEF basal LVEF FU muscular (g) implantadas 2D/ABD 2D/ABD (xlO6)
1 10 318 35/37 55/56
2 13 165 40/45 50/53
3 7,5 192 45/46 70/65
4 7 393 40/47 62/66
5 10 200 27/26 40/50
6 9 110 30/38 40/48
7 9,5 171 40/38 No FU
8 5,5 105 40/42 47/51
9 9 0 45/40 35/38
10 14 390 25/29 No FU
11 10 100 40/43 51/49
12 11,3 180 43/41 46/45
Abreviaturas: LVEF: Fracción eyección ventricular izquierda
FU: Evaluación de seguimiento realizada 3 meses después de la cirugía y trasplante celular.
2D: bidimensional; ABD: detección automática del borde endocárdico.
En la evolución postquirúrgica de los pacientes trasplantados no se produjeron complicaciones. Dado que en ensayos clínicos previos se observaron arritmias cardíacas, posiblemente asociadas al trasplante de células miogénicas esqueléticas, se monitorizó a los pacientes durante su hospitalización (mediante telemetría continua) y a los 40 días y 3 meses desde el trasplante (mediante un holter-ECG, 24 horas). En ningún caso se observó un incremento significativo de arritmias. Es más, el número de latidos ventriculares prematuros se redujo después del trasplante. Sin embargo, el paciente 6 desarrolló una taquicardia ventricular no sostenida 40 días después de la cirugía. Este paciente fue sometido a aneurisectomía durante el procedimiento quirúrgico, lo que podría explicar el suceso.
Los análisis serológicos de enzimas cardíacas y hepáticas no mostraron cambios significativos después del trasplante y regresaron progresivamente a sus valores normales. Como medida indirecta de inflamación se determinó la proteína C, sin que se observaran cambios significativos después del trasplante o durante el seguimiento.
Todos los pacientes han abandonado el hospital y continúan vivos.
2.5 Función del ventrículo izquierdo El incremento medio de la fracción de eyección del ventrículo izquierdo, medida por ecocardiografía bidimensional, se incrementó desde el 35,5 + 2,3% (media + error medio estándar) antes de la cirugía hasta un 53,5 ±4,98% a los 3 meses del trasplante (p<0,05). La contractilidad cardíaca global, estimada mediante ecocardiografía automática de detección del borde endocárdico (ABD), se incrementó desde un 39,8 + 3,26% hasta un 56,3 + 3,1% (p<0,05) (Figura 1).
También se produjo una mejora de la contractilidad local, evidenciada por la reducción del número medio de segmentos akinéticos/hipokinéticos/diskinéticos de 7 (entre 5-10, antes de la cirugía) a 3 (entre 0-5, a los 3 meses del trasplante).
El índice de motilidad regional WMSI basal, promedio 1,72+0,14, se redujo a los 3 meses del trasplante, 1,25+0,07 (p<0,05) (Tabla 3). Para diferenciar los beneficios potenciales sobre la función cardíaca que se derivan del trasplante de células miogénicas de los derivados de la revascularización compararon las mejoras en los índices WMSI de los segmentos que recibieron trasplante celular y los de los segmentos que no recibieron células. Los WMSI a los 3 meses se redujeron significativamente frente a los índices básales (antes de la cirugía), con una mayor reducción en los segmentos que recibieron trasplante celular (Tabla 3).
El descenso de WMSI está asociado con una mejora en la clasificación NYHA, de un 2,2+0,2 basal a 1,5±0,26 a los 3 meses (p<0,01). Tabla 3 Función regional (medida por el índice WMSI, Wall motion score índex)
Basal 40 días 3 meses
Global 1,73+0,07 1,40+0,07 1,25+0,07 0,027
Segmentos tratados 2,64±0,13 2,03+0,16 1,64+016 0,027
Segmentos no tratados 1,29+0,13 1,1+0,06 1,05+0,04 0,043
2.6 Perfusión miocárdica y estudios de viabilidad En 7 pacientes se realizaron estudios de perfusión (PET-amonio) y metabólicos
(FDG-glucosa), mediante pruebas realizadas antes de la cirugía (1 a 5 días antes) y 3 meses después del trasplante. Para cada región se calculó la retención de trazador asignándole un valor numérico cuantitativo. La retención media de glucosa para todo el miocardio antes de la cirugía fue 0,158+0,026 μmol-g"1 -min"1 mientras que a los 3 meses fue 0,270+0,008 μmol-g"1 -min"1 (p<0,05). Al analizar diferencialmente las áreas infartadas (tejido necrótico debido al infarto de miocardio) se comprobó un aumento significativo de la retención de amonio y de glucosa, lo que sugiere una mejoría de la viabilidad miocárdica en las zonas infartadas (Tabla 4). Véase también la Figura 2.
Tabla 4
Tomografía de emisión de positrones PET. Valoración del flujo sanguíneo mediante retención de 13N-amonio (ml'g'^min 1), y del metabolismo de glucosa mediante retención de 18F-FDG (μmol-g ^min 1)
Basal 3 meses P
Global 18F-FDG 0,158±0,026 0,270+0,008 0,028
13N-amonio 0,47±0,05 0,5+0,03 0,273
Regiones infartadas 18F-FDG 0,126±0,022 0,231+0,011 0,028
13N-amonio 0,36+0,04 0,39±0,01 0,686
Regiones no infartadas 18F-FDG 0,170±0,029 0,284±0,013 0,046
13N-amonio 0,59+0,07 0,62±0,06 0,5 DISCUSIÓN
Las principales conclusiones de este estudio son: 1. El trasplante directo de células miogénicas esqueléticas autólogas al miocardio de pacientes con historia de infarto de miocardio y sometidos a bypass aortocoronario es factible y seguro; 2. Aunque no se puede diferenciar claramente los efectos derivados del bypass de los derivados del trasplante celular, los estudios de funcionalidad y viabilidad sugieren que el trasplante de células miogénicas autólogas contribuye a mejorar la contractilidad del ventrículo izquierdo y a la reparación del tejido; 3. Los mioblastos esqueléticos son capaces de injertarse, al menos hasta los 3 meses después de la cirugía.
Aunque para comprobar si los mioblastos esqueléticos son capaces de injertarse adecuadamente sería necesario estudiar directamente el miocardio, el aumento de la retención de glucosa por PET indica claramente que en las áreas infartadas, donde no se detectaba tejido viable, empieza a detectarse tejido viable una vez realizado el trasplante. Por otra parte, aunque en el estudio no se incluyeron pacientes control, los resultados de 18F-FDG PET para el paciente n° 9, al que solamente se le realizó el bypass aortocoronario por contaminación microbiológica del cultivo celular, no mostraron cambios significativos en la captación de glucosa a los 3 meses de seguimiento (Figura 2B), lo que sin ser concluyente sí es esperanzador. Estos resultados demuestran que el bypass aortocoronario con trasplante de células miogénicas esqueléticas autólogas mejora notablemente la contractilidad cardíaca, evidenciada por el aumento de la fracción de eyección y particularmente por la disminución del índice WMSI. De estos resultados no puede concluirse que la mejora de la función cardíaca se derive solamente del bypass. El hecho de que los segmentos miocárdicos que recibieron trasplante celular hayan presentado mejoras mayores, con un aumento en la retención de glucosa en esos mismos segmentos, indica que la mejora de la función cardíaca no puede deberse exclusivamente al bypass. Para una demostración fehaciente de que el trasplante celular autólogo es responsable de la mejora en la función cardíaca sería necesario realizar el trasplante sin el concurso de otras terapias, algo que hoy no sería ético a menos que las células se implantasen por inyección percutánea.
Informes recientes sobre otros ensayos clínicos han sugerido que el trasplante de mioblastos esqueléticos autólogos está asociado con arritmias cardíacas (Menasche P et al. Lancet 2001; 357:279-280. Menasche P et al. J Am. Coll. Cardiol. 2003; 41: 1078- 1083. Hagege AA et al. Lancet 2003; 361:491-492. Pagani FD et al. J Am. Coll. Cardiol. 2003; 41:879-888). De hecho algunos pacientes han requerido del implante de desfibriladores intracardíacos. Por el momento no se conoce con certeza la causa de estas arritmias pero podrían estar relacionadas con la formación de circuitos de re- entrada eléctricos (quizás porque no se establezcan uniones gap con los mioblastos esqueléticos implantados), el número y volumen de células implantadas, o el uso de suero fetal bovino para el cultivo y expansión de las células miogénicas autólogas. Es importante puntualizar que en estos protocolos se ha utilizado suero bovino fetal para el cultivo y expansión in vitro de las células miogénicas autólogas, lo que constituye una fuente de proteínas xenogénicas. El contacto de las células humanas con el suero bovino durante 3 semanas conlleva la fijación en la superficie celular de dichas proteínas animales. El trasplante de estas células ocasionaría una reacción inflamatoria seguida de fibrosis. Los estudios clínico-patológicos realizados muestran que las células trasplantadas de esta manera están embebidas en una trama fibrótica en la que no ha habido neovascularización. Esta configuración histológica representa un riesgo para los circuitos de re-entrada que pueden inducir la generación ectópica de arritmias ventriculares severas. A diferencia de estos estudios, en el presente ensayo clínico se han utilizado células miogénicas esqueléticas autólogas expandidas en medios de cultivos totalmente autólogos, evitando cualquier reacción inmune. Esto podría explicar por qué en este ensayo clínico no se han observado estas arritmias.

Claims

REIVINDICACIONES
1. Un medio de cultivo autólogo de células madre-progenitoras autólogas humanas que comprende: a) entre 0,1% y 90% en peso de suero humano autólogo; b) entre 0,1 y 10.000 Ul/ml de heparina; c) entre 0,1 y 10.000 Ul/ml de protamina; y d) un medio de cultivo con nutrientes básicos con o sin glutamina, en cantidad suficiente hasta el 100% en peso.
2. Medio de cultivo según la reivindicación 1, en el que dicho suero autólogo humano ha sido sometido a un tratamiento con el fin de inactivar el complemento.
3. Medio de cultivo según la reivindicación 1, en el que dicho suero autólogo humano ha sido obtenido a partir de muestras sanguíneas del paciente.
4. Medio de cultivo según la reivindicación 1, en el que dicho suero autólogo humano ha sido obtenido mediante la realización de una plasmaféresis al paciente donante de dicho suero.
5. Medio de cultivo según la reivindicación 4, en el que dicha plasmaféresis se realiza utilizando heparina como anticoagulante y sulfato de protamina para revertir la anticoagulación.
6. Medio de cultivo según cualquiera de las reivindicaciones anteriores que comprende, además, un antibiótico.
7. Medio de cultivo según la reivindicación 6, en el que dicho antibiótico se selecciona entre penicilina, estreptomicina, gentamicina y sus mezclas.
8. Medio de cultivo según cualquiera de las reivindicaciones anteriores que comprende, además, anfotericina B y/o un factor de crecimiento de fibroblastos (FGF).
9. Medio de cultivo según la reivindicación 1, que comprende: 89% de medio HAM-F12; 10% de suero humano autólogo del paciente; heparina 0,1 a 100 Ul/ml; protamina 0,1 a 100 Ul/ml; y
1% de penicilina/estreptomicina y, opcionalmente,
0,25 mg/ml de anfotericina B y/o
0,1 a 250 pg/ml de bFGF recombinante.
10. Un método para la preparación de un medio de cultivo autólogo de células madre-progenitoras autólogas humanas, según cualquiera de las reivindicaciones 1 a 9, que comprende la mezcla de suero humano autólogo, heparina, protamina, nutrientes básicos con o sin glutamina, junto con, opcionalmente, antibióticos, y/o anfotericina B y/o un factor de crecimiento de fibroblastos.
11. Método según la reivindicación 10, en el que dicho suero autólogo humano ha sido obtenido por plasmaféresis.
12. Empleo de un medio de cultivo autólogo de células madre-progenitoras autólogas humanas según cualquiera de las reivindicaciones 1 a 9, para el cultivo in vitro, purificación y expansión de células madre-progenitoras autólogas humanas.
13. Un método para la preparación de una composición de células madre- progenitoras autólogas humanas, que comprende incubar dichas células madre- progenitoras autólogas humanas en un medio de cultivo autólogo de células madre- progenitoras autólogas humanas según cualquiera de las reivindicaciones 1 a 9 y purificar las células madre-progenitoras autólogas humanas obtenidas.
14. Método según la reivindicación 13, en el que la purificación de las células madre-progenitoras autólogas humanas obtenidas se realiza mediante el empleo de anticuerpos específicos y selectivos para dichas células madre-progenitoras autólogas humanas, que permiten la identificación de antígenos extracelulares característicos de dichas células madre-progenitoras autólogas humanas.
15. Método según la reivindicación 14, en el que dichos anticuerpos específicos y selectivos para dichas células madre-progenitoras autólogas humanas están unidos a microesferas magnéticas.
16. Un método para la obtención de células madre-progenitoras musculares autólogas humanas, útiles para su empleo en terapia celular, que comprende incubar dichas células madre-progenitoras musculares autólogas humanas en un medio de cultivo autólogo de células madre-progenitoras autólogas humanas según cualquiera de las reivindicaciones 1 a 9, y purificar las células madre-progenitoras musculares autólogas humanas obtenidas.
17. Método según la reivindicación 16, en el que la purificación de las células madre-progenitoras musculares autólogas humanas comprende el empleo de anticuerpos anti-CD56 humano, opcionalmente, unidos a microesferas magnéticas, y la selección de las células que manifiestan un fenotipo CD56+/CD45-.
18. Método según la reivindicación 16, en el que la purificación de las células madre-progenitoras musculares autólogas humanas comprende someter al cultivo celular a un paso de pre-siembra con el fin de sedimentar la totalidad o parte de los fibroblastos presentes en dicho cultivo celular y, posteriormente, identificar y separar las células madre-progenitoras musculares autólogas humanas mediante el empleo de anticuerpos anti-CD56 humano, opcionalmente, unidos a microesferas magnéticas, y la selección de las células que manifiestan un fenotipo CD56+/CD45-.
19. Un procedimiento para la obtención de células madre-progenitoras musculares autólogas humanas, a partir de una biopsia de tejido muscular, para la preparación de una composición farmacéutica, que comprende:
a) la realización de una biopsia en un paciente objeto del posterior implante de células madre-progenitoras musculares autólogas humanas para extraer un fragmento de tejido de músculo esquelético que comprende células madre-progenitoras musculares autólogas humanas; b) el cultivo de dichas células madre-progenitoras musculares autólogas humanas procedentes del músculo esquelético en un medio de cultivo autólogo de células madre-progenitoras autólogas según cualquiera de las reivindicaciones 1 a 9, bajo condiciones que permiten la expansión de dichas células madre-progenitoras musculares autólogas humanas cultivadas;
c) la purificación de dichas células madre-progenitoras musculares autólogas humanas cultivadas; y
d) la recolección de dichas células madre-progenitoras musculares autólogas humanas purificadas; y, opcionalmente,
e) la congelación de dichas células madre-progenitoras musculares autólogas humanas purificadas hasta la preparación de dicha composición farmacéutica.
20. Procedimiento según la reivindicación 19, que comprende la administración local al paciente, en la zona de la biopsia, antes de realizarla, de una composición farmacéutica que comprende un agente farmacológico que estimula la proliferación de las células madre-progenitoras musculares autólogas humanas.
21. Procedimiento según la reivindicación 19, en el que dicho agente farmacológico comprende un anestésico local, seleccionado entre lidocaína y bupivacaína.
22. Método según la reivindicación 19, en el que la purificación de las células madre-progenitoras musculares autólogas humanas comprende someter al cultivo celular a un paso de pre-siembra para sedimentar la totalidad o parte de los fibroblastos presentes en dicho cultivo celular y, posteriormente, identificar y separar las células madre-progenitoras musculares autólogas humanas mediante el empleo de anticuerpos anti-CD56 humano, opcionalmente, unidos a microesferas magnéticas, y la selección de las células que manifiestan un fenotipo CD56+/CD45-.
23. Composición enriquecida en células madre-progenitoras musculares autólogas humanas que comprende, al menos, un 70% de dichas células madre- progenitoras musculares autólogas humanas.
24. Composición farmacéutica que comprende, al menos, 20 millones de células, con una densidad celular de, al menos, 50 millones de células/ml y, al menos, 40% de células madre-progenitoras autólogas CD56+/CD45-, medio de cultivo autólogo de células madre-progenitoras autólogas según cualquiera de las reivindicaciones 1 a 9, y, al menos, un excipiente farmacéuticamente aceptable.
25. Composición farmacéutica según la reivindicación 24, que comprende entre 20 y 200 millones de células, con una densidad celular comprendida entre 50 y 70 millones de células/ml y, al menos, 70% de células madre-progenitoras autólogas CD56+/CD45-, medio de cultivo autólogo de células madre-progenitoras autólogas según cualquiera de las reivindicaciones 1 a 9, y, albúmina humana en una cantidad comprendida entre 0,1% y 20% en peso respecto al total.
26. Un procedimiento terapéutico de cardiomioplastia celular autóloga para crear, regenerar y reparar tejido miocárdico disfuncional mediante el implante de una composición farmacéutica que comprende células madre-progenitoras musculares autólogas humanas, regeneradoras de tejido cardíaco, expandidas y mantenidas ex vivo en un medio de cultivo autólogo; comprendiendo dicho procedimiento recoger una muestra de material procedente del cuerpo del paciente objeto del implante posterior que comprende células madre-progenitoras musculares autólogas humanas, expandir dichas células mediante cultivo en un medio de cultivo autólogo de células madre-progenitoras autólogas según cualquiera de las reivindicaciones 1 a 9, e implantar las células madre- progenitoras autólogas humanas recolectadas en el paciente al que previamente se le había extraído dicho material conteniendo las células madre-progenitoras musculares autólogas.
27. Un procedimiento terapéutico de cardiomioplastia celular autóloga para crear, regenerar y reparar tejido miocárdico disfuncional mediante el implante de una composición farmacéutica que comprende células madre-progenitoras musculares autólogas humanas, regeneradoras de tejido cardíaco, expandidas y mantenidas ex vivo en un medio de cultivo autólogo; y donde dicho procedimiento comprende los siguientes pasos:
a) la toma al paciente de una biopsia de músculo esquelético tomada de un músculo, preferentemente, preacondicionado mediante una inyección intramuscular de un anestésico local;
b) la preparación de un medio de cultivo de las células madre- progenitoras autólogas humanas, según cualquiera de las reivindicaciones 1 a 9, a partir de suero autólogo del paciente;
c) la preparación de una composición enriquecida de células madre- progenitoras musculares autólogas humanas a partir de la biopsia de a) y del medio de cultivo de b);
d) la preparación de una composición farmacéutica a partir de la composición de c); y
e) el implante de la composición farmacéutica de células madre- progenitoras autólogas humanas de d) en lesiones miocárdicas.
28. Procedimiento según la reivindicación 27, en el que el implante de dicha composición de células madre-progenitoras autólogas humanas se realiza mediante inyección directa en la región periférica a la cicatriz del infarto o por inyección en los espacios intercoronarios de ambos ventrículos.
29. Procedimiento según la reivindicación 27, en el que el implante de dicha composición de células madre-progenitoras autólogas humanas se realiza mediante administración sistémica o intracoronaria mediante acceso venoso percutáneo.
30. Procedimiento según la reivindicación 27, en el que el implante de dicha composición de células madre-progenitoras autólogas humanas se realiza mediante un sistema robotizado y computerizado.
PCT/ES2003/000285 2002-07-02 2003-06-11 Medio de cultivo de células madre-progenitoras autólogas humanas y sus aplicaciones WO2004005494A1 (es)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US10/519,974 US20060110368A1 (en) 2002-07-02 2003-06-11 Medium for culturing autologous human progenitor stem cells and applications thereof
MXPA04012601A MXPA04012601A (es) 2002-07-02 2003-06-11 Medio de cultivo de celulas madre-progenitoras autologas humanas y sus aplicaciones.
NZ537397A NZ537397A (en) 2002-07-02 2003-06-11 Use of an autologous culture medium comprising autologous human serum and nutrients, together with an anticoagulant, allows the in vitro culture, purification and expansion of autologous human progenitor stem cells
AU2003240857A AU2003240857B2 (en) 2002-07-02 2003-06-11 Medium for culturing autologous human progenitor stem cells and applications thereof
BR0312365-0A BR0312365A (pt) 2002-07-02 2003-06-11 Meio de cultura autólogo de células-mães progenitoras autólogas humanas, métodos para a preparação do mesmo e de uma composição de células-mães progenitoras autólogas humanas e para a obtenção de células-mães progenitoras musculares autólogas humanas, emprego de um meio de cultura autólogo de células-mães progenitoras autólogas humanas, procedimento para a obtenção de células-mães progenitoras musculares autólogas humanas e procedimento terapêutico de cardiomioplastia celular autóloga, composição enriquecida com células-mães progenitoras musculares autólogas humanas e composição farmacêutica
EP03730223A EP1972684A1 (en) 2002-07-02 2003-06-11 Medium for culturing autologous human progenitor stem cells and applications
JP2004518793A JP5379340B2 (ja) 2002-07-02 2003-06-11 ヒト自己前駆幹細胞を培養する培地とその応用
IL16596904A IL165969A0 (en) 2002-07-02 2004-12-23 Medium for culturing aurologous human progenitor stem cells and applications thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200201540A ES2198216B1 (es) 2002-07-02 2002-07-02 Medio de cultivo de celulas madre-progenitoras autologas humanas y sus aplicaciones.
ESP200201540 2002-07-02

Publications (1)

Publication Number Publication Date
WO2004005494A1 true WO2004005494A1 (es) 2004-01-15

Family

ID=30011351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2003/000285 WO2004005494A1 (es) 2002-07-02 2003-06-11 Medio de cultivo de células madre-progenitoras autólogas humanas y sus aplicaciones

Country Status (13)

Country Link
US (1) US20060110368A1 (es)
EP (1) EP1972684A1 (es)
JP (1) JP5379340B2 (es)
KR (2) KR100960173B1 (es)
CN (1) CN100572527C (es)
AU (1) AU2003240857B2 (es)
BR (1) BR0312365A (es)
ES (1) ES2198216B1 (es)
IL (1) IL165969A0 (es)
MX (1) MXPA04012601A (es)
NZ (1) NZ537397A (es)
RU (1) RU2312141C2 (es)
WO (1) WO2004005494A1 (es)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7838892B2 (en) 2004-04-29 2010-11-23 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor chip and method for forming a contact structure for making electrical contact with an optoelectronic semiconductor chip
JP2011188860A (ja) * 2005-12-13 2011-09-29 Kyoto Univ 誘導多能性幹細胞
US8912907B2 (en) 2003-03-24 2014-12-16 Alien Technology, Llc RFID tags and processes for producing RFID tags
CN112501035A (zh) * 2020-12-09 2021-03-16 云南大学 基于捕食线虫真菌细胞膜破裂和内体增多而产生捕食器官的方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2699236C (en) 2007-09-11 2017-02-28 Sapporo Medical University Cell growth method and pharmaceutical preparation for tissue repair and regeneration
BRPI0909515A2 (pt) * 2008-03-28 2015-08-11 Labo Juversa Co Ltd Agente para tratamento de envelhecimento e cicatrizes de pele
RU2493250C2 (ru) * 2011-07-08 2013-09-20 Общество с ограниченной ответственностью Научно-производственное предприятие "ПанЭко" Малосывороточная среда для культивирования фибробластов человека
JP5598864B2 (ja) * 2011-12-05 2014-10-01 北海道公立大学法人 札幌医科大学 細胞増殖方法ならびに組織の修復および再生のための医薬
RU2506309C2 (ru) * 2012-03-11 2014-02-10 Екатерина Алексеевна Федорова Способ культивирования миобластов in vitro для получения биомассы миоцитов для пищевых целей
TWI643953B (zh) * 2014-12-11 2018-12-11 訊聯生物科技股份有限公司 以自體血漿培養原始細胞的方法
CN106110304A (zh) * 2016-07-28 2016-11-16 广州赛莱拉干细胞科技股份有限公司 一种祛疤组合物和敷料
KR102093810B1 (ko) * 2017-09-19 2020-03-26 서울대학교산학협력단 면역원성 감소 방법
CA3137836C (en) * 2019-04-23 2024-04-09 Cellatoz Therapeutics, Inc. Method for regulation of selective differentiation of musculoskeletal stem cells

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001007568A2 (en) * 1999-07-23 2001-02-01 Diacrin, Inc. Muscle cells and their use in cardiac repair

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4735726A (en) * 1981-07-22 1988-04-05 E. I. Du Pont De Nemours And Company Plasmapheresis by reciprocatory pulsatile filtration
US4668399A (en) * 1982-02-16 1987-05-26 E. I. Du Pont De Nemours And Company Hollow fiber plasmapheresis process
US5612211A (en) * 1990-06-08 1997-03-18 New York University Stimulation, production and culturing of hematopoietic progenitor cells by fibroblast growth factors
NL9101680A (nl) * 1991-10-04 1993-05-03 Tno Werkwijze voor het genetisch modificeren van beenmergcellen van primaten, alsmede daarbij bruikbare cellen die recombinante retrovirale vectoren produceren.
JPH06113829A (ja) * 1992-10-09 1994-04-26 Tabai Espec Corp 動物細胞培地添加血清の調製方法、動物細胞培地の調製方法及び培養装置
US5728581A (en) * 1995-06-07 1998-03-17 Systemix, Inc. Method of expanding hematopoietic stem cells, reagents and bioreactors for use therein
NZ337945A (en) * 1997-03-18 2001-10-26 Introgene B Combining primate bone marrow cells with a recombinant retrovirus using a physical means to bring them into close physical contact
AU756490B2 (en) * 1997-08-26 2003-01-16 Abgenix, Inc. A process for inhibiting complement activation via the alternative pathway
US6962698B1 (en) * 1998-02-17 2005-11-08 Gamida Cell Ltd. Methods of controlling proliferation and differentiation of stem and progenitor cells
US6624141B1 (en) * 1999-03-17 2003-09-23 The Regents Of The University Of Michigan Protamine fragment compositions and methods of use
US7015037B1 (en) * 1999-08-05 2006-03-21 Regents Of The University Of Minnesota Multiponent adult stem cells and methods for isolation
US20020124855A1 (en) * 2001-03-12 2002-09-12 Chachques Juan C. Method of providing a dynamic cellular cardiac support
US20030044766A1 (en) * 2001-08-29 2003-03-06 Anne Scholz Methods and devices for detecting cell-cell interactions

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001007568A2 (en) * 1999-07-23 2001-02-01 Diacrin, Inc. Muscle cells and their use in cardiac repair

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHANG-QING XIA ET AL.: "Hepatin induces differentiation of CD1a+ dendritic cells from monocytes: phenotypic and functional characterization", THE JOURNAL OF IMMUNOLOGY, vol. 168, no. 3, 2002, pages 1131 - 1138, XP008096326 *
HANKEY D. ET AL.: "Enhancement of human osteoblast proliferation and phenotypic expression when cultured in human serum", ACTA ORTHOP. SCAND., vol. 72, no. 4, 2001, pages 395 - 403, XP002989542 *
MACLINDEN M.G. ET AL.: "Comparison of cancellous bone-derived cell proliferation in autologous human and fetal bovine serum", CELL TRANSPLANTATION, vol. 9, 2000, pages 445 - 451, XP008035756 *
POUZET ET AL.: "Intramyocardial transplantation of autologous myoblasts", CIRCULATION, vol. 102, 2000, pages III-210, XP002264235 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8912907B2 (en) 2003-03-24 2014-12-16 Alien Technology, Llc RFID tags and processes for producing RFID tags
US7838892B2 (en) 2004-04-29 2010-11-23 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor chip and method for forming a contact structure for making electrical contact with an optoelectronic semiconductor chip
JP2011188860A (ja) * 2005-12-13 2011-09-29 Kyoto Univ 誘導多能性幹細胞
JP2014000083A (ja) * 2005-12-13 2014-01-09 Kyoto Univ 誘導多能性幹細胞
CN112501035A (zh) * 2020-12-09 2021-03-16 云南大学 基于捕食线虫真菌细胞膜破裂和内体增多而产生捕食器官的方法

Also Published As

Publication number Publication date
CN100572527C (zh) 2009-12-23
EP1972684A1 (en) 2008-09-24
ES2198216A1 (es) 2004-01-16
AU2003240857A1 (en) 2004-01-23
AU2003240857B2 (en) 2008-06-26
KR20050037549A (ko) 2005-04-22
IL165969A0 (en) 2006-01-15
KR20080091874A (ko) 2008-10-14
RU2005102061A (ru) 2005-10-10
BR0312365A (pt) 2005-04-05
JP2005531322A (ja) 2005-10-20
MXPA04012601A (es) 2005-09-30
ES2198216B1 (es) 2005-04-16
CN1665922A (zh) 2005-09-07
RU2312141C2 (ru) 2007-12-10
US20060110368A1 (en) 2006-05-25
KR100960173B1 (ko) 2010-05-26
JP5379340B2 (ja) 2013-12-25
NZ537397A (en) 2008-09-26

Similar Documents

Publication Publication Date Title
Chachques et al. Cellular cardiomyoplasty: clinical application
Menasché et al. Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction
Arora et al. Banking stem cells from human exfoliated deciduous teeth (SHED): saving for the future
US8613906B2 (en) Treatment of ischemia using stem cells
Chachques et al. Treatment of heart failure with autologous skeletal myoblasts
Emmert et al. Transcatheter based electromechanical mapping guided intramyocardial transplantation and in vivo tracking of human stem cell based three dimensional microtissues in the porcine heart
CN107028980A (zh) 用于治疗心脏疾病的药物组合物
Huang et al. A translational approach in using cell sheet fragments of autologous bone marrow-derived mesenchymal stem cells for cellular cardiomyoplasty in a porcine model
CN104922059A (zh) 一种脐带间充质干细胞注射液及其制备方法和应用
US20120315252A1 (en) Methods of Reducing Teratoma Formation During Allogeneic Stem Cell Therapy
US20130041348A1 (en) Catheter-Based Delivery of Skeletal Myoblasts to the Myocardium of Damaged Hearts
Wang et al. Effects of bone marrow mesenchymal stem cells in a rat model of myocardial infarction
WO2004005494A1 (es) Medio de cultivo de células madre-progenitoras autólogas humanas y sus aplicaciones
KR20070112205A (ko) 심장 조직 재생용 조성물 및 방법
Tarui et al. Stem cell therapies in patients with single ventricle physiology
Chachques Development of bioartificial myocardium using stem cells and nanobiotechnology templates
Wang et al. Mesenchymal stem cells improve outcomes of cardiopulmonary resuscitation in myocardial infarcted rats
CN106701682A (zh) 由脐血分离造血干细胞并扩增cd34阳性细胞的方法
Premaratne et al. Repeated implantation is a more effective cell delivery method in skeletal myoblast transplantation for rat myocardial infarction
Kim et al. A long road for stem cells to cure sick hearts: update on recent clinical trials
Law et al. Myoblast therapies constitute a safe and efficacious platform technology of regenerative medicine for the human health industry
Moscoso et al. Analysis of different routes of administration of heterologous 5-azacytidine–treated mesenchymal stem cells in a porcine model of myocardial infarction
Pendyala et al. Cellular cardiomyoplasty and cardiac regeneration
Shafy et al. Association of electrostimulation with cell transplantation in ischemic heart disease
Zhu et al. Comparison of intra-coronary cell transplantation after myocardial infarction: autologous skeletal myoblasts versus bone marrow mesenchymal stem cells

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: PA/a/2004/012601

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 4085/DELNP/2004

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 165969

Country of ref document: IL

Ref document number: 537397

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 2004518793

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20038155990

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020057000034

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2003240857

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2005102061

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2003730223

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057000034

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2006110368

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10519974

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10519974

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2003730223

Country of ref document: EP