WO2004001489A1 - 光変調器 - Google Patents
光変調器 Download PDFInfo
- Publication number
- WO2004001489A1 WO2004001489A1 PCT/JP2002/006121 JP0206121W WO2004001489A1 WO 2004001489 A1 WO2004001489 A1 WO 2004001489A1 JP 0206121 W JP0206121 W JP 0206121W WO 2004001489 A1 WO2004001489 A1 WO 2004001489A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- substrate
- optical modulator
- optical
- modulator according
- optical waveguide
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/21—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour by interference
- G02F1/225—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour by interference in an optical waveguide structure
- G02F1/2255—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour by interference in an optical waveguide structure controlled by a high-frequency electromagnetic component in an electric waveguide structure
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/03—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
- G02F1/0305—Constructional arrangements
Definitions
- the present invention relates to an optical modulator mainly used for a transmission device of a high-speed optical communication system.
- FIG. 6 is a configuration diagram schematically showing the configuration of a conventional optical modulator disclosed in Japanese Patent Application Laid-Open No. Sho 63-32419.
- 1 is a substrate
- 2 is an optical waveguide
- 3 is an electrode
- 4 is a Y branch
- 5 is an optical input terminal
- 6 is an optical output terminal
- 7 is a microwave input terminal
- 8 is a terminating resistor
- 9 is a back groove.
- An optical waveguide 2 is formed on the substrate 1 by a Ti diffusion method or the like, and the optical waveguide 2 is separated into two paths in the middle by two Y-branches 4, and the two paths are connected.
- the electrode 1 is further formed on the plate 1 by a metal.
- this optical modulator operates even at a small voltage value, in order to obtain an optical modulator with high modulation efficiency, an electric field generated when a voltage is applied to the electrode 3 forms the optical waveguide 2. It is necessary that the substrate 1 crosses only efficiently and the electro-optic effect of the substrate 1 is effectively extracted.
- the electrode 3 is made to have a traveling wave type, and the speed of the microphone mouth wave propagating through the electrode 3 and the speed of light propagating through the optical waveguide 2 are matched, so-called speed. Requires alignment.
- FIG. 7 is a cross-sectional view of the conventional optical modulator shown in FIG. 7 on the back surface of the substrate 1, a back groove 9 in which the thickness of the substrate 1 is reduced in a range from the electrode at the center of the electrode 3 to a part of the electrodes at both ends is provided.
- part of the electric field generated between the electrodes 3 leaks to the air layer in contact with the back surface of the substrate 1. Since air has a small dielectric constant of about 1, the effective dielectric constant of the electrode line for the microphone mouth wave is smaller than when the substrate 1 is not thinned. Therefore, the speed of the microphone mouth wave when the substrate 1 is made thinner becomes faster than the speed of the microwave when the substrate 1 is not made thinner and approaches the speed of light, so that speed matching can be achieved. Further, since the substrate 1 is thinned to the thickness of the optical waveguide 2, most of the electric field passing through the substrate 1 traverses the optical waveguide 2, and an efficient optical modulator can be obtained.
- the thickness of the substrate 1 at the portion of the electrode 3 had to be extremely thin, about 10 m, in order to achieve speed matching. For this reason, sufficient mechanical strength of the substrate 1 cannot be obtained, and cracks occur in the substrate 1 during the manufacturing process, thereby lowering the production yield, and the substrate 1 being damaged due to a temperature change during use. There was a problem that it was not possible to obtain a sufficient product from the viewpoint of reliability, such as failure. As described above, in this type of conventional optical modulator, it is necessary to provide the back groove 9 on the substrate 1 and make the substrate 1 thin in order to operate efficiently in a wide band, so that the mechanical strength cannot be sufficiently obtained. There is a problem that a highly reliable optical modulator cannot be obtained.
- the present invention has been made to solve the above-described problems, and has as its object to provide a highly reliable optical modulator even when efficiently operating at high speed and wide band. I have. Disclosure of the invention
- An optical modulator includes a first substrate having an electro-optic effect, an optical waveguide provided on the first substrate for propagating light, and a traveling wave provided on an upper surface of the first substrate. And a second substrate having a thickness greater than that of the first substrate on an upper surface of the first substrate.
- the first substrate having a thickness smaller than that of the second substrate can achieve speed matching without providing a back groove, and the second substrate directly supports the first substrate. However, sufficient mechanical strength for holding the first substrate is obtained.
- An optical modulator according to the next invention is characterized in that, in the above invention, a package for fixing the second substrate is further provided.
- the optical modulator according to the next invention is characterized in that, in the above invention, the first substrate and the second substrate are made of the same material.
- the first substrate and the second substrate have substantially the same coefficient of thermal expansion, so that thermal stress can be reduced.
- the optical modulator according to the next invention is characterized in that, in the above invention, the first substrate and the second substrate have the same crystal orientation. According to the present invention, the thermal expansion coefficients of the two are almost completely the same, so that the thermal stress can be further reduced.
- An optical modulator according to the next invention is characterized in that, in the above invention, the second substrate has a lower dielectric constant than the first substrate.
- the second substrate having a lower dielectric constant than the first substrate reduces the effective dielectric constant of the microwave, speed matching can be achieved.
- the optical modulator according to the next invention is the optical modulator according to the above invention, further comprising an adhesive layer having a lower dielectric constant than the first substrate between the first substrate and the second substrate. I do.
- the adhesive layer having a lower dielectric constant than the first substrate provided between the first substrate and the second substrate reduces the effective dielectric constant of the microphone mouth wave. Can be taken.
- the optical modulator according to the next invention is the optical modulator according to the above invention, further comprising an air layer between the first substrate and the second substrate, the air layer being in contact with at least a part of the electrode on the upper surface of the first substrate. :::
- the air layer provided between the first substrate and the second substrate and in contact with at least a part of the electrode on the upper surface of the first substrate reduces the effective dielectric constant of the microphone mouth wave. Therefore, speed matching can be achieved.
- the optical modulator according to the next invention is the optical modulator according to the above invention, wherein the refractive index of the optical waveguide is changed by an electro-optic effect, and the phase of the output light is changed by utilizing a phase change of light propagating through the optical waveguide. It is characterized by modulation.
- the refractive index of the optical waveguide changes due to the electro-optic effect
- the phase of the light propagating through the optical waveguide changes due to the change in the refractive index, and the phase of the output light is modulated.
- the optical modulator according to the next invention is the optical modulator according to the above invention, wherein the optical waveguide is a Mach-Zehnder type waveguide in which the middle is branched into two paths, and the refractive index of the optical waveguide is changed by an electro-optic effect.
- the light propagating through the optical waveguide of the two paths The intensity of the output light is modulated by utilizing the phase change.
- the optical waveguide is a Matsuhender type waveguide in which the middle is branched into two paths
- the refractive index of the optical waveguide changes due to the electro-optic effect.
- the phase of the light propagating through the optical waveguides of the two paths changes, and the intensity of the output light is modulated.
- An optical modulator according to the next invention is characterized in that, in the above invention, lithium niobate is used for the first substrate.
- the thickness required for speed matching is maintained while maintaining mechanical strength that does not impair reliability. Can be processed.
- the optical modulator according to the next invention is characterized in that, in the above invention, the first substrate is made of lithium niobate doped with magnesium oxide.
- the damage of the optical waveguide to the light intensity can be reduced by the first substrate using lithium niobate doped with magnesium oxide.
- An optical modulator according to the next invention is characterized in that, in the above invention, lithium tantalate is used for the first substrate.
- the first substrate is processed to a thickness necessary for speed matching while maintaining mechanical strength that does not impair reliability. Can be.
- An optical modulator according to the next invention is characterized in that, in the above invention, the first substrate is made of lithium tantalate doped with magnesium oxide.
- damage to the optical waveguide due to light intensity can be reduced by the first substrate using lithium tantalate doped with magnesium oxide.
- An optical modulator according to the next invention is characterized in that, in the above invention, gallium arsenide is used for the first substrate. According to the present invention, even when gallium arsenide is used for the first substrate, the thickness required for speed matching is increased while maintaining mechanical strength that does not impair reliability. be able to.
- a method of manufacturing an optical modulator according to the next invention is characterized in that, in the above invention, a second substrate is fixed on an upper surface of the first substrate, and the first substrate is processed to be thin.
- the first substrate can be processed to be thin while the first substrate is fixed to the second substrate.
- the first substrate and the second substrate are bonded using an adhesive having a dielectric constant lower than that of the first substrate. It is characterized by the following.
- the adhesive layer having a lower dielectric constant than the first substrate provided between the first substrate and the second substrate reduces the effective dielectric constant of the microphone mouth wave. Can be taken.
- a method of manufacturing an optical modulator according to the next invention is characterized in that, in the above invention, the second substrate is further fixed to a package.
- the second substrate is fixed to the package and the upper surface of the first substrate is an air layer, speed matching can be easily achieved, and the first substrate electrode is hermetically sealed. The first substrate and the electrode can be prevented from changing over time.
- FIG. 1 is a configuration diagram schematically showing a configuration of an optical modulator according to Embodiment 1 of the present invention.
- FIG. 2 is a cross-sectional view taken along line AA ′ of the electrode 3 in FIG.
- FIG. 3 is a configuration diagram schematically showing a configuration of an optical modulator according to a second embodiment of the present invention.
- FIG. 4 is a diagram showing a BB of an electrode 3 in FIG.
- FIG. 5 is a cross-sectional view taken along the line
- FIG. 5 is a cross-sectional view of the optical modulator of FIG. 6 is a cross-sectional view of a conventional modulator
- FIG. 6 is a configuration diagram schematically showing a configuration of a conventional optical modulator disclosed in Japanese Patent Application Laid-Open No. 63-23419.
- FIG. 7 is a cross-sectional view taken along line XX ′ of the conventional optical modulator shown in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
- FIG. 1 is a configuration diagram schematically showing a configuration of an optical modulator according to Embodiment 1 of the present invention.
- 1 is a first substrate
- 2 is an optical waveguide
- 3 is an electrode
- 4 is a Y branch
- 5 is an optical input terminal
- 6 is an optical output terminal
- 7 is a microwave input terminal
- 8 is a termination resistor
- '10 indicates a second substrate, respectively.
- a first substrate 1 is made of X-cut lithium niobate having an electro-optical effect, and an optical waveguide 2 is formed by a Ti diffusion method.
- the optical waveguide 2 is separated into two paths by one Y-branch 4 and two paths are coupled by the other Y-branch 4.
- a traveling-wave type electrode 3 made of metal is provided on a portion of the first substrate 1 where the optical waveguide 2 is divided into two paths.
- a microwave input terminal 7 and a terminating resistor 8 are connected to both ends of the electrode 3. Further, the entire upper surface of the first substrate 1 is bonded to the second substrate 10.
- FIG. 2 is a cross-sectional view taken along line AA of the electrode 3 in FIG.
- 11 indicates an adhesive layer.
- the adhesive layer 11 is made of a material having a lower dielectric constant for microwaves than the first substrate 1, and adheres the first substrate 1 and the second substrate 10. Further, the first substrate 1 is reduced in thickness by polishing after bonding the second substrate 10.
- the operation of the optical modulator according to the first embodiment will be described with reference to FIG. 1 and FIG.
- FIG. 1 when a voltage is applied to the electrode 3 through the microwave input terminal 7, an electric field is generated between the respective electrodes 3 including the optical waveguide 2, and the first base
- the refractive index of the optical waveguide 2 changes due to the electro-optic effect in the plate 1.
- This change in the refractive index causes a difference in the speed of light between the two paths of the optical waveguide 2.
- the speed difference of the light causes a phase difference of the light, and changes the intensity of the light multiplexed in the Y branch 4.
- the intensity of the combined output light extracted at the Y branch 4 can be changed according to the value of the applied voltage.
- the light intensity modulation in which the light intensity changes according to the input data It can be operated as a vessel. This operation is the same as the operation of the conventional optical modulator shown in FIG.
- the effective permittivity of the microphone mouth wave propagating through the electrode 3 is smaller than that when the first substrate 1 is thick, so that the speed of the microwave approaches the speed of light propagating through the optical waveguide 2.
- the speed can be matched between the two.
- the first substrate 1 is thinned to a thickness close to the thickness of the optical waveguide 2, most of the electric field passing through the first substrate 1 traverses the optical waveguide 2, thereby achieving efficient light modulation. You can get a bowl.
- the adhesive layer 11 is made of a material having a lower dielectric constant with respect to microwaves than the first substrate 1, so that the electric field generated in the adhesive layer 11 above the electrode 3 also reduces the microwave speed. It works to make it faster. For this reason, even if the adhesive layer 11 exists, the propagation speed of the microphone mouth wave propagating through the electrode 3 and the propagation speed of light propagating through the optical waveguide 2 can be determined by appropriately selecting the thickness of the first substrate 1. The speed can be made sufficiently close, and both speeds can be matched.
- the back substrate 9 as shown in FIGS. 6 and 7 is not provided, and the first substrate 1 is directly connected to the first substrate 1 via the adhesive layer 11. Since the structure is supported by the two substrates 10, sufficient mechanical strength can be obtained, and reliability, which has been a problem in the past, can be significantly improved.
- the first substrate 1 and the second substrate 10 forming the optical waveguide 2 and the electrodes 3 are bonded to each other, so that they operate at high speed, There is an effect that a highly efficient and highly reliable optical modulator can be obtained.
- the first substrate 1 and the second substrate 10 are bonded to each other, and then the first substrate 1 is processed to be thin, in consideration of ease of manufacture.
- Embodiment 1 is not limited to this. If the first substrate 1 is attached to the second substrate 10 using a somewhat thinner substrate from the beginning, subsequent processing is not necessarily required. In this case, the same effect can be obtained. Further, the speed of the microphone mouth wave propagating through the electrode 3 and the speed of light propagating through the optical waveguide 2 do not need to be completely the same, and it is only necessary to perform speed matching according to the required bandwidth.
- the present invention is not limited to this. May be used. In this case, as is well known, it is necessary to slightly change the structure of the optical waveguide 2, the electrode 3, and the like, or to provide a buffer layer between the electrode 3 and the first substrate 1. Can achieve the same effect.
- lithium niobate In addition to lithium niobate, other materials having an electro-optical effect, such as lithium tantalate and gallium arsenide, can be used as the first substrate 1. In this case, the same effect can be obtained. Furthermore, when lithium niobate or lithium tantalate is used as the first substrate 1, it is known that the doping of the material with magnesium oxide at a constant rate reduces the damage of the optical waveguide 2 to the light intensity. When these materials are used as the first substrate 1, there is an effect that an optical modulator capable of inputting high-intensity light can be obtained.
- Embodiment 2 Embodiment 2
- FIG. 3 is a configuration diagram schematically showing a configuration of an optical modulator according to Embodiment 2 of the present invention.
- 1 is a first substrate
- 2 is an optical waveguide
- 3 is an electrode
- 4 is a Y branch
- 5 is an optical input terminal
- 6 is an optical output terminal
- 7 is a microwave input terminal
- 8 is a termination resistor
- 10 denotes a second substrate
- 12 denotes an air layer.
- a first substrate 1 uses X-cut lithium niobate having an electro-optic effect
- an optical waveguide 2 is formed by a Ti diffusion method.
- the optical waveguide 2 is separated into two paths by one Y-branch 4 and two paths are coupled by the other Y-branch 4.
- a traveling-wave type electrode 3 made of metal is provided on a portion of the first substrate 1 where the optical waveguide 2 is divided into two paths.
- a microwave input terminal 7 and a terminating resistor 8 are connected to both ends of the electrode 3.
- Most of the upper surface of the first substrate 1 is bonded to the second substrate 10.
- FIG. 4 is a cross-sectional view taken along the line BB ′ of the electrode 3 in FIG.
- 11 indicates an adhesive layer. Most of the first substrate 1 and the second substrate 10 are adhered by an adhesive layer 11, but air is applied to the upper part of the central electrode 3 and the upper part of the electrodes 3 on both sides. Layer 12 is provided.
- the air having the air layer 12 provided above the electrode 3 has a small dielectric constant of about 1, the effective dielectric constant for the microphone mouth wave propagating through the electrode 3 is reduced.
- speed matching can be more easily achieved, and a wide-band optical modulator can be obtained.
- the processing of the substrate 1 itself may have a uniform thickness as a whole, it is easier to manufacture than the conventional manufacturing of the back groove 9 of the optical modulator, and sufficient reliability can be obtained. it can.
- the air layer 12 in the second embodiment described above does not need to be the so-called atmosphere, but may be any gas such as nitrogen, or may be a vacuum.
- the first substrate 1 may be made of Z-cut lithium niobate or another material having an electro-optical effect. In this case, the same effect can be obtained.
- FIG. 5 is a cross-sectional view of the optical modulator according to the third embodiment in which the optical modulator according to the first embodiment is fixed to a package.
- 1 denotes a first substrate
- 2 denotes an optical waveguide
- 3 denotes an electrode
- 10 denotes a second substrate
- 11 denotes an adhesive layer
- 13 denotes an adhesive
- 14 denotes a package, respectively.
- a first substrate 1 is made of X-cut lithium niobate having an electro-optical effect, and an optical waveguide 2 is formed by a Ti diffusion method, and a traveling-wave type electrode 3 is formed of metal. Is provided. The upper surface of first substrate 1 is bonded to second substrate 10. The operation of this optical modulator is the same as in the first embodiment.
- the second substrate 10 is fixed to the package 14 using the adhesive 13.
- the adhesive 13 since the upper surface of the first substrate 1 is an air layer, a wideband and high-efficiency optical modulator can be obtained as in the first and second embodiments.
- the second substrate 10 is bonded to the package 14, for example, even if the first substrate 1 and the package 14 have a difference in the coefficient of thermal expansion, the second substrate 10 is bonded to the package 14. By passing through 0, thermal stress can be reduced, and a highly reliable optical modulator can be obtained.
- the thermal expansion coefficients of the first substrate 1 and the second substrate 10 become almost the same. However, thermal stress can be further reduced. Furthermore, when the X-cut lithium borate having the same crystallographic orientation as the first substrate 1 is used as the second substrate 10, the thermal expansion coefficients of the two are almost completely the same, and the reliability is very high. It is possible to obtain an optical modulator with high performance.
- the upper surface of the first substrate 1 can be an air layer, and the second substrate 10 is bonded to the package. This has the effect that an efficient and highly reliable optical modulator can be obtained.
- the package is often hermetically sealed using a cover.
- a cover it is possible to prevent the first substrate 1 and the electrodes 3 from deteriorating with time, and to obtain an optical modulator with high reliability.
- the first substrate 1 and the second substrate 10 are bonded to each other via the adhesive layer 11 .
- the first substrate 1 and the second substrate 10 may be directly fixed using a mechanical or chemical method or the like without using the adhesive layer 11 without being limited to the above embodiment.
- the same operation and effect as those of the first to third embodiments can be obtained.
- Embodiment 2 by providing an air layer 12 in a part between the first substrate 1 and the second substrate 10, it is possible to further reduce the effective dielectric constant of the microphone mouth wave. The same action and effect can be obtained.
- the micro substrate is still formed.
- the effective permittivity of the wave can be reduced, and the same effect can be obtained.
- the Mach-Zehnder type optical amplitude modulator which splits the optical waveguide 2 into two by the Y branch 4 and modulates the amplitude of the light by interfering the two lights has been described.
- the present invention is not limited to these, and can be applied to an optical phase modulator that modulates the phase of light with an electric signal applied to the electrode 3 by using one optical waveguide 2. Can be obtained.
- the optical modulator having the optical waveguide 2 manufactured by the Ti diffusion method is exemplified.
- the present invention is not limited to this manufacturing method, and various methods such as the Mg diffusion method and the proton exchange method can be used.
- the optical waveguide 2 manufactured by the above manufacturing method may be used, and in this case, the same effect is obtained.
- the optical modulator according to the present invention is suitable for the field of high-speed optical communication that requires an optical modulator for realizing data communication in which a bit rate is large and input data changes at high speed. Are suitable.
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Electromagnetism (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Abstract
電気光学効果を有する第1の基板(1)と、前記第1の基板(1)に設けた光を伝搬させるための光導波路(2)と、前記前記第1の基板(1)の上面に設けた進行波型の電極(3)とを備える光変調器において、前記第1の基板(1)の上面に第1の基板(1)よりも厚さが厚い第2の基板(10)を備える。
Description
明 細 書 光変調器 技術分野
この発明は > 主に高速光通信システムの送信装置などに用いられる光変調器に 関するものである。 背景技術
第 6図は、 特開昭 6 3 - 2 3 4 2 1 9号公報などに示されている従来の光変調 器の構成を模式的に示す構成図である。 同図において、 1は基板、 2は光導波路、 3は電極、 4は Y分岐、 5は光入力端子、 6は光出力端子、 7はマイクロ波入力 端子、 8は終端抵抗、 9は裏溝を夫々示している。 基板 1には T i拡散法などに よって光導波路 2が形成されており、 この光導波路 2は 2つの Y分岐 4によって 途中が 2つの経路に分離され、 また 2つの経路が結合されている。 板 1には、 金属によって電極 3がさらに形成されている。
第 6図において、 電極 3に電圧が印加されると、 光導波路 2を間に含む夫々の 電極 3間に電界が生じ、 基板 1の電気光学効果により、 光導波路 2の屈折率が変 化する。 この屈折率の変化が、 光導波路 2の 2つの経路に、 光の速度差を生じさ せる。 そして、 この光の速度差が光の位相差を生み、 Υ分岐 4で合波される光の 強度を変化させる。 このように、 印加する電圧の値によって、 Υ分岐 4で取り出 される合波出力光 強度を変化させることができる。 したがって、 送信するデー タ 0、 1に対応して異なる所定の電圧の値を設定し、 この電圧を電極 3に印加す ることにより、 入力データに応じて光の強度が変ィ匕する光の強度変調器として動 作させることができる。
この光変調器は、 小さい電圧値でも動作するが、 変調効率のよい光変調器を得 るためには、 電極 3に電圧を印加したときに生じる電界が、 光導波路 2をできる
だけ効率よく横切るようにし、 基板 1の電気光学効果を効果的に引き出すことが 必要となる。
ところで、 電極 3に入力するデータが高速に変化し、 ビットレートが大きいマ ィク口波領域になると、 光が光導波路 2を通過するのに要する時間が無視できな くなる。 このような高ビットレートの信号を変調する場合には、電極 3を進行波 型にし、 電極 3を伝搬するマイク口波の速度と光導波路 2を伝搬する光の速度と を一致させる、 いわゆる速度整合が必要になる。
一般的に、 基板 1に使用するニオブ酸リチウム'などの材料では、 光に対する誘 電率とマイク口波に対する誘電率の値が大きく異なっており、 光に対する誘電率 よりもマイクロ波に対する誘電率の値が大きい。 このため、 通常ではマイクロ波 の速度は光の速度に対して遅くなり、 速度整合がとれない状態になっている。 第 7図は、 第 6図に示す従来の光変調器の X— X, 線の断面図である。 第 7図 において、 基板 1の裏面において、 電極 3の中央部の電極から両端部の電極の一 部の範囲で基板 1の厚さを薄くした裏溝 9を設けている。 このとき、 電極 3間に 生じる電界の一部は、 基板 1の裏面に接する空気層に漏出する。 空気は誘電率が 約 1と小さいため、 マイク口波に対する電極線路の実効誘電率は基板 1を薄くし ない場合に比べて小さくなる。 したがって、 基板 1を薄くした場合のマイク口波 の速度が、 基板 1を薄くしない場合のマイクロ波の速度よりも速くなり、 光の速 度に近付くので、 速度整合をとることが可能となる。 また、 基板 1を光導波^ 2 の厚さ近くまで薄くしているので、 基板 1内を通過する電界の殆どが光導波路 2 を横切り、 効率のよい光変調器を得ることができる。
しかしながら、 第 6図および第 7図に示す従来の光変調器では、 速度整合をと るため、 電極 3の部分の基板 1の厚さを 1 0 m程度と非常に薄くする必要があ つた。 このため、 基板 1の十分な機械的強度を得ることができず、 製造工程中に、 基板 1にクラックが生じて製造歩留まりが下がったり、 使用中の温度変化等によ り、 基板 1が破損し故障に至る等、 信頼性の観点から十分なものが得られないと いう課題があった。
このように、 この種の従来の光変調器では、 広帯域で効率よく動作させるため、 基板 1に裏溝 9を設けて基板 1を薄くする必要があるため、 機械的強度が十分に とれず、 信頼性の高レ、光変調器を得ることができないという課題があつた。
したがって、 この発明は、 上記のような課題を解決するためになされたもので あり、 高速'広帯域で効率よく動作させる場合であっても、 信頼性の高い光変調 器を提供することを目的としている。 発明の開示
この発明にかかる光変調器は、 電気光学効果を有する第 1の基板と、 前記第 1 の基板に設けた光を伝搬させるための光導波路と、 前記第 1の基板の上面に設け た進行波型の電極とを備える光変調器において、 前記第 1の基板の上面に第 1の 基板よりも厚さが厚い第 2の基板を備えることを特徴とする。
この発明によれば、 第 2の基板よりも厚さの薄い第 1の基板によって、 裏溝を 設けることなく速度整合をとることができるとともに、 第 2の基板が第 1の基板 を直接支えるので、 第 1の基板を保持するための十分な機械的強度が得られる。 つぎの発明にかかる光変 器は、 上記の発明において、 前記第 2の基板を固定 するパッケージをさらに備えることを特徴とする。
この発明によれば、 第 2の基板がパッケージに固定され、 第 1の基板の上面が 空気層となるので、 速度整合をとることが容易になるとともに、 第 1の基板ゃ電 極を気密封止することができ、 第 1の基板や電極の経時劣化を抑制することがで さる。 ' つぎの発明にかかる光変調器は、 上記の発明において、 前記第 1の基板と前記 第 2の基板とが、 同一の材料であることを特徴とする。
この発明によれば、 第 1の基板と第 2の基板の熱膨張係数が、 ほぼ同じになる ので、 熱応力を緩和することができる。
つぎの発明にかかる光変調器は、 上記の発明において、 前記第 1の基板と前記 第 2の基板と力 同一の結晶方位であることを特徴とする。
この発明によれば、 両者の熱膨張係数が、 ほぼ完全に一致するので、 熱応力を さらに緩和することができる。
つぎの発明にかかる光変調器は、 上記の発明において、 前記第 2の基板が、 前 記第 1の基板よりも誘電率が低いことを特徴とする。
この発明によれば、 第 1の基板よりも誘電率が低い第 2の基板がマイクロ波の 実効誘電率を小さくするので、 速度整合をとることができる。
つぎの発明にかかる光変調器は、 上記の発明において、 前記第 1の基板と前記 第 2の基板との間に、 前記第 1の基板よりも誘電率が低い接着層を備えることを 特徴とする。
この発明によれば、 第 1の基板と第 2の基板との間に備えられた第 1の基板よ りも誘電率の低い接着層がマイク口波の実効誘電率を小さくするので、 速度整合 をとることができる。
つぎの発明にかかる光変調器は、 上記の発明において、 前記第 1の基板と前記 第 2の基板との間に、 前記第 1の基板上面の前記電極の少なくとも一部に接する 空気層を備える::とを特徴とする。
この発明によれば、 第 1の基板と第 2の基板との間に備えられた第 1の基板上 面の電極の少なくとも一部に接する空気層がマイク口波の実効誘電率を小さくす るので、 速度整合をとることができる。
つぎの発明にかかる光変調器は、 上記の発明において、 電気光学効果により前 記光導波路の屈折率を変化させ、 前記光導波路を伝搬する光の位相変化を利用し て、 出力光の位相を変調することを特徴とする。
この発明によれば、 電気光学効果により光導波路の屈折率が変化し、 この屈折 率変化によって光導波路を伝搬する光の位相が変ィ匕し、 出力光の位相が変調され る。
つぎの発明にかかる光変調器は、 上記の発明において、 前記光導波路が、 途中 を 2つの経路に分岐させたマッハツヱンダー型の導波路であり、 電気光学効果に より前記光導波路の屈折率を変化させ、 前記 2つの経路の光導波路を伝搬する光
の位相変化を利用して、 出力光の強度を変調することを特徴とする。
この発明によれば、 光導波路が、 途中を 2つの経路に分岐させたマツハツヱン ダー型の導波路であっても、 電気光学効果により光導波路の屈折率が変化し、 こ の屈折率変化によって 2つの経路の光導波路を伝搬する光の位相が変化し、 出力 光の強度が変調される。
つぎの発明にかかる光変調器は、 上記の発明において、 前記第 1の基板にニォ ブ酸リチウムを用いたことを特徴とする。
この発明によれば、 第 1の基板にニオブ酸リチウムを用レ、た場合であっても、 信頼性を損なわない機械的強度を保持しつつ、 速度整合をとるための必要な薄さ ' に加工することができる。
つぎの発朋にかかる光変調器は、 上記の発明において、 前記第 1の基板に酸化 マグネシゥムをドープしたニオブ酸リチウムを用いたことを特徴とする。
この発明によれば、 酸ィ匕マグネシゥムをドープしたニオブ酸リチウムを用いた 第 1の基板によって、 光の強度に対する光導波路の損傷を少なくすることができ る。
つぎの発明にかかる光変調器は、 上記の発明において、 前記第 1の基板にタン タル酸リチウムを用いたことを特徴とする。
この発明によれば、 第 1の基板にタンタル酸リチウムを用いた場合であっても、 信頼性を損なわない機械的強度を保持しつつ、 速度整合をとるための必要な薄さ に加工することができる。
つぎの発明にかかる光変調器は、 上記の発明において、 前記第 1の基板に酸ィ匕 マグネシゥムをドープしたタンタル酸リチウムを用いたことを特徴とする。
この発明によれば、 酸ィ匕マグネシウムをドープしたタンタル酸リチウムを用い た第 1の基板によって、 光の強度に対する光導波路の損傷を少なくすることがで きる。
つぎの発明にかかる光変調器は、 上記の発明において、 前記第 1の基板にガリ ゥム砒素を用いたことを特徴とする。
この発明によれば、 第 1.の基板にガリウム砒素を用いた場合であっても、 信頼 性を損なわない機械的強度を保持しつつ、 速度整合をとるための必要な薄さに加 ェすることができる。
つぎの発明にかかる光変調器の製造方法は、 上記の発明において、 前記第 1の 基板の上面に第 2の基板を固定し、 前記第 1の基板を薄く加工することを特徴と する。
この発明によれば、 第 1の基板が第 2の基板に固定された状態で、 この第 1の 基板を薄く加工することができる。
つぎの発明にかかる光変調器の製造方法は、 上記の発明において、 前記第 1の 基板と前記第 2の基板とを、 前記第 1の基板よりも誘電率が低い接着剤を用いて 接着したことを特徴とする。
この発明によれば、 第 1の基板と第 2の基板との間に備えられた第 1の基板よ りも誘電率の低い接着層がマイク口波の実効誘電率を小さくするので、 速度整合 をとることができる。
つぎの発明にかかる光変調器の製造方法は、 上記の発明において、 さらに前記 第 2の基板をパッケージに固定することを特徴とする。
この発明によれば、 第 2の基板がパッケージに固定され、 第 1の基板の上面が 空気層になるので、 速度整合をとることが容易になるとともに、 第 1の基板ゃ電 極を気密封止することができ、 第 1の基板や電極の経時変化を抑制することがで きる。 図面の簡単な説明
第 1図は、 この発明の実施の形態 1である光変調器の構成を模式的に示す構成 図であり、 第 2図は、 第 1図における電極 3の部分の A— A' 線の断面図であり、 第 3図は、 この発明の実施の形態 2である光変調器の構成を模式的に示す構成図 であり、 第 4図は、 第 3図における電極 3の部分の B— B ' 線の断面図であり、 第 5図は、 実施の形態 1の光変調器をパッケージに固定した実施の形態 3の光変
調器の断面図であり、 第 6図は、 特開昭 6 3— 2 3 4 2 1 9号公報などに示され ている従来の光変調器の構成を模式的に示す構成図であり、 第 7図は、 第 6図に 示す従来の光変調器の X— X ' 線の断面図である。 発明を実施するための最良の形態
以下、 添付図面を参照して、 この発明にかかる光変調器の好適な実施の形態を 詳細に説明する。
実施の形態 1 .
第 1図は、 この発明の実施の形態 1である光変調器の構成を模式的に示す構成 図である。 同図において、 1は第 1の基板、 2は光導波路、 3は電極、 4は Y分 岐、 5は光入力端子、 6は光出力端子、 7はマイクロ波入力端子、 8は終端抵抗、 ' 1 0は第 2の基板をそれぞれ示している。
第 1図において、 第 1の基板 1は電気光学効果を有する Xカツトのニオブ酸リ チウムを用いており、 T i拡散法によって光導波路 2を形成している。 光導波路 2は、 一方の Y分岐 4により 2つの経路に分離され、 他方の Y分岐 4により 2つ の経路が結合されている。 第 1の基板 1上、 光導波路 2が 2つの経路に分かれて いる部分には、 金属により進行波型の電極 3が設けられている。 電極 3の両端に はマイクロ波入力端子 7および終端抵抗 8が接続されている。 また、 第 1の基板 1の上面は、 その全面が第 2の基板 1 0と貼り合わされている。
. 第 2図は、 第 1図における電極 3の部分の A— A, 線の断面図である。 同図に おいて、 1 1は接着層を示している。 この接着層 1 1は、 第 1の基板 1に比べて マイクロ波に対する誘電率が低い材料が用いられており、 第 1の基板 1と第 2の 基板 1 0とを接着している。 また、 第 1の基板 1は、 第 2の基板 1 0を接着した 後、 研磨加工によって厚さを薄くしている。
つぎに、 この実施の形態 1の光変調器の動作について、 第 1図および第 2図を 用いて説明する。 第 1図において、 マイクロ波入力端子 7を通して電極 3に電圧 が印加されると、 光導波路 2を間に含む夫々の電極 3間に電界が生じ、 第 1の基
板 1での電気光学効果により、 光導波路 2の屈折率が変化する。 この屈折率の変 化が、 光導波路 2の 2つの経路に、 光の速度差を生じさせる。 そして、 この光の 速度差が光の位相差を生み、 Y分岐 4で合波される光の強度を変化させる。 この ように、 印加する電圧の値によって、 Y分岐 4で取り出される合波出力光の強度 を変化させることができる。 したがって、 送信するデータ 0、 1に対応して異な る所定の電圧の値を設定し、 この電圧を電極 3に印加することにより、 入力デー タに応じて光の強度が変化する光の強度変調器として動作させることができる。 この動作については、 第 6図に示した従来の光変調器の動作と同様である。
また、 第 2図に示すように、 第 1の基板 1は薄く加工されているので、 電極 3 間に生じる電界の一部は第 1の基板 1の裏面に接する空気層に漏出する。 このた め、 電極 3を伝搬するマイク口波の実効誘電率は第 1の基板 1が厚い場合に比べ 小さくなり、 これにより、 マイクロ波の速度が光導波路 2を伝搬する光の速度に 近付くので、 両者の速度整合をとることができる。 また、 第 1の基板 1を光導波 路 2の厚さ近くまで薄くしているので、 第 1の基板 1内を通過する電界の殆どが 光導波路 2を横切ることになり、 効率のよい光変調器を得ることができる。
なお、 接着層 1 1には、 第 1の基板 1に比べてマイクロ波に対する誘電率が低 い材料が用いられるので、 電極 3の上部の接着層 1 1内にできる電界もマイクロ 波の速度を速くする働きをする。 このため、 接着層 1 1があっても第 1の基板 1 の厚さを適当に選択することなどにより、 電極 3を伝搬するマイク口波の伝搬速 度と光導波路 2を伝搬する光の伝搬速度とを十分に近付けることができ、 両者の 速度整合をとることができる。
さらに、 第 1図および第 2図から明らかなように、 第 6図および第 7図に示す ような裏溝 9を設けず、 第 1の基板 1を、 接着層 1 1を介して直接、 第 2の基板 1 0で支える構造としているため、 十分な機械的強度を得ることができ、 従来問 題となっていた信頼性を格段に向上することができる。
以上のように、 この発明の実施の形態 1によれば、 光導波路 2と電極 3を構成 した第 1の基板 1と第 2の基板 1 0とを貼り合わせたことにより、 高速で動作し、
高効率かつ信頼性の高い光変調器が得られるという効果を奏する。
なお、 上述した実施の形態 1では、 製造の容易さを考えて、 第 1の基板 1と第 2の基板 1 0とを貼り合わせた後、 第 1の基板 1を薄く加工して構成した場合に ついて説明したが、 この実施の形態 1はこれに限らず、 最初からある程度薄い第 1の基板 1を用いて第 2の基板 1 0と貼り合わせれば、 その後の加工を必ずしも 必要とはせず、 この場合も同様の効果を得ることができる。 また、 電極 3を伝搬 するマイク口波の速度と光導波路 2を伝搬する光の速度は完全に一致している必 要はなく、 必要とする帯域幅に応じた速度整合をとればよい。
なお、 この実施の形態 1では、 第 1の基板 1として Xカットのニオブ酸リチウ ムを用いた場合について説明したが、 これに限るのものではなく、 例えば、 Z力 ットのニオブ酸リチウムを用いてもよい。 この場合よく知られているように光導 波路 2や電極 3等の構造を若干変化させたり、 電極 3と第 1の基板 1との間にバ ッファ層を設けたりする必要があるが、 この場合も同様の効果を得ることができ る。
また、 ニオブ酸リチウム以外に、 タンタル酸リチウムやガリウム砒素等、 電気 光学効果を有する他の材料を第 1の基板 1として用いることもでき、 この場合も 同様の効果を得ることができる。 さらに、 第 1の基板 1としてニオブ酸リチウム や、 タンタル酸リチウムを用いる場合、 材料に酸化マグネシウムを一定の割合で ドープすることにより、 光の強度に対する光導波路 2の損傷が少なくなることが 知られており、 第 1の基板 1としてこれらの材料を用いれば、 強度の大きな光を 入力できる光変調器が得られるという効果を奏する。 実施の形態 2 .
第 3図は、 この発明の実施の形態 2である光変調器の構成を模式的に示す構成 図である。 同図において、 1は第 1の基板、 2は光導波路、 3は電極、 4は Y分 岐、 5は光入力端子、 6は光出力端子、 7はマイクロ波入力端子、 8は終端抵抗、 1 0は第 2の基板、 1 2は空気層をそれぞれ示している。
第 3図において、 第 1の基板 1は電気光学効果を有する Xカツトのニオブ酸リ チウムを用いており、 T i拡散法によって光導波路 2を形成している。 光導波路 2は、 一方の Y分岐 4により 2つの経路に分離され、 他方の Y分岐 4により 2つ の経路が結合されている。 第 1の基板 1上、 光導波路 2が 2つの経路に分かれて いる部分には、 金属により進行波型の電極 3が設けられている。 電極 3の両端に はマイクロ波入力端子 7および終端抵抗 8が接続されている。 また、 第 1の基板 1の上面は、 大部分が第 2の基板 1 0と貼り合わされている。
第 4図は、 第 3図における電極 3の部分の B— B ' 線の断面図である。 第 4図 において、 1 1は接着層を示している。 第 1の基板 1と第 2の基板 1 0とは、 大 部分が接着層 1 1で接着されているが、 中央の電極 3の上部と両側の電極 3の一 部の上部とには、 空気層 1 2を設けている。
このように実施の形態 2では、 電極 3の上部に空気層 1 2を設けている力 空 気は誘電率が約 1と小さいので、 電極 3を伝搬するマイク口波に対する実効誘電 率を小さくするのに最も適している。 このため、 第 1の基板 1と第 2の基板 1 0 とを接着層 1 1で全て覆う場合に比べ、 さらに速度整合をとり易くでき、 広帯域 な光変調器を得ることができる。 また、 基板 1の加工自体は、 全体が一様な厚さ にすればよいので、 従来の光変調器の裏溝 9の製作よりも、 製作が容易であり、 十分な信頼性を得ることができる。
以上のように、 この発明の実施の形態 2によれば、 電極 3の上面の一部に空気 層 1 2を設けたことにより、 速度整合がとりやすく、 広帯域で信頼性の高いの光 変調器が得られるという効果を奏する。
なお、 上述した実施の形態 2における空気層 1 2は、 いわゆる大気である必要 はなく、 窒素等の任意の気体であればよく、 また真空であってもよい。 さらに、 実施の形態 1と同様に、 第 1の基板 1としては Zカツトのニオブ酸リチウムや他 の電気光学効果を有する材料を用いてもよく、 この場合も同様の効果を得ること ができる。
実施の形態 3 .
第 5図は、 実施の形態 1の光変調器をパッケージに固定した実施の形態 3の光 変調器の断面図である。 同図において、 1は第 1の基板、 2は光導波路、 3は電 極、 1 0は第 2の基板、 1 1は接着層、 1 3は接着剤、 1 4はパッケージを夫々 示している。
第 5図において、 第 1の基板 1は電気光学効果を有する Xカツトのニオブ酸リ チウムを用いており、 T i拡散法によって光導波路 2を形成するとともに、 金属 により進行波型の電極 3が設けられている。 第 1の基板 1の上面は第 2の基板 1 0と貼り合わされている。 なお、 この光変調器の動作は、 実施の形態 1と同様の ものである。
実施の形態 3では、 第 2の基板 1 0を接着剤 1 3を用いてパッケージ 1 4に固 定している。 第 5図に示すように、 第 1の基板 1の上面は空気層となるため、 実 施の形態 1および実施の形態 2と同様に、 広帯域、 高効率な光変調器を得ること ができる。 さらに、 第 2の基板 1 0をパッケージ 1 4に接着しているため、 例え ば、 第 1の基板 1とパッケージ 1 4との間では熱膨張係数に差異がある場合でも、 第 2の基板 1 0を介することで熱応力を緩和することができ、 さらに信頼性の高 い光変調器を得ることができる。
また、 第 2の基板 1 0として、 第 1の基板 1と同じニオブ酸リチウムを用いる ようにすれば、 第 1の基板 1と第 2の基板 1 0の熱膨張係数がほぼ同じになるの で、 熱応力をさらに緩和することができる。 さらに、 第 2の基板 1 0として、 第 1の基板 1と結晶の方位も同一とした Xカツトの ォブ酸リチウムを用いれば、 両者の熱膨張係数はほぼ完全に一致し、 非常に信頼性の高い光変調器を得ること ができる。
以上のように、 この発明の実施の形態 3によれば、 第 1の基板 1の上面を空気 層にすることができ、 第 2の基板 1 0をパッケージに接着しているので、 広帯域、 高効率で、 非常に信頼性の高い光変調器が得られるという効果を奏する。
なお、 図示していないが、 パッケージはカバーを用いて気密封止する場合が多
く、 これにより第 1の基板 1や電極 3の経時劣化を抑えることができ、 さらに信 賴性の高い光変調器が得られるという効果を奏する。
以上、 実施の^態:!〜 3において、 第 1の基板 1と第 2の基板 1 0とを接着層 1 1を介して貼り合わせた場合について上述してきたが、 この発明はこれらの実 施の形態に限らず、 接着層 1 1を用いずに機械的あるいは化学的な方法等を用い て第 1の基板 1と第 2の基板 1 0とを直接固定させてもよい。 この場合も、 実施 の形態 1〜3と同様の作用および効果が得られる。 また、 実施の形態 2のように、 第 1の基板 1と第 2の基板 1 0との間の一部に空気層 1 2を設けることにより、 マイク口波の実効誘電率をさらに小さくすることもでき、 同様の作用および効果 が得られる。 さらに、 実施の形態 1および 3のように空気層 1 2を設けなレ、場合 でも、 第 2の基板 1 0として第 1の基板 1よりも誘電率の小さい材料を用いるこ とにより、 やはりマイクロ波の実効誘電率を小さくすることができ、 同様の効果 が得られる。
なお、 実施の形態 1〜 3では、 Y分岐 4によって光導波路 2を 2つに分岐し、 2つの光を干渉させて光の振幅を変調するマッハツェンダー型の光振幅変調器に ついて説明したが、 この発明はこれらに限らず、 光導波路 2を 1本にし、 電極 3 に印加する電気信号により光の位相を変調する光位相変調器に適用することもで き、 この場合も全く同様な効果を得ることができる。
さらに実施の形態 1〜3では、 T i拡散法によって製作した光導波路 2を有す る光変調器を例示したが、 この製造法に限ることなく、 M g拡散法やプロトン交 換法など種々の製造法により製作した光導波路 2を用いてもよく、 この場合も同 様の効果が得られる。 産業上の利用可能性
以上のように、 この発明にかかる光変調器は、 ビットレートが大きく、 入力デ ータが高速に変化するようなデータ通信を実現するための光変調器を必要とする 高速光通信の分野に適している。
Claims
1 . 電気光学効果を有する第 1の基板と、 前記第 1の基板に設けた光を伝搬さ せるための光導波路と、 前記第 1の基板の上面に設けた進行波型の電極とを備え る光変調器において、
前記第 1の基板の上面に第 1の基板よりも厚さが厚い第 2の基板を備えること を特徴とする光変調器。
2 . 前記第 2の基板を固定するパッケージをさらに備えることを特徴とする請 求の範囲第 1項に記載の光変調器。
3 . 前記第 1の基板と前記第 2の基板とが、 同一の材料であることを特徴とす る請求の範囲第 1項に記載の光変調器。
4 . 前記第 1の基板と前記第 2の基板とが、 同一の結晶方位であることを特徴 とする請求の範囲第 1項に記載の光変調器。
5 . 前記第 2の基板が、 前記第 1の基板よりも誘電率が低いことを特徴とする 請求の範囲第 1項に記載の光変調器。
6 . 前記第 1の基板と前記第 2の基板との間に、 前記第 1の基板よりも誘電率 が低い接着層を備えることを特徴とする請求の範囲第 1項に記載の光変調器。
7 . 前記第 1の基板と前記第 2の基板との間に、 前記第 1の基板上面の前記電 極の少なくとも一部に接する空気層を備えることを特徴とする請求の範囲第 1項 に記載の光変調器。
8 . 電気光学効果により前記光導波路の屈折率を変化させ、 前記光導波路を伝 搬する光の位相変化を利用して、 出力光の位相を変調することを特徴とする請求 の範囲第 1項に記載の光変調器。
9 . 前記光導波路が、 途中を 2つの経路に分岐させたマッハツェンダー型の導 波路 あり、 電気光学効果により前記光導波路の屈折率を変化させ、 前記 2つの 経路の光導波路を伝搬する光の位相変化を利用して、 出力光の強度を変調するこ とを特徴とする請求の範囲第 1項に記載の光変調器。
1 0 . 前記第 1の基板に、 ニオブ酸リチウムを用いたことを特徴とする請求の 範囲第 1項に記載の光変調器。
1 1 . 前記第 1の基板に、 酸化マグネシウムをドープしたニオブ酸リチウムを 用いたことを特徴とする請求の範囲第 1項に記載の光変調器。
1 2 . 前記第 1の基板に、 タンタル酸リチウムを用いたことを特徴とする請求 の範囲第 1項に記載の光変調器。
1 3 . 前記第 1の基板に、 酸ィ匕マグネシゥムをドープしたタンタノレ酸リチウム を用いたことを特徴とする請求の範囲第 1項に記載の光変調器。
1 4 . 前記第 1の基板に、 ガリゥム砒素を用いたことを特徴とする請求の範囲 第 1項に記載の光変調器。
1 5 . 進行波型の電極を電気光学効果を有する第 1の基板の上面に設け、 光を 伝搬させるための光導波路を前記第 1の基板の内部かつ前記電極の間に設ける光 変調器の製造方法において、
前記第 1の基板の上面に第 2の基板を固定し、 前記第 1の基板を薄く加工する ことを特徴とする光変調器の製造方法。
1 6 . 前記第 1の基板と前記第 2の基板とを、 前記第 1の基板よりも誘電率が 低い接着剤を用いて接着したことを特徴とする請求の範囲第 1 5項に記載の光変 調器の製造方法。
1 . さらに前記第 2の基板をパッケージに固定することを特徴とする請求の 範囲第 1 5項に記載の光変調器の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2002/006121 WO2004001489A1 (ja) | 2002-06-19 | 2002-06-19 | 光変調器 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2002/006121 WO2004001489A1 (ja) | 2002-06-19 | 2002-06-19 | 光変調器 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2004001489A1 true WO2004001489A1 (ja) | 2003-12-31 |
Family
ID=29808112
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2002/006121 WO2004001489A1 (ja) | 2002-06-19 | 2002-06-19 | 光変調器 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2004001489A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8735599B2 (en) | 2004-06-18 | 2014-05-27 | Novartis Vaccines And Diagnostics, Inc. | Substituted imidazole derivates |
CN107966832A (zh) * | 2016-10-18 | 2018-04-27 | 天津领芯科技发展有限公司 | 一种低直流漂移的铌酸锂薄膜强度调制器 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05264937A (ja) * | 1992-03-23 | 1993-10-15 | Nippon Telegr & Teleph Corp <Ntt> | 光制御デバイス |
JPH09211402A (ja) * | 1996-01-30 | 1997-08-15 | Matsushita Electric Ind Co Ltd | 広帯域光変調素子 |
JP2000089184A (ja) * | 1998-09-09 | 2000-03-31 | Ngk Insulators Ltd | 光導波路素子の固定構造 |
JP2001235714A (ja) * | 1999-12-15 | 2001-08-31 | Ngk Insulators Ltd | 進行波形光変調器およびその製造方法 |
-
2002
- 2002-06-19 WO PCT/JP2002/006121 patent/WO2004001489A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05264937A (ja) * | 1992-03-23 | 1993-10-15 | Nippon Telegr & Teleph Corp <Ntt> | 光制御デバイス |
JPH09211402A (ja) * | 1996-01-30 | 1997-08-15 | Matsushita Electric Ind Co Ltd | 広帯域光変調素子 |
JP2000089184A (ja) * | 1998-09-09 | 2000-03-31 | Ngk Insulators Ltd | 光導波路素子の固定構造 |
JP2001235714A (ja) * | 1999-12-15 | 2001-08-31 | Ngk Insulators Ltd | 進行波形光変調器およびその製造方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8735599B2 (en) | 2004-06-18 | 2014-05-27 | Novartis Vaccines And Diagnostics, Inc. | Substituted imidazole derivates |
CN107966832A (zh) * | 2016-10-18 | 2018-04-27 | 天津领芯科技发展有限公司 | 一种低直流漂移的铌酸锂薄膜强度调制器 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4443011B2 (ja) | 進行波型光変調器 | |
CN107065232A (zh) | 基于铌酸锂薄膜的宽带行波电光调制器及其制备方法 | |
JPWO2005019913A1 (ja) | 光導波路デバイスおよび進行波形光変調器 | |
WO2007007604A1 (ja) | 光変調器 | |
JP2008250258A (ja) | 光制御素子 | |
CN114415400A (zh) | 一种基于薄膜铌酸锂的偏振无关电光调制器及其制备方法 | |
JPH09211402A (ja) | 広帯域光変調素子 | |
CN114153085B (zh) | 一种薄膜铌酸锂可调高线性电光调制器集成芯片 | |
JP2023025865A (ja) | 光デバイス及び光通信装置 | |
US20230152660A1 (en) | Optical control element, optical modulation device using same, and optical transmission apparatus | |
JP2004170931A (ja) | 光変調器 | |
CN211786458U (zh) | 薄膜电光调制器芯片及调制器 | |
US20070036478A1 (en) | Integrated optical modulator and method for manufacturing the same | |
JP2022013232A (ja) | 光デバイス及び光通信装置 | |
US20220163720A1 (en) | Optical waveguide element and optical waveguide device | |
WO2004001489A1 (ja) | 光変調器 | |
JP4429711B2 (ja) | 光変調器 | |
JP2836568B2 (ja) | 光制御素子及びその製造方法 | |
US20230367170A1 (en) | Optical waveguide element and optical modulator | |
JP2004219600A (ja) | 光変調用電極および光変調器 | |
JP2004341147A (ja) | 光導波路デバイスおよび進行波形光変調器 | |
JP2717980B2 (ja) | 集積化光導波路デバイス | |
JPH0651254A (ja) | 光制御デバイス | |
JP2023030675A (ja) | 光デバイス及び光通信装置 | |
JPH06289347A (ja) | 光導波路素子とその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CA CN JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: JP |