WO2004000285A2 - Alimento microencapsulado para larvas de peces y procedimiento para su elaboración - Google Patents

Alimento microencapsulado para larvas de peces y procedimiento para su elaboración Download PDF

Info

Publication number
WO2004000285A2
WO2004000285A2 PCT/ES2003/000304 ES0300304W WO2004000285A2 WO 2004000285 A2 WO2004000285 A2 WO 2004000285A2 ES 0300304 W ES0300304 W ES 0300304W WO 2004000285 A2 WO2004000285 A2 WO 2004000285A2
Authority
WO
WIPO (PCT)
Prior art keywords
food
microencapsulated
stages
fish
larvae
Prior art date
Application number
PCT/ES2003/000304
Other languages
English (en)
French (fr)
Other versions
WO2004000285A3 (es
Inventor
Catalina FÉRNANDEZ DÍAZ
Manuel YÚFERA GINÉS
Emilio PASCUAL VÁZQUEZ
Original Assignee
Consejo Superior De Investigaciones Científicas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas filed Critical Consejo Superior De Investigaciones Científicas
Priority to AU2003240871A priority Critical patent/AU2003240871A1/en
Publication of WO2004000285A2 publication Critical patent/WO2004000285A2/es
Publication of WO2004000285A3 publication Critical patent/WO2004000285A3/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • A23K50/80Feeding-stuffs specially adapted for particular animals for aquatic animals, e.g. fish, crustaceans or molluscs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K40/00Shaping or working-up of animal feeding-stuffs
    • A23K40/30Shaping or working-up of animal feeding-stuffs by encapsulating; by coating
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23PSHAPING OR WORKING OF FOODSTUFFS, NOT FULLY COVERED BY A SINGLE OTHER SUBCLASS
    • A23P10/00Shaping or working of foodstuffs characterised by the products
    • A23P10/30Encapsulation of particles, e.g. foodstuff additives

Definitions

  • the present invention can be used in larval feeding of fish. Given the versatility of the method, it can be used in other areas such as biotechnology, nutrition and for the administration of therapeutic agents.
  • the difficulty of separating continent of content in a microencapsulated diet means that any modification in both the manufacturing methodology and the formulation is intrinsically linked.
  • the composition of the diet and the nature of the matrix should be adjusted to the nutritional needs and feeding behavior of the larvae. Therefore, studies have been carried out to learn about aspects related to physiology, behavior and nutrition during larval development of marine fish (Fernández-D ⁇ az et al. Journal of Fish Biology., 2001 58: 1086-1097; Ca ⁇ avate and Fernández- D ⁇ az. Aquaculture., 1999, 174: 255-263; Y ⁇ fera et al. Aquaculture., 1999, 177: 249-256) as well as on the design and manufacturing processes of different particles (Y ⁇ fera et al.
  • microcapsules In the preparation of the microcapsules of the aforementioned patent (interfacial polymerization of the protein), compounds are used not only of high cost but also of difficult availability in the market. Due to the oscillations and low pH values that take place during the manufacturing process, certain diet ingredients may be modified.
  • the referred microcapsules require for their manufacture that at least 30% of their composition is protein with long polypeptide chains such as casein or albumin, this determines to some extent the formulation of the diet we want to prepare as well as the possibility of encapsulating certain isolated compounds .
  • the advantage of the high retention of certain soluble compounds that these microcapsules have can be an undesirable conditioner in certain formulations that require adequate content release.
  • Alginate is a natural polymer that can produce gels in the presence of calcium.
  • these materials have been used to immobilize compounds by means of the process called external gelation, whereby particles of uniform quality and size are produced although basically limited to the needle diameter of the syringe used, it is not possible to achieve sizes smaller than 1 mm and hardly reproducible on an industrial scale (Poncelet et al. 1992., In: Goosen MFA (eds) CRC, Boca Ratón, Fia, 113-142).
  • US Patent No. 4,822,534 developed by Lencky et al. (1989), allows to solve the inconveniences that external gelation presents and obtain microparticles using an internal gelation technique.
  • This technique consists of the W / O emulsion including alginate and a calcium source, to subsequently insolubilize the alginate by acidifying the solution.
  • the microencapsulation protocol described in the mentioned patent does not allow to obtain particles with the characteristics suitable for use as food for fish larvae. Certain aspects need to be investigated and / or improved among them:
  • the object of the present invention in a microencapsulated food for the first stages of fish, preferably marine, formed by spherical particles of 40-
  • the content of the particles is homogeneous and uniform, and comprises an active ingredient of food interest and pharmaceutical, an immobilizing agent and a substance that causes the gelation of said agent.
  • the active ingredient is a complete aqueous diet, consisting of:
  • lipids (5-35%), of which 20-30% is a phospholipid.
  • the active ingredient may also be a single compound (dyes, isolated cells, enzymes, inorganic materials) or a mixture of several.
  • the immobilizing agent is a polysaccharide (sodium alginate) used in a proportion between 1 and 20% with respect to the active ingredient.
  • the gelling agent is a compound with calcium ions, preferably calcium citrate (0.5-13% with respect to the active ingredient).
  • the microparticles remain dispersed by the action of a dispersing agent (soy lecithin) in a hydrophobic liquid (vegetable oil, preferably sunflower oil), and solidify with the addition of a soluble organic acid (acetic acid). These particles retain more than 80% of the encapsulated product maintaining its morphology and remaining accessible for at least 4 hours of exposure in seawater.
  • the process for preparing this microencapsulated food includes mixing the active ingredient with the immobilizing agent in water and the substance that causes the gelation of said agent, resulting in a concentration solution between 1-15% by weight.
  • This aqueous solution is added to a hydrophobic liquid, in a ratio between 1: 1 and 1: 2, and a natural dispersant, in a proportion of 1-2% with respect to the hydrophobic liquid, which produces the dispersion of the aqueous mixture forming drops.
  • an oil-soluble organic acid acetic acid
  • is added in a proportion between 0.3-1.4% with respect to the total mixture to produce the solidification of said drops forming the isolated microparticles.
  • a multivalent salt calcium chloride
  • This microencapsulated food can be used for the growth of larvae of marine fish (gold, sargos and sole) from the first days of feeding. With a daily dose of 1 to 5 times the dry weight of the larvae, an adequate growth of sole larvae is achieved.
  • the invention aims to achieve the following objectives:
  • FIG. 1 Microphotograph of the digestive tube of larvae of marine fish in which the disintegration of the microcapsules of the present invention is observed.
  • Solea senegalensis larvae (22 days) fed with microcapsules made according to example A.
  • Diplodus sargus larvae (8 days) fed with microcapsules made according to example B.
  • microcapsules of the present invention also allow us to maintain the favorable characteristics achieved in the microcapsules of the patent No. ES-2127140, to solve certain problems posed in the previous section.
  • the alginate present in the initial mixture reacts with calcium salts by means of an ionic polymerization process, forming gels that subjected to low pH allows the formation of alginic acid, this compound, insoluble in water. Since the pH during the elaboration of this type of particles does not fall below 4, it is possible to encapsulate compounds of different nature without having their structure modified.
  • gelling material alginate and calcium
  • This material can be found in a percentage up to 20% with respect to the active ingredient and does not present additional problems as they are digestible compounds.
  • the major component of the larval fish diet is protein, but that source of protein must be in the form of small peptides to facilitate its digestion since the levels of enzymatic activity of the protease type are still low at this stage of development.
  • the protein source exceeds 50% of the diet with a maximum of 40% hydrolyzed of said percentage.
  • lipids in general and certain fatty acids in particular play a determining role in larval development.
  • a fish oil between 5-35% of the total lipids, enriched with polyunsaturated fatty acids and conveniently stabilized to prevent their oxidation will be used.
  • the diet will include at least 1% of soy lecithin as a source of phospholipids, to facilitate Absorption of dietary lipids and ensure that at least 20% of dietary lipids consist of a phospholipid.
  • the diet will include vitamins and trace elements, between 1-10%, necessary for larval development.
  • the source of carbohydrates included in the formulation consists of soluble starch (dextrin), in a percentage between 1 and 20% of the weight of the mixture, and sodium alginate.
  • a formulated diet is available that is encapsulated by the internal gelation process.
  • the microcapsules obtained have an optimal size and texture to be used by marine fish larvae, both pelagic and benthic larvae.
  • the resulting microencapsulated food has a "multicore" structure that allows materials of different degrees of solubility to be included and kept within its structure, unalterable during hours spent in seawater.
  • These basic characteristics mean that the microcapsule obtained in the present invention can include cells, isolated ingredients or a complete formulated diet, the final product being stable in water, digestible and accessible, and therefore suitable for the feeding of marine aquaculture species.
  • a water-in-oil emulsion For this microencapsulation process to occur, a water-in-oil emulsion must first occur.
  • the aqueous phase of the emulsion includes the diet or substance to be encapsulated together with a polysaccharide (sodium alginate) and an external source of calcium for gelation to occur.
  • the oil phase consists of a vegetable oil and a natural dispersant such as soy lecithin that favors obtaining particles with a uniform size.
  • a natural dispersant such as soy lecithin that favors obtaining particles with a uniform size.
  • the preparation receives a small amount of acetic acid that produces the (reversible) modification of alginate to alginic acid, this compound insoluble in water.
  • Acetic acid is a compound widely used in the area of culinary products and its use in food is not restricted.
  • a bathing, for a few minutes, in a solution of calcium chloride provides greater stability to the particle thus achieving a rounded particle, stable in water and of homogeneous content.
  • the permanence for a few minutes in a Tween 80 solution and its subsequent washing in water guarantees a cover free of oil residues.
  • the particle thus formed can be frozen and subsequently lyophilized without altering its properties, obtaining a final product in the form of dry powder that allows prolonged storage.
  • the encapsulation efficiency of a single compound, according to the described procedure is greater than 95%.
  • the microencapsulated diet obtained can be used as food for fish larvae. Once added to the water, these particles retain more than 80% of a single compound, maintaining their morphology and remaining accessible to the larvae for at least 4 hours of exposure in seawater.
  • the microcapsules of the present invention have a homogeneous content and a size that can range between 40-1000 ⁇ m in diameter.
  • the changes in the viscosity of the diet and the speed of agitation used during the process affect the distribution of sizes and average particle diameter.
  • the different proportions of alginate-citrate used in the manufacture of the microcapsules modify the viscosity of the aqueous phase. This characteristic together with the concentrations of acetic acid used affect the degree of buoyancy of the particle, so manipulating these parameters will achieve microencapsulated diets that can be used in the feeding of species with different feeding habits, whether pelagic (Ex. : Gold, Sargos) or benthic
  • the microencapsulated diet of the present invention has a composition in immediate principles similar to that of live prey. They are perfectly accepted by the larvae from the beginning of their feeding and are visibly disintegrated in their digestive tract. This microencapsulated food has been used for the growth of gilthead, sargous and sole larvae since the first days of feeding, the particles were accepted and digested by these larvae (examples A and B; Figure 2).
  • This food can be supplied dry in the larval rearing tank being easily dispersed upon contact with water.
  • the daily supply of this microencapsulated diet to larval tanks, as the only food, allows sole larvae (Solea senegalensis) to maintain high survival rates and grow for at least one month of cultivation (example A).
  • the above mixture was added gently to 500 milliliters of sunflower oil including 10 grams of soy lecithin and subjected to mechanical stirring with the help of a propeller shaker using a speed of 1000 rpm.
  • microcapsule suspension was screened.
  • the resulting microcapsules were placed for 2 minutes in a 1% Tween 80 solution and subsequently washed in water several times to eliminate possible undesirable detergent residues.
  • microcapsule paste was collected in a sieve, frozen and subsequently lyophilized to obtain a perfectly formed final microcapsule product (Figure 1) with an average size of 180 ⁇ 82.7 ⁇ m in diameter and a unit average dry weight of 0.24 ⁇ 0.008 ⁇ g
  • the microencapsulated diet thus obtained was used as the sole food of Solea senegalensis larvae from day 14 of culture to day 45 using a daily dose of 1 to 5 times the dry weight of the larvae in the culture tank, achieving a final survival 65% and an average dry weight of 1600 ⁇ g per larva (Table 2).
  • the above mixture was added gently to 500 milliliters of sunflower oil including 10 grams of soy lecithin and subjected to mechanical stirring with the help of a propeller shaker using for this with a speed of 1000 r.p.m.
  • Spherical particles were obtained, with an average diameter of 200 ⁇ 85 ⁇ m and 0.28 ⁇ 0.02 ⁇ g of average unit dry weight; homogeneous content and with a longer residence time in a water column with respect to those elaborated in example A)
  • microencapsulated diet thus obtained was used as the only food for Diplodus sargus larvae from the opening of the mouth and until day 25 as well as in Sparus aurata larvae from 11 to 30 days, obtaining acceptable results in both cases.
  • Table 1 Formulation used in the preparation of the microencapsulated food (grams per 100 grams of dry diet).
  • Vitamin complex 3 Vitamin C 8 3

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Food Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Birds (AREA)
  • Animal Husbandry (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Insects & Arthropods (AREA)
  • Fodder In General (AREA)
  • General Preparation And Processing Of Foods (AREA)
  • Medicinal Preparation (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)

Abstract

Con el presente invento se consigue una microcápsula que incluye una dieta completa para larvas de peces, e marinos por medio de una técnica de bajo coste. Así mismo, se puede microencapsular células aisladas o ingredientes aislados que permite su utilización en estudios de nutrición. Las microcápsulas obtenidas tienen un tamaño y textura óptimos para ser utilizado por larvas de peces marinos, siendo aceptadas y digeridas tanto por larvas de especies pelágicas como bentónicas. Las microcápsulas conseguidas se dispersan fácilmente en agua y se pueden almacenar en seco durante largos periodos sin que se vean modificadas sus características.

Description

TITULO
ALIMENTO MICROENCAPSULADO PARA LARVAS DE PECES Y
PROCEDIMIENTO PARA SU ELABORACIÓN
SECTOR DE LA TÉCNICA:
Destinado principalmente al sector de la Acuicultura. El presente invento puede ser utilizado en la alimentación larvaria de peces. Dada la versatilidad del método, éste puede ser empleado en otras áreas como biotecnología, nutrición y para la administración de agentes terapéuticos.
ESTADO DE LA TÉCNICA:
En los sistemas de cultivos piscícolas marinos, el empleo de dietas artificiales como sustituto de las presas vivas en la alimentación larvaria de peces es una cuestión de gran interés tanto desde el punto de vista científico como comercial. La consecución de un alimento de calidad controlada y reproducible junto a la facilidad de conservación y almacenaje haría idóneo este tipo de producto. La necesidad de ésta sustitución surge en respuesta a la alta demanda de presas vivas (principalmente rotífero y Artemia) y la dificultad que plantea su obtención. En los últimos años, se ha realizado un importante esfuerzo de investigación en la búsqueda de una partícula capaz de sustituir con eficacia dichas presas, obteniéndose resultados interesantes y prometedores. La idoneidad de un alimento microencapsulado para larvas de peces depende de determinados factores y su interrelación. La dificultad de separar continente de contenido en una dieta microencapsulada hace que cualquier modificación tanto en la metodología de fabricación como en la formulación vayan intrínsicamente unidas. La composición de la dieta y la naturaleza de la matriz debe ajustarse a las necesidades nutricionales y al comportamiento alimentario de las larvas. Por ello, se han realizado estudios encaminados a conocer aspectos relacionados con la fisiología, comportamiento y nutrición durante el desarrollo larvario de peces marinos (Fernández-Díaz et al. Journal of Fish Biology., 2001 58: 1086-1097; Cañavate y Fernández-Díaz. Aquaculture., 1999, 174: 255-263; Yúfera et al. Aquaculture., 1999, 177: 249-256) así como sobre el diseño y procesos de fabricación de diferentes partículas (Yúfera et al. Aquaculture Nutrition., 2000, 6: 143-152). Fernández-Díaz et al. (1997), en su patente N° ES-2127140 presentan una dieta microencapsulada destinada a la alimentación de estadios larvarios de peces marinos y el método de utilización de dicho alimento, cubriendo así la laguna existente en éste área hasta ese momento. El invento citado supone ya un interesante avance para llevar a cabo estudios sobre nutrición y fisiología larvaria de peces, con el que es posible obtener una dieta microencapsulada de tamaño, digestibilidad y características organolépticas adecuadas para esta fase de desarrollo. Sin embargo, este tipo de alimento microencapsulado tiene una serie de condicionantes que lleva a plantearse restringir su uso a estudios de alimentación a escala de laboratorio. En la elaboración de las microcápsulas de la patente citada anteriormente (polimerización interfacial de la proteína) se emplean compuestos no sólo de elevado coste sino también de difícil disponibilidad en el mercado. Debido a las oscilaciones y bajos valores de pH que tiene lugar durante el proceso de fabricación, determinados ingredientes de la dieta pueden verse modificados. Las microcápsulas referidas precisan para su manufacturación que al menos el 30% de su composición sea proteína con largas cadenas de polipéptidos como caseína o albúmina, esto condiciona en cierta medida la formulación de la dieta que queremos preparar así como la posibilidad de encapsular ciertos compuestos aislados. La ventaja que supone la elevada retención de determinados compuestos solubles que presentan estas microcápsulas, puede ser un condicionante no deseado en ciertas formulaciones que requieren una adecuada liberación del contenido.
Por todo esto, es necesario seguir buscando una partícula que manteniendo las ventajas que presentan las microcápsulas referidas en la patente N° ES-2127140 (partículas de pequeño diámetro, en forma de polvo seco, de fácil dispersión en agua, con buena flotabilidad, estables durante horas en agua de mar, de fácil disgregación en el tubo digestivo de una larva), pueda ser fabricada utilizando únicamente materiales de grado alimentario, de fácil disponibilidad en el mercado y de bajo costo. Además, es necesario obtener una micropartícula que permita transportar cualquier compuesto. Estas premisas nos conducen a considerar la adaptación de métodos y materiales utilizados en farmacia y alimentación como referencia para su utilización en la fabricación de microcápsulas destinadas a acuicultura. Uno de los materiales ampliamente utilizado para la inmovilización de células y usado como aglutinante en la fabricación de alimentos es el alginato. El alginato es un polímero natural que en presencia de calcio puede producir geles. Desde hace años se han utilizado estos materiales para inmovilizar compuestos mediante el proceso denominado gelificación externa, por el que se producen partículas de calidad y tamaño uniforme aunque limitadas básicamente al diámetro de aguja de la jeringa utilizada, no siendo posible conseguir tamaños inferiores a 1 mm y difícilmente reproducibles a escala industrial (Poncelet et al. 1992., In: Goosen MFA (eds) CRC, Boca Ratón, Fia, 113-142). La patente US N° 4,822,534 desarrollada por Lencky et al. (1989), permite solventar los inconvenientes que presenta la gelificación externa y obtener micropartículas utilizando una técnica de gelificación interna. Esta técnica consiste en la emulsión W/O incluyendo alginato y una fuente de calcio, para posteriormente insolubilizar el alginato acidificando la solución. Sin embargo, el protocolo de microencapsulación descrito en la mencionada patente no permite conseguir partículas con las características adecuadas para su utilización como alimento de larvas de peces. Determinados aspectos necesitan ser investigados y/o mejorados entre ellos:
- Control de tamaño y flotabilidad de las partículas, para facilitar su accesibilidad.
- Ajuste en la viscosidad de la mezcla para evitar excesiva rigidez de la matriz sin repercutir en la estabilidad de la microcápsula.
- Control de la acidez durante la elaboración para mantener las propiedades de los compuestos encapsulados.
- Obtención de un producto de fácil dispersión en agua, en forma de polvo seco y que se pueda almacenar durante meses hasta su utilización.
DESCRIPCIÓN DE LA INVENCIÓN
BREVE DESCRIPCIÓN DE LA INVENCIÓN
El objeto de la presente invención en un alimento microencapsulado para los primeros estadios de peces, preferentemente marinos, formado por partículas esféricas de 40-
1000 μm de diámetro solidificadas, aisladas y estables. El contenido de las partículas es homogéneo y uniforme, y comprende un ingrediente activo de interés alimentario y farmacéutico, un agente inmovilizante y una sustancia que causa la gelación de dicho agente. El ingrediente activo es una dieta acuosa completa, compuesta por:
- material proteico (50-75%), compuesto por harinas de animales marinos de los que como máximo el 40% está hidrolizado
- lípidos (5-35 %), de los que el 20-30 % es un fosfolípido.
- carbohidratos (2-25 %, preferiblemente 3-10%)
- complejos vitamínicos (1-10%, preferiblemente 4-7%)
El ingrediente activo puede ser también un compuesto único (colorantes, células aisladas, enzimas, materiales inorgánicos) o mezcla de varios.
El agente inmovilizante es un polisacárido (alginato sódico) utilizado en una proporción comprendida entre el 1 y el 20% respecto al ingrediente activo. El agente gelificante es un compuesto con iones calcio, preferentemente citrato de calcio (0,5-13% respecto al ingrediente activo). Las micropartículas permanecen dispersas por la acción de un agente dispersante (lecitina de soja) en un líquido hidrofóbico (aceite vegetal, preferentemente aceite de girasol), y se solidifican con la adición de un ácido orgánico soluble (ácido acético). Estas partículas retienen más del 80% del producto encapsulado manteniendo su morfología y permaneciendo accesibles durante al menos 4 horas de exposición en agua de mar.
El procedimiento de preparación de este alimento microencapsulado incluye la mezcla en agua del ingrediente activo con el agente inmovilizante y la sustancia que causa la gelificación de dicho agente, resultando una solución de concentración comprendida entre 1-15% en peso. Esta solución acuosa se añade a un líquido hidrofóbico, en una proporción entre 1:1 y 1:2, y un dispersante natural, en una proporción del 1-2% respecto al líquido hidrofóbico, que produce la dispersión de la mezcla acuosa formando gotas. Posteriormente se añade un ácido orgánico soluble en aceite (ácido acético) en una proporción comprendida entre 0.3-1.4% respecto a la mezcla total, para producir la solidificación de dichas gotas que forman las micropartículas aisladas. Mediante una sal multivalente (cloruro calcico) se estabilizan las partículas. Finalmente dichas partículas son lavadas en una solución tensioactiva (para eliminar cualquier residuo de aceite), enjuagadas con agua, tamizadas, congeladas y liofilizadas para la obtención del producto final en forma de polvo seco. Este procedimiento presenta una eficiencia de encapsulación de un compuesto único superior al 95%.
Este alimento microencapsulado puede utilizarse para el crecimiento de larvas de peces marinos (doradas, sargos y lenguados) desde los primeros días de alimentación. Con una dosis diaria de 1 a 5 veces el peso seco de las larvas se consigue un adecuado crecimiento de larvas de lenguado.
El invento pretende conseguir los siguientes objetivos:
- Elaboración de una partícula que incluya una dieta completa por medio de una técnica de bajo coste para satisfacer la demanda bioenergética y nutricional de larvas de peces marinos eliminando total o parcialmente las actuales presas vivas que se utilizan en acuicultura. - La inmovilización de células o compuestos independientes como suplemento a una dieta para ser utilizado como enriquecimiento puntual durante el cultivo y posibilitar su estudio nutricional.
BREVE DESCRIPCIÓN DEL CONTENIDO DE LAS FIGURAS Figura 1. Aspecto morfológico que presentan las microcápsulas según los ejemplos: A) y C) descritos en el presente invento.
Figura 2. Microfotografía del tubo digestivo de larvas de peces marinos en las que se observa la disgregación de las microcápsulas del presente invento. Larvas de Solea senegalensis (22 días) alimentadas con microcápsulas elaboradas según el ejemplo A. Larvas de Diplodus sargus (8 días) alimentadas con microcápsulas elaboradas según el ejemplo B.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
Se han tenido en cuenta los avances que se están produciendo en la elaboración de micropartículas, tanto en áreas de alimentación como en farmacia, para la consecución de una partícula que incluya una dieta completa, elaborada con compuestos no tóxicos que pueda ser utilizada en acuicultura como alimento en fases larvarias de peces marinos.
Las microcápsulas del presente invento nos permite además de mantener las características favorables conseguidas en las microcápsulas de la patente N° ES- 2127140, solucionar ciertos problemas planteados en el apartado anterior.
Los materiales empleados en la elaboración de las microcápsulas del presente invento además de ser digeribles, pueden ser utilizados en alimentación, son de fácil disponibilidad en el mercado y de bajo costo. El alginato presente en la mezcla inicial reacciona con sales de calcio mediante un proceso de polimerización iónica formando geles que sometidos a bajo pH permite la formación de ácido algínico, compuesto éste, insoluble en agua. Dado que el pH durante la elaboración de este tipo de partículas no desciende de 4, es posible encapsular compuestos de diferente naturaleza sin que se vea modificada su estructura.
Un requisito a tener en cuenta es que en la composición inicial además del ingrediente o ingredientes que queramos incluir se precisa material gelificante (alginato y calcio). Este material se puede encontrar en un porcentaje hasta el 20% respecto al ingrediente activo y no presenta problemas adicionales al ser compuestos digeribles.
El componente mayoritario de la dieta larvaria de peces es proteína, pero esa fuente de proteína debe de encontrarse en forma de péptidos pequeños para facilitar su digestión ya que los niveles de actividad enzimática del tipo proteasas aún son bajos en esta fase de desarrollo. En el presente invento la fuente de proteína supera el 50 % de la dieta con un máximo del 40% hidrolizado de dicho porcentaje.
En la formulación de un alimento para larvas de peces marinos los lípidos en general y determinados ácidos grasos en particular juegan un papel determinante en el desarrollo larvario. En la preparación de estas cápsulas se empleará un aceite de pescado entre un 5-35% del total de lípidos, enriquecido con ácidos grasos poliinsaturados y convenientemente estabilizados para prevenir la oxidación de los mismos. La dieta incluirá como fuente de fosfolípidos al menos un 1% de lecitina de soja, para facilitar la absorción de los lípidos de la dieta y asegurar que al menos un 20% de los lípidos de la dieta están constituidos por un fosfolípido.
La dieta incluirá vitaminas y elementos traza, entre 1-10%, necesarios para el desarrollo larvario. La fuente de carbohidratos que incluye la formulación se compone de almidón soluble (dextrina), en un porcentaje entre el 1 y el 20% del peso de la mezcla, y de alginato sódico.
Se dispone de una dieta formulada que es encapsulada mediante el proceso de gelificación interna. Las microcápsulas obtenidas tienen un tamaño y textura óptimos para ser utilizado por larvas de peces marinos, tanto por larvas de especies pelágicas como bentónicas.
El alimento microencapsulado resultante posee una estructura "multicore" que permite incluir materiales de distinto grado de solubilidad y mantenerlos dentro de su estructura, inalterables durante horas de permanencia en agua de mar. Estas características básicas hacen que la microcápsula obtenida en el presente invento pueda incluir células, ingredientes aislados o una dieta formulada completa, siendo el producto final estable en agua, digerible y accesible, y por tanto adecuado para la alimentación de especies acuícolas marinas.
Para que este proceso de microencapsulación ocurra, tiene que producirse primero una emulsión de agua en aceite. La fase acuosa de la emulsión incluye la dieta o sustancia a encapsular junto a un polisacárido (alginato sódico) y una fuente externa de calcio para que se produzca la gelificación.
La fase oleosa consiste en un aceite vegetal y un dispersante natural como la lecitina de soja que favorece la obtención de partículas con un tamaño uniforme. Una vez la dieta ha sido emulsionada y gelificada, la preparación recibe una pequeña cantidad de ácido acético que produce la modificación (reversible) de alginato a ácido algínico, compuesto éste insoluble en agua. El ácido acético es un compuesto ampliamente utilizado en el área de productos culinarios y no se restringe su uso en alimentación. Un baño, durante unos minutos, en una solución de cloruro calcico proporciona mayor estabilidad a la partícula consiguiéndose así una partícula redondeada, estable en agua y de contenido homogéneo. La permanencia durante unos minutos en una solución de Tween 80 y sus posteriores lavados en agua garantiza una cubierta libre de residuos de aceite.
La partícula así formada puede congelarse y posteriormente liofilizarse sin que se vean alteradas sus propiedades, obteniéndose un producto final en forma de polvo seco que permite su almacenamiento prolongado.
En la presente invención, la eficiencia de encapsulación de un compuesto único, según el procedimiento descrito, es superior al 95 % .
La dieta microencapsulada obtenida puede ser utilizada como alimento para larvas de peces. Una vez añadidas al agua, estas partículas retienen más del 80% de un compuesto único, manteniendo su morfología y permaneciendo accesibles para las larvas durante al menos 4 horas de exposición en agua de mar.
Las microcápsulas del presente invento presentan un contenido homogéneo y un tamaño que puede oscilar entre 40-1000 μm de diámetro. Las modificaciones en la viscosidad de la dieta y la velocidad de agitación empleadas durante el proceso inciden en la distribución de tamaños y diámetro medio de partícula. Así, es posible conseguir directamente o previa tamización, partículas que por su tamaño pueden ser utilizadas durante toda la fase larvaria de peces. Las diferentes proporciones de alginato-citrato empleadas en la fabricación de las microcápsulas, modifican la viscosidad de la fase acuosa. Esta característica junto a las concentraciones de ácido acético empleadas inciden en el grado de flotabilidad de la partícula, por lo que manipulando estos parámetros se conseguirán dietas microencápsuladas que pueden ser utilizadas en la alimentación de especies con diferentes hábitos de alimentación ya sean pelágicas (Ej.: Doradas, Sargos) o bentónicas
(Ej.: Lenguados). La dieta microencapsulada del presente invento presenta una composición en principios inmediatos similar a la que presentan las presas vivas. Son aceptadas perfectamente por las larvas desde el inicio de su alimentación y son visiblemente disgregadas en su tubo digestivo. Este alimento microencapsulado se ha utilizado para el crecimiento de larvas de dorada, sargo y lenguado desde los primeros días de alimentación, las partículas eran aceptadas y digeridas por dichas larvas (ejemplos A y B; Figura 2).
Este alimento puede suministrarse en seco en el tanque de cría larvaria siendo fácilmente dispersado al entrar en contacto con el agua. El suministro diario de esta dieta microencapsulada a los tanques larvarios, como único alimento, permite que larvas de lenguado (Solea senegalensis) puedan mantenerse con altas tasas de supervivencias y creciendo al menos durante un mes de cultivo (ejemplo A).
EJEMPLOS DE REALIZACIÓN DE LA INVENCIÓN
A) El proceso de microencapsulación de la dieta expuesta en la Tabla 1 se desarrollo del siguiente modo:
20 gramos de dieta fueron mezclados con 200 mililitros de una solución de alginato sódico al 1,5 % (p/v) y con 2 gramos de citrato calcico previamente dispersados en 10 mililitros de agua.
La mezcla anterior fue añadida suavemente a 500 mililitros de aceite de girasol incluyendo 10 gramos de lecitina de soja y sometidos a agitación mecánica con la ayuda de un agitador de hélices utilizando para ello una velocidad de 1000 r.p.m.
Después de 10 minutos y sin cesar la agitación, 20 mililitros de una solución oleosa incluyendo ácido acético en proporción 1:1 fueron añadidas continuando la reacción 10 minutos más. Una vez detenida la agitación y retirado el sobrenadante, la pasta fue dispersada durante 3 minutos en una solución al 0,5% de cloruro calcico en agua.
Posteriormente la suspensión de microcápsulas fue tamizada. Las microcápsulas resultantes fueron colocadas durante 2 minutos en una solución de Tween 80 al 1% y posteriormente lavadas en agua varias veces para eliminar posibles restos indeseable de detergente.
La pasta de microcápsulas fue recogida en un tamiz, congelada y posteriormente liofilizada obteniéndose un producto final de microcápsulas (Figura 1) perfectamente formadas con un tamaño medio de 180 ± 82,7 μm de diámetro y un peso seco medio unitario de 0,24 ± 0,008 μg.
La dieta microencapsulada así obtenida se utilizó como único alimento de larvas de Solea senegalensis desde el día 14 de cultivo hasta el día 45 empleando una dosis diaria de 1 a 5 veces el peso seco de las larvas en el tanque de cultivo, consiguiéndose una supervivencia final del 65% y un peso seco medio de 1600 μg por larva (Tabla2).
20 gramos de dieta fueron mezclados con 200 mililitros de una solución de alginato sódico al 0,75 % (p/v) y con 1 gramo de citrato calcico previamente dispersado en 10 mililitros de agua.
La mezcla anterior fue añadida suavemente a 500 mililitros de aceite de girasol incluyendo 10 gramos de lecitina de soja y sometidos a agitación mecánica con la ayuda de un agitador de hélices utilizando para ello con una velocidad de 1000 r.p.m.
Después de 10 minutos y sin cesar la agitación, 20 mililitros de una solución oleosa incluyendo ácido acético en proporción 1 :2 fue añadido continuando la reacción 5 minutos más. Siguiendo a continuación el proceso como se detalla en el ejemplo A).
Se obtuvieron partículas esféricas, con un diámetro medio de 200 ± 85 μm y 0,28 ± 0,02 μg de peso seco medio unitario; contenido homogéneo y con mayor tiempo de residencia en una columna de agua con respecto a las elaboradas en el ejemplo A)
La dieta microencapsulada así obtenida se utilizó como único alimento de larvas de Diplodus sargus desde la apertura de la boca y hasta el día 25 así como en larvas de Sparus aurata desde los 11 hasta los 30 días obteniéndose en ambos casos aceptables resultados.
15 gramos de algas unicelulares de la especie Nannochloropsis gaditana liofilizada en una proporción del 100% respecto al total de la dieta seca fueron mezclados con una solución de alginato sódico al 0,75 % (p/v) y con 1 gramos de citrato calcico previamente dispersados en 10 mililitros de agua. Siguiendo a continuación el proceso como se detalla en el ejemplo A). Se obtienen partículas esféricas, de 281 ± 114 μm de diámetro medio; 0,49 ± 0,04 μg de peso seco medio unitario y de contenido denso y homogéneo de células (Figura 1). Este microencapsulado es estable, se dispersa fácilmente en agua y mantiene sus características durante horas en agua.
Tabla 1. Formulación empleada en la elaboración del alimento microencapsulado (gramos por 100 gramos de dieta seca).
Harina de pescado1 50
Harina de calamar2 10 Harina predigerida3 12
Dextrina4 6
Emulsión de lípidos5 12
Lecitina de soja6 3
Complejo vitamínico 3 Vitamina C8 3
Vitamina E9 1
1 Aglonorse. Nosildmel innovation AS, Noruega.
2 Squid powder. Rieber & Son ASA, Noruega. 3 C.P.S.P. 90 Soprospain-Sopropeche, Francia.
41CN
5Kurios Lipids. Kurios, Francia. 6 ICN
7 Vitacomplex. Kurios, Francia. 8 Phospitan C. Showa Denko K.K. Japón. 9 ICN.
Tabla 2. Resultados de crecimiento (media + error estándar) en peso seco (μg), y supervivencia (%) de lenguados (Solea senegalensis) en cultivo, alimentados durante 1 mes con la dieta microencapsulada descrita en la presente invención.
Día 14 Día 30 Día 45
Peso seco (μg) 545+35 957+43 1627±16
Supervivencia (%) 100 84±5 66+02

Claims

REIVINDICACIONES:
1.- Alimento microencapsulado para los primeros estadios de peces, preferentemente peces marinos, caracterizado porque está formado por partículas esféricas de 40-1000 μm de diámetro solidificadas, aisladas y estables de contenido homogéneo y uniforme, y porque dichas partículas están formadas por un ingrediente activo de interés alimentario y farmacéutico, un agente inmovilizante y una sustancia que causa la gelificación de dicho agente dispersas, mediante la acción de un agente dispersante, en un líquido hidrofóbico y posteriormente solidificadas por adición de un ácido orgánico soluble.
2.- Alimento microencapsulado para los primeros estadios de peces según la reivindicación 1, caracterizado porque dicho ingrediente activo de interés alimentario y farmacéutico es una dieta acuosa completa formada por:
- entre un 50-75% de material proteico compuesto por harinas de animales marinos de los que como máximo el 40% está hidrolizado. - entre un 5 y un 35 % de lípidos de los que el 20-30 % es un fosfolípido.
- entre un 2 y un 25 % de carbohidratos (preferiblemente 3-10%)
- entre un 1 y un 10% de complejos vitamínicos, (preferiblemente 4-7%)
3.- Alimento microencapsulado para los primeros estadios de peces según la reivindicación 1, caracterizado porque dicho ingrediente activo de interés alimentario y farmacológico es un compuesto único seleccionado de entre cualquiera de los siguientes:
- materiales inorgánicos
- colorantes - células aisladas
- enzimas o mezclas de los mismos.
4.- Alimento microencapsulado para los primeros estadios de peces según las reivindicaciones 1-3, caracterizado porque el agente inmovilizante es un polisacárido presente en una proporción comprendida entre el 1 y el 20% respecto al ingrediente activo de interés alimentario y farmacéutico.
5.- Alimento microencapsulado para los primeros estadios de peces según la reivindicación 4, caracterizado porque el polisacárido utilizado es alginato sódico.
6.- Alimento microencapsulado para los primeros estadios de peces según las reivindicaciones 1-5, caracterizado porque el agente gelificante es un compuesto con iones calcio, preferentemente citrato de calcio, presente en una proporción comprendida entre el 0,5 y el 13% respecto al ingrediente activo de interés alimentario y farmacéutico.
7.- Alimento microencapsulado para los primeros estadios de peces según las reivindicaciones 1-6, caracterizado porque el líquido hidrofóbico en el cual se dispersa el ingrediente activo de interés alimentario y farmacológico es un aceite vegetal, preferentemente aceite de girasol.
8.- Alimento microencapsulado para los primeros estadios de peces según las reivindicaciones 1-7, caracterizado porque el agente dispersante es lecitina de soja.
9.- Alimento microencapsulado para los primeros estadios de peces según las reivindicaciones 1-8 caracterizado por estar constituido por partículas que retienen más del 80% del producto encapsulado manteniendo su morfología y permaneciendo accesibles durante al menos 4 horas de exposición en agua de mar.
10.- Procedimiento de preparación de un alimento microencapsulado según las reivindicaciones 1-9, caracterizado porque consta de los siguientes pasos: a) mezclar en agua el ingrediente activo de interés alimentario y farmacéutico con un agente inmovilizante y una sustancia que causa la gelificación de dicho agente, que resulta en una solución de concentración comprendida entre 1-15% en peso b) añadir la solución acuosa obtenida en el paso anterior a un líquido hidrofóbico, en una proporción entre 1:1 y 1:2, y un dispersante natural, en una proporción del 1-2% respecto al líquido hidrofóbico, que produce una dispersión de la mezcla acuosa formando gotas c) añadir un ácido orgánico soluble en aceite, preferentemente ácido acético, a la mezcla anterior en una proporción comprendida entre 0.3-1.4% respecto a la mezcla total, para producir una solidificación de dichas gotas que forman micropartículas aisladas y estables d) añadir a una sal multivalente, preferentemente cloruro calcico, para estabilizar las partículas formadas en el paso c) e) lavar las partículas en una solución que contiene un compuesto tensioactivo para eliminar cualquier residuo de aceite y posteriormente enjuagar con agua f) tamizar, congelar y liofilizar para la obtención del producto final en forma de polvo seco.
11.- Procedimiento de preparación de un alimento microencapsulado según la reivindicación 10, caracterizado porque presenta una eficiencia de encapsulación de un compuesto único superior al 95%.
12.- Utilización de un alimento microencapsulado para los primeros estadios de peces según las reivindicaciones 1-9, para el crecimiento de larvas de dorada, sargos y lenguado desde los primeros días de alimentación.
13.- Utilización de un alimento microencapsulado para los primeros estadios de peces según las reivindicaciones 1-9 para el crecimiento de larvas de Lenguado, empleando una dosis diaria de 1 a 5 veces el peso seco de las larvas en el tanque de cultivo.
PCT/ES2003/000304 2002-06-21 2003-06-18 Alimento microencapsulado para larvas de peces y procedimiento para su elaboración WO2004000285A2 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003240871A AU2003240871A1 (en) 2002-06-21 2003-06-18 Microencapsulated food for fish larvae and production method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200201435 2002-06-21
ES200201435A ES2197825B1 (es) 2002-06-21 2002-06-21 Alimento microencapsulado para larvas de peces y procedimiento para su elaboracion.

Publications (2)

Publication Number Publication Date
WO2004000285A2 true WO2004000285A2 (es) 2003-12-31
WO2004000285A3 WO2004000285A3 (es) 2004-02-26

Family

ID=29797394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2003/000304 WO2004000285A2 (es) 2002-06-21 2003-06-18 Alimento microencapsulado para larvas de peces y procedimiento para su elaboración

Country Status (3)

Country Link
AU (1) AU2003240871A1 (es)
ES (1) ES2197825B1 (es)
WO (1) WO2004000285A2 (es)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2431332A (en) * 2005-06-30 2007-04-25 Cereal Ingredients Inc Barrier layers applied to particles, method of their manufacture and a food incorporating such particles
CN100355357C (zh) * 2005-08-09 2007-12-19 中国海洋大学 一种鳎类稚鱼诱食剂
CN102919572A (zh) * 2012-10-25 2013-02-13 淮安正昌饲料有限公司 一种鳊鱼配合饲料及制备方法
CN102987070A (zh) * 2012-10-12 2013-03-27 淮安正昌饲料有限公司 生态环保型梭鱼配合饲料及其制备方法
EP4311667A1 (de) 2022-07-26 2024-01-31 Bischof + Klein SE & Co. KG Verbundfolie aus kunststoff zur herstellung von verpackungen

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CL2011003025A1 (es) * 2011-11-30 2012-07-06 Univ Arturo Prat 40% Metodo para obtener un producto alimenticio microencapsulado para peces; producto alimenticio que contiene al menos, alginato, levadura, suero, harina de pescado y otros excipientes; y usos de dicho producto.

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987001587A1 (en) * 1985-09-17 1987-03-26 Biocompatibles Limited Microcapsules
US4822534A (en) * 1987-03-05 1989-04-18 Lencki Robert W J Method of producing microspheres
ES2127140A1 (es) * 1997-05-28 1999-04-01 Consejo Superior Investigacion Alimento microencapsulado para larvas de peces marinos y metodo de utilizacion del alimento.
US20020172737A1 (en) * 2001-03-08 2002-11-21 Joseph Pinski Foodstuff for and method of feeding aquatic life

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1320054B1 (it) * 2000-04-18 2003-11-12 Iveco Fiat Assieme per la realizzazione di un sistema di freno motore per unmotore endotermico, in particolare per un veicolo industriale, e

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987001587A1 (en) * 1985-09-17 1987-03-26 Biocompatibles Limited Microcapsules
US4822534A (en) * 1987-03-05 1989-04-18 Lencki Robert W J Method of producing microspheres
ES2127140A1 (es) * 1997-05-28 1999-04-01 Consejo Superior Investigacion Alimento microencapsulado para larvas de peces marinos y metodo de utilizacion del alimento.
US20020172737A1 (en) * 2001-03-08 2002-11-21 Joseph Pinski Foodstuff for and method of feeding aquatic life

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2431332A (en) * 2005-06-30 2007-04-25 Cereal Ingredients Inc Barrier layers applied to particles, method of their manufacture and a food incorporating such particles
GB2431332B (en) * 2005-06-30 2011-01-05 Cereal Ingredients Inc Barrier for food particles
CN100355357C (zh) * 2005-08-09 2007-12-19 中国海洋大学 一种鳎类稚鱼诱食剂
CN102987070A (zh) * 2012-10-12 2013-03-27 淮安正昌饲料有限公司 生态环保型梭鱼配合饲料及其制备方法
CN102919572A (zh) * 2012-10-25 2013-02-13 淮安正昌饲料有限公司 一种鳊鱼配合饲料及制备方法
CN102919572B (zh) * 2012-10-25 2014-04-16 淮安正昌饲料有限公司 一种鳊鱼配合饲料及制备方法
EP4311667A1 (de) 2022-07-26 2024-01-31 Bischof + Klein SE & Co. KG Verbundfolie aus kunststoff zur herstellung von verpackungen
DE102022118679A1 (de) 2022-07-26 2024-02-01 Bischof + Klein Se & Co. Kg Verbundfolie aus Kunststoff zur Herstellung von Verpackungen

Also Published As

Publication number Publication date
ES2197825B1 (es) 2005-04-01
WO2004000285A3 (es) 2004-02-26
ES2197825A1 (es) 2004-01-01
AU2003240871A1 (en) 2004-01-06

Similar Documents

Publication Publication Date Title
US5698246A (en) Foodstuff for and method of feeding crustaceans and fish
AU2008314258B2 (en) Fish food capsule
López-Alvarado et al. Effects of coating and encapsulation of crystalline amino acids on leaching in larval feeds
ES2472728T3 (es) Métodos para estabilizar ingredientes higrosc�picos para rumiantes
Langdon Microparticle types for delivering nutrients to marine fish larvae
Yúfera et al. Food microparticles for larval fish prepared by internal gelation
EP0237542B1 (en) Microcapsules
JP5285617B2 (ja) 生きたプロバイオティクスを含む乾燥食物製品
CN109288065A (zh) 一种负载脂溶性维生素的悬浮乳液凝胶及其制备方法
Langdon et al. Progress in the development of artificial diets for bivalve filter feeders
WO1992013531A1 (en) Nutritional supplement containing vitamin e
US20040009160A1 (en) Bioactive food complex, method for making bioactive food complex product and method for controlling disease
WO2002000035A1 (en) Bioactive food complex, method for making bioactive food complex product and method for controlling disease
Appelbaum Rearing of the Dover sole, Solea solea (L), through its larval stages using artificial diets
CN100558245C (zh) 用于膳食强化的组合物
CN100521964C (zh) 鳝鱼用饲料
JP2013188219A (ja) 機能性家畜生産品およびその製造方法
Yúfera et al. Delivering bioactive compounds to fish larvae using microencapsulated diets
WO2004000285A2 (es) Alimento microencapsulado para larvas de peces y procedimiento para su elaboración
PT1064853E (pt) Alimentos compostos em grânulos pequenos, para juvenis
JP4673975B2 (ja) 幼魚またはその他の海洋生物の幼生のための合成粒状えさ、および初期えさの製造方法
KR20110053220A (ko) 어개류의 생존 한계 온도 내성 부여제 및 어개류의 양식 방법
KR100480527B1 (ko) 털게 축양용 사료 조성물
US20100166831A1 (en) Microencapsulated Nucleotide Formulations for Aquaculture and Land Animal Feeds
US20230087189A1 (en) An aquaculture feed with high water and oil content and a system and method for manufacturing said aquaculture feed

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase in:

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP