WO2003107407A1 - 半導体集積回路の有機絶縁膜の研磨方法 - Google Patents

半導体集積回路の有機絶縁膜の研磨方法 Download PDF

Info

Publication number
WO2003107407A1
WO2003107407A1 PCT/JP2003/007551 JP0307551W WO03107407A1 WO 2003107407 A1 WO2003107407 A1 WO 2003107407A1 JP 0307551 W JP0307551 W JP 0307551W WO 03107407 A1 WO03107407 A1 WO 03107407A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
insulating film
organic insulating
integrated circuit
semiconductor integrated
Prior art date
Application number
PCT/JP2003/007551
Other languages
English (en)
French (fr)
Inventor
真丸 幸恵
Original Assignee
セイミケミカル株式会社
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セイミケミカル株式会社, 旭硝子株式会社 filed Critical セイミケミカル株式会社
Priority to AU2003242395A priority Critical patent/AU2003242395A1/en
Publication of WO2003107407A1 publication Critical patent/WO2003107407A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31058After-treatment of organic layers

Definitions

  • the present invention relates to a polishing method having excellent polishing characteristics and a polishing composition for use in polishing for flattening an organic insulating film made of an organic polymer material such as an interlayer insulating film in a semiconductor integrated circuit.
  • a polishing method having excellent polishing characteristics and a polishing composition for use in polishing for flattening an organic insulating film made of an organic polymer material such as an interlayer insulating film in a semiconductor integrated circuit.
  • the interlayer insulating film formed on the semiconductor substrate is planarized by CMP (Chemical Mechanical Polishing), and new wiring is optically exposed by photolithography to form a circuit thereon.
  • the circuit is stacked by repeating this operation.
  • an organic insulating film made of an organic polymer material has been proposed.
  • polyethylene Attention has been focused on reflate, polytetrafluoroethylene, a reaction product of aromatic diamine with tetracarboxylic dianhydride, and polyimide such as PIQ (polyimide isoindoloquinazolinedione).
  • PIQ polyimide isoindoloquinazolinedione
  • the mechanical strength is lower organic insulating film compared to the insulating film of an inorganic material.
  • cracks, scratches, and peeling of the organic insulating film, which cause unevenness, occurred, and satisfactory polishing could not be performed.
  • the present invention suppresses the occurrence of cracks, scratches, film peeling, and the like, which are defects on a surface to be polished, when polishing an organic insulating film on a semiconductor substrate such as an interlayer insulating film in a semiconductor integrated circuit using CMP. And a polishing method capable of obtaining a high polishing rate.
  • the present invention also provides an abrasive composition used in the above polishing method. Disclosure of the invention
  • the present inventor has earnestly studied the polishing of an organic insulating film on a semiconductor substrate in order to solve the above-mentioned problems, and has obtained the following new findings.
  • polishing with a polishing agent composition containing abrasive grains, water and alcohol may cause unevenness.
  • polishing agent composition containing abrasive grains, water and alcohol may cause unevenness.
  • speed is obtained.
  • the present invention has the following configuration.
  • a method for polishing an organic insulating film of a semiconductor integrated circuit which comprises polishing an organic insulating film of the semiconductor integrated circuit with a polishing composition containing abrasive grains, water and alcohol.
  • the content of the abrasive grains is 0.1 to 10% by mass, and the content of the alcohol is 0.1 to 30% by mass.
  • a polishing composition for polishing an organic insulating film in a semiconductor integrated circuit having an organic insulating film made of an aromatic polymer and having a dielectric constant of 3.5 or less comprising: A polishing composition for an organic insulating film of a semiconductor integrated circuit, comprising water and alcohol.
  • FIG. 1 is an infrared chart of SiLKI550 constituting the organic insulating film used in Example 1 of the present invention.
  • the organic insulating film formed and polished on the substrate of the semiconductor integrated circuit, which is the object of the polishing method of the present invention is preferably an aromatic polymer, and more preferably has a dielectric constant of 3.5 or less. . Even if an organic material is not formed from an aromatic polymer, for example, in the case of an organic insulating film of a trimethylsilane polymer, a sufficient polishing rate cannot be obtained in many cases. Further, in the present invention, the dielectric constant of the organic insulating film is preferably 3.5 or less, and in the case of an organic insulating film having a dielectric constant higher than 3.5, there is no advantage in using the organic insulating film in the first place, The polishing effect of the polishing method of the present invention is often small. Further, the dielectric constant is more preferably less than 3.0.
  • the aromatic polymer forming the organic insulating film in the present invention is preferably a polymer containing a benzene ring and an ether bond oxygen atom directly bonded to a benzene ring.
  • the organic insulating film made of such a polymer has a dielectric constant as low as 1.0 to 3.0, and excellent polishing characteristics can be obtained by the polishing method of the present invention.
  • Preferred examples of the organic polymer material constituting such an organic insulating film include a reaction product of an aromatic diamine and a tetracarboxylic dianhydride, a polyimide such as PIQ (polyimide isoindoloquinazolinedione), and SiLK ( Dow Chemical Co., BCB (Dow Chemical Co., Ltd.) and Flare (Honeywell Co., Ltd.).
  • a reaction product of an aromatic diamine and a tetracarboxylic dianhydride a polyimide such as PIQ (polyimide isoindoloquinazolinedione), and SiLK ( Dow Chemical Co., BCB (Dow Chemical Co., Ltd.) and Flare (Honeywell Co., Ltd.).
  • the present invention is applied to an organic insulating film composed of an oligomer containing at least a cyclopentadienonyl group and an aromatic alkynyl group in addition to a benzene ring and an ether-bonded oxygen atom directly bonded to the benzene ring. Good results are obtained with the polishing method of the invention.
  • the abrasive composition used in the present invention is a composition containing abrasive grains, water and alcohol.
  • abrasive grains alumina, silica, ceria, or the like having an average particle diameter of preferably 0.01 / ⁇ to 0.5 m is used alone or in combination.
  • the average particle diameter is a particle diameter at a point where the cumulative curve is 50% in a cumulative curve in which the particle size distribution is determined on a mass basis and the total mass is 100%. Means 50% cumulative by mass.
  • ⁇ -alumina having an average particle diameter in the above range suppresses generation of scratches and cracks and peeling of the film, and provides a high polishing rate.
  • the average particle diameter is particularly preferably from 0.0 lm to 0.5 zm, particularly preferably from 0.05 to 0.2 m.
  • an aliphatic alcohol having an alkyl group having preferably 1 to 5 carbon atoms is preferably used.
  • Preferred examples include ethanol, propanol, and bushanol. Of these, secondary alcohols are preferred, and isopropyl alcohol is particularly preferred because the polishing rate is higher than other alcohols.
  • the composition of each component in the abrasive composition of the present invention is preferably such that a slurry containing water as a main component is formed.
  • the content of the abrasive grains in the composition is preferably from 0.1 to 10% by mass, and particularly preferably from 0.5 to 5% by mass. If the content of the abrasive grains is less than 0.1% by mass, a desired polishing rate cannot be obtained. On the other hand, if the content exceeds 10% by mass, cracks and scratches may occur.
  • the content of alcohol is preferably 0.1 to 30% by mass, and particularly preferably 5 to 15% by mass. If the content of the alcohol is less than 0.1% by mass, desired polishing characteristics cannot be obtained. On the other hand, if the content exceeds 30%, an improvement in the polishing rate corresponding to the increase in the content cannot be expected.
  • the abrasive composition of the present invention contains a viscosity imparting agent, whereby scratches, cracks, and peeling of the insulating film are suppressed, and the polishing effect can be further improved.
  • a viscosity-imparting agent a polyalkylenedaricol such as polyethylene glycol, a hydroxyalkylcellulose such as hydroxypropylcellulose, or a water-soluble viscosity-imparting agent such as an alkyl alcohol amide is used alone or in combination.
  • polyethylene glycol the average molecular weight is preferably 100,000 to 500,000, particularly preferably 100,000 to 300,000.
  • the content of the water-soluble viscosity-imparting agent in the abrasive composition is preferably from 0.001 to 5% by mass, more preferably from 0.003 to 0.1% by mass.
  • a viscosity of 20 g / l is preferably between 100 cP and 100,000 cP, particularly preferably between 100 cP and 10,000 cP.
  • an excellent polishing rate can be obtained.
  • the polishing composition of the present invention can appropriately contain a pH adjuster, a surfactant, a chelating agent, an oxidizing agent, a reducing agent, and the like, as needed, as long as the polishing rate is not hindered.
  • the pH adjuster is not particularly limited as long as it exhibits basicity in an aqueous solution, and a known acid or alkaline acid is used.
  • pH adjusters for the basic side include ammonia, alkali metal compounds such as sodium hydroxide and potassium hydroxide, primary to tertiary amines / hydroxylamine, and tetramethylammonium hydroxide / hydroxide.
  • a quaternary ammonium salt such as tetraethylammonium may be used.
  • Examples of the pH adjuster for the acidic side include inorganic acids such as nitric acid, sulfuric acid, and hydrochloric acid, and organic acids such as acetic acid, propionic acid, lactic acid, citric acid, oxalic acid, and succinic acid.
  • inorganic acids such as nitric acid, sulfuric acid, and hydrochloric acid
  • organic acids such as acetic acid, propionic acid, lactic acid, citric acid, oxalic acid, and succinic acid.
  • the surfactant is also not particularly limited, and is appropriately selected from an anionic surfactant, a cationic surfactant, a nonionic surfactant, and an amphoteric surfactant.
  • anionic surfactant include ammonium lauryl sulfate, polyacrylic acid, alkyl sulfate, and alkylbenzene sulfonate.
  • cationic surfactant include an alkylamine salt and a quaternary ammonium salt.
  • the nonionic surfactant include a polyoxyethylene derivative, a polyoxyethylene sorbitan fatty acid ester, and a glycerin fatty acid ester.
  • amphoteric surfactant include alkyl betaine and amine oxide.
  • the chelating agent is also not particularly limited, and known chelating agents can be used. Examples include amino acids such as glycine, alanine, glutamine, and asparagine; peptides such as glycylglycine and daricylalanine; polyaminocarboxylic acids such as EDTA; oxycarboxylic acids such as citric acid; and condensed phosphoric acid.
  • the oxidizing agent is also not particularly limited, and known hydrogen peroxide, urea peroxide, peracetic acid, iron nitrate, iodate and the like can be used.
  • the reducing agent is not particularly limited, and any known reducing agent can be used. For example, hydrogen compounds such as hydrogen iodide and hydrogen sulfate, and organic compounds such as aldehydes, saccharides, formic acid, and oxalic acid can be used.
  • a method of polishing an organic insulating film using the above-mentioned polishing composition is not particularly limited, but the back surface of a semiconductor integrated circuit having an organic insulating film such as an interlayer insulating film formed on the surface thereof Is fixed on a rotatable support table, and a polishing head having a polishing pad attached to the surface of the semiconductor integrated circuit is brought into contact with the polishing head and rotated.
  • the semiconductor integrated circuit may be attached to the support via a cushion material for buffering the pressure during polishing and uniformly applying pressure to the semiconductor integrated circuit.
  • the polishing pad may be provided with a channel or a supply hole so that the slurry of the polishing composition can be uniformly supplied to the surface of the semiconductor integrated circuit.
  • Examples of the material of the polishing pad include polyester and polyurethane.
  • K-1 Groo Ved polyurethane material, manufactured by Rodel Nitta Co., Ltd.
  • the material of the polishing pad is not limited to this, and can be appropriately selected depending on the combination with the slurry of the polishing composition to be used.
  • the polishing pressure can be set according to the type of polishing pad, the presence or absence and type of the cushion material, the polishing rate, and the physical properties such as the viscosity of the slurry of the polishing composition.
  • an organic insulating film such as an interlayer insulating film, preferably 0.7 X 10 3 Pa to 2.1 X 10 4 Pa, particularly preferably 1 X 10 Pa 4 P to l. adopted 7 X 1 0 4 P a force. If the polishing pressure is less than 0.7 X 10 3 Pa, a sufficient polishing rate cannot be obtained. Conversely, if the polishing pressure is larger than 2.1 X 10 4 Pa, cracks and cracks or insulation may occur during the polishing process. Peeling of the film adversely affects circuits formed on semiconductor substrates and multilayer circuits.
  • the supply amount of the polishing composition slurry is 50 ml Zm i! 5500 m 1 / min is preferred, and particularly 100 m 1 Zmin in400 m 1 / min. If the supply amount is less than 50 m1 Zmin, there is a possibility that a sufficient polishing rate may not be obtained. It is not economical because it exceeds the required amount.
  • the semiconductor integrated circuit polished using the polishing composition of the present invention is sufficiently washed with running water and dried as in a normal polishing method.
  • a slurry-like abrasive composition comprising ⁇ -alumina (average particle diameter: 0.15 urn): 1.0%, isopropyl alcohol: 10.0%, and water: balance was obtained.
  • the organic insulating film was Si LKI 550 (dielectric constant: 2.7, trade name of Dow Chemical Company), and its infrared spectrum was measured as shown in Fig. 1. From this infrared chart, it was found that the benzene ring It can be seen that this is a polymer having an etheric oxygen atom directly connected to the benzene ring.
  • the infrared chart was obtained by Nicole Co., Ltd.
  • ⁇ -alumina (Average particle size: 0.0: 1.0% Isopropyl alcohol 10.0% Polyethylene glycol 0.005%
  • the surface of an integrated circuit having an organic insulating film provided on a semiconductor substrate was polished in the same manner as in Example 1 except that the following polishing composition was used instead of the polishing composition of Example 1.
  • the polishing rate per hour was measured and is shown in Table 1.
  • Example 1 In place of the abrasive composition of Example 1, a slurry-like abrasive composition consisting of ⁇ -alumina having an average particle diameter of 0.15 m: 1.0% and water: balance was used. In the same manner as in Example 1, the surface of the integrated circuit having the organic insulating film provided on the semiconductor substrate was polished, and the polishing rate per hour was measured.
  • Polishing was performed in the same manner as in Comparative Example 1 except that the polishing pressure was changed to 2.8 ⁇ 10 4 Pa, and the polishing rate per time was measured. Polishing rate (nmZ min
  • Comparative Example 2 990X 10 " 1
  • the properties of scratches and film peeling on the integrated circuit surface after polishing were observed, and the results are shown in Table 2.
  • the measurement of the scratch was made by illuminating with a HIGH INTES ITY LAMP in a dark room and visually observing.
  • an organic insulating film made of an organic polymer material, such as an interlayer insulating film, provided on a semiconductor integrated circuit is free from cracks, scratches, and film peeling, which are defects of the conventional polished surface.
  • a novel method capable of polishing at an excellent polishing rate even at a low polishing pressure while suppressing generation is provided.
  • the organic insulating film of the semiconductor integrated circuit can be polished at a higher polishing rate without causing cracking or peeling. Can be.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

半導体基板上の有機絶縁膜をクラック、スクラッチ、膜剥がれなどの発生を抑制し、大きい研磨速度にて研磨する方法を提供する。芳香族系ポリマーからなり、好ましくは誘電率が3.5以下である半導体集積回路の有機絶縁膜を、研磨砥粒と水とアルコールとを含み、かつ好ましくは粘性付与剤を含む研磨剤組成物にて研磨する。

Description

明 細 書 半導体集積回路の有機絶縁膜の研磨方法 技術分野
本発明は、 半導体集積回路における層間絶縁膜などの有機ポリマー材料からな る有機絶縁膜を平坦化するための研磨に使用される、 優れた研磨特性を有する研 磨方法およびそのための研磨剤組成物に関する。 背景技術
近年、 半導体集積回路は低電力化、 高速化を求め、 急激な高密度化、 高集積ィ匕 が要求されており、 銅、 アルミニウム等による配線のパターンの微細化と回路の 多層化が行われている。 加工線幅の微細化では配線の間隔が狭くなることで配線 間容量が増え、 信号遅延時間が長くなり、 半導体集積回路の高速化が妨げられる。 そこで誘電率の低い材料でこれらの配線の間を隙間無く埋めて、 微細な配線間隔 を絶縁することが要求されている。
また、 回路の多層化にあたっては半導体基板上に形成された層間絶縁膜を CM P (Chemical Mechanical Pol ishing) により平坦化し、 更にその上にフォトリ ソグラフィ一により新たな配線を光学露光して回路を形成し、 この操作を繰り返 すことにより回路が積み重ねられている。
この回路の多層化では、 光学露光により回路が形成される表面に凹凸があると、 多層化された回路は上層の配線パターンに行くほどその影響を大きく受け、 回路 の断線等の不良が起こる要因となる。 このため、 CM Pにおいては研磨表面の凹 凸の原因となるクラック、 スクラツチの発生や膜剥がれなどの半導体基板表面の 不具合を極力抑制しなければならない。
—方、 従来、 層間絶縁膜の材料としては S 1 02膜 (誘電率約 4. 2 ) 等の無 機材料が用いられてきたが、 近年、 更なる配線の高密度化により、 一層の低誘電 率の層間絶縁膜が求められている。 かかる層間絶縁膜として、 有機ポリマ一材料 からなる有機絶縁膜が提案されている。 例えば、 ポリエチレン、 レフ夕レート、 ポリテトラフルォロエチレン、 芳香族ジァミンとテトラカルボン 酸二無水物との反応物や P I Q (ポリイミド イソインドロキナゾリンジオン) などのポリイミドなどが注目されている。 この有機絶縁膜は、 一般的に誘電率も 低く、 熱安定性も遜色なく、 また平坦化性、 間隙を埋める特性などの多くの点で、 従来の S i 02膜を超える性能を有する。
しかし、 このような有機絶縁膜が使用される場合、 従来通常用いられる CMP により実用的な特性を有する多層化した半導体集積回路を製造するのは困難であ つた。 すなわち、 シリカ、 アルミナ、 セリア等の従来の、 研磨砥粒に水を主媒体 するスラリー状の研磨剤を使用し、 高い研磨速度 (研磨レート) を得ようとして 従来の無機材料からなる層間絶縁膜を研磨するのと同様の圧力 (2 . 8 X 1 04 〜3 . 4 X 1 04P a ) で研磨した場合、 有機絶縁膜が無機材料の絶縁膜に比べ て機械的強度が低いために、 有機絶縁膜に凹凸の原因となるクラック、 スクラッ チ、 膜剥がれを生じてしまい、 満足する研磨ができなかった。
一方、 有機絶縁膜に生じるクラック、 スクラッチや膜剥がれを防ぐために、 C M Pにおける研磨時の圧力を低くすることも考えられるが、 このような低い研磨 圧力では充分な研磨速度を得ることができず、 これまた実用的な特性を有する半 導体集積回路を製造することは困難であった。
本発明は、 半導体集積回路における層間絶縁膜などの半導体基板上の有機絶縁 膜を CM Pを用いて研磨するにあたり、 被研磨面の欠陥である、 クラック、 スク ラッチ、 膜剥がれなどの発生を抑制し、 かつ大きい研磨速度が得られる研磨方法 を提供する。
また、 本発明は、 上記研磨方法に使用される研磨剤組成物を提供する。 発明の開示
本発明者は前記の課題を解決すべく半導体基板上の有機絶縁膜の研磨について 鋭意研究した結果、 以下のような新規な知見を得た。 すなわち、 半導体基板上の 有機絶縁膜が、 誘電率 3 . 5以下の芳香族系ポリマーからなる場合、 研磨砥粒と 水とアルコールを含む研磨剤組成物をもつて研磨することにより、 凹凸の原因と なるクラック、 スクラッチ、 膜剥がれの発生を著しく低減し、 また、 大きい研磨 速度が得られることを見出した。
また、 本発明では、 上記の研磨剤組成物が特定量の粘性付与剤を含有すること により更に優れた研磨速度が得られることが見出された。
かくして、 本発明は下記の構成を有するものである。
(1) 半導体集積回路における有機絶縁膜を、 研磨砥粒と水とアルコールとを含 む研磨剤組成物にて研磨することを特徴とする半導体集積回路の有機絶縁膜の研 磨方法。
(2) アルコールがイソプロピルアルコールである (1) に記載の研磨方法。
(3) 前記有機絶縁膜が芳香族系ポリマーからなり、 かつ誘電率が 3. 5以下で ある (1) または (2) に記載の研磨方法。
(4) 前記芳香族系ポリマーは、 ベンゼン環とベンゼン環に直接結合したエーテ ル結合性の酸素原子とを含む (1) 、 (2) または (3) に記載の研磨方法。
(5) 前記研磨剤組成物における、 前記研磨砥粒の含有量が 0. 1〜10質量% であり、 かつアルコールの含有量が 0. 1〜30質量%でぁる (1) 〜 (4) の いずれかに記載の研磨方法。
(6) 前記研磨剤組成物にさらに粘性付与剤が含有される (1) 〜 (5) のいず れかに記載の研磨方法。
(7) 研磨砥粒が α—アルミナであり、 かつ前記粘性付与剤がヒドロキシプロ ピルセルロースである (6) に記載の研磨方法。
(8) 芳香族系ポリマーからなり、 かつ誘電率が 3. 5以下である有機絶縁膜を 有する半導体集積回路における前記有機絶縁膜を研磨するための研磨用組成物で あって、 研磨砥粒と水とアルコールとを含むことを特徴とする半導体集積回路の 有機絶縁膜用の研磨剤組成物。
(9) 上記 (1) 〜 (7) のいずれかに記載の研磨方法により有機絶縁膜が研磨 された半導体集積回路。 図面の簡単な説明
図 1は、 本発明の実施例 1で使用した有機絶縁膜を構成する S i LK I 550 の赤外線チャートである。 発明を実施するための形態
本発明の研磨方法の対象となる、 半導体集積回路の基板上に形成され、 研磨さ れる有機絶縁膜は、 芳香族系ポリマーが好ましく、 誘電率が 3 . 5以下のもので あることがより好ましい。 有機系材料であっても芳香族ポリマーから形成されな い、 たとえば、 トリメチルシラン系ポリマーの有機系絶縁膜の場合には、 充分な 研磨レートが得られない場合が多い。 また、 本発明では、 有機絶縁膜の有する誘 電率は 3 . 5以下が好ましく、 これを超える誘電率を有する有機絶縁膜の場合に は、 そもそも有機絶縁膜を使用する利点がない上に、 本発明の研磨方法により研 磨効果も小さい場合が多い。 さらに、 誘電率は、 3 . 0以下であるのがより好ま しい。
本発明における有機絶縁膜を形成する芳香族系ポリマーは、 なかでも、 ベンゼ ン環とベンゼン環に直接結合したエーテル結合性の酸素原子とを含むポリマーで あるのが好ましい。 かかるポリマーからなる有機絶縁膜は、 1 . 0〜3 . 0とい う低い誘電率を有するとともに、 本発明の研磨方法により優れた研磨特性が得ら れる。 このような有機絶縁膜を構成する有機ポリマー材料の好ましい例としては、 芳香族ジァミンとテトラカルボン酸二無水物との反応物や P I Q (ポリイミド イソインドロキナゾリンジオン) などのポリイミド、 S i L K (ダウケミカル社 商品名) , B C B (ダウケミカル社商品名) , F l a r e (ハネウエル社商品 名) が挙げられる。
さらに、 本発明では、 ベンゼン環とベンゼン環に直接結合したエーテル結合性 の酸素原子に加えて、 シクロペンタジエノニル基と芳香族アルキニル基を少なく とも含むオリゴマーからなる有機絶縁膜に対しても本発明の研磨方法により良好 な結果が得られる。
本発明において使用される研磨剤組成物は研磨砥粒と水とアルコールとを含む 組成物である。 研磨砥粒としては、 平均粒子径が好ましくは 0 . 0 1 /χπι〜0 . 5 mのアルミナ、 シリカ、 セリアなどが単独もしくは組み合わせて用いられる 。 なお、 本明細書で、 平均粒子径とは、 質量基準で粒度分布を求め、 全質量を 1 0 0 %とした累積カーブにおいて、 その累積カーブが 5 0 %となる点の粒径であ り、 質量基準累積 5 0 %ともいわれるものを意味する。 なかでも、 上記範囲の平 均粒子径を有する α—アルミナは、 スクラッチ、 クラックの発生や膜剥がれが 抑制され、 かつ高い研磨レートが得られる。 α—アルミナを研磨砥粒として用い た場合、 その平均粒子径が 0 . 0 1 mより小さいと所望の研磨速度を得難く、 0 . 5 xmより大きいとスクラッチが発生する不具合が生じるものである。 平均 粒子径が、 なかでも、 好ましくは 0 . 0 l m〜0 . 5 zm、 特に好ましくは 0 . 0 5〜0 . 2 mである。
アルコールとしては、 好ましくは、 炭素数が好ましくは 1〜 5のアルキル基を 有する脂肪族アルコールが使用される。 その好ましい例としてはエタノール、 プ ロパノール、 ブ夕ノールなどが挙げられる。 なかでも、 第 2級アルコールが好ま しく、 特に、 イソプロピルアルコールは、 研磨レートが他のアルコールと比べて 高くなるため特に好適である。
本発明の研磨剤組成物における各構成成分の組成は、 水を主成分とするスラリ 一を形成するようにするのが好ましい。 このため、 研磨砥粒の組成物における含 有量は、 0 . 1〜1 0質量%が好ましく、 0 . 5〜 5質量%が特に好ましい。 研 磨砥粒の含有量が 0 . 1質量%より少ないと所望の研磨速度が得られず、 一方、 1 0質量%を越えるとクラック、 スクラッチが発生する原因となる恐れがある。 また、 アルコールの含有量は 0 . 1〜3 0質量%カ好ましく、 特には 5 ~ 1 5質 量%が好ましい。 アルコールの含有量が 0 . 1質量%より少ないと所望の研磨特 性が得られず、 一方、 3 0 %を越えた場合には含有量の増加に見合う研磨レート の向上が望めない。
また、 本発明の研磨剤組成物には、 粘性付与剤を含有させることが好ましく、 それにより、 スクラッチ、 クラック、 絶縁膜の剥がれが抑制され、 研磨効果を更 に向上させることができる。 かかる粘性付与剤としては、 ポリエチレングリコ一 ルなどのポリアルキレンダリコール、 ヒドロキシプロピルセルロースなどのヒド ロキシアルキルセルロース、 アルキルアル力ノールアミドなどの水溶性粘性付与 剤が単独または混合して使用される。 ポリエチレングリコールの場合、 その平均 分子量は 1 0万〜 5 0 0万が好ましく、 特には 1 0 0万〜 3 0 0万が好ましい。 水溶性粘性付与剤の含有量は研磨剤組成物中、 0 . 0 0 1〜5質量%が好ましく、 特には 0 . 0 0 3〜0 . 1質量%がさらに好ましい。 ヒドロキシプロピルセル口 ースを使用する場合、 2 0 °Cにおいて、 2 0 g /リットルの粘度が 1 0 c P〜l 0万 c P、 特に好ましくは 1 0 0 c P〜l万 c Pのものが、 優れた研磨レートが 得られる。
本発明の研磨剤組成物には、 研磨レートを阻害しない限り、 p H調整剤、 界面 活性剤、 キレート化剤、 酸化剤、 還元剤等を必要に応じて適宜含有させることが できる。
上記 p H調整剤は、 研磨剤組成物を塩基性側に調整する場合には、 水溶液中で 塩基性を呈するものであれば特に限定されず、 既知の酸やアル力リが用いられる。 例えば、 塩基性側への p H調整剤としては、 アンモニア、 水酸化ナトリウムや水 酸化カリウムなどのアルカリ金属化合物、 1級〜 3級アミンゃヒドロキシルアミ ン、 水酸化テトラメチルアンモニゥムゃ水酸化テトラエチルアンモニゥムなどの 4級アンモニゥム塩であってもよい。 また、 酸性側への p H調整剤としては、 硝 酸、 硫酸、 塩酸などの無機酸、 酢酸、 プロピオン酸、 乳酸、 クェン酸、 シユウ酸、 コハク酸などの有機酸が挙げられる。
上記界面活性剤も、 特に制限されず、 陰イオン性界面活性剤、 陽イオン性界面 活性剤、 非イオン性界面活性剤または両性界面活性剤のなかから適宜選択される。 陰イオン性界面活性剤としては、 ラウリル硫酸アンモニゥム、 ポリアクリル酸、 アルキル硫酸エステル塩、 アルキルベンゼンスルフォン酸塩などが挙げられる。 陽イオン性界面活性剤としては、 アルキルアミン塩、 第四級アンモニゥム塩など が挙げられる。 非イオン性界面活性剤としては、 ポリオキシエチレン誘導体、 ポ リオキシエチレンソルビタン脂肪酸エステル、 グリセリン脂肪酸エステルなどが 挙げられる。 両性界面活性剤としては、 アルキルべタイン、 ァミンオキサイドな どが挙げられる。
上記キレート化剤も、 特に制限されず、 既知のものが使用できる。 例えば、 グ リシン、 ァラニン、 グルタミン、 ァスパラギンなどのアミノ酸、 グリシルグリシ ン、 ダリシルァラニンなどのペプチド、 E D T Aなどのポリアミノカルボン酸、 クェン酸などのォキシカルボン酸、 縮合リン酸などが挙げられる。 上記酸化剤も、 特に制限されず、 既知の過酸化水素、 過酸化尿素、 過酢酸、 硝 酸鉄、 ヨウ素酸塩などが使用できる。 上記還元剤も、 特に制限されず、 既知のも のが使用できる。 例えば、 ヨウ化水素、 硫ィ匕水素などの水素化合物やアルデヒド 類、 糖類、 ギ酸、 シユウ酸などの有機化合物を用いることができる。
本発明において、 上記研磨剤組成物を使用して有機絶縁膜を研磨する方法は特 に限定されるものではないが、 層間絶縁膜などの有機絶縁膜が表面に形成された 半導体集積回路の裏面を回転可能な支持台上に固定し、 該半導体集積回路の表面 に研磨パッドが取り付けられた研磨へッドを当接し回転させる方法が採用される。 ここで支持台には研磨時の圧力を緩衝し、 半導体集積回路に対して均一に圧力を かけるためのクッション材を介して半導体集積回路を取り付けてもよい。 また、 研磨パッドには研磨剤組成物のスラリ一が半導体集積回路の表面に対して均一に 供給可能なようにチャネルや供給孔が設けられていてもよい。
研磨パッドの材質としてはポリエステルやポリウレタンなどがあり、 本発明の 実施例では、 I C一 1400の K一 G r o o V e d (ポリウレタン材質、 ロデー ル'二ッ夕社製) を用いたが、 用いられる研磨パッドの材質はこれに限定される ものではなく、 使用される研磨剤組成物のスラリ一などとの組み合わせにより適 宜選択することができる。
研磨圧力は、 研磨パッドの種類、 上記クッション材の有無や種類、 研磨速度、 研磨剤組成物のスラリーの粘性等の物性により設定できる。 なかでも、 本発明で は層間絶縁膜などの有機絶縁膜の研磨においては、 好ましくは 0. 7 X 1 03P a〜2. 1 X 1 04P a、 特に好ましくは、 l X 1 04P a〜l. 7 X 1 04P a力 採用される。 研磨圧力が 0. 7 X 1 03P aより小さいと充分な研磨レー卜が得 られず、 逆に、 2. 1 X 1 04P aより大きいと、 研磨過程でクラックゃスクラ ツチや絶縁膜の剥がれが生じ、 半導体基板上に形成された回路や、 回路の多層化 に悪影響を与える。
本発明の研磨方法において、 研磨組成物スラリ一の供給量としては、 50ml Zm i I!〜 5 0 0 m 1 /m i nが好ましく、 特には 100m 1 Zm i n〜400 m 1 /m i nが好適である。 該供給量が 50 m 1 Zm i nより少ないと充分な研 磨レートが得られない恐れがあり、 逆に 50 0 m 1 Zm i nを越えると研磨に必 要とされる量を超えるため、 経済的でない。
本発明の研磨用組成物を使用して研磨された半導体集積回路は、 通常の研磨方 法のごとく流水により十分に洗浄し、 乾燥せしめられる。
実施例
以下に実施例を示し、 本発明をさらに具体的に説明するが、 本発明は以下の実 施例に限定して解釈されるべきでないことは言うまでもない。 なお、 特に断りの ない限り 「%」 は 「質量%」 を表す。
[実施例 1 ]
α—アルミナ (平均粒子径: 0 . 1 5 u rn) : 1 . 0 %と、 イソプロピルアル コール: 1 0. 0 %と、 水: 残部とからなるスラリー状の研磨剤組成物を得た。 この研磨剤組成物を用い、 以下の方法で半導体基板上に設けられた有機絶縁膜 を有する集積回路表面を研磨した。 なお、 有機絶縁膜は、 S i L K I 5 5 0 (誘 電率: 2 . 7、 ダウケミカル社商品名) であり、 赤外線スペクトルを測定すると、 図 1のとおりとなり、 この赤外線チャートより、 ベンゼン環とベンゼン環に直結 するエーテル結合性の酸素原子を有するポリマーであることがわかる。 赤外線チ ヤー卜は、 ニコレ社製マダナ 7 6 0型、 付属顕微 I R:ニックプランで得た。 研磨機として、 Appl ied Materials社製研磨機 M i r r aを使用し、 研磨パッ ドとして、 IC- 1400 K- Grooved (同心円状グループ) を使用して、 上記研磨剤組 成物を 1分間あたり 2 0 0ミリリツトルの割合で研磨パッドに供給しながら 1分 間研磨した。 研磨圧力は 1 . 3 8 X 1 04P a、 研磨パッドの回転数は、 head 57 rpm, platen 63 rpmである。
上記のようにして研磨した場合における、 時間あたりの研磨速度を測定し表 1 に示した。
[実施例 2 ]
実施例 1の研磨剤組成物に代えて、 以下の研磨剤組成物を用いた他は実施例 1 と同様にして半導体基板上に設けられた有機絶縁膜を有する集積回路表面を研磨 し、 時間あたりの研磨速度を測定し表 1に示した。
研磨剤組成物
α—アルミナ (平均粒子径: 0 . : 1 . 0 % イソプロピルアルコール 10. 0 % ポリエチレングリコ一ル 0. 005%
(平均分子量 200万)
[実施例 3]
実施例 1の研磨剤組成物に代えて、 以下の研磨剤組成物を用いた他は実施例 1 と同様にして、 半導体基板上に設けられた有機絶縁膜を有する集積回路表面を研 磨し、 時間あたりの研磨速度を測定し、 表 1に示した。
研磨剤組成物
α—アルミナ (平均粒子径: 0. 5 m) 1. 0 %
イソプロピルアルコール 10. 0 %
ヒドロキシプロピルセルロース 0. 1 %
(1, 000〜4, OOOcP:和光純薬製)
水 残部
[比較例 1 ]
実施例 1の研磨剤組成物に代えて、 平均粒子径: 0. 15 mの α—アルミ ナ: 1. 0%と、 水:残部とからなるスラリー状研磨剤組成物を用いた他は実施 例 1と同様にして、 半導体基板上に設けられた有機絶縁膜を有する集積回路表面 を研磨し、 時間あたりの研磨速度を測定し、 表 1に示した。
[比較例 2]
また、 比較例 1において、 研磨圧力を 2. 8 X 104P aに変えた他は、 比較 例 1の条件と同様に研磨し、 時間あたりの研磨速度を測定し、 表 1に示した。 研磨速度 (nmZ min
実施例 1 1027 10_1
実施例 2 1882 x 10一1
実施例 3 1660X 10_1
比較例 1 490 10"1
比較例 2 990X 10"1 また、 上記実施例および比較例において、 研磨後の集積回路表面のスクラッチ、 膜剥がれの性状を観察しその結果を表 2に示した。 なお、 スクラッチの測定は暗 室で HI GH INTES I TY LAMPで光をあて、 目視観察した。
表 2
Figure imgf000012_0001
産業上の利用性
本発明によれば、 半導体集積回路上に設けられた、 層間絶縁膜などの有機ポリ マー材料からなる有機絶縁膜を、 従来の研磨面の欠陥であるクラック、 スクラッ チ、 膜剥'がれの発生を抑制した上で、 低い研磨圧力でも優れた研磨速度にて研磨 できる新規な方法が提供される。
さらに、 本発明によれば、 研磨剤組成物に粘性付与剤が添加されることにより、 スクラツチや剥がれを生じず、 より優れた研磨速度にて半導体集積回路の有機絶 縁膜の研磨を行うことができる。

Claims

請 求 の 範 囲
1 . 半導体集積回路における有機絶縁膜を、 研磨砥粒と水とアルコールとを含む 研磨剤組成物にて研磨することを特徴とする半導体集積回路の有機絶縁膜の研磨 方法。
2 . 前記アルコールがィソプロピルアルコールである請求項 1に記載の研磨方法。
3 . 前記有機絶縁膜が芳香族系ポリマーからなり、 かつ誘電率が 3 . 5以下であ る請求項 1または 2に記載の研磨方法。
4 . 前記芳香族系ポリマーがベンゼン環とベンゼン環に直接結合したエーテル結 合性の酸素原子とを含む請求項 1、 2または 3のいずれかに記載の研磨方法。
5 . 前記研磨剤組成物における、 前記研磨砥粒の含有量が 0 . 1〜1 0質量%で あり、 かつアルコールの含有量が 0 . 1〜3 0質量%である請求項 1〜4のいず れかに記載の研磨方法。
6 . 前記研磨剤組成物にさらに粘性付与剤が含有される請求項 1〜 5のいずれか に記載の研磨方法。
7 . 前記研磨砥粒がひ一アルミナであり、 かつ前記粘性付与剤がヒドロキシプ 口ピルセルロースである請求項 6に記載の研磨方法。
8 . 芳香族系ポリマーからなり、 かつ誘電率が 3 . 5以下である有機絶縁膜を有 する半導体集積回路における前記有機絶縁膜を研磨するための研磨用組成物であ つて、 研磨砥粒と水とアルコールとを含むことを特徴とする半導体集積回路の有 機絶縁膜用の研磨剤組成物。
9 . 請求項 1〜 7のいずれかに記載の研磨方法により有機絶縁膜が研磨された半
PCT/JP2003/007551 2002-06-14 2003-06-13 半導体集積回路の有機絶縁膜の研磨方法 WO2003107407A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003242395A AU2003242395A1 (en) 2002-06-14 2003-06-13 Method of polishing organic insulating film of semiconductor integrated circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-174636 2002-06-14
JP2002174636A JP2004022748A (ja) 2002-06-14 2002-06-14 半導体集積回路の有機絶縁膜の研磨方法

Publications (1)

Publication Number Publication Date
WO2003107407A1 true WO2003107407A1 (ja) 2003-12-24

Family

ID=29727985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/007551 WO2003107407A1 (ja) 2002-06-14 2003-06-13 半導体集積回路の有機絶縁膜の研磨方法

Country Status (4)

Country Link
JP (1) JP2004022748A (ja)
AU (1) AU2003242395A1 (ja)
TW (1) TW200405452A (ja)
WO (1) WO2003107407A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101128983B1 (ko) * 2005-11-01 2012-03-23 삼성코닝정밀소재 주식회사 금속 배선용 화학기계적 연마 조성물
CN105143390B (zh) 2013-04-17 2019-08-13 三星Sdi株式会社 有机膜化学机械研磨浆料组成物及使用其的研磨方法
WO2014171766A1 (ko) * 2013-04-17 2014-10-23 제일모직 주식회사 유기막 cmp 슬러리 조성물 및 이를 이용한 연마방법
JP2016183212A (ja) * 2015-03-25 2016-10-20 株式会社フジミインコーポレーテッド 研磨用組成物
KR102447178B1 (ko) 2015-09-01 2022-09-26 삼성전자주식회사 반도체 장치의 제조 방법
JP7183863B2 (ja) * 2018-03-13 2022-12-06 Jsr株式会社 化学機械研磨用組成物及び化学機械研磨方法
WO2019176558A1 (ja) * 2018-03-15 2019-09-19 ニッタ・ハース株式会社 研磨組成物

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5895509A (en) * 1996-12-06 1999-04-20 Kabushiki Kaisha Ultraclean Technology Research Institute Abrasive composition
JPH11274121A (ja) * 1998-03-24 1999-10-08 Fujitsu Ltd 半導体装置およびその製造方法
EP1211024A2 (en) * 2000-11-30 2002-06-05 JSR Corporation Polishing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5895509A (en) * 1996-12-06 1999-04-20 Kabushiki Kaisha Ultraclean Technology Research Institute Abrasive composition
JPH11274121A (ja) * 1998-03-24 1999-10-08 Fujitsu Ltd 半導体装置およびその製造方法
EP1211024A2 (en) * 2000-11-30 2002-06-05 JSR Corporation Polishing method

Also Published As

Publication number Publication date
JP2004022748A (ja) 2004-01-22
TW200405452A (en) 2004-04-01
AU2003242395A8 (en) 2003-12-31
AU2003242395A1 (en) 2003-12-31

Similar Documents

Publication Publication Date Title
EP1210395B1 (en) Compositions for insulator and metal cmp and methods relating thereto
JP5964795B2 (ja) 両親媒性非イオン性界面活性剤を利用したcmp法
KR100510977B1 (ko) 화학기계연마용 연마제 및 기판의 연마법
US6702954B1 (en) Chemical-mechanical polishing slurry and method
TWI227726B (en) Chemical-mechanical abrasive composition and method
JP2004533115A (ja) 界面活性剤を有する研磨用組成物
US6524168B2 (en) Composition and method for polishing semiconductors
JP2011126010A (ja) 混合研磨材の研磨用組成物及びその使用方法
JP2015159289A (ja) ポリシリコン除去速度の抑制のためのcmp組成物および方法
WO2005086213A1 (ja) 研磨剤および研磨方法
JP2006019746A (ja) ケミカルメカニカルポリッシング組成物及びそれに関連する方法
JP2010153853A (ja) ケミカルメカニカル研磨組成物およびそれに関する方法
US20080148652A1 (en) Compositions for chemical mechanical planarization of copper
TWI294456B (ja)
JP2007180534A (ja) 半導体層を研磨するための組成物
US20020062600A1 (en) Polishing composition
JP2008016841A (ja) 化学的機械的研磨のための選択的バリアスラリー
JP4756814B2 (ja) ルテニウムcmp用溶液及びこれらを利用するルテニウムパターン形成方法
WO2003107407A1 (ja) 半導体集積回路の有機絶縁膜の研磨方法
TW200927898A (en) Method for chemical mechanical planarization of a metal-containing substrate
JP2010010717A (ja) 研磨剤および研磨方法
JPWO2003005431A1 (ja) 半導体集積回路用化学機械的研磨スラリー、研磨方法、及び半導体集積回路
JP2007287832A (ja) 化学的機械的研磨方法
US7998228B2 (en) Tantalum CMP compositions and methods
JP2005056879A (ja) 銅系金属用研磨液及び研磨方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase