WO2003106744A1 - ZnTe系化合物半導体単結晶の製造方法およびZnTe系化合物半導体単結晶 - Google Patents

ZnTe系化合物半導体単結晶の製造方法およびZnTe系化合物半導体単結晶 Download PDF

Info

Publication number
WO2003106744A1
WO2003106744A1 PCT/JP2003/002829 JP0302829W WO03106744A1 WO 2003106744 A1 WO2003106744 A1 WO 2003106744A1 JP 0302829 W JP0302829 W JP 0302829W WO 03106744 A1 WO03106744 A1 WO 03106744A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
compound semiconductor
semiconductor single
based compound
znte
Prior art date
Application number
PCT/JP2003/002829
Other languages
English (en)
French (fr)
Inventor
佐藤 賢次
矢辺 貴幸
Original Assignee
株式会社日鉱マテリアルズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日鉱マテリアルズ filed Critical 株式会社日鉱マテリアルズ
Publication of WO2003106744A1 publication Critical patent/WO2003106744A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/46Sulfur-, selenium- or tellurium-containing compounds
    • C30B29/48AIIBVI compounds wherein A is Zn, Cd or Hg, and B is S, Se or Te

Definitions

  • the present invention relates to a method for producing a Z nT e-based compound semiconductor single crystal, and more particularly to a technique effectively applied to the production of a high resistance Z nT e-based compound semiconductor single crystal.
  • Z nT e-based compound semiconductor single crystals are expected as crystals that can be used for pure green light emitting elements, and in order to improve the light emission characteristics of the light emitting elements, measures have been made to improve the conductivity of the crystals. ing.
  • the conductivity can be enhanced by adding an impurity such as phosphorus or arsenic to the Z nT e -based compound semiconductor single crystal to set the impurity concentration in the crystal to IX 10 17 cm -3 or more.
  • an impurity such as phosphorus or arsenic
  • suitable crystal characteristics differ depending on the purpose of use.
  • electro-optical signal conversion elements hereinafter referred to as EZ O elements
  • EZ O elements electro-optical signal conversion elements used for oscillation or reception of ultra high frequency waves of Terahertz or higher are relatively resistant. It is required to have a high Z nTe system compound semiconductor single crystal.
  • Z n T e polycrystals as a raw material are disposed at one end in an ampoule of quartz, and the Z n T e polycrystals are heated and sublimed at a temperature near the melting point.
  • it is often grown by a vapor deposition method in which a single crystal of Z nTe is deposited on a substrate disposed on the opposite side of a quartz ampoule. According to this method, a rectangular Z nTe single crystal substrate of about 2 OmmX 2 Omm at maximum is obtained.
  • a nTe compound semiconductor single crystal by a vapor phase growth method, it is desirable during the growth. It is difficult to add the impurity of the above and it is difficult to control the resistivity of the ZnTe compound semiconductor single crystal.
  • the Chiyoke Kralski method liquid-sealed Czochralski method (LEC method), Bridgman method, vertical gradient freezing Melt growth methods such as (VGF method) or solution growth methods are generally used.
  • LOC method liquid-sealed Czochralski method
  • GVF method vertical gradient freezing Melt growth methods
  • it is used as an industrial production method of compound semiconductor single crystals such as Ga As.
  • the present inventors tried to raise the purity of the Z nT e-based compound semiconductor single crystal more than ever in the manufacturing method using the VGF method, the compound semiconductor suppresses the generation of intrinsic defects in the crystal. It was difficult to achieve high resistance by improving the purity of crystals.
  • the present invention proposes a method for solving the above-mentioned problems, and provides a method for producing a compound semiconductor single crystal which enables the growth of a large-sized and high resistance Z n T e compound semiconductor single crystal.
  • the purpose is to Disclosure of the invention
  • the present invention provides a method for producing a ternary or higher Z n T e -based compound semiconductor single crystal containing Z n T e or Z n T e, comprising any one or more of 3 d transition elements
  • the crystal is grown by adding a predetermined amount as an impurity.
  • 3 is d transition element, an element from S c of atomic number 21 (scandium) to the atomic number 30 Z n (zinc), electron configuration is [Ar] 4 3 2 3 ⁇ ⁇ 1 (3 It means what is represented by.
  • the resistance of the Z nT e-based compound semiconductor single crystal can be increased. That is, the 3d transition element forms a deep level in the ZnT e-based compound, and high resistance can be realized by capturing the acceptor.
  • the 3d transition element is added at a concentration of 5 ⁇ 10 16 cm ⁇ 3 or more and 1 ⁇ 10 21 cm ⁇ 3 or less (approximately 0.6 to 6 ⁇ 10 4 p pm).
  • the concentration of 3d transition element in the manufactured Z nT e-based compound semiconductor single crystal is 1 ⁇ 10 15 cm ⁇ 3 or more and 2 ⁇ 10 19 cm ⁇ 3 or less (0. 015 15 to 30 p pm ).
  • the compound in the melt growth method or the solution growth method for growing a compound semiconductor single crystal by heating and melting a compound semiconductor single crystal raw material and gradually cooling the raw material melt, the compound is placed in the container for containing the compound semiconductor raw material. It is desirable to add by adding the above-mentioned Group 3 d element as an impurity together with the semiconductor raw material as heat and melting.
  • the Chiyoke Kralski method the liquid-sealed Chiyoke Kralski method (LEC method), the Bridg-Jiman method, the vertical gradient freezing method (VGF method) or the like can be used.
  • LEC method liquid-sealed Chiyoke Kralski method
  • VHF method vertical gradient freezing method
  • the 3d element be V (vanadium) or C r (chrom).
  • V vanadium
  • C r chrom
  • Other 3d transition elements such as Ti (titanium), Fe (iron), Ni (nickel) may be used as the impurity.
  • a ⁇ ⁇ ⁇ e-based compound semiconductor single crystal having a resistivity of 1 ⁇ 10 8 ⁇ * cm can be produced. Therefore, a Z n T e-based compound semiconductor single crystal having the above-mentioned resistivity As a substrate, it is possible to realize an EZO element used for oscillation or reception of ultra high frequency waves of Tera Hertz or higher.
  • the present inventors have described as an impurity that forms an energy level near the center of the energy gap, a single crystal of a ZnTe-based compound semiconductor such as A 1, G a, or I n etc.
  • a technology has been proposed for increasing the resistance of Z nTe-based compound semiconductor single crystals by adding one of the group elements or a halogen element such as C 1, B r, or I (Japanese Patent Application No. 2001). 3 1 766).
  • the transfer element is suitable as an impurity.
  • V vanadium
  • the Z n T e system having a resistivity of 1 ⁇ 10 8 ⁇ ⁇ cm or more which was conventionally difficult to obtain, by adding the 3 d transition element 5 ⁇ 10 16 c ⁇ 3 or more It turned out that a compound semiconductor single crystal can be manufactured. Further, it was found that 3 d transition element impurity concentration in the crystal and adding IX 1 0 21 cm- 3 or more 2 X 1 0 beyond the lg c [pi 3 want have crystallinity is deteriorated 'undesirable for .
  • FIG. 1 is a schematic view of a crystal growth furnace used for crystal growth by the VGF method.
  • FIG. 1 is a schematic view of a crystal growth apparatus used for crystal growth by the VGF method.
  • the crystal growth apparatus includes a high pressure vessel 1 6 provided with a heat insulating material 150 on the inner wall.
  • a top heater 130 provided in the high-pressure vessel 160, and a bottom heater 140, and a p-BN lusppo 1 10 as a growth vessel having a conical bottom portion is a support 1 20 Placed at the top of the
  • the high pressure vessel 160 is provided with an inlet (not shown) for introducing a gas through a gas inlet pipe.
  • Insulating material 150 made of Graphite felt, is excellent in keeping temperature and effective in improving the thermal efficiency in the high-pressure vessel.
  • crucible 1 1 0 is sealed by a lid 170, and a vent (not shown) is bored in the lid 170 in order to make the pressure in the luspo equal to the pressure in the high pressure vessel.
  • the lusppo 110 is placed on top of the support 120 in the high pressure vessel 160, and the inside of the high pressure vessel 160 is filled with the inert gas N 2 so that the pressure becomes a predetermined pressure. did . Then, while suppressing the surface of the raw material with the sealant 190, the light pipe is heated by the upper heater 130, and Z n and T e are directly synthesized to obtain a Z n T e raw material melt 180.
  • the raw material was completely melted by maintaining for a fixed time. Thereafter, the temperature of the entire crucible 110 is gradually lowered while maintaining the temperature gradient in the vertical direction of the Z 11 T e raw material melt 180, so that the Z n T e raw material melt 1 at a constant growth rate. It was crystallized from one end of 80 (for example, the top of the conical bottom). Then, the temperature of the raw material melt solution 180 is completely crystallized by further lowering the temperature, and then the whole heating furnace is cooled at a temperature decrease rate of 100 ° C. Zh and cooled to near room temperature. The Z n T e single crystal was taken out of the heating furnace at.
  • the resistivity of the obtained Z nTe single crystal was measured by the van der Pauw method and found to be 1 to 20 X 10 8 ⁇ ⁇ cm.
  • the doping concentration of V was measured by GDMS (Glow Discharge Mass Spectrometer), it was found that 1.5 ⁇ 10 16 to 3 ⁇ 10 16 cm ⁇ 3 (1 to 2 pm) Met.
  • the doping concentration of V at this time was 1 ⁇ 10 15 c nT 3 (0.0 7 ppm).
  • a ZnTe-based compound semiconductor single crystal having a resistivity of 5 ⁇ 10 8 ⁇ ⁇ cm can be manufactured. It is possible to realize an E / O element used for oscillation or reception of ultra high frequency of hertz or more.
  • the present invention is not limited to the above-mentioned example.
  • the production of a Z 11 T e compound semiconductor single crystal by the VGF method has been described as an example, but the present invention may have the possibility of obtaining a large single crystal in addition to the VGF method. It is also effective in melt growth methods such as VB method and LEC method or solution growth methods. ⁇
  • ZnTe compound semiconductor single crystal not only the ZnTe compound semiconductor single crystal but also a ternary or higher ZnTe-based compound semiconductor single crystal containing ZnTe can be obtained by applying the present invention to a high resistance single crystal.
  • the impurity to be added is not limited to V, and may be another 3 d transition element such as T i C r, F e, N i or the like.
  • the present invention in the method for producing a ternary or higher Z n T e based compound semiconductor single crystal containing Z n T e or Z n T e, as an impurity that produces an energy level near the center of the energy gap, Since the crystal is grown by adding a predetermined amount of one or more kinds of 3d transition elements, it is possible to increase the resistance of the ZnTe compound semiconductor single crystal. That is, the 3 d transition element forms a deep level in the Z nTe system compound, and high resistance can be realized by compensating the receptor.
  • the manufactured ZnTe-based compound semiconductor single crystal has a resistivity of 1 ⁇ 10 8 Q ′ cm or more, an E / O device used for oscillation or reception of ultra high frequency waves of Tera Hertz or higher. Suitable for the production of Industrial applicability
  • the present invention is not limited to the method for producing a Z nT e-based compound semiconductor single crystal, and may be applicable to other methods for producing an I-I V-I group compound semiconductor single crystal.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

明細書
ZnT e系化合物半導体単結晶の製造方法および Z nTe系化合物半導体単結晶 技術分野
本発明は、 Z nT e系化合物半導体単結晶の製造方法に関し、 特に高抵抗の Z nT e系化合物半導体単結晶の製造に適用して有効な技術に関する。 背景技術
現在、 Z nT e系化合物半導体単結晶は、 純緑色の光発光素子に利用できる結 晶として期待されており、 光発光素子としての発光特性を高めるために結晶の導 電性を高める工夫がなされている。 一般に、 リンや砒素などの不純物を Z nT e 系化合物半導体単結晶に添加して、 結晶中の不純物濃度を I X 1017 cm—3以上 にすることにより導電性を高めることができる。 このように、 光発光素子の発光 特性を向上できる導電性を高めた Z nT e系化合物半導体単結晶は開発されてい るが、 これは光発光素子の材料としてのみ使用される。
つまり、 使用目的によって適した結晶特性は異なり、 例えば、 テラへルツ以上 の超高周波の発振あるいは受信等に使用される電気光信号変換素子 (以下、 EZ O素子と称する) には、 比較的抵抗の高い Z nT e系化合物半導体単結晶が要求 される。
ところで、 一般に Z nTe系化合物半導体単結晶は、 石英のアンプル内の一端 に原料となる Z n T e多結晶を配置し、 該 Z n T e多結晶を加熱して融点近くの 温度で昇華させるとともに石英アンプルの反対側に配置された基板上に Z nT e 単結晶を析出させる気相成長方法により成長させることが多い。 この方法により 、 最大で 2 OmmX 2 Omm程度の矩形状の Z nT e単結晶基板を得られている しかしながら、 気相成長法による Z nT e系化合物半導体単結晶の成長におい ては成長途中に所望の不純物を添加することは難しく、 ZnT e系化合物半導体 単結晶の抵抗率を制御するのは困難であるという不具合があった。 また、 気相成 9
2
長法では Z 11 T e結晶の成長速度が著しく遅いために十分な大きさの単結晶を得 る.ことが困難であり、 生産性が低いという欠点があった。
さらに、 気相成長法により Z nT e系化合物半導体単結晶を成長させ 2 Omm X 20mm程度の比較的大きな基板が収得出来たとしても、 生産性が低いために 基板自体が非常に高価なものとなり、 Z nT e系化合物半導体単結晶を用いた素 子開発の障壁になるという問題もあつた。
このような理由から、 気相成長法による Z n T e系化合物半導体単結晶の製造 は、 工業生産方法としては実用的でなかった。
一方、 Z nT e系以外の化合物半導体の場合は大型の結晶を成長させる方法と して、 チヨクラルスキー法、 液体封止チョクラルスキー法 (LEC法) 、 ブリツ ジマン法、 垂直グラジェントフリージング法 (VGF法) などの融液成長法また は溶液成長法が一般的に用いられる。 例えば、 G a A sなどの化合物半導体単結 晶の工業的な生産方法として用いられている。
これらの成長方法は、 結晶育成時に不純物を添加することが可能であるため、 不純物の添加により結晶の導電性を制御することが容易であるという利点がある そこで、 本発明者等は大型の Z nT e系化合物半導体単結晶を育成する方法と して VGF法を利用した製法に着目して開発を進め、 直径 80mm径の単結晶を 作製するのに成功した。 しかし、 不純物を添加しない通常の結晶育成方法で得ら れる結晶の抵抗率は 10 Ω · cm程度であるため、 テラへルツ検出等の E/O素 子の材料として使用するには抵抗率が不十分であった。
さらに、 本発明者等は、 VGF法を利用した製法において Z nT e系化合物半 導体単結晶の純度を従来以上に上げる工夫を試みたが、 化合物半導体では結晶内 の固有欠陥の発生を抑制することが困難であることから、 結晶の純度向上により 高抵抗化を達成することはできなかった。
また、 Z nT e系化合物中において、 3 d遷移元素が深いドナー準位を形成す ることは文献等で理論的に予想されていたが、 実際に育成された例はなく、 必要 な添加量も不明であった。
このように、 これまでに大型で且つ高抵抗の. Z n T e系化合物半導体単結晶を 安定して育成できた事例はほとんど無く、 EZO素子の材料として使用しうる Z nT e系化合物半導体単結晶を得ることは容易ではなかった。
本発明は上記問題点を解決するための方策を提案するもので、 大型で且つ高抵 抗の Z n T e系化合物半導体単結晶の育成を可能にする化合物半導体単結晶の製 造方法を提供することを目的とする。 発明の開示
本発明は、 上記目的を達成するために、 Z nT eあるいは Z nT eを含む三元 以上の Z n T e系化合物半導体単結晶の製造方法において、 3 d遷移元素の何れ か一種類以上を不純物として所定量だけ添加して結晶育成するようにしたもので ある。 ここで、 3 d遷移元素とは、 原子番号 21の S c (スカンジウム) から原 子番号 30の Z n (亜鉛) までの元素で、 電子配置が [Ar] 4 3 23 ^~1(3で表 されるものを意味する。
これにより、 Z nT e系化合物半導体単結晶を高抵抗化することができる。 す なわち、 3 d遷移元素が Z nT e系化合物中で深い準位を形成し、 ァクセプター を捕償することで高抵抗化を実現できる。
また、 前記 3 d遷移元素を、 5 X 1 016c m— 3以上 1 X 1 021 c m— 3以下 (約 0 . 6〜6 X 1 04p pm) の濃度で添加するようにした。 このとき、 製造された Z nT e系化合物半導体単結晶中の 3 d遷移元素濃度は 1 X 1 015 cm— 3以上 2 X 1 019 c m— 3以下 (0. 00 1 5〜30 p pm) となる。 これにより、 抵抗率 が 1 Χ 1 08Ω · cm以上で、 かつ良質の Z nT e系化合物半導体単結晶を製造 することができる。
また、 化合物半導体単結晶原料を加熱融解した後、 原料融液を徐々に冷却する ことにより化合物半導体単結晶を育成する融液成長法または溶液成長法において 、 化合物半導体原料を入れる容器内に前記化合物半導体原料とともに前記 3 d族 元素を不純物として投入して加熱融解することにより添加するのが望ましい。 例 えば、 チヨクラルスキー法、 液体封止チヨクラルスキー法 (LEC法) 、 ブリツ ジマン法、 垂直グラジェントフリージング法 (VGF法) などを利用することが できる。 0302829
4
また、 特に制限されないが、 前記 3 d元素は V (バナジウム) または C r (ク ロム) とするのが望ましい。 これにより、 結晶品質を損なうことなく高抵抗の Z nT e系化合物半導体単結晶を製造することができる。 なお、 T i (チタン).や F e (鉄) 、 N i (ニッケル) 等の他の 3 d遷移元素を不純物として用いてもよ い。
上述した方法によれば抵抗率が 1 X 1 08Ω * cmの Ζ ηΤ e系化合物半導体 単結晶を製造することができるので、 前記抵抗率を有する Z n T e系化合物半導 体単結晶を基体とすることによりテラへルツ以上の超高周波の発振あるいは受信 等に使用される EZO素子を実現することができる。
以下に、 本発明者等が、 本発明を完成するに至るまでの経緯について簡単に説 明する。
一般に、 化合物半導体では結晶中にエネルギーギヤップの中心に近い位置にェ ネルギーレベルを作る不純物を添加することによって、 電子と正孔の再結合を促 進させることでキヤリァ濃度を減少させ高抵抗化を図る手法が採られている。 特 に I I一 V I族化合部半導体では、 自己補償効果と呼ばれる作用によって添加し た不純物を電気的に補償するような空孔が発生し、 結晶が高抵抗化することが知 られており、 例えば C dT eなどでは不純物の添加によって結晶の高抵抗化が実 現されている。
また、 本発明者等は、 エネルギーギャップの中心に近い位置にエネルギーレべ ルを作る不純物として、 Z nT e系化合物半導体単結晶に A 1 , G a , I n等の 第 1 3 (3 B) 族元素もしくは C 1, B r , I等のハロゲン元素の何れか一種類 を添加することにより、 Z nTe系化合物半導体単結晶を高抵抗化する技術を提 案している (特願 2001— 3 1 766号) 。
しかし、 複合欠陥の準位が比較的浅く、 抵抗率が 1 Χ 1 08Ω · c m以上の高 抵抗基板を安定して得ることは難しかった。
このような背景をもとに、 本発明者等は Z nT e系化合物半導体単結晶に添加 する不純物の種類についてさらなる検討を行った。 その結果、 従来 Z nT e系化 合物半導体単結晶への不純物として好適だとされていた A 1 , G a, I n等の第 1 3 (3 B) 族元素もしくは C 1 , B r , I等のハロゲン元素の他にも、 3 d遷 TJP03/02829
5
移元素が不純物として適していることを見出した。 中でも、 V (バナジウム) が 最適であることも見出した。
さらに実験より、 3 d遷移元素を 5 X 1 016c π 3以上添加することにより、 従来得ることが困難であった 1 X 1 08Ω · c m以上の抵抗率を有する Z n T e 系化合物半導体単結晶を製造できることが判明した。 また、 3 d遷移元素を I X 1 021 cm— 3以上添加すると結晶中の不純物濃度が 2 X 1 0lgc π 3を越えてしま い結晶性が劣化する'ために好ましくないことが判った。
これより、 3 d遷移元素の添加量を 1 X 1 016 c m~3SX± 1 X 1 021 cm—3以下 の範囲とすることで、 結晶性を損なうことなく、 1 Χ 1 08Ω · cm以上という 高抵抗の Z n T e系化合物半導体単結晶を実現できるとの結論を得た。
また、 種々の結晶成長法について実験を行った結果、 0 法ゃ1^£じ法等の 溶液成長法または融液成長法が、 高抵抗でかつ結晶性の良い Z n T e系化合物半 導体単結晶の製造に有効であるとの確信を得て、 本発明の完成に至ったものであ る。 図面の簡単な説明
図 1は、 VGF法による結晶成長に使用される結晶成長炉の概略図である。 発明を実施するための最良の形態
以下に、 本発明の好適な実施形態を、 図面を参照して具体的に示し、 本発明の 特徴とするところを明らかにする。 図 1は、 VGF法による結晶成長に使用され る結晶成長装置の概略図である。
本実施形態の結晶成長装置は、 内壁に断熱材 1 50を設けられた高圧容器 1 6
0と、 該高圧容器 1 60内に設けられた上段ヒータ 1 30と、 下段ヒータ 140 とで構成され、 円錐形の底部を有する成長容器としての p BN製のルツポ 1 1 0 が支持具 1 20の上部に配置される。
なお、 高圧容器 1 60にはガス導入管を介してガスを導入する導入口 (図示し ない) が設けられている。 また、 断熱材 1 50はグラフアイ トフエルト製で、 保 温性に優れ高圧容器内の熱効率をよくするのに有効である。 さらに、 ルツボ 1 1 0は蓋 1 7 0により密閉され、 該蓋 1 7 0にはルツポ内の圧力を高圧容器内の圧 力と同じにするため通気口 (図示しない) が穿設されている。
まず、 原料の Z nと T eが等モル比となるようにルツボ 1 1 0内に 9 9. 9 9 9 9 %の Z nを 3 6 0 g、 T eを 70 2 g入れ、 不純物として 1 6mg (約 1 X 1 018 c m-3) の Vを入れた。 さらに、 それらの上を適量の封止剤 (B203) 1 9 0で覆った。 このとき、 Vの添加量を適当に調節することにより、 所望の抵抗率 を有する Z n T e化合物半導体単結晶を成長させることができる。
次に、 前記ルツポ 1 1 0を高圧容器 1 6 0内の支持具 1 2 0の上部に配置し、 高圧容器 1 6 0内を不活性ガス N2で満たして所定の圧力となるように調整した 。 そして、 封止剤 1 9 0で原料表面を抑えながら上段ヒータ 1 3 0で該ルツポを 加熱し、 Z nと T eを直接合成して Z n T e原料融液 1 8 0とした。
そして、 所定の温度に到達した後、 一定時間保持して原料を完全に融解した。 その後、 Z 11 T e原料融液 1 8 0の鉛直方向の温度勾配を維持しながら徐々にル ッボ 1 1 0全体の温度を下げることにより、 一定の成長速度で Z nT e原料融液 1 8 0の一端 (例えば円錐状底部の頂点) より結晶化させた。 そして、 さらに温 度を下げることにより Z nT e原料融液 1 8 0をすベて結晶化させた後、 加熱炉 全体を 1 0 0°CZhの降温速度で冷却し、 室温近くまで冷えた時点で加熱炉内か ら Z n T e単結晶を取り出した。
上述した方法により、 直径 8 0mmで全長 4 0 mmの Z n T e単結晶を製造す ることができた。 また、 得られた Z nT e単結晶の抵抗率をファンデルパゥ法に より測定したところ、 1〜 2 0 X 1 08Ω · c mであった。 この Z nT e単結晶 について、 Vのドープ濃度を GDMS (グロ一放電質量分析計) により測定した ところ、 1. 5 X 1 016〜3 X 1 016c m— 3 (1〜2 p pm) であった。
同様の方法により、 添加する Vの濃度を変えて結晶育成を試みたところ、 Vの 添加量が 1 X 1 017 c m— 3以上のときに、 5 X 1 08Ω · c mの高抵抗の単結晶 を得られることが判った。 また、 このときの Vのドープ濃度は 1 X 1 015c nT3 (0. 0 7 p p m) であった。
このように、 本発明によれば、 抵抗率が 5 Χ 1 08Ω · c mの Z nT e系化合 物半導体単結晶を製造することができるので、 これを基体とすることによりテラ ヘルツ以上の超高周波の発振あるいは受信等に使用される E/O素子を実現する ことができる。
以上、 本発明者によってなされた発明を実施例に基づき具体的に説明したが、 本発明は上記実施例に限定されるものではない。 例えば、 上記実施例では、 VG F法による Z 11 T e化合物半導体単結晶の製造を例に挙げて説明したが、 本発明 は V G F法の他に大型の単結晶が得られる可能性のある、 V B法や L E C法など の融液成長法あるいは溶液成長法においても有効である。 ·
また、 Z nT e化合物半導体単結晶に限らず、 Z nTeを含む三元以上の Zn T e系化合物半導体単結晶の製造においても本発明を適用することにより高抵抗 単結晶を得ることができる。
また、 添加する不純物は Vに制限されず、 T i C r、 F e、 N i等の他の 3 d遷移元素としてもよい。
本発明によれば、 Z nT eあるいは Z nT eを含む三元以上の Z n T e系化合 物半導体単結晶の製造方法において、 エネルギーギヤップの中心に近い位置にェ ネルギーレベルを作る不純物として、 3 d遷移元素の何れか一種類以上の元素を 所定量だけ添加して結晶育成するようにしたので、 Z nT e系化合物半導体単結 晶を高抵抗化できるという効果を奏する。 すなわち、 3 d遷移元素が Z nT e系 化合物中で深い準位を形成し、 ァクセプターを補償することで高抵抗化を実現で きる。
さらに、 製造された ZnTe系化合物半導体単結晶は、 l X 108Q ' cm以 上の抵抗率を有するので、 テラへルツ以上の超高周波の発振あるいは受信等に使 用される E/O素子の製造に好適である。 産業上の利用可能性
本発明は、 Z nT e系化合物半導体単結晶の製造方法に限定されず、 その他の I I一 V I族系化合物半導体単結晶の製造方法に利用できる可能性がある。

Claims

請求の範囲
1. Z nT eあるいは ZnT eを含む三元以上の Z n T e系化合物半導体単結晶 の製造方法において、
原子番号 2 1のスカンジウムから原子番号 30の亜鉛までの元素で、 電子配置 が [Ar] 4 s23 ^~で表される 3 d遷移元素の何れか一種類以上を不純物と して所 ¾量だけ添加して結晶成長することを特徴とする Z nT e系化合物半導体 単結晶の製造方法。
2. 前記 3 d遷移元素を、 5 X 1 016cm_3以上 1 X 1021cm— 3以下の濃度で添 加することを特徴とする請求項 1に記載の Z n T e系化合物半導体単結晶の製造 方法。
3. 化合物半導体単結晶原料を加熱融解した後、 原料融液を徐々に冷却すること により化合物半導体単結晶を育成する融液成長法または溶液成長法を利用して、 前記 3 d遷移元素を、 化合物半導体原料を入れる容器内に前記原料とともに投 入して加熱融解することにより添加することを特徴とする請求項 1または請求項 2に記載の Z nTe系化合物半導体単結晶の製造方法。
4. 前記 3 d遷移元素は、 バナジウムまたはクロムであることを特徴とする請求 項 1から請求項 3の何れかに記載の Z nT e系化合物半導体単結晶の製造方法。
5. —種類以上の 3 d遷移元素を不純物として添加された Z nT eまたは Z ηΤ eを含む三元以上の Z nT e系化合物半導体単結晶であって、 結晶中の 3 d遷移 元素の濃度が 1 X 1 015 c m— 3以上 1 X 102D c nT3以下で、 かつ、 抵抗率が 1 X 1 08Ω · cm以上であることを特徴とする Z nT e系化合物半導体単結晶。
PCT/JP2003/002829 2002-06-13 2003-03-11 ZnTe系化合物半導体単結晶の製造方法およびZnTe系化合物半導体単結晶 WO2003106744A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002172886A JP2004018288A (ja) 2002-06-13 2002-06-13 ZnTe系化合物半導体単結晶の製造方法およびZnTe系化合物半導体単結晶
JP2002-172886 2002-06-13

Publications (1)

Publication Number Publication Date
WO2003106744A1 true WO2003106744A1 (ja) 2003-12-24

Family

ID=29727882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/002829 WO2003106744A1 (ja) 2002-06-13 2003-03-11 ZnTe系化合物半導体単結晶の製造方法およびZnTe系化合物半導体単結晶

Country Status (2)

Country Link
JP (1) JP2004018288A (ja)
WO (1) WO2003106744A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08151290A (ja) * 1994-09-28 1996-06-11 Sumitomo Electric Ind Ltd 化合物半導体単結晶の育成方法
EP1013801A1 (en) * 1998-12-21 2000-06-28 PIRELLI CAVI E SISTEMI S.p.A. Process and apparatus for synthesizing and growing crystals

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08151290A (ja) * 1994-09-28 1996-06-11 Sumitomo Electric Ind Ltd 化合物半導体単結晶の育成方法
EP1013801A1 (en) * 1998-12-21 2000-06-28 PIRELLI CAVI E SISTEMI S.p.A. Process and apparatus for synthesizing and growing crystals

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KREISSL, J ET AL: "Transition-metal impurities in II-VI semiconductors : characterization and switching of charge states.", JOURNAL OF CRYSTAL GROWTH, vol. 161, 1996, pages 239 - 249, XP004017396 *
ZIARI, M ET AL: "Photorefractivity in vanadium-doped ZnTe.", APPLIED PHYSICS LETTERS, vol. 60, no. 9, 2 March 1992 (1992-03-02), pages 1052 - 1054, XP002975365 *

Also Published As

Publication number Publication date
JP2004018288A (ja) 2004-01-22

Similar Documents

Publication Publication Date Title
JP4083449B2 (ja) CdTe単結晶の製造方法
JP5031651B2 (ja) 炭化珪素単結晶インゴットの製造方法
JPH0948688A (ja) 単結晶製造方法及びその単結晶製造装置
US7371281B2 (en) Silicon carbide single crystal and method and apparatus for producing the same
CN108624963A (zh) 一种用于pvt法生长的碳化硅晶体的原料烧结工艺
JP5418385B2 (ja) 炭化珪素単結晶インゴットの製造方法
JP2008110907A (ja) 炭化珪素単結晶インゴットの製造方法及び炭化珪素単結晶インゴット
US20060260536A1 (en) Vessel for growing a compound semiconductor single crystal, compound semiconductor single crystal, and process for fabricating the same
JPH1067600A (ja) 単結晶炭化珪素インゴット及びその製造方法
CN111349968B (zh) 一种硒硫化镉多晶的合成方法
US6376900B1 (en) Single crystal SiC
TWI287592B (en) InP single crystal wafer and InP single crystal manufacturing method
JP3087065B1 (ja) 単結晶SiCの液相育成方法
JPH1087392A (ja) 化合物半導体単結晶の製造方法
WO2003106744A1 (ja) ZnTe系化合物半導体単結晶の製造方法およびZnTe系化合物半導体単結晶
JP4778150B2 (ja) ZnTe系化合物半導体単結晶の製造方法およびZnTe系化合物半導体単結晶
CN110914485B (zh) 基于硅的熔融组合物和使用其的碳化硅单晶的制造方法
JP5172881B2 (ja) 化合物半導体単結晶の製造装置及びその製造方法
JP2000302599A (ja) シリコンカーバイドのエピタキシャル成長方法
JPH0987086A (ja) 単結晶の製造方法
JPH069025Y2 (ja) 化合物半導体単結晶製造装置
JP2000327496A (ja) InP単結晶の製造方法
CN118083983A (zh) 含氮的碳化硅粉料的制备方法及碳化硅晶体的生长方法
JP2004026577A (ja) 化合物半導体単結晶成長装置及び化合物半導体単結晶成長方法
JP2000327475A (ja) 化合物半導体単桔晶の製造装置及びその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN RU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase