WO2003106565A1 - ミセル含有有機ポリマー、有機ポリマー多孔体及び多孔炭素材料 - Google Patents

ミセル含有有機ポリマー、有機ポリマー多孔体及び多孔炭素材料 Download PDF

Info

Publication number
WO2003106565A1
WO2003106565A1 PCT/JP2003/006978 JP0306978W WO03106565A1 WO 2003106565 A1 WO2003106565 A1 WO 2003106565A1 JP 0306978 W JP0306978 W JP 0306978W WO 03106565 A1 WO03106565 A1 WO 03106565A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic polymer
micelle
acid
porous
containing organic
Prior art date
Application number
PCT/JP2003/006978
Other languages
English (en)
French (fr)
Inventor
士友 ▲グァン▼
荒木 史和
Original Assignee
三洋化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋化成工業株式会社 filed Critical 三洋化成工業株式会社
Priority to EP03733254A priority Critical patent/EP1516893A4/en
Priority to US10/516,533 priority patent/US20070149627A1/en
Publication of WO2003106565A1 publication Critical patent/WO2003106565A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28023Fibres or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28033Membrane, sheet, cloth, pad, lamellar or mat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28042Shaped bodies; Monolithic structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/007Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore distribution, e.g. inhomogeneous distribution of pores
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/19Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a micelle-containing organic polymer, a porous organic polymer, and a porous carbon material. More specifically, the present invention relates to a three-dimensional structure and a method for producing an organic material useful for an electrode, an adsorbent, and the like. Background art
  • mesoporous materials are composed of a three-dimensional structure made of silica, and have an inorganic mesoporous material with relatively uniform pores of 1.5 to 10 nm, and organic Z Mesoporous substances having pores are known (for example, JP-A-8-67578, JP-A-2000-17102).
  • mesoporous here means "a hole with a diameter of about 2 to 50 nm is opened.”
  • a mesoporous siliceous powder called SBA-15 as a ⁇ type
  • furfuryl alcohol is polymerized and carbonized by sintering, and then the ⁇ type mesoporous powder is dissolved and removed with hydrofluoric acid.
  • a carbon material having uniform pores to which a ⁇ -type mesoporous structure is transferred is known (for example, NATURE, vol. 412, p. 12, July 2002).
  • the former mesoporous substance is brittle and easily cracked because it is an inorganic or organic Z-inorganic composite porous material. Therefore, there is a problem that the moldability is extremely poor, and only powdery ones can be obtained, and lumps, fibrous, sheet-like or film-like ones cannot be obtained.
  • the carbon material obtained by using the former mesoporous powder as the ⁇ type can obtain only a powder having an extremely small particle size, and is in the form of a lump, fibrous, sheet, or film. There is a problem that you can not.
  • an object of the present invention is to provide a porous body having uniform pores and excellent moldability, and further, has various forms such as a lump, a fibrous form, a sheet form, or a film, and a uniform form.
  • An object of the present invention is to provide a porous carbon material having fine pores.
  • the X-ray diffraction pattern has at least one peak, and at least one pair of the diffraction angle (2 °) and the lattice spacing (d) of the peak satisfies the following relational expression (1).
  • Satisfied d is one or more values in the range of 0.8 nm or more and 150 nm or less, and is a micelle-containing organic polymer.
  • the present invention provides that the total pore volume ⁇ V of the pores corresponding to the diameter within the range of ⁇ 40% of the pore diameter Dmax showing the maximum peak in the pore diameter distribution curve is the total pore volume V. Based on 50 volumes. / 0 or more, and an organic polymer porous material, and a porous carbon material.
  • the present invention provides a micelle-containing organic compound, comprising: forming a micelle of a surfactant (A) in a monomer and / or Z or a prepolymer; and polymerizing and curing the monomer and / or prepolymer.
  • a method for producing a polymer a method for producing a porous organic polymer, comprising forming the micelle-containing organic polymer and removing the surfactant (A); and forming the micelle-containing organic polymer.
  • it is a method for producing a porous carbon material, characterized by performing calcination carbonization.
  • the X-ray diffraction pattern in the present invention is obtained by, for example, a small-angle scattering measurement method, which is a type of X-ray diffraction method.
  • X-ray diffraction uses the principle of Thomson scattering, in which a portion of the X-rays incident on a substance is scattered without changing the wavelength.
  • the small-angle scattering measurement method is based on the fact that if there is a fine particle of about 1 to 150 nm or a region with uneven density, diffuse scattering occurs in the incident X-ray direction. This scattering exists irrespective of whether it is crystalline or amorphous, and has the property that the smaller the diameter of the internal structure is, the larger the size of the internal structure is, regardless of the internal structure of the region where the particles and density are not uniform.
  • the X-ray diffraction patterns obtained by these methods plot the scattering intensity of the measured substance at each diffraction angle, with the vertical axis representing the scattering intensity and the horizontal axis representing the diffraction angle (2 °).
  • represents the wavelength of ⁇ 1 of the characteristic X-ray of the metal used in the measurement.
  • the X-ray diffraction pattern has at least one peak, and at least one set of the diffraction angle (2 ⁇ ) and the lattice spacing (d) of the peak substantially satisfies the relational expression (1) except for measurement errors. Satisfaction of the above means that the lattice spacing (d) is regularly arranged at a spacing between 0.8 nm and 150 nm. That is, a substance having such a characteristic of the X-ray diffraction pattern satisfies any of the following 1 to 3.
  • the micelle or pore diameter Dm or pore diameter Dp is uniform, and the shape of the micelle or pore is uniform.
  • the micelle diameter Dm or pore diameter Dp is uniform, and the arrangement structure of micelles or pores is regular.
  • micelle in terms of a micelle-containing organic polymer, micelle diameter and the like refers to an aggregate of surfactants.
  • a structure in which a surfactant (A) or the like forms micelles in an organic polymer (B) forming a polymer matrix can be exemplified.
  • the lattice spacing (d) is related to the micelle diameter or the pore diameter.
  • the space group can be specified, approximate the micelle diameter (Dm) according to the following procedure.
  • the pore diameter (Dp) of the organic polymer porous material excluding micelles is determined using a pore distribution curve as described later.
  • the space group of the micelle-containing polymer cannot be specified, the micelle diameter cannot be specified, but the lattice spacing (d) can be used as an indicator of the micelle diameter.
  • the pore diameter cannot be specified, but the lattice spacing (d) can be used as an index of the pore diameter.
  • the lattice spacing (d) (nm) of the micelle-containing organic polymer of the present invention is preferably 0.8 or more, more preferably 1 or more, particularly preferably 2 or more, and preferably 150 or less, more preferably Is 100 or less, particularly preferably 50 or less.
  • the lattice spacing (d) (nm) of the micelle-containing organic polymer of the present invention is less than 0.8, the micelle diameter or the pore diameter (nm) will necessarily be less than 0.8, so that the ink-jet receiving organic polymer is not acceptable. It is not preferable because the ink, ions, molecules and the like tend not to penetrate into the pores when used for a layer, an electric double layer capacitor, a catalyst carrier and the like.
  • Examples of the micelle shape of the micelle-containing organic polymer of the present invention include a rod shape, a spherical shape and a lamellar shape.
  • the micelle arrangement of the micelle-containing organic polymer of the present invention may have regularity or no regularity, but preferably has regularity.
  • the fact that the arrangement of micelles has regularity means that the arrangement structure of micelles has symmetry indicated by a space group.
  • a space group is a group formed by a set of symmetric elements.
  • a symmetric element is a symmetry that occurs when atoms, particles, vacancies, micelles, etc. are regularly and infinitely arranged in three dimensions.Five types of rotation axis, symmetry center, mirror surface, reflection axis, translation, The helical axis and the projection surface are exemplified. There are 230 possible combinations of symmetric elements, and all regular arrangements can be explained by this. A detailed description and illustration of all space groups can be found in Int e r n a t i o n a l Ta b l e o f C r y s st a l l o g r a p h y, Vo l. A (D. R e i d e 1, 1987).
  • Examples of such a space group include those shown in Table 1.
  • FIG. 1 is a perspective cross-sectional view schematically showing a state in which micelles or pores and an organic polymer or pores and carbon form a space group “2-dhexagonalp 6 mm”.
  • the hatched portion represents an organic polymer or carbon
  • the white portion represents pores or micelles. That is, micelles or pores are regularly present in the organic polymer or carbon.
  • FIG. 1 shows one unit of the space group.
  • the micelle-containing organic polymer, organic polymer porous material or porous carbon material of the present invention has such a continuous shape. Is the same for is there) .
  • FIG. 2 is a perspective transmission diagram schematically showing a state in which micelles or pores and an organic polymer or pores and carbon form a space group “cubic Ia3d”. Cylindrical three-dimensionally connected micelles or pores represented by dotted lines are regularly present in the organic polymer or carbon.
  • FIG. 3 is a perspective cross-sectional view schematically showing a state in which micelles or pores and an organic polymer or pores and carbon form a space group “cubic Pm3 n”.
  • the shaded area is a cross section of the organic polymer or carbon, which is regularly present so as to surround spinous or tetrapod-like spherical micelles or pores.
  • Figure 4 is a micelle or pore and the organic polymer, or pores and carbon, perspective cross-sectional view of a state in which form the space group "3- dhexagonal P 6 3 / mm c" schematically showing It is.
  • the shaded area is a cross section of the organic polymer or carbon, which is regularly present so as to surround the spherical micelles or pores.
  • the surfactant (A) has a structure in which micelles are formed in the organic polymer (B) forming a polymer matrix.
  • the structure is not particularly limited as long as it has at least one peak and the diffraction angle (20) and the lattice spacing (d) of one of the peaks satisfy the relational expression (1).
  • the surfactant (A) is not particularly limited, but may be a known anionic surfactant (A1), a cationic surfactant (A2), a nonionic surfactant (A3), or an amphoteric surfactant (A4). ) Can be used.
  • anionic surfactant (A1) examples include carboxylic acid and its salt (Al a), sulfate and its salt (Al b), carboxymethylated product and its salt (Al e), sulfonic acid and its Salts (Al d) and phosphate esters and their salts (Al e) can be used.
  • Examples of the carboxylic acid and its salt (Al a) include saturated or unsaturated fatty acids having 8 to 22 carbon atoms, such as chlorophyllic acid, lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, and linoleic acid; Higher fatty acids derived therefrom; aromatic carboxylic acids having 8 to 22 carbon atoms, such as 4-methylsalicylic acid, and salts thereof can be used.
  • these salts salts obtained by combining anion composed of the above carboxylic acid and the following cation can be used.
  • Alkali metal, alkaline earth metal, ammonium ion and the like can be used as the cation for forming the salt.
  • alkali metal examples include lithium, sodium and potassium.
  • alkaline earth metal examples include barium and calcium.
  • Sulfuric acid esters and their salts include higher alcohol sulfuric acid esters such as mono-sulfuric acid monoesters of aliphatic alcohols having 8 to 22 carbon atoms such as octyl alcohol, decyl alcohol and lauryl alcohol; Higher alkyl ether sulfates such as sulfuric acid monoesters of alkylene oxides of alcohols (hereinafter abbreviated as AO) of alcohols (additional mole number: 1 to 20); carboxylic acid residues having 8 to 22 carbon atoms Sulfated oils of natural fats and oils having a group; sulfated fatty acid esters of unsaturated fatty acid esters having 8 to 30 carbon atoms such as butyl oleate, butyl ricinoleate, and butyl linoleate; carbons such as otaten, dodecene and octadecene Sulfated olefins of the formulas
  • AO those having 2 to 4 carbon atoms can be used.
  • Ethylene oxide hereinafter abbreviated as EO
  • propylene oxide hereinafter abbreviated as PO
  • 1, 2—, 2, 3-— —butylene oxide 1, 2—, 2, 3-— —Butylene oxide, tetrahide-furan, and the like. Further, they may be added alone, or two or more kinds of A O may be added randomly or in blocks.
  • Examples of the carboxymethylated product and its salt (Alc) include a carboxymethylated product of an aliphatic alcohol having 8 to 22 carbon atoms; a carboxymethylated product of an AO adduct of an aliphatic alcohol, and salts thereof.
  • Examples of the sulfonic acid and its salt (A id) include: alkylbenzenesulfonic acid such as octylbenzenesulfonic acid, dodecylbenzenesulfonic acid, and octadecylbenzenesulfonic acid; alkylnaphthalenesulfonic acid such as octylnaphthalenesulfonic acid; Sulfofatty acid esters such as di-1-ethylhexyl sulfosuccinate and dioctadecyl sulfosuccinate; ⁇ -olefin sulfonic acid; igebon type sulfonic acid; and salts thereof.
  • alkylbenzenesulfonic acid such as octylbenzenesulfonic acid, dodecylbenzenesulfonic acid, and octadecylbenzenesulfonic acid
  • phosphoric acid ester and its salt As the phosphoric acid ester and its salt (Ale), higher alcohol phosphoric acid esters such as lauryl alcoholic phosphoric acid monoester and lauryl alcoholic phosphoric acid diester; higher alcoholic acid AO adduct phosphoric acid ester and salts thereof can be used. You.
  • quaternary ammonium salt-type cationic surfactant (A 2a) and an amine salt-type cationic surfactant (A 2b) can be used.
  • examples of the quaternary ammonium salt-type cationic surfactant (A2a) include octyl trimethyl ammonium chloride, cetyl trimethyl ammonium chloride, stearyl trimethyl ammonium chloride, lauryl trimethyl ammonium chloride, and didecyl.
  • Tetraalkylammonium cations such as dimethylammonium chloride (each alkyl group preferably has 1 to 18 carbon atoms); benzyl groups such as lauryl dimethylbenzylammonium chloride (benzalkonium chloride) and alkyl groups (carbon The number is preferably from 1 to 18); ammonium cation; a pyridium cation such as cetyl pyridinium chloride or oleyl pyridinium chloride; a polyoxyalkylene group and an alkyl group (preferably having 1 to 18 carbon atoms). ⁇ 1 8) A quaternary ammonium salt comprising an ammonium cation can be used.
  • the aion that composes these quaternary ammonium salts includes a hydroxide ion, a halogen ion (for example, a fluorine ion, a chloride ion, a bromine ion, and an iodide ion), a nitrate ion, a nitrite ion, a metsulfate ion, and a carbon number.
  • carboxysilanes for example, anions derived from formic acid, acetic acid, propionic acid, 2-ethylhexanoic acid, lactic acid, malic acid, dalconic acid and the like
  • carboxysilanes for example, anions derived from formic acid, acetic acid, propionic acid, 2-ethylhexanoic acid, lactic acid, malic acid, dalconic acid and the like
  • Examples of the amine salt-type cationic surfactant (A2b) include primary amine salts such as laurylamine mouthride, stearylamine bromide, and cetylamine methosulfate; laurylmethylamine mouthride, stearylethylamine bromide. Secondary amine salts such as amide, dilaurylamine methosulfate, laurylpropylamine acetate; lauryl ethylamine chloride, laurylethyl methylamine Tertiary amine salts such as ambromide can be used.
  • primary amine salts such as laurylamine mouthride, stearylamine bromide, and cetylamine methosulfate
  • laurylmethylamine mouthride laurylmethylamine mouthride
  • stearylethylamine bromide secondary amine salts
  • Secondary amine salts such as amide, dilaurylamine methosulfate, laurylpropy
  • nonionic surfactant (A3) an AO-added nonionic surfactant (A3a) and a polyhydric alcohol-type nonionic surfactant (A3b) can be used.
  • AO-added nonionic surfactant (A3a) examples include 2-ethylhexyl alcohol, dodecyl / leanolecole, cysteine leinoleanocore, linole alcohol, off, and carbon number of 8 to 22.
  • Saturated or unsaturated higher alcohol AO adducts (addition moles 3 to 100); stearic acid EO adducts (addition moles 10 to 50 moles), oleic acid EO adducts (addition moles 10 to 50 moles), A saturated or unsaturated carboxylic acid AO adduct having 8 to 22 carbon atoms, such as lauric acid diester of polyethylene glycol (molecular weight: 400 to 2000); ethylene glycol, propylene glycol, glycerin, trimethylolpropane, ditrimethylo Norep Mouth Bread, Neopentinorea Norecone, Pentaerythri Tonore, Dipentaerythritole, Sorbitan AO adducts of polyhydric alcohols having 2 to 22 carbon atoms with 2 to 22 carbon atoms, such as sorbitol and sucrose (number of moles added: 10 to 120); trimethylolpropane monostea
  • polyhydric alcohol-type nonionic surfactant (A3b) examples include polyhydric alcohols such as pentaerythritol monoolate and sorbitan monolaurate, and the like; pentaerythritol monolaurinolate ethereone, sonolebitan monomethyl ether, Polyhydric alcohol alkyl ethers such as peryl daricoside can be used.
  • amphoteric surfactant (A4) an amino acid-type amphoteric surfactant (A4a), a betaine-type amphoteric surfactant (A4b), an imidazoline-type amphoteric surfactant (A4c) and the like can be used.
  • Amino acid-type amphoteric surfactants (A4a) are amphoteric surfactants having an amino group and a carboxyl group in the molecule, such as sodium alkyl stearylaminopropionate and potassium laurylaminopropionate.
  • the betaine-type amphoteric surfactant (A4b) is an amphoteric surfactant having a quaternary ammonium salt-type cation moiety and a carboxylic acid-type ayuon moiety in the molecule.
  • Alkyl dimethyl betaines such as betaine minoacetate and betaine lauryl dimethylaminoacetate; amide betaines such as coconut oil fatty acid amide propyl betaine; alkyldihydroxyalkyl betaines such as lauryldihydroxythibetaine; And the like.
  • imidazoline-type amphoteric surfactant examples include 2- 2decyl-1-N-potoxymethyl-N-hydroxyxethylimidazolidine betaine and 21 ⁇ heptadecenyl-2-hydroxydrochetylimidazoline.
  • surfactants (A) cationic surfactants (A2) are preferred, and quaternary ammonium salt-type cationic surfactants (A2a) are more preferred. Tetraalkylammonium salts are particularly preferred. A quaternary ammonium salt composed of an ammonium cation; and a quaternary ammonium salt composed of an ammonium cation having a benzyl group and an alkyl group.
  • commercially available products can be used as they are, or products manufactured by a known method may be used. Further, a mixture of two or more kinds may be used.
  • the amount (parts by weight) of (A) is preferably 0.5 or more, more preferably 10 or more, particularly preferably 30 or more, and most preferably 100 parts by weight of the organic polymer (B) forming the polymer matrix. It is preferably at least 50, more preferably at most 200, further preferably at most 150, particularly preferably at most 120, most preferably at most 100.
  • the micelle shape and the space group of the micelle array are mainly affected by the chemical structure of the surfactant (A). It is also affected by the amount of surfactant, temperature, media type, and the like.
  • the micelle shape can be controlled by the balance between the size of the hydrophilic group and the size of the hydrophobic group of the surfactant (A). The details are described in the literature (Supramolecular Science, Tokyo Science Dojin, 1998).
  • the micelles change from spherical micelles to rod-shaped micelles, and from rod-shaped micelles to layered micelles (for example, surfactants).
  • the shape is considered to be a triangular pyramid and the bottom part is made to be a hydrophilic group
  • the volume of the triangular pyramid is the volume occupied by the hydrophobic group
  • the height is the length of the hydrophobic group.
  • the height of the triangular pyramid is short, it becomes a triangular pyramid with a large bottom area, and if these are arranged side by side, it is thought that it becomes spherical easily. Is considered difficult to form.
  • the space group that can be formed is determined by the shape of the micelle.
  • Space groups that can be taken when a surfactant capable of forming spherical micelles are used include, for example, 3—dhexaxonalP63 / mmc, cubicPm3n, and the like.
  • Space groups that can be taken when a surfactant that forms rod-shaped micelles are used include, for example, 2-dhexagonal 6 mm, cubicIa3d, and the like.
  • Examples of possible space groups when using surfactants that form layered micelles include: For example, Lame 11a LI and the like can be mentioned.
  • the organic polymer (B) forming the polymer matrix is not particularly limited, but known thermoplastic resins (B1), thermosetting resins (B2), and mixtures thereof can be used. .
  • thermoplastic resin (B1) As the thermoplastic resin (B1), bur resin (B1-1), polyester (B1)
  • polyamide B1-3
  • polyurethane B1-4
  • polycarbonate B1-5
  • Bull resin (B1-1) is a type of non-crosslinkable bullet monomer (bl) or
  • beer monomer (bl) examples include a butyl hydrocarbon (bl-l), an epoxide-containing butyl monomer (bl-2), a vinyl ester (bl-3), a butyl ether (b1-4), and a virketone (b 1-5), alkyl (meth) acrylate (b1-6), vinyl monomer having a polyoxyalkylene group (bl-7), vinyl monomer having a sulfoxyl group (bl_8), vinyl monomer having a sulfo group (bl — 9), phosphono group containing monomer (bl-10), hydroxyl group containing monomer (bl-11), nitrogen containing vinyl monomer (bl_12), halogen element containing vinyl monomer (bl-13) And other bullet monomers (bl-l), alkyl (meth) acrylate (b1-6), vinyl monomer having a polyoxyalkylene group (bl-7), vinyl monomer having a sulfoxyl group (bl_
  • vinyl hydrocarbon (bl-l) examples include an aliphatic vinyl hydrocarbon (b1-1a), an alicyclic vinyl hydrocarbon (b1-1b), and an aromatic vinyl hydrocarbon (b1-1c). Are used.
  • an alkene or alkadiene having 2 to 50 (preferably 2 to 22) carbon atoms can be used.
  • an alicyclic vinyl hydrocarbon having 5 to 50 (preferably 5 to 22) carbon atoms can be used.
  • aromatic vinyl hydrocarbon an aromatic vinyl hydrocarbon having 8 to 50 (preferably 8 to 22) carbon atoms can be used.
  • styrene, ⁇ -methyl styrene, vinylinoleno Examples include styrene, 2,4-dimethynostyrene, ethynolestyrene, isopropy / styrene, butylstyrene, and phenylenostyrene.
  • epoxy group-containing monomer (bl-2) monomers containing an epoxy group and a bullet group (6 to 50 (preferably 6 to 20) carbon atoms) and the like can be used.
  • a bullet group 6 to 50 (preferably 6 to 20) carbon atoms
  • glycidyl (meth) Atarilate and the like.
  • vinyl ester (bl-3) a monomer (having a carbon number of 4 to 50 (preferably 6 to 20)) containing a vinyl group and an ester bond can be used.
  • vinyl ether (bl-4) a vinyl group-containing monomer having an ether bond (3 to 50 (preferably 6 to 20)) and the like can be used.
  • examples thereof include 1,2-pyran, 2-butoxy-12,1-vinyl xigetyl ether, and vinyl 2-ethylmercaptoethyl ether.
  • butyl ketone having 6 to 50 carbon atoms examples thereof include butyl methyl ketone, bierethyl ketone, and vinyl phenyl ketone.
  • alkyl (meth) acrylate (bl-6) an alkyl (meth) acrylate having an alkyl group having 1 to 50 (preferably 1 to 20) carbon atoms is used.
  • Examples of the polyoxyalkylene group-containing monomer (bl_7) include (meth) acrylates having a polyoxyalkylene group having a weight average molecular weight (hereinafter abbreviated as Mw) of 100 to 10,000 (preferably 300 to 5,000).
  • Mw weight average molecular weight
  • Mn number average molecular weight 300 polyethylene glycol mono (meth) acrylate, polypropylene glycol (Mn 500) mono acrylate, methyl alcohol EO 10 mol adduct (meth) acrylate, and Lauryl alcohol EO 30 mol adduct (meth) acrylate.
  • Mn and Mw are respectively the number average molecular weight and the weight average molecular weight in terms of polystyrene measured by the gel permeation chromatography method (hereinafter abbreviated as GPC method).
  • the carboxyl group-containing Biel monomer (bl-8) a monomer having a carboxyl group and a butyl group and having 3 to 50 (preferably 3 to 20) carbon atoms and a salt thereof can be used.
  • sulfo group-containing vinyl monomer (bl-9) bier sulfuric acid, vinyl sulfate, and butyl sulfate can be used.
  • a vinyl group and a sulfo group-containing 2 to 50 carbon atoms (preferably Or 2 to 20) monomers, for example, vinyl sulfonic acid, (meth) aryl sulfonic acid, styrene sulfonic acid, methylstyrene sulfonic acid, 2-hydroxy-13- (meth) ataryloxypropyl sulfonic acid , 2- (meth) acryloylamino-1,2,2-dimethylethanesulfonic acid, 2- (meth) acryloyloxyethanesulfonic acid, 3- (meth) atalyloyloxy-2-hydroxypropanesulfonic acid, 2- (meth) acrylamide-12-methylpropanesulfonic acid and 3- (meth) acrylamide-12-hydroxypropanesulfonic acid.
  • a salt or the like obtained by combining the anion composed of the above-mentioned bur sulfate and the cation exemplified in (A la) can be used.
  • sodium vinyl sulfonate, 2- (meth) acrylamide Calcium 2-methylpropanesulfonate and sodium 3- (meth) acryloyloxy-2-hydroxypropanesulfonate can be used.
  • vinyl sulfate those comprising the above-mentioned butyl sulfate and an alcohol having 2 to 50 (preferably 3 to 22) carbon atoms can be used.
  • a saturated or unsaturated aliphatic alcohol having 3 to 22 carbon atoms
  • a primary alcohol having 3 to 22 carbon atoms
  • a secondary alcohol having 3 to 22 carbon atoms
  • Tertiary alcohols 3 to 22 carbon atoms
  • butyl sulfate examples include methyl vinyl sulfonate and sulfopropyl (meth) acrylate.
  • a monomer having 4 to 50 (preferably 5 to 20) carbon atoms containing a phosphono group and a vinyl group can be used.
  • hydroxyl group-containing butyl monomer (bl-11) a monomer having a hydroxyl group and a butyl group and having 4 to 50 (preferably 4 to 20) carbon atoms can be used.
  • nitrogen-containing monomer (bl-12) examples include amino group-containing monomer (b1-12a), amide group-containing monomer (bl-12b), and nitrinole-containing monomer. 12c), a quaternary ammonium group-containing monomer (b1-12d) and a nitro group-containing monomer (b1-12e) can be used.
  • Examples of the amino group-containing vinylinole monomer (b1-12a) include a monomer having 4 to 50 (preferably 5 to 20) carbon atoms containing an amino group and a butyl group.
  • amide group-containing monomer (b1-12b) a monomer having an amide group and a vinyl group and having 3 to 50 (preferably 3 to 20) carbon atoms, for example, can be used.
  • nitrile group-containing Biel monomer (b1-12c) a monomer having a nitrile group and a vinyl group and having 3 to 50 (preferably 3 to 20) carbon atoms can be used.
  • (meth) atarilonitrile and cyanostyrene are exemplified.
  • Examples of the quaternary ammonium group-containing monomer (b1-12d) include quaternized tertiary amino group-containing monomer having 6 to 50 (preferably 8 to 20) carbon atoms (eg, methyl chloride). And quaternized with a quaternizing agent such as dimethylsulfuric acid, benzylcaprate and dimethylcaponate).
  • Examples of the tertiary amino group-containing monomer include trimethylaminoethyl (meth) acrylate, triethylaminoethyl (meth) acrylate, trimethylaminoethyl (meth) acrylamide, and triethylaminoethyl (meth) acrylamide. And tetraarylamine.
  • nitro group-containing monomer a monomer having 6 to 50 (preferably 6 to 20) carbon atoms containing a nitro group and a bur group can be used. And dinitrostyrene.
  • halogen element-containing monomer (b1-13) a halogen-containing hydrocarbon group-containing hydrocarbon group having 2 to 50 (preferably 2 to 20) carbon atoms can be used.
  • bier monomers include acetostyrene, phenoxystyrene, ethyl ethoxy acrylate, isocyanatoethyl (meth) acrylate, cyanoacrylate, m-isoprobenyl, ⁇ -dimethinolemethyl Benzyl isocyanate and the like.
  • ( ⁇ 1) can be obtained by a known method by reacting (bl) with a polymerization initiator and, if necessary, a solvent.
  • a radical polymerization initiator As the polymerization initiator for polymerizing the above-mentioned monomer, a radical polymerization initiator, a cation polymerization initiator, and a cation polymerization initiator can be used.
  • radical polymerization initiator any known radical polymerization initiators can be used.
  • a typical example is peroxide weight.
  • a polymerization initiator and a azo polymerization initiator a polymerization initiator and a azo polymerization initiator.
  • a redox polymerization initiator using a peroxide polymerization initiator and a reducing agent in combination may be used. Further, two or more of these may be used in combination.
  • a water-soluble peroxide polymerization initiator can be used, and examples thereof include hydrogen peroxide, peracetic acid, and ammonium salt, potassium salt and sodium salt of persulfate.
  • azobisamidinopropane salt azobiscyanovaleric acid (salt)
  • redox polymerization initiator examples include water-soluble peroxides such as persulfate, hydrogen peroxide, and hydrogen peroxide (the above-mentioned ones can be used), and a water-soluble inorganic or organic reducing agent (for example, Aqueous redox polymerization initiators in combination with iron salts, sodium bisulfite, alcohols, polyamines, etc.).
  • water-soluble peroxides such as persulfate, hydrogen peroxide, and hydrogen peroxide (the above-mentioned ones can be used
  • a water-soluble inorganic or organic reducing agent for example, Aqueous redox polymerization initiators in combination with iron salts, sodium bisulfite, alcohols, polyamines, etc.
  • anion polymerization initiator known ones can be used.
  • strong alkaline substances such as salts of strontium, calcium, potassium, sodium and lithium
  • weak alkaline substances such as pyridine can be used.
  • cationic polymerization initiators can be used, for example, protonic acids such as sulfuric acid, phosphoric acid and perchloric acid, and Lewis such as boron trifluoride, aluminum chloride, titanium tetrachloride and tin tetrachloride. An acid or the like can be used.
  • a radical polymerization initiator, an anion polymerization initiator and a redox polymerization initiator are preferable, more preferably a redox polymerization initiator, and particularly preferably a redox obtained by using a combination of potassium persulfate and a reducing agent. It is a polymerization initiator.
  • the amount (parts by weight) of the polymerization initiator is preferably at least 0.1, more preferably at least 0.2, particularly preferably at least 0.3, based on 100 parts by weight of (bl). It is preferably 20 or less, more preferably 10 or less, particularly preferably 5 or less.
  • Polyester (B1-2) is composed of diol (b2-2) and dicarboxylic acid (b2-1) or its ester-forming group derivative (acid anhydride, acid halide, lower alkyl ester having 4 or less carbon atoms).
  • Dehydration-condensation, oxycarboxylic acid (b2-3) dehydration-condensation, and lactone (b2-4) ring-opening polymerization Can be obtained by
  • dicarboxylic acid (b2-1) a dicarboxylic acid having 4 to 20 carbon atoms or the like can be used, and examples thereof include adipic acid, maleic acid, terephthalic acid, and diphthalic acid.
  • diol (b2-2) examples include diols having 2 to 18 carbon atoms, such as ethylene glycol / diethylene glycol, diethylene glycolone, 2,2-dimethylpropanediol, 1,4-butanediol, and the like. And alkylene oxide adducts of 1,18-octadecanediol and bisphenol A.
  • the Okishikarubon acid (b 2_3) can be used like Okishikarubon acid having 2 to 12 carbon atoms, for example, hydroxyacetic acid, .omega. Okishikapuron acid, omega - Okishe bachelor acid, .omega. Okishi force prills acid, .omega. Okishiperarugon acid, Examples thereof include ⁇ -oxycapric acid, 11-oxydiandecanoic acid and 12-oxydodecanic acid.
  • a lactone having 6 to 12 carbon atoms can be used as the rataton (b2-4).
  • the diol (b2-2) and the dicarboxylic acid (b2-1) or an ester-forming group derivative thereof are dehydrated and condensed to form (B1 — 2) can be manufactured.
  • the molar ratio of (b 2 — l) Z (b 2-2) is preferably from 1 ⁇ 1/1 to IZI.1, and more preferably from 1.05 / 1 to 1 / 1.05.
  • esterification catalyst examples include inorganic acids (sulfuric acid, hydrochloric acid, etc.), organic acids (p-toluenesulfonic acid, methanesulfonic acid, polyphosphate ester, etc.), antimony catalyst (antimony trioxide, etc.), tin catalyst (Monobutyltin oxide, etc.), titanium catalyst (tetrabutyl titanate, etc.), zirconium catalyst (tetrabutyl zirconate, etc.), zirconium organic acid salt (zirconyl acetate), and organic acid metal salt catalyst (zinc acetate, etc.) Is mentioned.
  • inorganic acids sulfuric acid, hydrochloric acid, etc.
  • organic acids p-toluenesulfonic acid, methanesulfonic acid, polyphosphate ester, etc.
  • antimony catalyst antimony trioxide, etc.
  • tin catalyst Monobutyltin oxide, etc.
  • titanium catalyst tetrabut
  • the amount of the catalyst used is usually 0.1 to 5 parts by weight per 100 parts by weight of the monomer (the total weight of the two when (b 2-l) and (b 2-2) are used) It is.
  • the polyester (B1-2) is produced by a known method, for example, by reacting (b2_1) and (b2_2) in the presence of an esterification catalyst at 1 torr and 200 ° C for 18 hours.
  • Polyamide (B1-3) can be obtained by dehydration-condensation of dicarboxylic acid (b2-1) and diamine (b3-1), dehydration-condensation of aminocarboxylic acid (b3-2), ratatam (b3 — 3) can be obtained by a method of ring-opening polymerization of
  • diamine (b3-1) diamine having 2 to 18 carbon atoms can be used.
  • diamine having 2 to 18 carbon atoms
  • aminocarboxylic acid (b3-2) an aminocarboxylic acid having 2 to 12 carbon atoms and the like can be used.
  • glycine ⁇ -aminocaproic acid, ⁇ -aminoenanthic acid, ⁇ -aminocaprylic acid, ⁇ -aminoperargon Acids, ⁇ -aminocapric acid, 11-aminoundecanoic acid and 12-aminododecanoic acid.
  • Ratatam (b3_3) can be ratatatam having 6 to 12 carbon atoms, such as kyprolatatum, enantholactam, lauguchi ratatam, and decanolactam.
  • the molar ratio of (b2-1) / (b3-1) is 1.1 / 1 / 1 to: LZl. 1 is preferred, more preferably 1.05 / 1 to 1 / 1.05.
  • the polyamide (B1-3) is produced by a known method, for example, by reacting (b2-1) and (b3-1) at ltorr at 200 ° C for 12 hours.
  • the polyurethane (B1-4) can be obtained by a polyaddition reaction of diisocyanate (b4-1) and diol (b2-2).
  • diisocyanate (b4-1) a diisocyanate having 6 to 20 carbon atoms (excluding carbon in the isocyanate group; the same applies hereinafter) can be used.
  • hexamethylene diisocyanate (HD I) dodecamethylene diisocyanate, 1,3- or 1,4-phenylene diisocyanate, 2,4 or 2,6-tolylene diisocyanate (TD I), 2 , 4, one or four, four, —Diphenylenomethane diisocyanate (MD I), isophorone diisocyanate (IPDI), dicyclohexylmethane-1,4,4, diisocyanate (hydrogenated MDI), methylcyclohexylene diisocyanate Nate (hydrogenated TD I), 2,5- or 2,6-nornorpene diisocyanate, m- or p-xylylene diisocyanate (XDI) and a, a, ⁇ ',
  • the molar ratio of (b 4-1) / (b 2-2) is 1.1 / The ratio is preferably from 1 to 1 / 1.1, more preferably from 1.05 / 1 to 1.05.
  • Known catalysts can be used as the urethanization catalyst.
  • Metal catalysts such as tin catalysts and lead catalysts; triethylenediamine, tetramethylethylenediamine, N-ethylmethylphosphorin, triethylamine, getyl Ethanolamine and amine catalysts such as carbonates and organic acid salts thereof are used.
  • the amount of the catalyst is usually 0.1 to 5 parts by weight with respect to 100 parts by weight of the monomer (total weight of (b4-1) and (b2-2)).
  • the polyurethane (B1-4) is produced by a known method, for example, by reacting (b4-1) with (b2-2) and a urethanation catalyst at 60 ° C under a nitrogen atmosphere.
  • Polycarbonate (B1-5) can be obtained by condensation of diol (b2-2) with phosgene or gester carbonate.
  • the molar ratio of (b2-2) Z phosgene or carbonate diester is from 1/1/1 to 1 / 1.1 is preferred, and more preferably 1.05 / 1 to 1Z1.05.
  • Polycarbonate (B1-5) is produced by a known method, for example, by reacting (b2-2) with phosgene at a temperature of 120 ° C.
  • the Mn of the thermoplastic resin (B1) is preferably at least 100,000, more preferably at least 20,000, particularly preferably at least 30,000, most preferably at least 40,000. , Preferably not more than 500,000, more preferably not more than 400,000, most preferably not more than 30,000. It is less than 000.
  • thermosetting resin (B2) examples include a crosslinked cured product (B2-1) of a thermosetting resin (Bla) obtained by introducing a crosslinkable reactive group into the thermoplastic resin (B1), and a thermoplastic resin (B2).
  • Crosslinking resin (B2-2), epoxy resin (B2-3), phenolic resin (B2-4), furan resin (B2-5) derived from the constituent monomer of 1) and the crosslinkable monomer. ) Etc. can be used.
  • the crosslinked cured product (B2-1) is a thermoplastic resin (B1) obtained by introducing a crosslinking reactive group into a thermoplastic resin (B1), and optionally contains a curing agent, a catalyst and / or a solvent. It can be obtained by an epoxidation reaction, a urethanation reaction and a Z or urea reaction below.
  • crosslinking reactive group examples include an epoxy group, a hydroxyl group, a carboxyl group, an amino group and a diisocyanate group.
  • Examples of a method for obtaining (Bla) include a method of (co) polymerizing a vinyl monomer having a crosslinking reactive group when polymerizing the vinyl monomer (bl).
  • Examples of the vinyl monomer having a crosslinking reactive group include (bl_2), (bl-7), (bl-8), (bl-11), and (bl-12).
  • the amount (parts by weight) of the butyl monomer having a crosslinking reactive group used in the synthesis of (B1a) is preferably 5 or more, more preferably 10 to 100 parts by weight of (Bla). As mentioned above, it is particularly preferably 15 or more, more preferably 100 or less, further preferably 70 or less, and particularly preferably 50 or less.
  • curing agent examples include diols, diamines, diisocyanates, diepoxides and the like.
  • the amount (parts by weight) of the curing agent is preferably 0.1 or more, more preferably 1 or more, and particularly preferably 5 or more based on 100 parts by weight of (B1a). It is preferably 50 or less, more preferably 30 or less, and particularly preferably 25 or less.
  • a urethanation catalyst may be used if necessary.
  • the urethanization catalyst the above-mentioned substances can be used.
  • the amount of catalyst used is usually 0.1 per 100 parts by weight of resin. ⁇ 5 parts by weight.
  • the crosslinked resin (B2-2) can be obtained by replacing a part of the constituent monomers of the thermoplastic resin (B1) with a crosslinkable monomer and polymerizing the same.
  • crosslinkable monomer examples include a polyfunctional vinyl monomer having 2 to 8 or more non-conjugated double bonds; and a high-functionality rubonic acid having 3 to 8 or more functional groups, a high-functional alcohol, Functional amines and high functional isocyanates can be used.
  • polyfunctional monomer examples include polyhydric alcohol ⁇ 2 to 50 (preferably 2 to 20), di to octavalent (preferably 2 to 4) ⁇ poly (meth) acrylates, and aromatic polyfunctional burs. Compounds and the like can be used. Di (meth) acrylate; divinylbenzene, divinyltoluene, divinylxylene, divinyl / leketone, trivinylbenzene, and the like.
  • the amount (parts by weight) of the polyfunctional vinyl monomer used is preferably 0.1 or more, more preferably 1 or more, and especially preferably 1 or more, based on 100 parts by weight of the total weight of the vinyl monomer (bl) and the polyfunctional vinyl monomer. It is preferably 5 or more, more preferably 50 or less, further preferably 30 or less, and particularly preferably 25 or less.
  • polyfunctional (trivalent to pentavalent) carboxylic acids having 4 to 50 carbon atoms can be used.
  • trimellitic acid, 1,2,4,5-benzenebenzenecarbonic acid and benzene can be used.
  • Oxacarboxylic acid and naphthalenetetracarboxylic acid are exemplified.
  • the amount (parts by weight) of the high-functionality rubonic acid used is 100 parts by weight of dicarboxylic acid (b2-1), oxycarboxylic acid (b2-3), ratatone (b2-4), and high-functionality rubonic acid. Is preferably 0.1 or more, more preferably 1 or more, particularly preferably 5 or more, and preferably 50 or less, more preferably 30 or less, and particularly preferably 25 or less.
  • polyfunctional (3- to 5-valent) alcohols with 3 to 50 carbon atoms And the like, for example, glycerin, diglycerin, trimethylolpropane, pentaerythritol and dipentaerythritol.
  • the amount (parts by weight) of the high-functional alcohol used is 100 parts by weight of the total weight of diol (b2-2), oxycarboxylic acid (b2_3), ratatone (b2-4) and high-functional alcohol. On the other hand, it is preferably 0.1 or more, more preferably 1 or more, particularly preferably 5 or more, preferably 50 or less, more preferably 30 or less, and particularly preferably 25 or less.
  • a polyfunctional (3- to 5-valent) amine having 3 to 50 carbon atoms can be used.
  • the amount (parts by weight) of the high-functional amamine used is based on 100 parts by weight of diamine (b3—l), aminocarboxylic acid (b3-2), ratatam (b3_3) and the total weight of the high-functional amamine. , 0.1 or more, more preferably 1 or more, particularly preferably 5 or more, and preferably 50 or less, more preferably 30 or less, and particularly preferably 25 or less.
  • a polyfunctional (trivalent to hexavalent) isocyanate having 3 to 60 carbon atoms can be used.
  • HDI trimer, IPDI trimer, TDI trimer, 2-isocyanatoethyl 2 examples include 6-diisocyanatocaproate, a 3-mol HDI adduct of glycerin, a 4-mol HDI adduct of pentaerythritol, and a 6-mol HDI adduct of dipentaerythritol.
  • the amount (parts by weight) of the high-functional isocyanate used is preferably 0.1 or more, more preferably 1 or more, and particularly preferably 1 or more, based on 100 parts by weight of the total weight of diisocyanate (b411) and the high-functional isocyanate. Is 5 or more, preferably 50 or less, more preferably 30 or less, particularly preferably 25 or less.
  • the crosslinked resin (B2-2) is produced by a known method, for example, in the same manner as the method for producing the thermoplastic resin (B1).
  • the ratio of the number of moles of the carboxyl group to the number of moles of the hydroxy group is 1.1 / 1 to 1Z1.1 (preferably 1.05 / It is preferable to set the amount of dicarboxylic acid, high-functionality rubonic acid, diol, high-functional alcohol, oxycarboxylic acid, and ratatone to be 1-1.05).
  • the ratio of the number of moles of carboxyl groups to the number of moles of amino groups is 1.1 / 1 to: LZl. 1 (preferably 1.05 / l to lZ It is preferable to set the amounts of dicarboxylic acid, high-functionality rubonic acid, diamine, high-functional amine, aminocarboxylic acid and lactam so as to satisfy 1.05).
  • the ratio of the number of moles of isocyanate groups to the number of moles of hydroxyl groups is 1.1 / 1 to 1.1.1 (preferably 1.05 / 1 to 1/1). It is preferable to set the amounts of diisocyanate, high-functional isocyanate, diol, and high-functional alcohol to be set so as to satisfy /1.5.
  • the epoxy resin (B2-3) can be obtained by reacting a polyepoxide with polyamine and / or Z or polycarboxylic acid (or acid anhydride).
  • one of the polyepoxides, polyamines, and polycarboxylic acids to be used must have one or more functional groups with three or more functional groups. use. Further, a monofunctional epoxide, a monofunctional amine, or a monofunctional carboxylic acid may be used as long as the physical properties are not impaired.
  • a monofunctional epoxide, a monofunctional amine, or a monofunctional carboxylic acid may be used as long as the physical properties are not impaired.
  • the epoxide having 1 functional group an epoxide having 2 to 50 carbon atoms can be used, and examples thereof include EO, PO, styrene oxide, phenyldaricidyl ether and aryl glycidyl ether.
  • polyepoxide having 2 functional groups examples include polyepoxides having 4 to 50 carbon atoms, such as ethylene glycol diglycidyl ether, 1,4-epoxycyclohexane, and bisphenol A diglycidyl ether.
  • polyepoxide having 3 to 6 functional groups examples include polyepoxides having 6 to 50 carbon atoms, such as glycerin triglycidyl ether, pentaerythritol, traglycidyl ether and dipentaerythritol hexaglycidyl ether.
  • the polyepoxide may be used alone or in a mixture.
  • polyamine diamine (b 3-l) and high-functional amine can be used.
  • the polyamines may be used alone or in a mixture.
  • the amount (parts by weight) of the polyamine is preferably 20 or more, more preferably 25 or more, particularly preferably 30 or more, and preferably 100 or less, more preferably 100 or less, per 100 parts by weight of the epoxide. Is 60 or less, particularly preferably 50 or less.
  • dicarboxylic acid (b2_l) and high functional rubonic acid can be used as the polycarboxylic acid.
  • the polycarboxylic acid may be used alone, or a mixture may be used.
  • the use amount (parts by weight) of the polycarboxylic acid is preferably 50 or more, more preferably 50 or more, particularly preferably 60 or more, and preferably 150 or less, based on 100 parts by weight of the epoxide. It is more preferably at most 100, particularly preferably at most 90.
  • phenolic resin (B2-4) a resole resin, a nopolak resin, or the like can be used, and is obtained by reacting phenol with formaldehyde.
  • the resole resin can be obtained by reacting phenol with formaldehyde in the same amount or in excess of formaldehyde in the presence of a base catalyst such as sodium hydroxide, ammonia or an organic amine.
  • a base catalyst such as sodium hydroxide, ammonia or an organic amine.
  • the molar ratio of phenol Z formaldehyde is preferably from 1 to 1/2, more preferably from 1 to 1 / 1.9.
  • the amount (parts by weight) of the base catalyst used is preferably at least 0.5, more preferably at least 0.7, particularly preferably at least 100 parts by weight of the total weight of phenol and formaldehyde. It is 1 or more, preferably 20 or less, more preferably 15 or less, particularly preferably 10 or less.
  • the novolak resin can be obtained by reacting phenol with formaldehyde in the same amount or in excess of phenol in the presence of an acid catalyst such as oxalic acid.
  • the molar ratio of phenol / formaldehyde is preferably 1/1 to 10.7, more preferably 1Z0.9 to 1 / 0.75.
  • the amount (parts by weight) of the acid catalyst used is preferably 0.5 or more, more preferably 0.7 or less, based on 100 parts by weight of the total of phenol and formaldehyde. Above, it is particularly preferably 1 or more, more preferably 20 or less, further preferably 15 or less, and particularly preferably 10 or less.
  • the furan resin (B2-5) can be obtained by reacting furan and / or Z or a derivative thereof with formaldehyde.
  • the molar ratio of furan and the furan derivative Z-formaldehyde is preferably 1 / 0.7 to 1Z2, more preferably I / O. 7 to 1 / 0.9 and 1 / 1.1 to LZ1.9. is there.
  • furan resin a compound produced by replacing a part of furan and a furan derivative with melamine, urea, or the like can be used.
  • the amount thereof is preferably 0.1 or more, more preferably 1 or more, particularly preferably 5 or more, and preferably 50 or less, based on 100 parts by weight of the furan. It is more preferably 30 or less, particularly preferably 25 or less.
  • thermosetting resins examples include known thermosetting resins such as xylene resin, petroleum resin, urea resin, melamine resin, alkyd resin, and silicone resin.
  • thermosetting resin (B2) is preferable, and a thermosetting resin (B1a) having a crosslinking reactive group introduced into the thermoplastic resin (B1) is more preferable.
  • the organic polymer (B) may be used alone or in combination of two or more.
  • resin additives (E) include pigments, dyes, fillers (organic and / or inorganic fillers), nucleating agents, glass fibers, lubricants, plasticizers, release agents, antioxidants, flame retardants, and ultraviolet rays. Examples include an absorbent and an antibacterial agent.
  • the amount (parts by weight) of (E) is preferably at least 0.1, more preferably at least 0.2 with respect to 100 parts by weight of (B). It is particularly preferably at least 0.3, most preferably at least 0.4, preferably at most 30, more preferably at most 20, particularly preferably at most 10, and most preferably at most 5.
  • the method for producing the micelle-containing organic polymer is not particularly limited.
  • the prepolymer means an organic polymer (B) having Mn of 1000 to 100000 having a cross-linking reactive group.
  • the solvent that can be used in the production of the micelle-containing organic polymer is not particularly limited. Examples thereof include water; hydrocarbons having 1 to 12 carbon atoms such as pentane, hexane, cyclohexane, tonolen, xylene, and mesitylene; methanol, Alcohols having 1 to 10 carbon atoms such as ethanol, isopropanol, 1-butanol, ethylene glycol, and glycerin; esters having 2 to 12 carbon atoms such as ethyl acetate and butyl acetate; carbon numbers such as acetone and methyl ethyl ketone Ketones having 3 to 12; ethers having 2 to 12 carbon atoms such as getyl ether and butylethyl ether; amides having 2 to 12 carbon atoms such as N, N-dimethylformamide and N-getylacetamide; dimethyl sulfoxide, Examples thereof include sulfoxides having 2 to 12
  • water, hydrocarbons, alcohols, esters and ketones are preferred, More preferred are water, toluene, xylene, mesitylene, methanol, ethanol, isopropanol, 1-butanol, ethyl acetate and acetone.
  • the amount of the solvent is not particularly limited, but is preferably 1 or more, more preferably 1 part by weight of the surfactant (A). Is 5 or more, particularly preferably 10 or more, most preferably 15 or more, preferably 100 or less, more preferably 50 or less, particularly preferably 40 or less, and most preferably 30 or less. It is as follows.
  • the micelle-containing organic polymer of the present invention can be processed into various shapes. For example, it can be formed into a lump, fibrous, sheet, or film shape by a method such as injection molding or extrusion molding.
  • the molding temperature may be a temperature at which the organic polymer can be molded.
  • the force is preferably 200 ° C. or less, more preferably 150 ° C. or less.
  • the micelle-containing organic polymer of the present invention can be used as a raw material for an organic polymer porous body and a porous carbon material described below, and also as an ink receiving layer (particularly effective when a cationic surfactant is used). Can also be used. Next, the organic polymer porous material of the second invention will be described.
  • the total pore volume of pores corresponding to diameters within a range of ⁇ 40% of the pore diameter showing the maximum peak in the pore diameter distribution curve is based on the total pore volume. At least 50% by volume, preferably 60% by volume. / 0 or more, more preferably 70% by volume or more, particularly preferably 75% by volume or more, and most preferably 80% by volume or more.
  • the pore diameter distribution curve is obtained by plotting the value (d VZ d D) obtained by differentiating the pore volume (V) from the pore diameter (D) on the vertical axis, and plotting the pore diameter (D) on the horizontal axis. Means a curved line.
  • the pore diameter showing the maximum peak means the pore diameter at which the dV / dD value of the pore diameter distribution curve becomes the maximum.
  • the pore diameter distribution curve is calculated from the adsorption isotherm obtained by measuring the adsorption amount of argon or nitrogen gas. It is also calculated from the pore distribution curve obtained from the mercury intrusion method. Can be
  • a pore diameter and pore volume of 0.3 nm or more and 50 nm or less are obtained, and a pore diameter and pore volume of 10 nm or more and 100 nm or less are obtained from the mercury intrusion method. Is required.
  • the absorption isotherm is measured below 50 nm and the mercury intrusion method is measured above 50 nm. By using both methods, it is possible to measure the entire range of the preferable pore diameter.
  • the mercury intrusion method is a measurement method based on the principle that mercury does not cause capillary action unless an external pressure is applied.
  • mercury penetrates into the sample.
  • the obtained result is plotted as the pore volume on the vertical axis and the pore diameter on the horizontal axis, and the curve obtained by differentiating the obtained curve is the pore distribution curve.
  • the porous organic polymer of the present invention has a structure in which a large number of pores are formed in the organic polymer. Has structure.
  • the shape of the pores of the organic polymer porous material of the present invention includes a cage, a one-dimensional tunnel, and a three-dimensional tunnel.
  • the arrangement of the pores of the organic polymer porous body of the present invention may or may not have regularity, but preferably has regularity.
  • the organic polymer porous material of the present invention has at least one peak in the X-ray diffraction pattern, and at least one set of the diffraction angle (2 °) and the lattice spacing (d) of the peak is as follows: It is preferable that the relational expression (1) is satisfied, and that d is one or more values in a range from 0.8 111 1 to 1 50 11111. That is, there are one or more sets that satisfy 20 and (1), but one set with a d-force of 0.8 to 150 nm is sufficient.
  • the lattice spacing (d) (nm) is preferably 0.8 or more, more preferably 1 or more, particularly preferably 2 or more, and preferably 150 or less, more preferably 100 or less, and particularly preferably 50 or less. It is as follows.
  • the arrangement of the pores of the organic polymer porous material of the present invention satisfying the above conditions may or may not have regularity, but preferably has regularity.
  • the arrangement of the pores having regularity means that the arrangement structure of the pores has a symmetry represented by a space group.
  • Examples of such a space group include those similar to the micelle-containing organic polymer.
  • the organic polymer porous material of the present invention preferably has a pore diameter (nm) showing a maximum peak in a pore diameter distribution curve of 0.3 or more, more preferably 0.4 or more, and particularly preferably 0.3 or more. It is 5 or more, most preferably 1 or more, and preferably 100 or less, more preferably 50 or less, particularly preferably 40 or less, and most preferably 30 or less.
  • the pore diameter (nm) showing the maximum peak is less than this range, for example, when the organic polymer porous material of the present invention is used for an ink jet receiving layer, a catalyst carrier, or the like, the ink or It may be difficult for ions or molecules to enter. Also Exceeding this range may cause a decrease in surface area, a decrease in adsorptive capacity, or a decrease in electrical properties when used for the above applications.
  • the method for producing the organic polymer porous body is not particularly limited, but can be obtained by removing the surfactant (A) from the micelle-containing organic polymer.
  • Examples of a method for removing the surfactant (A) from the micelle-containing organic polymer include a method by baking and a method of treating with an extraction solvent.
  • the micelle-containing organic polymer is heated to a certain temperature to decompose and remove the surfactant, whereby an organic polymer porous body can be obtained.
  • the atmosphere during the thermal decomposition may be an atmosphere of an inert gas such as neon, argon, nitrogen or carbon dioxide, air or a mixture thereof, and among them, air is preferred.
  • an inert gas such as neon, argon, nitrogen or carbon dioxide, air or a mixture thereof, and among them, air is preferred.
  • a thermal decomposition apparatus equipped with inlets and outlets for inflow gas and outflow gas so that decomposition products can be removed. Examples of such a device include an electric furnace through which gas can be passed.
  • the softening temperature of the resin When removing by this method, it is necessary to pay attention to the softening temperature of the resin.
  • the organic polymer is a thermoplastic resin
  • the pores formed may be lost due to softening when heated above the softening temperature.
  • the surfactant (A) in the micelle-containing organic polymer is extracted and removed with the extraction solvent to obtain a porous organic polymer.
  • the extraction solvent it is preferable to use a solvent having a high solubility in a surfactant and having as low an affinity as possible for a resin. If the affinity with the resin is high, the resin may be dissolved in the extraction solvent and the formed pores may be lost.
  • Such extraction solvents include water, ethanol, methanol, Aseto hydrophilic solvents and their mixture (5 0 vol% Etanoru aqueous solution such as down, 8 0 body volume% aqueous methanol ⁇ Pi 4 0 vol 0 / 0 aqueous solution of acetone, etc.); lipophilic solvents such as pentane, hexane, heptane, toluene and xylene.
  • the amount (parts by weight) of the extraction solvent used is preferably 10 or more, more preferably 15 or more, particularly preferably 20 or more, and most preferably 30 or more, based on 1 part by weight of the micelle-containing organic polymer. Or more, preferably 200 or less, more preferably
  • a c- cationic surfactant having a molecular weight of 150 or less, particularly preferably 120 or less, and most preferably 100 or less is used, the cation can be added by adding a strong acid (eg, hydrochloric acid) to the extraction solvent. Extraction may be easier because the cations of the surfactant are ion-exchanged with protons.
  • a strong base eg, potassium hydroxide
  • the amount of the acid or base added is preferably at least 1 mol, more preferably at least 2 mol, particularly preferably at least 5 mol, and preferably at most 100 mol, based on 1 mol of the surfactant. It is more preferably at most 80 mol, particularly preferably at most 50 mol.
  • the extraction solvent to which an acid or a base is added as necessary is kept at the extraction temperature, and the micelle-containing organic polymer is added thereto. Irradiation and extraction; 2Extraction by repeating pressurization and normal pressure; 3Reduced pressure—Extraction by repeating normal pressure;
  • the organic polymer porous body may be replaced with another low-boiling solvent that can be used when the organic polymer porous body is used.
  • the degree of reduced pressure is preferably from 1 to 100 torr, more preferably from 1 to 75 torr, and particularly preferably from 1 to 5.0 torr.
  • the drying time (hour) is preferably from 1 to 24, more preferably from 1 to 18, and particularly preferably from 1 to 12.
  • the organic polymer porous material of the present invention can be used as a raw material of a porous carbon material described below, as well as an ink jet receiving layer, an electric double layer capacitor electrode material carrier, a catalyst carrier, a separation membrane for medical use, tap water or waste water. It can also be used as an adsorbent for processing and as a packing material for GPC columns. Next, the porous carbon material of the third invention will be described.
  • the total pore volume (volume%) of pores corresponding to diameters within a range of ⁇ 40% of the pore diameter showing the maximum peak in the pore diameter distribution curve is as follows. Based on the pore volume, it is at least 50, preferably at least 60, more preferably at least 70, particularly preferably at least 75, most preferably at least 80.
  • the porous carbon material of the present invention has a structure in which many pores are formed in carbon.
  • the shape of the pores of the porous carbon material of the present invention includes a cage, a one-dimensional tunnel, and a three-dimensional tunnel.
  • the arrangement of the pores of the porous carbon material of the present invention may or may not have regularity, but preferably has regularity.
  • the porous carbon material of the present invention also has at least one peak in the X-ray diffraction pattern, and the diffraction angle of the peak (2 °) It is preferable that at least one set of the lattice spacing (d) satisfies the following relational expression (1), and that d is at least one value within a range from 0.8 nm to 150 nm.
  • the lattice spacing (d) (nm) is preferably 0.8 or more, more preferably 1 or more, particularly preferably 2 or more, and preferably 150 or less, more preferably 100 or less, and particularly preferably 50 or less. It is as follows.
  • the arrangement of pores of the porous carbon material of the present invention satisfying the above conditions may or may not have regularity, but preferably has regularity.
  • the fact that the arrangement of the pores has regularity means that the arrangement structure of the pores has the symmetry indicated by the space group. Examples of such a space group include those similar to the micelle-containing organic polymer. it can.
  • the pore diameter (nm) showing the maximum peak in the pore diameter distribution curve is preferably at least 0.3, more preferably at least 0.4, particularly preferably at least 0.5. It is preferably at most 100, more preferably at most 50, particularly preferably at most 30.
  • the pore diameter (nm) showing the maximum peak is less than this range, for example, when the porous carbon material of the present invention is used as an electrode material for an electric double layer capacitor or a catalyst carrier, the pore diameter in the pores is reduced. In some cases, it becomes difficult for ions or molecules to enter. In addition, if it exceeds this range, when used for the above applications, the surface area will decrease, the adsorption capacity will decrease, or the electric power will decrease. In some cases, the air quality may deteriorate.
  • the method for producing the porous carbon material is not particularly limited.
  • the porous carbon material can be obtained by directly calcining the micelle-containing organic polymer or calcining the organic polymer porous body.
  • the atmosphere during the calcination is an inert gas atmosphere such as nitrogen, helium, neon, argon, carbon dioxide, or a mixed gas thereof.
  • the atmosphere at the time of aging may be an atmosphere of an inert gas such as neon, argon, nitrogen or carbon dioxide, air or a mixture thereof, and among them, air is preferred.
  • the surface of the organic polymer is partially oxidized by aging, so that disappearance or deformation of pores at a calcination temperature higher than the softening point can be prevented.
  • it is preferable that the surface of the organic polymer is partially oxidized at a stretch at a temperature equal to or higher than the softening point +10 o ° C in an oxygen-containing atmosphere at a temperature rising rate of 30 ° C / min or more.
  • a thermal decomposition apparatus equipped with inlet and outlet ports for inflow gas and outflow gas so that decomposition products can be removed.
  • a carbonization furnace and an electric furnace can be used, and for example, a carbonization furnace such as a rotary kiln furnace, a multi-stage stirred moving bed furnace and a multi-stage fluidized bed furnace, other special carbonization fire doors, and gas are used.
  • a ventilated electric furnace or the like can be used.
  • the organic polymer porous material and porous carbon material derived from the micelle-containing organic polymer can maintain the shape of the micelle-containing organic polymer
  • the organic polymer porous material can be formed in advance by forming the micelle-containing organic polymer into a desired shape.
  • the porous carbon material can have a desired shape. For example, from a powder, film, sheet-like or fiber-like micelle-containing organic polymer, a correspondingly shaped organic polymer porous body or porous carbon material can be obtained.
  • the obtained organic polymer porous body and porous carbon material can form various shapes, have a uniform pore diameter, and have regular pore shape and Z or pore arrangement. . Furthermore, for firing of micelle-containing organic polymer and porous organic polymer The resulting porous carbon material also requires the use of dangerous hydrofluoric acid.
  • the organic polymer porous material and porous carbon material of the present invention have excellent properties such as electric insulation, heat insulation, separation ability and adsorption ability.
  • porous carbon materials are used as electrode materials such as various battery electrodes, electric double layer capacitor electrodes, and capacitor electrodes; adsorbents for canisters, water or wastewater treatment, water purifiers or deodorizers.
  • Adsorbents such as adsorbents for food refining and adsorbents for gas; ideal for semiconductor insulating materials, electronic components such as solid electrolytes, medical separation membranes, and catalyst carriers.
  • FIG. 1 is a perspective cross-sectional view schematically showing a state where micelles or pores and an organic polymer or pores and carbon form a space group “2-dhexagonap 6 mm”.
  • FIG. 2 is a perspective transmission diagram schematically showing a state in which micelles or pores and an organic polymer or pores and carbon form a space group “cubic Ia3d”.
  • FIG. 3 is a perspective cross-sectional view schematically showing a state in which micelles or pores and an organic polymer or pores and carbon form a space group “cubic Pm3 n”.
  • Figure 4 is a Misenore or pores and an organic polymer, or pores and carbon, a state in which form the space group "3- dhexagonal P 6 3 Zmm c" in perspective cross-sectional view schematically showing is there.
  • Example 1 A stainless steel autoclave was charged with 10 parts of phenol, 16 parts of 36% formalin, and 1.5 parts of 10% sodium hydroxide, and stirred until uniform. After the inside of the autoclave was replaced with nitrogen gas, the mixture was stirred at 75 ° C for 3 hours under normal pressure sealing to obtain a prepolymer. Next, 7 parts of octyltrimethylammonium chloride, 1.8 parts of 85% lactic acid and 1.5 parts of glycerin were added and stirred until uniform. Thereafter, water and unreacted monomers were removed under reduced pressure.
  • the resulting viscous resin was put into a mold, molded into a sheet (4 cm x 5 cm, thickness lmm), cured at 70 ° C for 120 hours, and then converted into a sheet-like micelle-containing organic polymer (G 1) was obtained.
  • the micelle-containing organic polymer (G1) was subjected to X-ray diffraction measurement under the following conditions, and the diffraction angle (°) of the maximum detected peak was determined. The results are shown in Table 2.
  • (G 1) was dried at 25 ° C. and 1 torr for 2 hours as a pretreatment to obtain a measurement sample.
  • a micelle-containing organic polymer (G2) was obtained in the same manner as in Example 1, except that 7 parts of cetyltrimethylammonium chloride was used instead of octyltrimethylammonium chloride.
  • Example 3 In the same manner as in Example 1, except that 7 parts of EO 20 PO 70 EO 20 (P 1 uronic PI 23 : manufactured by BASF) was used in place of octyltrimethylammonium chloride in Example 1, A sheet-like micelle-containing organic polymer (G 3) was obtained. Was.
  • Example 4 For the micelle-containing organic polymer (G3), the diffraction angle (°) of the maximum peak was determined in the same manner as in Example 1. The results are shown in Table 2.
  • Example 4 To a glass container were added 190 parts of ethanol and 9 parts of 35% concentrated hydrochloric acid, and the mixture was stirred until it became uniform. Next, 3 parts of the micelle-containing organic polymer (G1) obtained in Example 1 was charged, and the temperature was raised to 40 ° C. After extracting at 40 ° C for 7 hours while irradiating with ultrasonic waves (frequency: 15 kHz), take out the sheet, wash with 10 parts of ethanol three times, and dry at 25 ° C and 1 torr for 2 hours. A sheet-like organic polymer porous material (GE 4) was obtained.
  • the pore distribution curve of the porous organic polymer is measured by the nitrogen adsorption method (measured from 0.3 nm to 50 nm) and the mercury intrusion method (measured from 50 nm to 500 nm), and the maximum peak is shown.
  • the results are shown in Table 3.
  • Nitrogen adsorption method apparatus AUTO SORB-1 GAS / SORPTION ON SYS TEM (manufactured by QUANTOR CHROME CORPORATION).
  • Mercury intrusion method MERCURY PRES SUER PORO SI METE MOD 220 (Car 1 o ⁇ Erba).
  • VZVmax is determined by (total pore volume / total pore volume ⁇ 100) corresponding to a diameter within a range of ⁇ 40% of the pore diameter showing the maximum peak.
  • the total pore volume was defined as the sum of the volumes of pores having a pore diameter of 0.3 nm to 500 nm.
  • Example 5 A hollow columnar organic polymer was obtained in the same manner as in Example 4 except that in Example 4, 3 parts of the micelle-containing organic polymer (G2) obtained in Example 2 was used instead of the micelle-containing organic polymer (G1). A porous body (GE5) was obtained.
  • Example 4 was repeated except that 35% concentrated hydrochloric acid was not used and that 3 parts of the micelle-containing organic polymer (G3) obtained in Example 3 was used instead of the micelle-containing organic polymer (G1). Thus, a sheet-like organic polymer porous material (GE6) was obtained.
  • the diffraction angle (°) of the maximum peak was determined in the same manner as in Example 1. The results are shown in Table 3.
  • Example 7 In the same manner as in Example 4, the pore diameter showing the maximum peak and V / Vmax were determined for the organic polymer porous material (GE 6). The results are shown in Table 3.
  • the micelle-containing organic polymer (G1) obtained in Example 1 was placed in an electric furnace capable of nitrogen flow, air was flowed at a rate of 10 LZmin in advance, and the temperature was raised to 250 ° C over 30 minutes. Aging was performed for 6 hours. Thereafter, nitrogen was flowed at a rate of 10 L / min and kept at 250 for 30 minutes. The temperature was raised to 650 ° C over 1 hour and calcined at this temperature for 3 hours. Further, the temperature was raised to 800 ° C. over 1 hour and baked for 5 hours to obtain a sheet-like porous carbon material (MCG7). The shape maintained a sheet shape.
  • MCG7 sheet-like porous carbon material
  • a porous carbon material (MCG8) was obtained in the same manner as in Example 7, except that the micelle-containing organic polymer (G2) obtained in Example 2 was used instead of the micelle-containing organic polymer (G1) in Example 7. .
  • the shape maintained a sheet shape.
  • Example 9 For the porous carbon material (MCG8), the pore diameter showing the maximum peak and VZVmax were determined. The results are shown in Table 4.
  • a porous carbon material (MCG9) was obtained in the same manner as in Example 7, except that the organic polymer porous material (GE6) obtained in Example 6 was used instead of the micelle-containing organic polymer (G1) in Example 7. .
  • the shape maintained a sheet shape.
  • Example 11 For the micelle-containing organic polymer (G10), the maximum peak was obtained in the same manner as in Example 1. The diffraction angle (°) of the laser was determined. The results are shown in Table 2. ⁇ Example 11>
  • Example 1 In the same manner as in Example 1, except that a stainless steel autoclave was replaced with a glass colben, and instead of octyltrimethylammonium chloride, 7 parts of stearyltrimethylammonium chloride was used. Thus, a micelle-containing organic polymer (Gl1) was obtained.
  • Example 13 For the micelle-containing organic polymer (G12), the diffraction angle (°) of the maximum peak was determined in the same manner as in Example 1. The results are shown in Table 2.
  • Example 4 a powdery powder was prepared in the same manner as in Example 4 except that 3 parts of the micelle-containing organic polymer (G10) obtained in Example 10 was used instead of the micelle-containing organic polymer (G1). An organic polymer porous material (GE13) was obtained.
  • Example 14 For the organic polymer porous body (GE13), the pore diameter showing the maximum peak and V / Vmax were determined. The results are shown in Table 3. ⁇ Example 14>
  • Example 4 The procedure of Example 4 was repeated, except that 3 parts of the micelle-containing organic polymer (G11) obtained in Example 11 was used instead of the micelle-containing organic polymer (G1). (GE 14).
  • Example 4 The procedure of Example 4 was repeated, except that 3 parts of the micelle-containing organic polymer (G 12) obtained in Example 12 was used instead of the micelle-containing organic polymer (G1). (GE 15).
  • a powdery porous carbon material (MCG16) was prepared in the same manner as in Example 7 except that the micelle-containing organic polymer (G10) obtained in Example 10 was used instead of the micelle-containing organic polymer (G1). I got
  • Example 17 In the same manner as in Example 7 except that the micelle-containing organic polymer (G1) obtained in Example 11 was used instead of the micelle-containing organic polymer (G1), a sheet-shaped porous carbon material ( MCG1 7) was obtained.
  • a porous carbon material (MCG 18) was prepared in the same manner as in Example 7 except that the micelle-containing organic polymer (G 12) obtained in Example 12 was used instead of the micelle-containing organic polymer (G 1). I got The shape maintained a sheet shape.
  • a sheet-shaped phenolic resin (G19) was obtained in the same manner as in Example 1 except that octyltrimethylammonium chloride was not used.
  • the diffraction angle (°) of the maximum peak was determined in the same manner as in Example 1. The results are shown in Table 2.
  • Example 7 After baking at 650 for 3 hours in the same manner as in Example 7 except that the sheet-like phenol resin (G19) obtained in Comparative Example 1 was used instead of the micelle-containing organic polymer (G1) in Example 7, Then, the temperature was raised to 800 ° C. over 1 hour, and firing was performed for 5 hours. Finally, steam was activated to form pores, and a carbon material (MCG19) was obtained. As for the shape, part of the sheet had collapsed. For the carbon material (MCG19), the diffraction angle (°) of the maximum peak was determined in the same manner as in Example 1. The results are shown in Table 4.
  • the micelle-containing organic polymers of Examples 1 to 3 and 10 to 12 have diffraction angles, and the polymer of Comparative Example 1 does not cause diffraction. That is, it is understood that the micelle-containing organic polymer of the present invention has regularity in at least two of the micelle diameter, micelle shape, and micelle arrangement. Furthermore, since the pore diameter of the organic polymer porous body described below is uniform, it can be seen that the organic polymer porous body has a uniform micelle diameter. That is, it is understood that the micelle-containing organic polymer of the present invention contains micelles having a uniform diameter in the polymer matrix, and that the micelles have a uniform shape or that the micelles are regularly arranged. Table 3
  • Example 7 to 9 and 16 to 18 the shape was maintained even after the firing carbonization step.
  • the porous carbon materials of Examples 7 to 9 and 16 to 18 have large VZV max values, From this, it can be seen that it has a uniform pore diameter. Further, since the X-ray diffraction angle is present and d is obtained, it can be seen that the shape of the pores is uniform or the pores are regularly arranged.
  • the micelle-containing organic polymer of the present invention is an organic material, it can be easily processed and has excellent film properties.
  • the organic polymer porous material and porous carbon material produced by using this can maintain the shape at the time of producing the micelle-containing organic polymer as it is, and thus can be formed into various shapes such as lump, fibrous, sheet or film. That is, in the micelle-containing organic polymer of the present invention, micelles having a uniform particle diameter have a uniform shape or are regularly arranged, and this shape can be maintained as it is. Therefore, the organic polymer porous material and the porous carbon material obtained from the micelle-containing organic polymer have pores having a uniform pore diameter having a uniform shape or being arranged regularly. Become.
  • the micelle-containing organic polymer, the organic polymer porous material, and the porous carbon material of the present invention exhibit excellent properties such as heat insulation, separation ability, and adsorption ability.
  • the porous carbon material when used for an electrode of an electric double layer capacitor, it has pores having a uniform diameter, so that the effective electrode area can be increased and the electric double layer can have a high capacity.
  • the organic polymer porous material and porous carbon material of the present invention do not need to use dangerous hydrofluoric acid, the organic polymer porous material and porous carbon material can be provided extremely safely and easily.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Ceramic Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Structural Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

明細書
ミセル含有有機ポリマー、 有機ポリマー多孔体及び多孔炭素材料 技術分野
本発明は、 ミセル含有有機ポリマー、 有機ポリマー多孔体及び多孔炭素材料に 関する。 さらに詳しくは、 電極および吸着材などに有用な有機材料の三次元構造 と製造法に関する。 背景技術
従来、 メソポーラス物質としては、 シリカよりなる三次元構造体から構成され、 1. 5〜10 nmの比較的均一な細孔を有する無機系のメソポーラス物質や、 有 機 Z無機複合高分子で均一な細孔を有するメソポーラス物質等が知られている ( 例えば特開平 8— 67578号公報、 特開 2000— 1 7102号公報) 。
なお、 ここで言うメソポーラスとは、 「およそ 2〜50 nmの径の穴が開いた 」 という意味である。
また、 SBA—1 5と呼ばれるシリカ質のメソポーラス粉体を鍀型としてフル フリルアルコールを重合し焼結により炭素化した後、 フッ化水素酸で铸型である メソポーラス粉体を溶解、 除去することにより、 鍀型のメソポーラス構造を転写 した均一な細孔を持つ炭素材料が知られている (例えば NATURE、 412卷、 1 2頁、 2002年 7月発行) 。
しかし、 前者のメソポーラス物質は、 無機系あるいは有機 Z無機複合系の多孔 材料であるため、 脆くて割れやすい。 従って、 成形加工性が極めて悪く、 粉末状 のものしか得られず、 塊状、 繊維状、 シート状、 又はフィルム等の形態のものは 得られないという問題がある。
また、 後者の铸型として、 この前者のメソポーラス粉体を用いて得られる炭素 材料は、 極めて小さい粒径の粉体しか得られず、 塊状、 繊維状、 シート状、 又は フィルム等の形態とすることができないという問題がある。
また、 均一な細孔を有する炭素材料を得る際には、 铸型であるメソポーラス粉 体を除去する必要があり、 その際に危険なフッ化水素酸等を使用しなくてはなら ないという問題がある。 発明の要約
すなわち本発明の目的は、 均一な細孔を有し、 かつ成形性に優れた多孔体を提 供することにあり、 さらには塊状、 繊維状、 シート状、 又はフィルム等の様々な 形態、 かつ均一な細孔を有する多孔炭素材料を提供することにある。
本発明者らは、 鋭意検討を行った結果、 特定のミセル含有有機ポリマーを用い ることにより上記目的を達成することを見いだし本発明に到達した。
すなわち、 本発明は、 X線回折パターンにおいて、 少なくとも一つのピークを 有し、 かつ当該ピークの回折角度 (2 Θ) と格子面間隔 (d) の少なくとも 1組 が下記の関係式 (1) を満足し、 dは 0. 8 nm以上 1 50 nm以下の範囲内の 1つ以上の値であることを特徴とするミセル含有有機ポリマーである。
20 = 2 s i n_1 (l/2 d) (1)
( は特性 X線の 1の波長 (nm) を表す。 )
また、 本発明は、 細孔直径分布曲線における最大ピークを示す細孔直径 Dm a xの ± 40 %の範囲内の直径に対応する細孔の合計細孔体積∑ Vが、 全細孔体積 Vに基づいて 50体積。 /0以上であることを特徴とする有機ポリマー多孔体、 およ ぴ多孔炭素材料である。
さらに本発明は、 モノマー及ぴ Z又はプレボリマー中に界面活性剤 (A) のミ セルを形成させた後、 前記モノマー及び/又はプレボリマーを重合及ぴ硬化させ ることを特徴とする、 ミセル含有有機ポリマーの製造方法;上記ミセル含有有機 ポリマーを形成し、 さらに界面活性剤 (A) を除去することを特徴とする、 有機 ポリマー多孔体の製造方法;並びに、 上記ミセル含有有機ポリマーを形成し、 さ らに焼成炭素化を行うことを特徴とする、 多孔炭素材料の製造方法である。 以下に本発明を詳述する。 発明の詳細な開示
本発明における X線回折パターンは、 例えば、 X線回折法の一種である小角散 乱測定法により得られる。 X線回折法は、 物質に入射した X線の一部が波長が変わらずに散乱される、 ト ムソン散乱という原理を利用したものである。 小角散乱測定法は、 l〜1 50n mくらいの微粒子や密度の不均一な領域があると、 入射 X線方向に散漫な散乱が 生じることを利用したものである。 この散乱は結晶質、 非晶質に拘わらず存在し、 粒子及び密度が不均一な領域の内部構造には拘わらず、 内部構造の径が小さいほ ど広がるという性質を持つ。
これらの方法で得られた X線回折パターンは、 縦軸を散乱強度、 横軸を回折角 度 (2 Θ) として、 各回折角度での測定物質の散乱強度をプロットしたものであ る。 なお、 λは、 測定時に使用した金属の特性 X線の Κα 1の波長を表す。
X線回折パターンにおいて、 少なくとも一つのピークを有し、 かつ当該ピーク の回折角度 (2 Θ) と格子面間隔 (d) の少なくとも 1組が関係式 (1) を測定 誤差を除外して実質的に満足するということは、 格子面間隔 (d) が 0. 8 nm 以上 150 nm以下の間隔で規則的に配列した構造であることを示すものである。 すなわち、 このような X線回折パターンの特徴を有する物質は、 次の①〜③の いずれかを満たすものとなる。
①ミセル直径 Dm又は細孔直径 D pに均一性があり、 ミセル又は細孔の形状が均 一である。
②細孔又はミセルの形状が均一であり、 ミセル又は細孔の配列構造に規則性があ る。
③ミセル直径 D m又は細孔直径 D pに均一性があり、 ミセル又は細孔の配列構造 に規則性がある。
なお、 本発明において、 ミセル含有有機ポリマー、 ミセル直径などの用語にお ける 「ミセル」 (m i c e l l e) とは、 界面活性剤の集合体を示す。
本発明のミセル含有有機ポリマーの一例としては、 ポリマーマトリックスを形 成する有機ポリマー (B) 中に、 界面活性剤 (A) などがミセルを形成した構造 を挙げることができる。
また、 格子面間隔 (d) は、 ミセル直径、 又は、 細孔直径と関係がある。
(1) 空間群が特定できる場合には、 以下の手順でミセル直径 (Dm) を概算で さる。 ①まず、 ミセル含有ポリマーの空間群を特定する。 ミセル含有ポリマーの X線回 折測定を行いミセル含有ポリマーの格子面間隔 (d l) の値を求める。 特定した 空間群と測定の結果得られた格子面間隔 (d l) の値からミセル含有ポリマーの 空間群の格子定数 (r 1) を求める。
②後述の方法でミセルを除いて得られる有機ポリマー多孔体の空間群を特定する。 有機ポリマー多孔体の X線回折測定を行い有機ポリマー多孔体の格子面間隔 ( d 2) の値を求める。 特定した有機ポリマー多孔体の空間群と測定の結果得られた 格子面間隔 (d 2) の値から、 有機ポリマー多孔体の空間群の格子定数 (r 2) を求める。
③後述の方法でミセルを除いた有機ポリマー多孔体の細孔直径 (Dp) を後述す るように細孔分布曲線を用いて求める。
④ミセル直径 (Dm) を、 下式 (2) から算出する。
(Dm) = (Dp) X (r 1) / (r 2) (2)
(2) ミセル含有ポリマーの空間群が特定できない場合は、 ミセル直径を特定で きないが、 格子面間隔 (d) はミセル直径の指標として用いることができる。
(3) 有機ポリマー多孔体、 あるいは、 多孔炭素材料の空間群が特定できない場 合は、 細孔直径を特定できないが、 格子面間隔 (d) は細孔直径の指標として用 いることができる。
本発明のミセル含有有機ポリマーの格子面間隔 (d) (nm) は、 0. 8以上 が好ましく、 さらに好ましくは 1以上、 特に好ましくは 2以上であり、 また 1 5 0以下が好ましく、 さらに好ましくは 100以下、 特に好ましくは 50以下であ る。
本発明のミセル含有有機ポリマーの格子面間隔 (d) (nm) が 0. 8未満で は、 ミセル直径又は細孔直径 (nm) が必然的に 0. 8未満になってしまうため、 インクジェット受容層、 電気二重層キャパシタ、 触媒担体等に使用する際に、 細 孔内にインク、 イオン、 分子等が進入しにくくなる傾向があるために好ましいと はいえない。
また、 150を超えると、 インクジェット受容層、 電気二重層キャパシタ又は 触媒担体等に使用する際に、 表面積の低下、 吸着能の低下及び電気特性の低下等 の観点から好ましくない。
本発明のミセル含有有機ポリマーのミセルの形状としては、 棒状、 球状及ぴ層 状等が挙げられる。
本発明のミセル含有有機ポリマーのミセルの配列は、 規則性を有してもよいし、 規則性が無くてもよいが、 規則性を有するのが好ましい。
ミセルの配列が規則性を有するとは、 ミセルの配列構造が空間群で示される対 称性を有することを意味する。
空間群とは、 対称要素の集合によってつくられる群をいう。
対称要素とは、 原子、 粒子、 空孔、 ミセル等を三次元で規則的に無限配列した 場合に生じる対称のことをいい、 5種の回転軸、 対称心、 鏡面、 回映軸、 並進、 らせん軸及ぴ映進面等が挙げられる。 対称要素の可能な組み合わせは 230種で あり、 全ての規則的配列がこれで説明できる。 全ての空間群の詳細な説明や図は、 I n t e r n a t i o n a l Ta b l e o f C r y s t a l l o g r a p h y, Vo l . A (D. R e i d e 1 , 1 987) に記載されている。
このような空間群としては、 例えば、 表 1に示すもの等が挙げられる。
Figure imgf000007_0001
図 1は、 ミセル又は細孔と有機ポリマーとが、 又は細孔と炭素とが、 空間群 「 2- d h e x a g o n a l p 6 mm」 を形成している様子を模式的に表した 斜視断面図である。 この断面において、 斜線部が有機ポリマー又は炭素を表し、 白抜き部分が細孔又はミセルを表す。 すなわち、 有機ポリマー又は炭素中に、 ミ セル又は細孔が規則的に存在している。 なお、 図 1は空間群の一単位を示したも のであり、 本発明のミセル含有有機ポリマー、 有機ポリマー多孔体又は多孔炭素 材料は、 このような形状が連続しているのものである (他の図についても同じで ある) 。
図 2は、 ミセル若しくは細孔と有機ポリマーとが、 又は細孔と炭素とが、 空間 群 「 c u b i c I a 3 d」 を形成している様子を模式的に表した斜視透過図で ある。 有機ポリマー又は炭素中に、 点線で表した円柱状の立体的に連なったミセ ル又は細孔が規則的に存在している。
図 3は、 ミセル若しくは細孔と有機ポリマーとが、 又は細孔と炭素とが、 空間 群 「c u b i c Pm3 n」 を形成している様子を模式的に表した斜視断面図で ある。 斜線部は、 有機ポリマー又は炭素の断面であり、 これが金平糖状ないしテ トラポット状の球状のミセル又は細孔を包むように規則的に存在している。
図 4は、 ミセル若しくは細孔と有機ポリマーとが、 又は細孔と炭素とが、 空間 群 「3— d h e x a g o n a l P 63/mm c」 を形成している様子を模式 的に表した斜視断面図である。 斜線部は、 有機ポリマー又は炭素の断面であり、 これが球状のミセル又は細孔を包むように規則的に存在している。
本発明のミセル含有有機ポリマーとしては、 例えば界面活性剤 (A) がポリマ 一マトリ ックスを形成する有機ポリマー (B) 中でミセルを形成した構造を有し ていればよく、 X線回折パターンにおいて少なくとも一つのピークを有し、 かつ このうちの 1つのピークの回折角度 (20) と格子面間隔 (d) が関係式 (1) を満足するものであればその構造に特に制限はない。
界面活性剤 (A) としては特に限定されるものではないが、 公知のァニオン界 面活性剤 (A1) 、 カチオン界面活性剤 (A2) 、 ノニオン界面活性剤 (A3) 及び両性界面活性剤 (A4) が使用できる。
ァニオン界面活性剤 (A 1) としては、 カルボン酸及ぴその塩 (Al a) 、 硫 酸エステル及ぴその塩 (Al b) 、 カルボキシメチル化物及びその塩 (Al e) 、 スルホン酸及ぴその塩 (Al d) 並びにリン酸エステル及ぴその塩 (Al e) 等 が使用できる。
カルボン酸及ぴその塩 (Al a) としては、 力プリン酸、 ラウリン酸、 ミリス チン酸、 パルミチン酸、 ステアリン酸、 ォレイン酸、 リノール酸等の炭素数 8〜 22の飽和もしくは不飽和脂肪酸;天然由来の高級脂肪酸; 4一メチルサリチル 酸等の炭素数 8〜 22の芳香族カルボン酸、 及びこれらの塩等が使用できる。 また、 これらの塩としては、 上記のカルボン酸からなるァニオンと以下のカチ オンとを組合せてなる塩が使用できる。
その塩を形成するカチオンとしては、 アルカリ金属、 アルカリ土類金属、 アン モニゥムイオン等が使用できる。
アルカリ金属としては、 リチウム、 ナトリウム及ぴカリウム等が挙げられる。 アルカリ土類金属としては、 バリウム、 カルシウムなどが挙げられる。
硫酸エステル及ぴその塩 (A l b ) としては、 ォクチルアルコール、 デシルァ ルコール、 ラウリルアルコールなどの炭素数 8〜 2 2の脂肪族アルコールの硫酸 モノエステル等の高級アルコール硫酸エステル;炭素数 8〜 2 2のアルコールの アルキレンオキサイ ド (以下 A Oど略す) 付カ卩物 (付加モル数 1〜2 0 ) の硫酸 モノエステル等の高級アルキルエーテル硫酸エステル;炭素数 8〜 2 2のカルボ ン酸残基を有する天然油脂の硫酸化油;ォレイン酸ブチル、 リシノール酸プチル、 リノ一ル酸ブチルなどの炭素数 8〜 3 0の不飽和脂肪酸エステルの硫酸化脂肪酸 エステル;オタテン、 ドデセン、 ォクタデセン等の炭素数 8〜 2 2のォレフイン の硫酸化ォレフイン;及ぴこれらの塩等が使用できる。
なお、 A Oとしては、 炭素数 2〜4のものが使用でき、 エチレンオキサイド ( 以下 E Oと略す) 、 プロピレンオキサイド (以下 P Oと略す) 、 1, 2—、 2 , 3—おょぴ 1, 3—ブチレンオキサイド、 テトラハイド口フラン等が挙げられる。 また、 単独で付加してもよいし、 2種以上の A Oをランダム付加またはブロック 付加してもよい。
カルボキシメチル化物及びその塩 (A l c ) としては、 炭素数 8〜2 2の脂肪 族アルコールのカルボキシメチル化物;脂肪族アルコールの A O付加物のカルボ キシメチル化物及ぴこれらの塩等が使用できる。
スルホン酸及びその塩 (A i d ) としては、 ォクチルベンゼンスルホン酸、 ド デシルベンゼンスルホン酸、 ォクタデシルベンゼンスルホン酸等のアルキルベン ゼンスルホン酸;ォクチルナフタレンスルホン酸等のアルキルナフタレンスルホ ン酸;スルホコハク酸ジ一 2—ェチルへキシルエステル、 スルホコハク酸ジォク タデシルエステル等のスルホ脂肪酸エステル; α—ォレフインスルホン酸;ィゲ ボン Τ型スルホン酸;及びこれらの塩等が使用できる。 これらの塩としては、 スルホン酸からなるァニオンと (A l a ) で例示した力 チオンとを組合せてなる塩が使用できる。
リン酸エステル及びその塩 (A l e ) としては、 ラウリルアルコールリン酸モ ノエステル、 ラウリルアルコールリン酸ジエステル等の高級アルコールリン酸ェ ステル;高級アルコール A O付加物リン酸エステル及びこれらの塩等が使用でき る。
カチオン界面活性剤 (A 2 ) としては、 第 4級アンモニゥム塩型カチオン界面 活性剤 (A 2 a ) 及ぴァミン塩型カチオン界面活性剤 (A 2 b ) 等が使用できる。 第 4級アンモニゥム塩型カチオン界面活性剤 (A 2 a ) としては、 ォクチルト リメチルアンモニゥムクロライド、 セチルトリメチルアンモニゥムクロライ ド、 ステアリルトリメチルアンモニゥムクロライド、 ラウリルトリメチルアンモニゥ ムクロライ ド、 ジデシルジメチルアンモニゥムクロライド等のテトラアルキルァ ンモユウムカチオン (各アルキル基の炭素数は好ましくは 1〜 1 8 ) ; ラウリル ジメチルベンジルアンモニゥムクロライド (塩化ベンザルコニゥム) 等のベンジ ル基とアルキル基 (炭素数は好ましくは 1〜1 8 ) とを有するアンモニゥムカチ オン;セチルピリジニゥムクロライド、 ォレイルピリジニゥムクロライド等のピ リジユウムカチオン;ポリオキシアルキレン基とアルキル基 (炭素数は好ましく は 1〜1 8 ) とを有するアンモニゥムカチオンからなる第 4級アンモニゥム塩等 が使用できる。
これらの第 4級アンモェゥム塩を構成するァユオンとしては、 水酸イオン、 ハ ロゲンイオン (例えば、 フッ素イオン、 塩素イオン、 臭素イオン、 沃素イオン) 、 硝酸イオン、 亜硝酸イオン、 メ トサルフェートイオン、 炭素数 1〜8のカルボキ シルァ二オン (例えば、 ギ酸、 酢酸、 プロピオン酸、 2—ェチルへサキサン酸、 乳酸、 りんご酸又はダルコン酸等から誘導されるァニオン) 等が使用できる。 アミン塩型カチオン界面活性剤 (A 2 b ) としては、 ラウリルァミンク口ライ ド、 ステアリルアミンブロマイド、 セチルアミンメ トサルフェート等の第 1級ァ ミン塩; ラウリルメチルァミンク口ライド、 ステアリルェチルアミンブロマイ ド、 ジラウリルアミンメ トサルフェート、 ラウリルプロピルアミンアセテート等の第 2級ァミン塩; ラウリルジェチルァミンク口ライド、 ラウリルェチルメチルァミ ンブロマイド等の第 3級ァミン塩等が使用できる。
ノニオン界面活性剤 (A3) としては、 AO付加型非イオン界面活性剤 (A3 a) 及ぴ多価アルコール型非イオン界面活性剤 (A3 b) 等が使用できる。
AO付加型非イオン界面活性剤 (A3 a) としては、 2—ェチルへキシルアル コーノレ、 ドデシ/レアノレコール、 才レイノレアノレコーノレ、 リノールアルコーノレ、 オフ、、 ッシルアルコール等の炭素数 8〜 22の飽和または不飽和の高級アルコール AO 付加物 (付加モル数 3〜100) ; ステアリン酸 E O付加物 (付加モル数 10〜 50モル) 、 ォレイン酸 EO付加物 (付加モル数 10〜 50モル) 、 ポリエチレ ングリコール (分子量 400〜2000) のラウリン酸ジエステル等の炭素数 8 〜22の飽和または不飽和のカルボン酸 AO付加物;エチレングリコール、 プロ ピレンダリコーノレ、 グリセリン、 トリメチロールプロパン、 ジトリメチローノレプ 口パン、 ネオペンチノレアノレコーノレ、 ペンタエリスリ トーノレ、 ジペンタエリスリ ト ール、 ソルビタン、 ソルビトール、 ショ糖等の炭素数 2〜 22で 2〜 8価の多価 アルコールの AO付加物 (付加モル数 10〜120) ; トリメチロールプロパン モノステアレート EO (付加モル数 10〜 50モル) P O (付加モル数 10〜 5 0モル) ランダム付加物、 ソルビタンモノステアレート EO付加物 (付加モル数 10〜50モル) 、 ソルビタンジラゥレート EO (付加モル数 1 0〜 50モル) PO (付加モル数 10〜 50モル) ランダム付加物等の多価アルコールカルボン 酸エステル AO付加物; ソルビタンモノステアリルエーテル EO付加物 (付加モ ル数 1 0〜 50モノレ) 、 メチノレグリコシド EO (付加モル数 10〜 50モル) P O (付加モル数 10〜 50モル) ランダム付加物、 ラウリルグリコシド E O付加 物 (付加モル数 10〜 50モル) 等の多価アルコールアルキルエーテル AO付加 物; ノ-ルフエノール EO (付加モル数 10〜50モル) PO (付加モル数 10 〜 50モル) ブロック付加物、 ォクチルフエノール EO付加物 (付加モル数 10 〜 50モル) 、 ビスフエノール Aの E O付加物 (付加モル数 10〜 50モル) 等 のアルキルフエノール AO付加物; ラウリルアミン EO付加物 (付加モル数 10 〜50モル) 、 ステアリルアミン EO付加物 (付加モル数 10〜 50モル) 等の 高級アルキルアミン AO付加物; ヒ ドロキシプロピルォレイン酸アミ ドの EO付 加物 (付加モル数 10〜50モル) 、 ジヒ ドロキシェチルラウリン酸アミ ドの E O付加物 (付加モル数 10〜 50モル) 等のカルボン酸アミ ド AO付加物等が使 用できる。
多価アルコール型非イオン界面活性剤 (A3 b) としては、 ペンタエリスリ ト ールモノォレート、 ソルビタンモノラウレート等の多価アルコール力ルポン酸ェ ステノレ;ペンタエリスリ トールモノラウリノレエーテノレ、 ソノレビタンモノメチルェ 一テル、 ラゥリルダリコシド等の多価アルコールアルキルエーテル等が使用でき る。
両性界面活性剤 (A4) としては、 アミノ酸型両性界面活性剤 (A4 a) 、 ベ タイン型両性界面活性剤 (A4 b) 及びイミダゾリン型両性界面活性剤 (A4 c ) 等が使用できる。
アミノ酸型両性界面活性剤 (A4 a) としては、 分子内にアミノ基とカルボキ シル基を持っている両性界面活性剤で、 ステアリルアミノプロピオン酸ナトリウ ム、 ラウリルァミノプロピオン酸カリゥム等のアルキルァミノプロピオン酸型両 性界面活性剤; ラウリルアミノ酢酸ナトリゥム、 ステアリルアミノ酢酸アンモニ ゥム等のアルキルアミノ酢酸型両性界面活性剤等が挙げられる。
ベタイン型両性界面活性剤 (A4 b) としては、 分子内に第 4級アンモ-ゥム 塩型のカチオン部分とカルボン酸型のァユオン部分とを持っている両性界面活性 剤であり、 ステアリルジメチルァミノ酢酸べタイン、 ラウリルジメチルァミノ酢 酸べタイン等のァ キルジメチルベタイン;ヤシ油脂肪酸ァミ ドプロピルべタイ ン等のァミ ドべタイン; ラウリルジヒ ドロキシェチルベタイン等のアルキルジヒ ドロキシアルキルべタイン等が挙げられる。
ィミダゾリン型両性界面活性剤 (Α4 c) としては、 例えば、 2—ゥンデシル 一 N—力ルポキシメチルー N—ヒ ドロキシェチルイミダゾリ二ゥムべタイン及ぴ 2一ヘプタデセ二ルーヒ ドロキシェチルイミダゾリン等が挙げられる。
これらの界面活"生剤 (A) のうち、 カチオン界面活性剤 (A2) が好ましく、 さらに好ましくは第 4級アンモニゥム塩型カチオン界面活性剤 (A2 a) である。 特に好ましくは、 テトラアルキルアンモェゥムカチオンからなる第 4級アンモニ ゥム塩、 及びべンジル基とアルキル基とを有するアンモ-ゥムカチオンからなる 第 4級アンモユウム塩である。 (A) は市販されている商品をそのまま使用でき、 また公知の方法で製造した ものを使用してもよい。 また、 2種以上の混合物を使用してもよい。
(A) の使用量 (重量部) は、 ポリマーマトリックスを形成する有機ポリマー (B) 100重量部に対して、 0. 5以上が好ましく、 さらに好ましくは 10以 上、 特に好ましくは 30以上、 最も好ましくは 50以上であり、 また 200以下 が好ましく、 さらに好ましくは 150以下、 特に好ましくは 120以下、 最も好 ましくは 1 00以下である。
ミセルの形状及ぴミセル配列の空間群は、 主に界面活性剤 (A) の化学構造に より影響される。 また、 これは、 界面活性剤の量、 温度、 媒体の種類等によって も影響を受ける。
界面活性剤 (A) の親水性基の大きさと疎水性基の大きさとのバランスによつ てミセルの形状を制御することができる。 詳細な内容については、 文献 (超分子 科学、 東京科学同人、 1 998) に記載されている。
例えば、 水系では、 一般的に疎水基が占める体積が疎水基の長さに対して大き くなるにつれて、 球状ミセルから棒状ミセルへ、 棒状ミセルから層状ミセルへと 変化する (例えば、 界面活性剤の形状を三角錐と考え、 底面部分を親水基とする と、 三角錐の体積が疎水基が占める体積、 その高さが疎水基の長さとなる。 そし て、 体積の同じ三角錐を考えた場合に、 三角錐の高さが短いと底面積の大きい三 角錐になり、 これを並べれば容易に球状になると考える。 一方、 三角錐の高さが 長いと底面積の小さい三角錐となり、 球状ミセルを形成しにくくなると考える。 ) 。
また、 ミセルの形状によって、 形成しうる空間群が決定される。
球状ミセルを形成しうる界面活性剤を用いた場合にとりうる空間群としては、 例えば、 3— d h e x a g o n a l P 63/ mm c、 c u b i c P m 3 n 等が挙げられる
また、 棒状ミセルを形成する界面活性剤を用いた場合にとりうる空間群として は、 例えば、 2— d h e x a g o n a l 6 mm、 c u b i c I a 3 d等 が挙げられる。
層状ミセルを形成する界面活性剤を用いた場合にとりうる空間群としては、 例 えば L a me 1 1 a L I等が挙げられる。
ポリマーマトリックスを形成する有機ポリマー (B) としては、 特に限定され るものではないが、 公知の熱可塑性樹脂 (B 1) 、 熱硬化性樹脂 (B 2) 及びこ れらの混合物等が使用できる。
熱可塑性樹脂 (B 1) としては、 ビュル樹脂 (B 1— 1) 、 ポリエステル (B
1— 2) 、 ポリアミ ド (B 1— 3) 、 ポリウレタン (B 1— 4) 及ぴポリカーボ ネート (B 1— 5) 等が挙げられる。
ビュル樹脂 (B 1— 1) は、 非架橋性のビュルモノマー (b l) の 1種または
2種以上を重合して得ることができる。
ビエルモノマー (b l) としては、 ビュル炭化水素 (b l— l) 、 エポキシ基 含有ビュルモノマー (b l— 2) 、 ビニルエステル (b l— 3) 、 ビュルエーテ ル (b 1— 4) 、 ビ-ルケトン (b 1— 5) 、 アルキル (メタ) アタリレート ( b 1 - 6) 、 ポリオキシアルキレン基を有するビニルモノマー (b l— 7) 、 力 ルポキシル基含有ビニルモノマー (b l_8) 、 スルホ基含有ビニルモノマー ( b l— 9) 、 ホスホノ基含有ビュルモノマー (b l— 10) 、 ヒドロキシル基含 有ビュルモノマー (b l— 1 1) 、 窒素含有ビニルモノマー (b l_ 12) 、 ハ ロゲン元素含有ビニルモノマー (b l— 1 3) 及ぴその他のビュルモノマー (b
1- 14) が用いられる。
ビニル炭化水素 (b l— l) としては、 脂肪族ビュル炭化水素 (b 1— 1 a ) 、 脂環式ビニル炭化水素 (b 1— 1 b) 及び芳香族ビニル炭化水素 (b 1— 1 c) 等が用いられる。
脂肪族ビュル炭化水素 (b l— l a) としては、 炭素数 2〜50 (好ましくは 2〜22) のアルケン、 アルカジエン等が使用でき、 例えば、 エチレン、 プロピ レン、 ブテン、 イソブチレン、 ペンテン、 ヘプテン、 ジイソブチレン、 オタテン、 ドデセン、 ォクタデセン、 ブタジエン、 ィソプレン、 1 , 4—ペンタジェン等が 挙げられる。
脂環式ビュル炭化水素 (b l— l b) としては、 炭素数 5〜50 (好ましくは 5-22) の脂環式ビニル炭化水素等が使用でき、 例えば、 シクロへキセン、 ( ジ) シクロペンタジェン、 ピネン、 リモネン、 インデン、 ビ-ノレシクロへキセン 及ぴェチリデンビシク口ヘプテン等が挙げられる。
芳香族ビュル炭化水素 (b l— l c ) としては、 炭素数 8〜5 0 (好ましくは 8〜2 2 ) の芳香族ビュル炭化水素等が使用でき、 例えば、 スチレン、 α—メチ ノレスチレン、 ビニノレトノレェン、 2, 4ージメチノレスチレン、 ェチノレスチレン、 ィ ソプロピ /レスチレン、 ブチルスチレン、 フエニノレスチレン等が挙げられる。
エポキシ基含有ビュルモノマー (b l— 2 ) としては、 エポキシ基とビュル基 とを含有するモノマー (炭素数 6〜5 0 (好ましくは 6〜2 0 ) ) 等が使用でき、 例えば、 グリシジル (メタ) アタリレート等が挙げられる。
ビュルエステル (b l— 3 ) としては、 ビニル基とエステル結合とを含有する モノマー (炭素数 4〜5 0 (好ましくは 6〜 2 0 ) ) 等が使用でき、 例えば、 酢 酸ビュル、 ビニノレブチレート、 プロピオン酸ビ二ノレ、 酪酸ビュル、 ジァリルフタ レート、 ジァリルアジペート、 イソプロぺニルアセテート、 ビニルメタクリレー ト、 ビニ メ トキシアセテート、 ビエノレべンゾエート、 ジァノレキ^/フマレート ( 2個のアルキル基は、 炭素数 2〜8の、 直鎖、 分枝鎖もしくは環状の基である) 及ぴジアルキルマレエート (2個のアルキル基は、 炭素数 2〜8の、 直鎖、 分枝 鎖若しくは環状の基である) 等が挙げられる。
ビニルエーテル (b l— 4 ) としては、 エーテル結合を有するビニル基含有モ ノマー (炭素数 3〜5 0 (好ましくは 6〜2 0 ) ) 等が使用でき、 例えば、 ビニ ルメチルエーテル、 ビニルェチルェ一テル、 ビエルプロピノレエ一テル、 ビニノレブ チノレエーテノレ、 ビニノレ 2—ェチルへキシルエーテ /レ、 ビニノレフエニノレエーテノレ、 ビュル 2—メ トキシェチルエーテル、 メ トキシブタジエン、 ビュル 2—ブトキシ ェチルエーテル、 3, 4—ジヒドロ 1, 2—ピラン、 2 _ブトキシ一 2, 一ビニ 口キシジェチルエーテル、 ビニル 2—ェチルメルカプトェチルエーテル等が挙げ られる。
ビニルケトン ( b 1— 5 ) としては、 炭素数 6〜 5 0のビュルケトン等が使用 でき、 例えば、 ビュルメチルケトン、 ビエルェチルケトン及びビニルフエ二ルケ トン等が挙げられる。
アルキル (メタ) アタリレート (b l— 6 ) としては、 炭素数 1〜5 0 (好ま しくは 1〜2 0 ) のアルキル基を有するアルキル (メタ) アタリレート等が使用 でき、 例えば、 メチル (メタ) アタリレート、 ェチル (メタ) アタリレート、 プ 口ピル (メタ) アタリレート、 ブチル (メタ) アタリレート、 2一ェチルへキシ ル (メタ) アタリレート、 ドデシル (メタ) アタリレート、 へキサデシル (メタ ) ァクリレート、 ヘプタデシル (メタ) ァクリレート、 エイコシル (メタ) ァク リレート、 シクロへキシノレメタタリレート、 ベンジノレメタタリレート及ぴフエ二 ル (メタ) アタリレート等が挙げられる。
ポリオキシアルキレン基を有するビュルモノマー (b l_7) としては、 重量 平均分子量 (以下 Mwと略す) 100〜 10, 000 (好ましくは 300〜5, 000) のポリオキシアルキレン基を有する (メタ) アタリレート等が使用でき、 例えば、 数平均分子量 (以下 Mnと略す) 300のポリエチレングリコールモノ (メタ) アタリレート、 ポリプロピレングリコール (Mn 500) モノアタリレ ート、 メチルアルコール EO 10モル付加物 (メタ) アタリレート及びラウリル アルコール EO 30モル付加物 (メタ) アタリレート等が挙げられる。
上記ないし以下において、 Mnおよび Mwは、 ゲルパミエーシヨンクロマトグ ラフィ一法 (以下 GPC法と略す) により測定されるポリスチレン換算のそれぞ れ数平均分子量、 重量平均分子量である。
カルボキシル基含有ビエルモノマー (b l— 8) としては、 カルボキシル基と ビュル基とを含有する炭素数 3〜50 (好ましくは 3〜20) のモノマー及びそ の塩等が使用でき、 例えば、 (メタ) アクリル酸、 (無水) マレイン酸、 マレイ ン酸モノアルキル (アルキル基の炭素数 1〜 10) エステル、 フマル酸、 フマル 酸モノアルキル (アルキル基の炭素数 1〜10) エステル、 クロトン酸、 イタコ ン酸、 ィタコン酸モノアルキル (アルキル基の炭素数 1〜 10) エステル、 イタ コン酸グリコールモノエーテル、 シトラコン酸、 シトラコン酸モノア/レキノレエス テル (アルキル基の炭素数 1〜10) 、 桂皮酸及びこれらのアルカリ金属塩 (例 えば、 ナトリウム塩、 カリウム塩等) 、 アルカリ土類金属塩 (例えば、 カルシゥ ム塩、 マグネシウム塩等) 、 アミン塩又はアンモニゥム塩等が挙げられる。
スルホ基含有ビニルモノマー (b l— 9) としては、 ビエル硫酸、 ビニル硫酸 塩及ぴビュル硫酸エステル等が使用できる。
ビュル硫酸としては、 ビニル基とスルホ基を含有する炭素数 2〜50 (好まし くは 2〜2 0 ) のモノマー等が使用でき、 例えば、 ビニルスルホン酸、 (メタ) ァリルスルホン酸、 スチレンスルホン酸、 メチルスチレンスルホン酸、 2— ヒ ドロキシ一 3— (メタ) アタリロキシプロピルスルホン酸、 2 - (メタ) ァク リロイルァミノ一 2 , 2—ジメチルェタンスルホン酸、 2— (メタ) ァクリロイ ルォキシエタンスルホン酸、 3― (メタ) アタリロイルォキシ一 2—ヒ ドロキシ プロパンスルホン酸、 2一 (メタ) アクリルアミ ド一 2—メチルプロパンスルホ ン酸及び 3— (メタ) アクリルアミ ド一 2—ヒ ドロキシプロパンスルホン酸等が 挙げられる。
ビエル硫酸塩としては、 上記のビュル硫酸からなるァニオンと (A l a ) で例 示したカチオンとを組合せてなる塩等が使用でき、 例えば、 ビニルスルホン酸ナ トリウム、 2 - (メタ) アクリルアミ ドー 2—メチルプロパンスルホン酸カルシ ゥム及ぴ 3— (メタ) ァクリロイルォキシ一 2—ヒ ドロキシプロパンスルホン酸 ナトリゥム等が挙げられる。
ビニル硫酸エステルとしては、 上記のビュル硫酸と炭素数 2〜 5 0 (好ましく は 3〜2 2 ) のアルコールとからなるもの等が使用できる。
アルコールとしては、 飽和若しくは不飽和の脂肪族アルコール (炭素数 3〜2 2 ) が使用でき、 第 1級アルコール (炭素数 3〜 2 2 ) 、 第 2級アルコール (炭 素数 3〜2 2 ) 及ぴ第 3級アルコール (炭素数 3〜2 2 ) 等が使用できる。
ビュル硫酸エステルとしては、 例えば、 メチルビニルスルフォネート及ぴスル ホプロピル (メタ) アタリレート等が挙げられる。
ホスホノ基含有ビュルモノマー (b l— 1 0 ) としては、 ホスホノ基とビニル 基とを含有する炭素数 4〜 5 0 (好ましくは 5〜2 0 ) のモノマー等が使用でき、 例えば、 (メタ) アクリル酸ヒ ドロキシアルキル (ヒ ドロキシアルキル基の炭素 数 1〜2 0 ) 燐酸モノエステル、 2—ヒ ドロキシェチル (メタ) アタリロイルホ スフェート、 フエニル一 2ーァクリロイ口キシェチノレホスフエ一ト及び 2—ァク リロイルォキシェタンホスホン酸等が挙げられる。
ヒ ドロキシル基含有ビュルモノマー (b l— 1 1 ) としては、 ヒドロキシル基 とビュル基とを含有する炭素数 4〜 5 0 (好ましくは 4〜 2 0 ) のモノマー等が 使用でき、 例えば、 ヒドロキシスチレン、 ヒドロキシェチル (メタ) アタリレー ト、 ヒドロキシプロピル (メタ) アタリレート、 (メタ) ァリルアルコール、 ク ロチルアルコーノレ、 イソクロチルァノレコール、 1—ブテン一 3—オースレ、 2—ブ テン— 1一オール、 2—ブテン— 1 , 4—ジオール、 プロパルギルアルコール、 2—ヒドロキシェチルプロぺニルエーテル及び庶糖ァリルエーテル等が挙げられ る。
窒素含有ビュルモノマー (b l— 1 2 ) としては、 アミノ基含有ビュルモノマ 一 ( b 1 - 1 2 a ) 、 アミ ド基含有ビュルモノマー (b l— 1 2 b ) 、 二トリノレ 基含有ビュルモノマー (b l— 1 2 c ) 、 4級アンモニォ基含有ビュルモノマー ( b 1— 1 2 d ) 及ぴニトロ基含有ビュルモノマー (b 1— 1 2 e ) 等が使用で きる。
アミノ基含有ビニノレモノマー (b 1—1 2 a ) としては、 ァミノ基とビュル基 とを含有する炭素数 4〜 5 0 (好ましくは 5〜 2 0 ) のモノマー等が使用でき、 例えば、 アミノエチル (メタ) アタリレート、 ジメチノレアミノェチノレ (メタ) ァ タリレート、 ジェチルアミノエチル (メタ) ァクリレート、 t—プチルアミノエ チルメタタリレート、 N—アミノエチル (メタ) アクリルアミ ド、 (メタ) ァリ ルァミン、 モルホリノェチル (メタ) アタリレー卜、 4一ビュルピリジン、 2 - ビュルピリジン、 クロチノレアミン、 N, N—ジメチノレアミノスチレン、 メチル α 一ァセトアミノアクリレート、 ビニノレイミダゾーノレ、 Ν—ビニノレピロール、 Ν - ビニルチオピロリ ドン、 Ν—ァリールフエ二レンジァミン、 アミノカルバゾール、 ァミノチアゾール、 ァミノインドール、 ァミノピロール、 ァミノイミダゾール及 ぴアミノメルカプトチアゾール等が挙げられる。
アミ ド基含有ビュルモノマー (b 1—1 2 b ) としてはアミ ド基とビニル基と を含有する炭素数 3〜5 0 (好ましくは 3〜 2 0 ) のモノマー等が使用でき、 例 えば、 (メタ) アクリルアミ ド、 N—メチル (メタ) アクリルアミ ド、 N—プチ ルァクリルアミ ド、 ジァセトンァクリルアミ ド、 N—メチロール (メタ) アタリ ルアミド、 N, N, ーメチレン一ビス (メタ) アクリルアミド、 桂皮酸アミド、 N, N—ジメチルアクリルアミ ド、 N, N—ジベンジルアクリルアミ ド、 メタク リルホルムアミ ド、 N—メチル N—ビュルァセトアミ ド及ぴ N—ビュルピロリ ド ン等が挙げられる。 二トリル基含有ビエルモノマー ( b 1— 1 2 c ) としては、 二トリル基とビニ ル基とを含有する炭素数 3〜 5 0 (好ましくは 3〜 2 0 ) のモノマー等が使用で き、 例えば、 (メタ) アタリロニトリル及ぴシァノスチレン等が挙げられる。
4級アンモニォ基含有ビュルモノマー (b 1— 1 2 d ) としては、 炭素数 6〜 5 0 (好ましくは 8〜 2 0 ) の第 3級ァミノ基含有ビュルモノマーの 4級化物 ( 例えば、 メチルクロライド、 ジメチル硫酸、 ベンジルク口ライド及びジメチルカ ーポネート等の 4級化剤を用いて 4級化したもの等) 等が使用できる。 第 3級ァ ミノ基含有ビュルモノマーとしては、 例えば、 トリメチルアミノエチル (メタ) アタリレート、 トリェチルアミノエチル (メタ) アタリレート、 トリメチルアミ ノエチル (メタ) アクリルアミド、 トリェチルアミノエチル (メタ) アクリルァ ミド及ぴテトラァリルアミン等が挙げられる。
ニトロ基含有ビュルモノマー (b l— 1 2 e ) としては、 ニトロ基とビュル基 とを含有する炭素数 6〜 5 0 (好ましくは 6〜 2 0 ) のモノマー等が使用でき、 例えば、 二トロスチレン及びジニトロスチレン等が挙げられる。
ハロゲン元素含有ビュルモノマー ( b 1— 1 3 ) としては、 ハロゲン原子を有 する炭素数 2〜 5 0 (好ましくは 2〜 2 0 ) のビュル基含有炭化水素等が使用で き、 例えば、 塩化ビュル、 臭化ビュル、 塩化ビニリデン、 ァリルクロライド、 ク ロノレスチレン、 ブロムスチレン、 ジクロ/レスチレン、 クロロメチノレスチレン、 テ トラフルォロスチレン及ぴクロロプレン等が挙げられる。
その他のビエルモノマー ( b 1— 1 4 ) としては、 ァセトキシスチレン、 フエ ノキシスチレン、 ェチルひ一エトキシアタリレート、 イソシアナトェチル (メタ ) アタリレート、 シァノアクリレート、 m—ィソプロベニルー , α—ジメチノレ メチルベンジルイソシァネート等が挙げられる。
( Β 1 ) は公知の方法で、 (b l ) と重合開始剤及び必要に応じて溶媒の存在 下、 反応させて得ることができる。
上記モノマーを重合するための重合開始剤としては、 ラジカル重合開始剤、 力 チオン重合開始剤及ぴァ-オン重合開始剤が使用できる。
ラジカル重合開始剤としては、 公知のビニルモノマーの重合に用いられている ものであれば、 いずれも使用できる。 代表的なものとしては、 パーオキサイド重 合開始剤及ぴァゾ重合開始剤等が挙げられる。 又、 パーオキサイド重合開始剤と 還元剤とを併用するレドックス重合開始剤を使用してもよい。 さらには、 これら の 2種以上を併用してもよい。
パーォキサイド重合開始剤としては、 水溶性パーォキサイド重合開始剤が使用 でき、 例えば、 過酸化水素、 過酢酸、 ならびに過硫酸のアンモニゥム塩、 力リウ ム塩及ぴナトリゥム塩等が挙げられる。
ァゾ重合開始剤としては、 ァゾビスアミジノプロパン塩、 ァゾビスシァノバレ リックアシッド (塩) 及ぴ 2, 2, 一ァゾビス [ 2—メチル一 N— ( 2—ヒドロ キシェチル) プロピオンアミド] 等が挙げられる。
レドックス重合開始剤としては、 例えば、 過硫酸塩、 過酸化水素及ぴヒドロぺ ルォキシド等の水溶性過酸化物 (上記で例示したものが使用できる) と、 水溶性 の無機もしくは有機還元剤 (第 1鉄塩、 亜硫酸水素ナトリウム、 アルコール、 ポ リアミン等) とを併用した水系レドックス系重合開始剤等が挙げられる。
ァニオン重合開始剤としては、 公知のものが使用でき、 例えば、 ス トロンチウ ム、 カルシウム、 カリウム、 ナトリウム及ぴリチウム等の塩である強アルカリ性 物並びにピリジン等の弱アルカリ性物等を用いることができる。
カチオン重合開始剤としては、 公知のものが使用でき、 例えば、 硫酸、 リン酸 及び過塩素酸のようなプロトン酸、 並びに三弗化ホウ素、 塩化アルミニウム、 四 塩化チタン及び四塩化スズのようなルイス酸等を用いることができる。
これらの重合開始剤のうち、 ラジカル重合開始剤、 ァニオン重合開始剤及ぴレ ドックス重合開始剤が好ましく、 さらに好ましくはレドックス重合開始剤、 特に 好ましくは過硫酸力リウムと還元剤とを併用したレドックス重合開始剤である。 重合開始剤の使用量 (重量部) は、 (b l ) 1 0 0重量部に対して、 0 . 1以 上が好ましく、 さらに好ましくは 0 . 2以上、 特に好ましくは 0 . 3以上であり、 2 0以下が好ましく、 さら.に好ましくは 1 0以下、 特に好ましくは 5以下である。 ポリエステル (B 1— 2 ) は、 ジオール (b 2— 2 ) と、 ジカルボン酸 (b 2 - 1 ) またはそのエステル形成基誘導体 (酸無水物、 酸ハライド、 炭素数 4以下 の低級アルキルエステル) とを脱水縮合させる方法、 ォキシカルボン酸 (b 2— 3 ) を脱水縮合させる方法、 及ぴラクトン (b 2— 4 ) を開環重合させる方法等 により得ることができる。
ジカルボン酸 (b 2— 1) としては、 炭素数 4〜 20のジカルボン酸等が使用 でき、 例えば、 アジピン酸、 マレイン酸、 テレフタル酸及ぴフタル酸等が挙げら れる。
ジオール (b 2— 2) としては、 炭素数 2〜18のジオール等が使用でき、 例 えば、 エチレングリコ一/レ、 ジエチレングリコーノレ、 2, 2—ジメチルプロパン ジオール、 1 , 4—ブタンジオール、 1 , 18—ォクタデカンジオール及びビス フエノール Aのアルキレンォキサイド付加物等が挙げられる。
ォキシカルボン酸 (b 2_3) としては、 炭素数 2〜12のォキシカルボン酸 等が使用でき、 例えば、 ヒドロキシ酢酸、 ω—ォキシカプロン酸、 ω—ォキシェ ナント酸、 ω—ォキシ力プリル酸、 ω—ォキシペラルゴン酸、 ω—ォキシカプリ ン酸、 1 1ーォキシゥンデカン酸及ぴ 12—ォキシドデカン酸等が挙げられる。 ラタトン (b 2— 4) としては、 炭素数 6〜12のラクトン等が使用でき、 例 えば、 力プロラタトン、 ェナントラクトン、 ラウ口ラク トン及びゥンデ力ノラク トン等が挙げられる。
ジオール ( b 2— 2 ) と、 ジカルボン酸 (b 2 - 1) またはそのエステル形成 基誘導体 (酸無水物、 酸ハライド、 炭素数 4以下の低級アルキルエステル) とを 脱水縮合させることにより (B 1— 2) をを製造することができる。 (b 2_ l ) Z (b 2- 2) のモル比は、 1 · 1/1〜: IZI . 1が好ましく、 さらに好ま しくは 1. 05/1~1/1. 05である。
エステル化触媒としては、 例えば、 無機酸 (硫酸、 塩酸等) 、 有機酸 (p—ト ルエンスルホン酸、 メタンスルホン酸、 ポリ リン酸エステル等) 、 アンチモン触 媒 (三酸化アンチモン等) 、 スズ触媒 (モノプチルスズオキサイド等) 、 チタン 触媒 (テトラプチルチタネート等) 、 ジルコニウム触媒 (テトラプチルジルコネ ート等) 、 ジルコニウム有機酸塩 (酢酸ジルコニル) 及び有機酸金属塩触媒 (酢 酸亜鉛等) 等が挙げられる。
触媒を使用する場合、 触媒の使用量は、 モノマー ( (b 2— l) と (b 2— 2 ) を用いる場合は二つの合計重量) 100重量部に対して通常 0. 1〜5重量部 である。 ポリエステル (B l— 2) は公知の方法で、 例えば (b 2_l) と (b 2_2 ) をエステル化触媒存在下、 1 t o r r、 200°Cで 18時間反応させて製造さ れる。
ポリアミ ド (B 1— 3 ) は、 ジカルボン酸 ( b 2— 1 ) とジァミン ( b 3— 1 ) を脱水縮合させる方法、 ァミノカルボン酸 (b 3— 2) を脱水縮合させる方法、 ラタタム (b 3— 3) を開環重合させる方法により得ることができる。
ジァミン (b 3— 1) としては、 炭素数 2〜18のジァミン等が使用でき、 例 えば、 エチレンジァミン、 1, 3—プロパンジァミン、 2, 2—ジメチルプロパ ンジァミン、 1, 4一ブタンジァミン、 イソホロンジァミン、 1, 18—ォクタ デカンジァミン及びフエ-レンジァミン等が挙げられる。
アミノカルボン酸 (b 3— 2) としては、 炭素数 2〜12のァミノカルボン酸 等が使用でき、 例えば、 グリシン、 ω—アミノカプロン酸、 ω—アミノエナント 酸、 ω—ァミノ力プリル酸、 ω—ァミノペラルゴン酸、 ω—アミノカプリン酸、 1 1一アミノウンデカン酸及び 12—ァミノ ドデカン酸等が挙げられる。
ラタタム (b 3_3) としては、 炭素数 6〜12のラタタム等が使用でき、 例 えば、 力プロラタタム、 ェナントラクタム、 ラウ口ラタタム及ぴゥンデカノラク タム等が挙げられる。
(b 2- 1) と (b 3— 1) を脱水縮合させて (B 1— 3) を得る場合、 (b 2-1) / (b 3- 1) のモル比は、 1. 1/1〜: LZl. 1が好ましく、 さら に好ましくは 1. 05/1〜 1/1. 05である。
ポリアミ ド (B 1— 3) は、 公知の方法で、 例えば (b 2 - 1) と (b 3 - 1 ) を l t o r r、 200°Cで 12時間反応させて製造される。
ポリウレタン (B 1— 4) は、 ジイソシァネート (b 4— l) とジオール (b 2-2) とを重付加反応させて得ることができる。
ジイソシァネート (b 4—l) としては、 炭素数 (イソシァネート基中の炭素 を除く。 以下、 同様である。 ) 6〜20のジイソシァネート等が使用でき、 例え ば、 へキサメチレンジイソシァネート (HD I) 、 ドデカメチレンジイソシァネ ート、 1, 3—若しくは 1, 4—フエ二レンジイソシァネート、 2, 4一若しく は 2, 6—トリレンジイソシァネート (TD I) 、 2, 4, 一若しくは 4, 4, —ジフエ二ノレメタンジイソシァネート (MD I ) 、 イソホロンジイソシァネート ( I PD I ) 、 ジシクロへキシルメタン一 4, 4, ージイソシァネート (水添 M D I ) 、 メチルシクロへキサレンジイソシァネート (水添 TD I) 、 2, 5—若 しくは 2, 6—ノルポルネンジイソシァネート、 m—若しくは p—キシリレンジ イソシァネート (XD I ) 及び a, a, α' , a ' —テトラメチルキシリレンジ イソシァネート (TMXD I ) 等が挙げられる。
(b 4- 1) と (b 2— 2) を反応させて (B 1—4) を得る場合の、 (b 4 一 1) / (b 2— 2) のモル比は、 1. 1/1〜 1/1. 1が好ましく、 さらに 好ましくは 1. 0 5/1〜1ノ1. 0 5である。
ウレタン化触媒としては、 公知のものが使用でき、 錫系触媒、 鉛系触媒等の金 属触媒; トリエチレンジァミン、 テトラメチルエチレンジァミン、 N—ェチルモ ルホリン、 トリエチルァミン、 ジェチルエタノールァミン、 およびこれらの炭酸 塩または有機酸塩等のアミン系触媒等が用いられる。
触媒を使用する場合、 触媒の使用量は、 モノマー ( (b 4— l) と (b 2— 2 ) の合計重量) 1 00重量部に対して、 通常 0. 1〜5重量部である。
ポリウレタン (B 1— 4) は公知の方法で、 例えば (b 4— 1) と (b 2— 2 ) とウレタン化触媒を窒素雰囲気下、 60°Cで反応させて製造される。
ポリカーボネート (B 1— 5) としては、 ジオール (b 2— 2) とホスゲン又 は炭酸ジェステルとの縮合により得ることができる。
ジオール (b 2— 2) とホスゲン又は炭酸ジエステルとを縮合させて (B 1— 5) を得る場合の、 (b 2— 2) Zホスゲンあるいは炭酸ジエステルのモル比は、 1. 1/1〜 1/1. 1が好ましく、 さらに好ましくは 1. 0 5/1〜1Z1. 0 5である。
ポリカーボネート (B 1— 5) は公知の方法で、 例えば、 (b 2— 2) とホス ゲンを、 l t o r r、 1 20 °Cで反応させて製造される。
熱可塑性樹脂 (B 1) の Mnは、 1 0, 000以上が好ましく、 さらに好まし くは 20, 0 00以上、 特に好ましくは 30, 000以上、 最も好ましくは 40, 000以上であり、 また 1, 000, 000以下が好ましく、 さらに好ましくは 500, 0 0 0以下、 特に好ましくは 400, 000以下、 最も好ましくは 30 0, 000以下である。
熱硬化性樹脂 (B 2) としては、 熱可塑性樹脂 (B 1) に架橋反応性基を導入 した熱硬化性樹脂 (B l a) の架橋硬化体 (B 2— 1) 、 熱可塑性樹脂 (B 1) の構成モノマーと架橋性モノマーとから誘導される架橋樹脂 (B 2— 2) 、 ェポ キシ樹脂 (B 2— 3) 、 フエノール樹脂 (B 2— 4) 、 フラン樹脂 (B 2— 5) 等が使用できる。
架橋硬化体 (B 2— 1) は、 熱可塑性樹脂 (B 1) に架橋反応性基を導入した 熱硬化性樹脂 (B l a) を、 必要に応じて硬化剤、 触媒及び/又は溶媒の存在下 で、 エポキシ化反応、 ウレタン化反応及び Z又はウレァ化反応させることにより 得ることができる。
架橋反応性基としては、 エポキシ基、 ヒドロキシル基、 カルボキシル基、 アミ ノ基及ぴィソシアナ一ト基等が挙げられる。
(B l a) を得る方法としては、 ビニルモノマー (b l) を重合する際に架橋 反応性基を有するビニルモノマーを (共) 重合する方法等が挙げられる。
架橋反応性基を有するビニルモノマーとしては、 (b l _2) 、 (b l— 7) 、 (b 1 - 8) 、 (b 1 - 11) 及ぴ (b 1 - 12) 等が挙げられる。
(B 1 a) を合成する際に使用する架橋反応性基を有するビュルモノマーの使 用量 (重量部) としては、 (B l a) 100重量部に対して、 5以上が好ましく、 さらに好ましくは 10以上、 特に好ましくは 1 5以上であり、 また 100以下が 好ましく、 さらに好ましくは 70以下、 特に好ましくは 50以下である。
硬化剤としては、 ジオール、 ジァミン、 ジィソシァネート及びジエポキシド等 が挙げられる。
硬化剤を使用する場合、 硬化剤の使用量 (重量部) は、 (B 1 a) 100重量 部に対して、 0. 1以上が好ましく、 さらに好ましくは 1以上、 特に好ましくは 5以上であり、 また 50以下が好ましく、 さらに好ましくは 30以下、 特に好ま しくは 25以下である。
ウレタン化反応及びゥレア化反応の際には、 必要に応じてゥレタン化触媒を用 いてもよい。 ウレタン化触媒としては、 上記の物が使用できる。
触媒を使用する場合、 触媒の使用量は、 樹脂 100重量部に対して通常 0. 1 〜 5重量部である。
架橋樹脂 (B 2— 2) は、 熱可塑性樹脂 (B 1) の構成モノマーの一部を架橋 性モノマーに置き換え、 これを重合することにより得ることができる。
架橋性モノマーとしては、 2〜8個またはそれ以上の非共役 2重結合を含む多 官能ビニルモノマー ;ならびに、 3〜8個またはそれ以上の官能基を有する高官 能力ルボン酸、 高官能アルコール、 高官能ァミン及び高官能イソシァネート等が 使用できる。
多官能ビュルモノマーとしては、 多価アルコール {炭素数 2〜50 (好ましく は 2〜20) 、 2〜8価 (好ましくは 2〜4) } のポリ (メタ) アタリレートや、 芳香族多官能ビュル化合物等が使用でき、 例えば、 エチレングリコールジ (メタ ) アタリレート、 プロピレングリコールジ (メタ) アタリ レート、 ネオペンチル グリコールジ (メタ) アタリレート、 トリメチローノレプロパントリ (メタ) ァク リレート及ぴポリエチレングリコールジ (メタ) ァクリレート ;ジビュルべンゼ ン、 ジビニルトルエン、 ジビニルキシレン、 ジビ二/レケトン及びトリ ビニルベン ゼン等が挙げられる。
多官能ビニルモノマーの使用量 (重量部) としては、 ビニルモノマー (b l) 及び多官能ビュルモノマーの総重量 100重量部に対して、 0. 1以上が好まし く、 さらに好ましくは 1以上、 特に好ましくは 5以上であり、 50以下が好まし く、 さらに好ましくは 30以下、 特に好ましくは 25以下である。
高官能力ルボン酸としては、 炭素数 4〜50の多官能 (3〜5価) カルボン酸 等が使用でき、 例えば、 トリメリット酸、 1, 2, 4, 5—ベンゼンテトラカル ボン酸、 ベンゼンへキサカルボン酸及ぴナフタレンテトラカルボン酸等が挙げら れる。
高官能力ルボン酸の使用量 (重量部) としては、 ジカルボン酸 (b 2- 1) 、 ォキシカルボン酸 (b 2— 3) 、 ラタトン (b 2— 4) 及び高官能力ルボン酸の 総重量 100重量部に対して、 0. 1以上が好ましく、 さらに好ましくは 1以上、 特に好ましくは 5以上であり、 また 50以下が好ましく、 さらに好ましくは 30 以下、 特に好ましくは 25以下である。
高官能アルコーノレとしては、 炭素数 3〜 50の多官能 (3〜5価) アルコール 等が使用でき、 例えば、 グリセリン、 ジグリセリン、 トリメチロールプロパン、 ペンタエリスリ トール及ぴジペンタエリスリ トール等が挙げられる。
高官能アルコールの使用量 (重量部) としては、 ジオール (b 2— 2) 、 ォキ シカルボン酸 (b 2_3) 、 ラタトン (b 2— 4) 及ぴ高官能アルコールの総重 量 100重量部に対して、 0. 1以上が好ましく、 さらに好ましくは 1以上、 特 に好ましくは 5以上であり、 50以下が好ましく、 さらに好ましくは 30以下、 特に好ましくは 25以下である。
高官能ァミンとしては、 炭素数 3〜50の多官能 (3〜5価) ァミン等が使用 でき、 例えば、 ジエチレントリアミン、 ビス (へキサメチレン) トリアミン、 ト リエチレンテトラミン、 テトラエチレンペンタミン及びペンタエチレンへキサミ ン等が挙げられる。
高官能ァミンの使用量 (重量部) としては、 ジァミン (b 3— l) 、 アミノカ ルボン酸 (b 3— 2) 、 ラタタム (b 3_3) 及ぴ高官能ァミンの総重量 100 重量部に対して、 0. 1以上が好ましく、 さらに好ましくは 1以上、 特に好まし くは 5以上であり、 また 50以下が好ましく、 さらに好ましくは 30以下、 特に 好ましくは 25以下である。
高官能イソシァネートとしては、 炭素数 3〜60の多官能 (3〜6価) イソシ ァネート等が使用でき、 例えば、 HD I トリマー、 I PD I トリマー、 TD I ト リマー、 2一イソシアナトェチルー 2, 6—ジイソシアナ一トカプロエート、 グ リセリンの HD I 3モル付加体、 ペンタエリスリ トールの HD I 4モル付加体及 びジペンタエリスリ トールの HD I 6モル付加体等が挙げられる。
高官能イソシァネートの使用量 (重量部) としては、 ジイソシァネート (b 4 一 1) 及ぴ高官能イソシァネートの総重量 100重量部に対して、 0. 1以上が 好ましく、 さらに好ましくは 1以上、 特に好ましくは 5以上であり、 また 50以 下が好ましく、 さらに好ましくは 30以下、 特に好ましくは 25以下である。 架橋樹脂 (B 2— 2) は公知の方法、 例えば熱可塑性樹脂 (B 1) の製造法と 同様にして製造される。
架橋樹脂 (B 2— 2) がポリエステルの場合、 カルボキシル基のモル数とヒ ド 口キシル基とのモル数の比が、 1. 1/1〜1Z1. 1 (好ましくは 1. 05/ 1〜1ノ1. 05) となるように、 ジカルボン酸、 高官能力ルボン酸、 ジオール、 高官能アルコール、 ォキシカルボン酸及びラタトンの使用量を設定することが好 ましい。
架橋樹脂 (B 2- 2) がポリアミ ドの場合、 カルボキシル基のモル数とアミノ 基のモル数との比が、 1. 1/1〜: LZl. 1 (好ましくは 1. 05/l ~lZ 1. 05) となるように、 ジカルボン酸、 高官能力ルボン酸、 ジァミン、 高官能 ァミン、 アミノカルボン酸及ぴラクタムの使用量を設定することが好ましい。 架橋樹脂 (B 2— 2) がポリウレタンの場合、 イソシァネート基のモル数とヒ ドロキシル基のモル数との比が、 1. 1/1〜1 1. 1 (好ましくは 1. 05 /1〜1/1. 05) となるように、 ジイソシァネート、 高官能イソシァネート、 ジオール及ぴ高官能アルコールの使用量を設定することが好ましい。
エポキシ樹脂 (B 2— 3) は、 ポリエポキシドを、 ポリアミン及ぴ Z又はポリ カルボン酸 (又は酸無水物) 等と反応させて得ることができる。
この際に、 エポキシ樹脂 (B 2— 3) を熱硬化性樹脂とするために、 使用する ポリエポキシド、 ポリアミン、 ポリカルボン酸のうち、 いずれか 1つの成分が 3 官能以上である官能基数のものを使用する。 また、 物性を損なわない範囲で、 1 官能のエポキシド、 1官能のァミン、 1官能のカルボン酸を使用しても良い。 官能基数 1のエポキシドとしては、 炭素数 2〜 50のエポキシド等が使用でき、 例えば、 EO、 PO、 スチレンォキサイ ド、 フエニルダリシジルエーテル及びァ リルグリシジルエーテル等が挙げられる。
官能基数 2のポリエポキシドとしては、 炭素数 4〜 50のポリエポキシド等が 使用でき、 例えば、 エチレングリコールジグリシジエルエーテル、 1, 4ーェポ キシシクロへキサン及びビスフエノール Aジグリシジルェ一テル等が挙げられる。 官能基数 3〜 6のポリエポキシドとしては、 炭素数 6〜 50のポリエポキシド 等が使用でき、 例えば、 グリセリントリグリシジルエーテル、 ペンタエリスリ ト 一ルテ.トラグリシジルエーテル及ぴジペンタエリスリ トールへキサグリシジルェ 一テル等が挙げられる。
ポリエポキシドは単独で使用しても良く、 混合物を使用しても良い。
ポリアミンとしては、 ジァミン (b 3— l) 及び高官能ァミン等が使用できる。 ポリアミンは単独で使用しても良く、 混合物を使用しても良い。
ポリアミンの使用量 (重量部) としては、 エポキシド 1 00重量部に対して、 20以上が好ましく、 さらに好ましくは 2 5以上、 特に好ましくは 30以上であ り、 また 1 00以下が好ましく、 さらに好ましくは 6 0以下、 特に好ましくは 5 0以下である。
ポリカルボン酸としては、 ジカルボン酸 (b 2_ l) 及ぴ高官能力ルボン酸等 が使用できる。 ポリカルボン酸は単独で使用しても良く、 混合物を使用しても良 レ、。
ポリカルボン酸の使用量 (重量部) としては、 エポキシド 1 0 0重量部に対し て、 50以上が好ましく、 さらに好ましくは 50以上、 特に好ましくは 6 0以上 であり、 また 1 50以下が好ましく、 さらに好ましくは 1 00以下、 特に好まし くは 9 0以下である。
フエノール樹脂 (B 2— 4) としては、 レゾール樹脂、 ノポラック樹脂等が使 用でき、 フエノールとホルムアルデヒドとを反応させることで得られる。
レゾール樹脂は、 水酸化ナトリウム、 アンモニア又は有機アミン等の塩基触媒 の存在下で、 フエノールとホルムアルデヒドとを同量又はホルムアルデヒド過剰 の条件で反応させることにより得られる。
フエノール Zホルムアルデヒ ドのモル比は、 lZl〜 1/2が好ましく、 さら に好ましくは 1〜1/1. 9である。
塩基触媒の使用量 (重量部) としては、 フエノ一ル及ぴホルムアルデヒ ドの合 計重量 1 0 0重量部に対して、 0. 5以上が好ましく、 さらに好ましくは 0. 7 以上、 特に好ましくは 1以上であり、 また 20以下が好ましく、 さらに好ましく は 1 5以下、 特に好ましくは 1 0以下である。
ノボラック樹脂は、 シユウ酸等の酸触媒存在下で、 フエノールとホルムアルデ ヒドとを同量又はフエノール過剰の条件で反応させることで得られる。
フエノール/ホルムアルデヒ ドのモル比は、 1/1〜1 0. 7が好ましく、 さらに好ましくは 1Z0. 9〜1/0. 7 5である。
酸触媒の使用量 (重量部) としては、 フエノール及ぴホルムアルデヒ ドの合計 重量 1 00重量部に対して、 0. 5以上が好ましく、 さらに好ましくは 0. 7以 上、 特に好ましくは 1以上であり、 また 20以下が好ましく、 さらに好ましくは 15以下、 特に好ましくは 10以下である。
フラン樹脂 (B 2— 5) は、 フラン及ぴ Z又はその誘導体とホルムアルデヒド との反応により得ることができる。
フラン及びフラン誘導体 Zホルムアルデヒ ドのモル比は、 1/0. 7〜 1Z2 が好ましく、 さらに好ましくは I/O. 7〜1/0. 9及び、 1/1. 1〜: LZ 1. 9である。
さらにその他のフラン樹脂として、 フラン及ぴフラン誘導体の一部をメラミン 又は尿素等で置き換えて製造された化合物等も使用できる。
フランをメラミン又は尿素等で置き換える場合、 これらの量としては、 フラン 100重量部に対して、 0. 1以上が好ましく、 さらに好ましくは 1以上、 特に 好ましくは 5以上であり、 また 50以下が好ましく、 さらに好ましくは 30以下、 特に好ましくは 25以下である。
その他の熱硬化性樹脂としては、 例えばキシレン樹脂、 石油樹脂、 ユリア樹脂、 メラミン樹脂、 アルキド樹脂及ぴシリコーン樹脂等の公知の熱硬化性樹脂が挙げ られる。
これらの有機ポリマー (B) のうち、 熱硬化性樹脂 (B 2) が好ましく、 さら に好ましくは、 熱可塑性樹脂 (B 1) に架橋反応性基を導入した熱硬化性樹脂 ( B 1 a) の架橋硬化体 (B 2— 1) ;熱可塑性榭脂 (B 1) の構成モノマーと架 橋性モノマーとから誘導される架橋樹脂 (B 2— 2) ; フヱノール樹脂 (B 2— 4) 及ぴフラン樹脂 (B 2— 5) である。 特に好ましくは (B 2— 4) 及び (B 2-5) , 最も好ましくは (B 2— 4) である。
なお、 有機ポリマー (B) は、 これらのうち 1種、 又は 2種以上を組合わせて 使用してもよい。
本発明のミセル含有有機ポリマーには、 種々の用途に応じ、 その特性を阻害し ない範囲で他の樹脂用添加剤 (E) を任意に添加することができる。
樹脂用添加剤 (E) としては、 顔料、 染料、 充填剤 (有機及び/又は無機フィ ラー) 、 核剤、 ガラス繊維、 滑剤、 可塑剤、 離型剤、 酸化防止剤、 難燃剤、 紫外 線吸収剤及ぴ抗菌剤等が挙げられる。 樹脂用添加剤 (E) を添加する場合、 (E) の使用量 (重量部) としては、 ( B) 100重量部に対して、 0. 1以上が好ましく、 さらに好ましくは 0. 2以 上、 特に好ましくは 0. 3以上、 最も好ましくは 0. 4以上であり、 また 30以 下が好ましく、 さらに好ましくは 20以下、 特に好ましくは 10以下、 最も好ま しくは 5以下である。
ミセル含有有機ポリマーの製造方法としては、 特に限定するものではないが、 例えば、
(1) 有機ポリマー (B) の構成モノマー、 界面活性剤 (A) 、 必要に応じて溶 媒ゃ樹脂用添加剤 (E) を配合した後、 構成モノマー中に界面活性剤のミセルを 形成しておき、 構成モノマーを重合、 硬化させた後、 必要により溶剤を除去して ミセル含有有機ポリマーを得る方法、
(2) プレボリマーを溶媒に溶解しておき、 (A) 及び、 必要に応じて (E) を 加えて、 プレボリマー中に (A) のミセルを形成しておき、 プレボリマーを重合、 硬化させた後、 溶剤を除去してミセル含有有機ポリマーを得る方法、
(3) 有機ポリマー (B) を溶媒に溶解しておき、 (A) 及び、 必要に応じて溶 媒ゃ (E) を加えて、 (B) 中に (A) のミセルを形成しておき、 必要により溶 媒を除去してミセル含有有機ポリマーを得る方法等が挙げられる。
ここでプレポリマーとは、 架橋反応性基を有する Mn 1000〜 100000 の有機ポリマー (B) を意味する。
ミセル含有有機ポリマーの製造時に使用できる溶媒としては特に限定はないが、 例えば、 水;ペンタン、 へキサン、 シクロへキサン、 トノレェン、 キシレン、 メシ チレン等の炭素数 1〜12の炭化水素;メタノール、 エタノール、 イソプロパノ ール、 1—ブタノール、 エチレングリコール、 グリセリン等の炭素数 1〜 10の アルコール;酢酸ェチル、 酢酸ブチル等の炭素数 2〜 1 2のエステル;ァセトン、 メチルェチルケトン等の炭素数 3〜 12のケトン;ジェチルエーテル、 ブチルェ チルエーテル等の炭素数 2〜 12のエーテル; N, N—ジメチルホルムアミド、 N—ジェチルァセトアミド等の炭素数 2〜12のアミド;ジメチルスルホキシド、 ジェチルスルホキシド等の炭素数 2〜 12のスルホキシド等が挙げられる。
これらのうち、 水、 炭化水素、 アルコール、 エステル及びケトンが好ましく、 さらに好ましくは水、 トルエン、 キシレン、 メシチレン、 メタノール、 エタノー ル、 イソプロパノール、 1—ブタノール、 酢酸ェチル及びアセトンである。
ミセル含有有機ポリマーの製造時に溶媒を使用する場合、 溶媒の使用量 (重量 部) に特に限定はないが、 界面活性剤 (A) 1重量部に対して、 1以上が好まし く、 さらに好ましくは 5以上、 特に好ましくは 1 0以上、 最も好ましくは 1 5以 上であり、 また 1 0 0以下が好ましく、 さらに好ましくは 5 0以下、 特に好まし くは 4 0以下、 最も好ましくは 3 0以下である。
本発明のミセル含有有機ポリマーは、 様々な形状に加工する事ができる。 たと えば、 射出成形又は押し出し成形等の方法により、 塊状、 繊維状、 シート状又は フィルム状等の形状とすることができる。
成形する場合、 成形温度としては有機ポリマーが成形可能な温度であればよい 力 2 0 0 °C以下であることが好ましく、 さらに好ましくは 1 5 0 °C以下である。 本発明のミセル含有有機ポリマーは、 以下に説明する有機ポリマー多孔体及び 多孔炭素材料の原材料とすることができる他に、 インク受容層 (カチオン界面活 性剤を使用したときに特に有効) 等としても使用することができる。 次に、 第 2発明の有機ポリマー多孔体について説明する。
本発明の有機ポリマー多孔体において、 細孔直径分布曲線における最大ピーク を示す細孔直径の ± 4 0 %の範囲内の直径に対応する細孔の合計細孔体積は、 全 細孔体積に基づいて 5 0体積%以上であり、 好ましくは 6 0体積。 /0以上、 さらに 好ましくは 7 0体積%以上、 特に好ましくは 7 5体積%以上、 最も好ましくは 8 0体積%以上である。
ここで、 細孔直径分布曲線とは、 細孔体積 (V) を細孔直径 (D) で微分した 値 (d VZ d D) を縦軸に、 細孔直径 (D) を横軸にプロットした曲線を意味す る。
また、 最大ピークを示す細孔直径とは、 細孔直径分布曲線の d V/ d D値が最 大となる細孔直径を意味する。
なお、 細孔直径分布曲線は、 アルゴンや窒素ガスの吸着量測定により得られる 吸着等温線から算出される。 また水銀圧入法から得られる空孔分布曲線からも求 めることができる。
吸着等温線からは、 0. 3 n m以上 5 0 n m以下の細孔直径と細孔体積が求め られ、 水銀圧入法からは 1 0 nm以上 1 0 0 0 n m以下の細孔直径と細孔体積が 求められる。 通常 5 0 nm以下を吸着等温線で、 5 0 n m以上を水銀圧入法で測 定する。 両方法を用いることで、 好ましい細孔直径の範囲を全て測定することが できる。
吸着等温線から算出する方法を以下に例示する。
測定サンプルを、 液体窒素温度 (一 1 9 6°C) に冷却して、 窒素ガスを導入し、 その吸着量を定容量法又は重量法で求める。 導入する窒素ガスの圧力を除々に増 加させ、 各平衡圧に対する窒素ガスの吸着量をプロットすることにより吸着等温 線を作成する。
この吸着等温線から、 C r a n s t o n— I n k l a y法 (例えば A d v. C a t a l y s i s、 第 9卷、 1 4 3頁、 1 9 5 7年発行) 、 又は B J H法 ( J . C a t a l y s i s , 第 4卷、 6 4 9頁、 1 9 6 5年発行) 等の計算式により、 細孔直径分布曲線を求める。
水銀圧入法とは、 水銀が外圧をかけないと毛細管現象を起こさないことを原理 とした測定法である。 多孔質のサンプルを水銀に浸し、 外圧を加えていくとサン プルの内部に水銀が浸透していく。 この時、 加えた外圧と、 水銀が浸透できる最 小の細孔の直径には下記式 (3) の関係がある。
D=- 47 c o s θ /P (3)
(Dは細孔直径 (c m) 、 yは水銀の表面張力 (4 8 0 d y n e/c m) 、 Θは 接触角 (1 40° ) 、 Pは測定圧力 (k g/c m2) を表す。 )
また、 浸透した水銀の量から、 その圧力に対応する細孔直径 (D) 以上の細孔 を有する細孔の全体積が求められる。
得られた結果を、 縦軸に細孔体積、 横軸に細孔直径としてプロットし、 得られ た曲線を、 微分して得られる曲線が細孔分布曲線となる。
水銀圧入法についての詳細は、 J . Am e r . I n s t . C h e m. E n g r s . , 第 2卷, 3 0 7頁, 1 9 5 6年発行に記載されている。
本発明の有機ポリマー多孔体は、 有機ポリマー中に多数の細孔が形成された構 造を有する。 また、 本発明の有機ポリマー多孔体の細孔の形状は、 かご状、 1次 元トンネル状、 及び 3次元トンネル状等が挙げられる。
本発明の有機ポリマー多孔体の細孔の配列は、 規則性を有してもよいし、 無く てもよいが、 規則性を有するのが好ましい。
本発明の有機ポリマー多孔体は、 X線回折パターンにおいて、 少なくとも 1つ のピークを有し、 かつ当該ピークの回折角度 (2 Θ) と格子面間隔 (d) の少な くとも 1組が下記の関係式 (1) を満足し、 かつ dは 0. 8 11111以上1 50 11111 以下の範囲内の 1つ以上の値であることが好ましい。 すなわち、 20と(1が満足 する組は 1組か 2組以上存在するが、 d力 0. 8〜150 nmである組は 1組あ れば十分である。
20 = 2 s i n"1 (^/2 d) (1)
(λは特性 X線の Κ α 1の波長 (nm) を表す。 )
格子面間隔 (d) (nm) は、 0. 8以上が好ましく、 さらに好ましくは 1以 上、 特に好ましくは 2以上であり、 また 1 50以下が好ましく、 さらに好ましく は 100以下、 特に好ましくは 50以下である。
上記の条件を満足する本発明の有機ポリマー多孔体の細孔の配列は、 規則性を 有してもよいし、 無くてもよいが、 規則性を有するのが好ましい。
細孔の配列が規則性を有するとは、 細孔の配列構造が空間群で示される対称性 を有することを意味する。
このような空間群としては、 ミセル含有有機ポリマーと同様のものが例示でき る。
さらに本発明の有機ポリマー多孔体は、 細孔直径分布曲線における最大ピーク を示す細孔直径 (nm) が 0. 3以上であることが好ましく、 さらに好ましくは 0. 4以上、 特に好ましくは 0. 5以上、 最も好ましくは 1以上であり、 また 1 00以下であることが好ましく、 さらに好ましくは 50以下、 特に好ましくは 4 0以下、 最も好ましくは 30以下である。
この最大ピークを示す細孔直径 (nm) がこの範囲未満であると、 例えば本発 明の有機ポリマー多孔体を、 インクジェット受容層、 又は触媒担体等に使用する 際に、 細孔内にインク、 イオン又は分子等が進入しにくくなる場合がある。 また この範囲を超えると、 上記の用途に使用する際に、 表面積の低下、 吸着能の低下 又は電気特性の低下が生じる場合がある。
有機ポリマー多孔体の製造方法は特に限定されないが、 ミセル含有有機ポリマ 一から界面活性剤 (A) を除去することにより得ることができる。
ミセル含有有機ポリマーから界面活性剤 (A) を除去する方法としては、 焼成 による方法及ぴ抽出溶媒で処理する方法等が挙げられる。
焼成による方法では、 ミセル含有有機ポリマーを、 一定温度に加熱して、 界面 活性剤を分解除去することにより有機ポリマー多孔体を得ることができる。
加熱分解時の雰囲気としては、 ネオン、 アルゴン、 窒素又は二酸化炭素等の不 活性ガス、 空気又はこれらの混合物の雰囲気であればよく、 これらのうち、 空気 が好ましい。 また、 分解物が除去できるように流入ガス及ぴ流出ガスの出入り口 の装着している加熱分解装置を用レ、ることが好ましい。 このような装置として、 ガスを通気可能な電気炉等が挙げられる。
この方法で除去する場合には、 樹脂の軟ィヒ温度に注意する必要がある。 例えば、 有機ポリマーが熱可塑性樹脂であれば、 軟化温度以上に加熱した場合、 形成した 細孔が軟化により消失してしまう可能性がある。
抽出溶媒で処理する方法では、 ミセル含有有機ポリマー中の界面活性剤 (A) を、 抽出溶媒によつて抽出除去することにより有機ポリマー多孔体を得ることが できる。
抽出溶媒としては、 界面活性剤に対する溶解度が高く、 樹脂との親和性ができ るだけ低い溶媒を用いるのが好ましい。 樹脂との親和性が高いと、 樹脂が抽出溶 媒に溶解し、 形成した細孔が消失してしまう可能性がある。
このような抽出溶媒としては、 例えば、 水、 エタノール、 メタノール、 ァセト ン等の親水性溶媒及びこれらの混合溶液 ( 5 0体積%ェタノール水溶液、 8 0体 積%メタノール水溶液及ぴ 4 0体積0 /0アセトン水溶液等) ;ペンタン、 へキサン、 ヘプタン、 トルエン、 キシレン等の親油性溶媒等が挙げられる。
抽出溶媒の使用量 (重量部) としては、 ミセル含有有機ポリマー 1重量部に対 して、 1 0以上が好ましく、 さらに好ましくは 1 5以上、 特に好ましくは 2 0以 上、 最も好ましくは 3 0以上であり、 また 2 0 0以下が好ましく、 さらに好まし くは 1 5 0以下、 特に好ましくは 1 2 0以下、 最も好ましくは 1 0 0以下である c カチオン界面活性剤を使用した場合、 抽出溶媒に強酸 (例えば、 塩酸) を添加 することより、 カチオン界面活性剤のカチオンがプロトンでイオン交換されるた め、 抽出が容易となることがある。 また、 ァニオン界面活性剤を使用した場合、 抽出溶媒に強塩基 (例えば、 水酸化カリウム) を添加することにより抽出が容易 になることがある。
酸又は塩基の添加量としては、 界面活性剤 1モルに対して、 1モル以上が好ま しく、 さらに好ましくは 2モル以上、 特に好ましくは 5モル以上であり、 また 1 0 0モル以下が好ましく、 さらに好ましくは 8 0モル以下、 特に好ましくは 5 0 モル以下である。
ミセル含有有機ポリマーを溶媒で処理する場合、 必要に応じて酸又は塩基を添 加した抽出溶媒を抽出温度に保ち、 これにミセル含有有機ポリマーを投入し、 必 要に応じて、 ①超音波を照射して抽出、 ②加圧一常圧を繰り返して抽出、 ③減圧 —常圧を繰り返して抽出、 ④加圧一減圧を繰り返して抽出等を行う。
抽出終了後は少量の抽出溶媒で 1〜 5回洗浄し、 付着している抽出溶媒を (減 圧) 乾燥して、 有機ポリマー多孔体を得る。 なお、 乾燥工程を省くために、 有機 ポリマー多孔体を使用する際に使用可能な他の低沸点溶剤と置換してもよい。 また減圧乾燥をする場合、 減圧度は l〜1 0 0 t o r rが好ましく、 さらに好 ましくは l〜7 5 t o r r、 特に好ましくは 1〜5 .0 t o r rである。
乾燥時間 (時間) は、 1〜 2 4が好ましく、 さらに好ましくは 1〜 1 8、 特に 好ましくは 1〜1 2である。
本発明の有機ポリマー多孔体は、 以下に説明する多孔炭素材料の原材料とする ことができる他に、 インクジェット受容層、 電気二重層キャパシタ電極物質担体、 触媒担体、 メディカル用分離膜、 上水又は廃水処理用吸着材、 G P C用カラム充 填材等としても使用することができる。 次に第 3発明の多孔炭素材料について説明する。
本発明の多孔炭素材料は、 細孔直径分布曲線における最大ピークを示す細孔直 径の ± 4 0 %の範囲内の直径に対応する細孔の合計細孔体積 (体積%) は、 全細 孔体積に基づいて、 50以上であり、 好ましくは 60以上、 さらに好ましくは 7 0以上、 特に好ましくは 75以上、 最も好ましくは 80以上である。
本発明の多孔炭素材料は、 炭素中に多数の細孔が形成された構造を有する。 ま た、 本発明の多孔炭素材料の細孔の形状も、 かご状、 1次元トンネル状、 及ぴ 3 次元トンネル状等が挙げられる。
本発明の多孔炭素材料の細孔の配列は、 規則性を有してもよいし、 無くてもよ いが、 規則性を有するのが好ましい。
本発明の多孔炭素材料も、 本発明のミセル有機含有ポリマー、 有機ポリマー多 孔体と同様に、 X線回折パターンにおいて、 少なくとも 1つのピークを有し、 か つ当該ピークの回折角度 (2 Θ) と格子面間隔 (d) の少なくとも 1組が下記の 関係式 (1) を満足し、 かつ dは 0. 8 nm以上 150 nm以下の範囲内の 1つ 以上の値であることが好ましい。
2 Θ = 2 s i n—1 {λ/2 d) (1)
(又は特性 X線の Κα 1の波長 (nm) を表す。 )
格子面間隔 (d) (nm) は、 0. 8以上が好ましく、 さらに好ましくは 1以 上、 特に好ましくは 2以上であり、 また 1 50以下が好ましく、 さらに好ましく は 100以下、 特に好ましくは 50以下である。
上記の条件を満足する本発明の多孔炭素材料の細孔の配列も、 規則性を有して もよいし、 無くてもよいが、 規則性を有するのが好ましい。 細孔の配列が規則性 を有するとは、 細孔の配列構造が空間群で示される対称性を有することを意味し、 このような空間群としては、 ミセル含有有機ポリマーと同様のものが例示できる。 さらに本発明の多孔炭素材料も、 細孔直径分布曲線における最大ピークを示す 細孔直径 (nm) が 0. 3以上であることが好ましく、 さらに好ましくは 0. 4 以上、 特に好ましくは 0. 5以上であり、 また 100以下であることが好ましく、 さらに好ましくは 50以下、 特に好ましくは 30以下である。
この最大ピークを示す細孔直径 (nm) がこの範囲未満であると、 例えば本発 明の多孔炭素材料を、 電気二重層キャパシタ用電極材料又は触媒担体等に使用す る際に、 細孔内にイオン又は分子等が進入しにくくなる場合がある。 またこの範 囲を超えると、 上記の用途に使用する際に、 表面積の低下、 吸着能の低下又は電 気特性の低下が生じる場合がある。
多孔炭素材料の製造方法は特に限定されないが、 例えば、 ミセル含有有機ポリ マーを直接的に焼成炭素化するか、 有機ポリマー多孔体を焼成炭素化することに より得ることができる。
焼成炭素化時の雰囲気としては、 窒素、 ヘリウム、 ネオン、 アルゴン、 二酸化 炭素及びこれらの混合ガス等の不活性ガス雰囲気で行うことが好ましい。
また、 焼成炭素化の前に、 エージング (予備加熱) を行うことが好ましい。 エージング時の雰囲気としては、 ネオン、 アルゴン、 窒素又は二酸化炭素等の 不活性ガス、 空気又はこれらの混合物の雰囲気であればよく、 これらのうち、 空 気が好ましい。
有機ポリマーが熱可塑性樹脂の場合、 エージングにより有機ポリマー表面を部 分酸化しておくことにより、 軟化点以上の焼成炭素化温度における細孔の消失又 は変形等を防ぐことができる。 この場合、 昇温速度を 3 0 °C/m i n以上として 酸素含有の雰囲気中で一気に軟化点 + 1 0 o°c以上の温度として有機ポリマー表 面を部分酸化することが好ましい。
また、 焼成炭素化及ぴエージングの際には分解物が除去できるように流入ガス 及ぴ流出ガスの出入り口の装着している加熱分解装置を用いることが好ましい。 このような装置として、 炭化炉及ぴ電気炉等が使用でき、 例えば、 ロータリーキ ルン炉、 多段撹拌移動床炉及ぴ多段流動床炉等の炭化炉、 その他の特殊炭化火戸、 並びにガスを通気可能な電気炉等が挙げられる。
ミセル含有有機ポリマーから誘導される有機ポリマー多孔体及ぴ多孔炭素材料 は、 ミセル含有有機ポリマーの形状を保持できるため、 ミセル含有有機ポリマー を望む形状に予め成形しておくことにより、 有機ポリマー多孔体及び多孔炭素材 料を所望の形状とすることができる。 例えば、 粉末、 フィルム、 シート状又は繊 維状のミセル含有有機ポリマーからは、 対応する形状の有機ポリマー多孔体又は 多孔炭素材料を得ることができる。
このように、 得られる有機ポリマー多孔体及び多孔炭素材料は、 様々な形状が 形成でき、 また、 細孔直径が均一であり、 かつ細孔形状及ぴ Z又は細孔配列が規 則的である。 さらに、 ミセル含有有機ポリマー及ぴ有機ポリマー多孔体の焼成に より得られる多孔炭素材料は危険なフッ化水素酸等を使用する必要もなレ、。
本発明の有機ポリマー多孔体及び多孔炭素材料は電気絶縁性、 断熱性、 分離能 および吸着能等の優れた性能を有する。
従って、 多孔炭素材料は、 各種電池用電極、 電気二重層コンデンサ電極、 キヤ パシタ用電極等の電極用材料;キヤニスタ用吸着材、 上水又は廃水処理用吸着材、 浄水装置又は脱臭装置用吸着材、 食品精製用吸着材、 ガス用吸着剤等の吸着材料 ;半導体の絶縁材料、 固体電解質等の各電子部品材料、 メディカル用分離膜、 及 ぴ触媒担体等に最適である。 図面の簡単な説明
図 1は、 ミセル又は細孔と有機ポリマーとが、 又は細孔と炭素とが、 空間群 「 2- d h e x a g o n a l p 6 mm」 を形成している様子を模式的に表した 斜視断面図である。
図 2は、 ミセル若しくは細孔と有機ポリマーとが、 又は細孔と炭素とが、 空間 群 「 c u b i c I a 3 d」 を形成している様子を模式的に表した斜視透過図で める。
図 3は、 ミセル若しくは細孔と有機ポリマーとが、 又は細孔と炭素とが、 空間 群 「c u b i c Pm3 n」 を形成している様子を模式的に表した斜視断面図で ある。
図 4は、 ミセノレ若しくは細孔と有機ポリマーとが、 又は細孔と炭素とが、 空間 群 「3— d h e x a g o n a l P 63Zmm c」 を形成している様子を模式 的に表した斜視断面図である。 発明を実施するための最良の形態
以下、 本発明を実施例により、 さらに詳細に説明するが本発明はこれらの例に よってなんら限定されるものではない。 なお、 以下において、 部は重量部を、 % は重量%を示す。 ,
<実施例 1 > ステンレス製オートクレープに、 フエノール 1 0部、 3 6 %ホルマリン 1 6部、 1 0%水酸化ナトリウム 1. 5部を仕込み、 均一になるまで撹拌した。 オートク レーブ内を窒素ガスで置換した後、 常圧密閉下 7 5 °Cで 3時間撹拌し、 プレポリ マーを得た。 次いで、 ォクチルトリメチルアンモニゥムクロライド 7部、 8 5% 乳酸 1. 8部及ぴグリセリン 1. 5部を加え均一になるまで撹拌した。 その後、 水及ぴ未反応モノマーを減圧下で除去した。 得られた粘性の樹脂を型にいれてシ ート状 (4 cmX 5 cm、 厚さ lmm) に成形した後、 70°Cで 1 20時間硬化 させて、 シート状のミセル含有有機ポリマー (G 1) を得た。
このミセル含有有機ポリマー (G 1) について、 以下の条件で X線回折測定を 行い、 検出された最大ピークの回折角度 (° ) をもとめた。 その結果を表 2に示 す。
X線回折条件: R I NT 2200粉末 X線回折装置 (理学電気株式会社製) を 用レ、、 Cu-Kct ! (λ = 0. 1 540 56 η m) 、 40. OKV管電圧、 3 0 mA管電流、 発散スリット 1/2° 、 散乱スリット 1Z2° 受光 0. 1 5 mmの 条件で測定を行った。
なお、 (G 1 ) は前処理として 2 5 °C、 1 t o r rで 2時間乾燥して測定試料 とした。
<実施例 2 >
実施例 1において、 ォクチルトリメチルアンモニゥムクロライドの代わりにセ チルトリメチルアンモニゥムクロライド 7部を使用する他は実施例 1と同様にし て、 ミセル含有有機ポリマー (G 2) を得た。
このミセル含有有機ポリマー (G 2) について、 実施例 1と同様にして最大ピ ークの回折角度 (° ) をもとめた。 その結果を表 2に示す。
<実施例 3 >
実施例 1において、 ォクチルトリメチルアンモニゥムクロライドの代わりに E O20P O70EO20 (P 1 u r o n i c P I 2 3 : BAS F社製) 7部を使用す る他は実施例 1と同様にして、 シート状のミセル含有有機ポリマー (G 3 ) を得 た。
このミセル含有有機ポリマー (G3) について、 実施例 1と同様にして最大ピ ークの回折角度 (° ) をもとめた。 その結果を表 2に示す。 く実施例 4 >
ガラス製の容器にエタノール 1 90部、 35%濃塩酸 9部を加え、 均一になる まで撹拌した。 次いで、 実施例 1で得たミセル含有有機ポリマー (G1) 3部を 仕込み、 40°Cまで昇温した。 超音波 (周波数: 15 kHz) を照射しながら 4 0°Cで 7時間抽出を行った後、 シートを取り出し、 エタノール 10部で 3回洗浄 後、 25°C、 1 t o r rで 2時間乾燥してシート状の有機ポリマー多孔体 (GE 4) を得た。
この有機ポリマー多孔体 (GE4) について、 実施例 1と同様にして最大ピー クの回折角度 (° ) をもとめた。 その結果を表 3に示す。
また、 窒素吸着法 (0. 3 nm以上 50 nm以下を測定) と水銀圧入法 (50 nm以上 500 nm以下を測定) により、 有機ポリマー多孔体の細孔分布曲線を 測定し、 最大ピークを示す細孔直径と、 VZVma x (全細孔体積中の、 最大ピ ークを示す細孔直径の土 40 %の範囲内の直径に対応する細孔の合計細孔体積が 占める割合) とを求めた。 その結果を表 3に示す。
窒素吸着法装置: AUTO SORB— 1 GAS/SORPT I ON SYS T EM (Qu a n t a c h r ome C o r p o r a t i o n社製) で行った。 水銀圧入法装置: MERCURY PRE S SUER PORO S I METE MOD 220 (C a r 1 o · E r b a社製) で行った。
なお、 細孔分布曲線を測定する際には、 実施例 1の X線回折測定と同様に前処 理して測定試料とした。
また、 VZVm a Xは最大ピークを示す細孔直径の ±40%の範囲内の直径に 対応する細孔の合計細孔体積/全細孔体積 X 100で求められる。 また全細孔体 積は 0. 3 n m以上 500 n m以下の細孔直径を持つ細孔の体積の総和とした。
<実施例 5 > 実施例 4において、 ミセル含有有機ポリマー (G1) の代わりに、 実施例 2で 得たミセル含有有機ポリマー (G2) 3部を使用する他は実施例 4と同様にして、 中空円柱状の有機ポリマー多孔体 (GE5) を得た。
この有機ポリマー多孔体 (GE5) について、 実施例 1と同様にして最大ピー クの回折角度 (° ) をもとめた。 その結果を表 3に示す。
また、 実施例 4と同様にして、 有機ポリマー多孔体 (GE 5) について、 最大 ピークを示す細孔直径と、 V/Vma xとを求めた。 その結果を表 3に示す。
<実施例 6 >
実施例 4において、 35%濃塩酸を使用せず、 ミセル含有有機ポリマー (G1 ) の代わりに実施例 3で得たミセル含有有機ポリマー (G3) 3部を使用する他 は実施例 4と同様にして、 シート状の有機ポリマー多孔体 (GE6) を得た。 この有機ポリマー多孔体 (GE6) について、 実施例 1と同様にして最大ピー クの回折角度 (° ) をもとめた。 その結果を表 3に示す。
また、 実施例 4と同様にして、 有機ポリマー多孔体 (GE 6) について、 最大 ピークを示す細孔直径と、 V/Vma xとを求めた。 その結果を表 3に示す。 ぐ実施例 7 >
実施例 1で得たミセル含有有機ポリマー (G1) を、 窒素フローの出来る電気 炉中におき、 空気をあらかじめ 10 LZm i nの速度で流しておき、 30分かけ て 250°Cまで昇温し、 6時間エージングを行った。 その後、 窒素を 10 L/m i nの速度で流し、 250でで 30分保持した。 650 °Cまで 1時間かけて昇温 しこの温度で 3時間焼成した。 さらに、 1時間かけて 800 °Cまで昇温し 5時間 焼成を行い、 シート状の多孔炭素材料 (MCG7) を得た。 形状はシート状を保 持していた。
シート状の多孔炭素材料 (MCG7) について、 実施例 1と同様にして最大ピ ークの回折角度 (° ) をもとめた。 その結果を表 4に示す。
また、 実施例 4と同様にして、 多孔炭素材料 (MCG7) について、 最大ピー クを示す細孔直径と、 V/Vma xとを求めた。 その結果を表 4に示す。 ぐ実施例 8 >
実施例 7においてミセル含有有機ポリマー (G1) の代わりに、 実施例 2で得 たミセル含有有機ポリマー (G2) を用いる他は実施例 7と同様にして、 多孔炭 素材料 (MCG8) を得た。 形状はシート状を保持していた。
多孔炭素材料 (MCG8) について、 実施例 1と同様にして最大ピークの回折 角度 (° ) をもとめた。 その結果を表 4に示す。
また、 実施例 4と同様にして、 多孔炭素材料 (MCG8) について、 最大ピー クを示す細孔直径と、 VZVma xとを求めた。 その結果を表 4に示す。 く実施例 9 >
実施例 7においてミセル含有有機ポリマー (G 1) の代わりに、 実施例 6で得 た有機ポリマー多孔体 (GE6) を用いる他は実施例 7と同様にして、 多孔炭素 材料 (MCG9) を得た。 形状はシート状を保持していた。
この多孔炭素材料 (MCG9) について、 実施例 1と同様にして最大ピークの 回折角度 (° ) をもとめた。 その結果を表 4に示す。
また、 実施例 4と同様にして、 多孔炭素材料 (MCG9) について、 最大ピー クを示す細孔直径と、 VZVma xとを求めた。 その結果を表 4に示す。
<実施例 10 >
ガラス製のコルベン 1に、 フエノール 10部、 36%ホルマリン 16部、 10 %水酸化ナトリウム 1. 5部を仕込み、 均一になるまで撹拌した。 コルベン 1内 を窒素ガスで置換した後、 常圧密閉下 75 °Cで 3時間撹拌し、 プレボリマーを得 た。 次に、 コルベン 2に、 ステアリルトリメチルアンモニゥムクロライド 7部、 イオン交換水 120部及び 35%塩酸 2部を加え、 室温で均一になるまで撹拌し た。 ここにコルベン 1の内容物を加え、 均一になるまで室温で撹拌した。 その後、 95°Cに昇温し、 1. 5時間撹拌した。 析出した固体をろ取し、 イオン交換水 5 0部で二回洗浄して粉体状のミセル含有有機ポリマー (G10) を得た。
ミセル含有有機ポリマー (G10) について、 実施例 1と同様にして最大ピー クの回折角度 (° ) をもとめた。 その結果を表 2に示す。 <実施例 1 1 >
実施例 1において、 ステンレス製オートクレーブの代わりにガラス製のコルべ ンを用い、 ォクチルトリメチルアンモニゥムクロライドの代わりに、 ステアリル トリメチルアンモニゥムクロライド 7部を使用する他は実施例 1と同様にして、 ミセル含有有機ポリマー (G l 1) を得た。
ミセル含有有機ポリマー (G 1 1) について、 実施例 1と同様にして最大ピー クの回折角度 (° ) をもとめた。 その結果を表 2に示す。
<実施例 12>
実施例 1において、 ステンレス製オートクレーブの代わりにガラス製のコルべ ンを用い、 ォクチルトリメチルアンモニゥムクロライドの代わりに、 ステアリル トリメチルアンモニゥムクロライド 7部を使用する他は実施例 1と同様にして、 粘性の樹脂を得た。 粘性の樹脂 13. 1部にへキサメチレンテトラミンを 0. 8 5部加え均一になるまで撹拌したのち、 樹脂を型にいれてシート状 (4 cmX 5 cm、 厚さ lmm) に成形し、 その後 70 °Cで 120時間硬化させて、 シート状 のミセル含有有機ポリマー (G 12 ) を得た。
ミセル含有有機ポリマー (G12) について、 実施例 1と同様にして最大ピー クの回折角度 (° ) をもとめた。 その結果を表 2に示す。 く実施例 13〉
実施例 4において、 ミセル含有有機ポリマー (G 1 ) の代わりに、 実施例 10 で得たミセル含有有機ポリマー (G10) 3部を使用する他は実施例 4と同様に して、 粉体状の有機ポリマー多孔体 (GE 13) を得た。
有機ポリマー多孔体 (GE 13) について、 実施例 1と同様にして最大ピーク の回折角度 (° ) をもとめた。 その結果を表 3に示す。
また、 実施例 4と同様にして、 有機ポリマー多孔体 (GE 1 3) について、 最 大ピークを示す細孔直径と、 V/Vma xとを求めた。 その結果を表 3に示す。 <実施例 14 >
実施例 4において、 ミセル含有有機ポリマー (G1) の代わりに、 実施例 11 で得たミセル含有有機ポリマー (G 11) 3部を使用する他は実施例 4と同様に して、 有機ポリマー多孔体 (GE 14) を得た。
有機ポリマー多孔体 (GE 14) について、 実施例 1と同様にして最大ピーク の回折角度 (° ) をもとめた。 その結果を表 3に示す。
また、 実施例 4と同様にして、 有機ポリマー多孔体 (GE 14) について、 最 大ピークを示す細孔直径と、 VZVma Xとを求めた。 その結果を表 3に示す。 く実施例 15 >
実施例 4において、 ミセル含有有機ポリマー (G1) の代わりに、 実施例 12 で得たミセル含有有機ポリマー (G 12 ) 3部を使用する他は実施例 4と同様に して、 有機ポリマー多孔体 (GE 15) を得た。
有機ポリマー多孔体 (GE 15) について、 実施例 1と同様にして最大ピーク の回折角度 (° ) をもとめた。 その結果を表 3に示す。
また、 実施例 4と同様にして、 有機ポリマー多孔体 (GE 15) について、 最 大ピークを示す細孔直径と、 VZVma xとを求めた。 その結果を表 3に示す。 ぐ実施例 16 >
実施例 7においてミセル含有有機ポリマー (G 1 ) の代わりに実施例 10で得 たミセル含有有機ポリマー (G10) を用いる他は実施例 7と同様にして、 粉体 状の多孔炭素材料 (MCG16) を得た。
多孔炭素材料 (MCG16) について、 実施例 1と同様にして最大ピークの回 折角度 (° ) をもとめた。 その結果を表 4に示す。
また、 実施例 4と同様にして、 多孔炭素材料 (MCG16) について、 最大ピ ークを示す細孔直径と、 VZVma xとを求めた。 その結果を表 4に示す。
<実施例 17 > 実施例 7においてミセル含有有機ポリマー (G 1 ) の代わりに実施例 1 1で得 たミセル含有有機ポリマー (G1 1) を用いる他は実施例 7と同様にして、 シー ト状の多孔炭素材料 (MCG1 7) を得た。
多孔炭素材料 (MCG1 7) について、 実施例 1と同様にして最大ピークの回 折角度 (° ) をもとめた。 その結果を表 4に示す。
また、 実施例 4と同様にして、 多孔炭素材料 (MCG 1 7) について、 最大ピ ークを示す細孔直径と、 VZVma xとを求めた。 その結果を表 4に示す。
<実施例 18 >
実施例 7においてミセル含有有機ポリマー (G 1 ) の代わりに実施例 12で得 たミセル含有有機ポリマー (G 1 2) を用いる他は実施例 7と同様にして、 多孔 炭素材料 (MCG 1 8) を得た。 形状はシート状を保持していた。
多孔炭素材料 (MCG18) について、 実施例 1と同様にして最大ピークの回 折角度 (° ) をもとめた。 その結果を表 4に示す。
また、 実施例 4と同様にして、 多孔炭素材料 (MCG1 8) について、 最大ピ ークを示す細孔直径と、 V/Vma Xとを求めた。 その結果を表 4に示す。
<比較例 1 >
実施例 1において、 ォクチルトリメチルアンモニゥムクロライドを用いない以 外は実施例 1と同様にして、 シート状のフエノール樹脂 (G 19) を得た。 シート状のフエノール樹脂 (G1 9) について、 実施例 1と同様にして最大ピ ークの回折角度 (° ) をもとめた。 その結果を表 2に示す。
<比較例 2 >
実施例 7においてミセル含有有機ポリマー (G1) の代わりに比較例 1で得た シート状のフエノール樹脂 (G 19) を用いる以外は実施例 7と同様にして、 6 50でで 3時間焼成した後、 さらに、 1時間かけて 800 °Cまで昇温し 5時間焼 成を行った。 最後に水蒸気賦活して細孔を形成させて炭素材料 (MCG1 9). を 得た。 形状は、 シートの一部が崩れ落ちていた。 炭素材料 (MCG19) について、 実施例 1と同様にして最大ピークの回折角 度 (° ) をもとめた。 その結果を表 4に示す。
また、 実施例 4と同様にして、 炭素材料 (MCG19) について、 最大ピーク を示す細孔直径と、 VZVma xとを求めた。 その結果を表 4に示す。 表 2
Figure imgf000046_0001
実施例 1〜3、 10〜12のミセル含有有機ポリマーは、 回折角度が存在し、 比較例 1のポリマーでは回折が起こらない。 すなわち、 本発明のミセル含有有機 ポリマーは、 ミセルの径、 ミセルの形状、 ミセルの配列のうち、 少なくとも 2つ に規則性を有することがわかる。 さらに、 次に記載する有機ポリマー多孔体の細 孔直径が均一であることから、 均一ミセル径を有することが判る。 すなわち、 本 発明のミセル含有有機ポリマーはポリマーマトリックス中に均一径のミセルを含 有し、 さらに、 ミセルの形状が均一あるいはミセルが規則的に配列されているこ とがわかる。 表 3
Figure imgf000047_0001
実施例 4〜 6、 1 3〜 1 5の有機ポリマー多孔体は、 VZV m a xの値が大き いことから均一細孔直径を有することがわかる。 また、 さらに X線回折角度が存 在し dが求められることから、 細孔形状が均一、 あるいは細孔が規則的に配列さ れていることがわかる。 表 4
Figure imgf000047_0002
実施例 7〜 9、 1 6〜 1 8では、 焼成炭素化の工程を経ても形状を保持した。 また、 実施例 7〜9、 1 6〜1 8の多孔炭素材料は VZV m a xの値が大きレ、 ことから均一細孔直径を有することがわかる。 また、 さらに X線回折角度が存在 し dが求められることから、 細孔の形状が均一、 または、 細孔が規則的に配列さ れていることがわかる。
一方、 比較例 2の炭素材料では、 細孔直径が比較的均一ではあるが、 V/V m a xが実施例に比べて小さいことから細孔直径の均一度は実施例よりも劣る。 ま た、 X線回折が起こっていないので、 細孔の形状が均一でなく、 かつ、 細孔の配 列も規則性を有しないことがわかる。 産業上の利用の可能性
. 本発明のミセル含有有機ポリマーは有機材料であるため容易に加工でき、 フィ ルム特性にも優れる。 これを用いて製造される有機ポリマー多孔体及び多孔炭素 材料は、 ミセル含有有機ポリマー製造時の形状をそのまま保持できるため、 塊状、 繊維状、 シート状又はフィルム等の様々な形状に形成できる。 すなわち、 本発明 のミセル含有有機ポリマーは、 均一粒子径のミセルが、 均一形状を有するか、 あ るいは規則的に配列しており、 この形状をそのまま保持することができる。 従つ て、 このミセル含有機ポリマーから得られる有機ポリマー多孔体及ぴ多孔炭素材 料は、 均一細孔直径を有する細孔が、 均一形状を有するか、 あるいは規則的に配 列されることになる。 そして、 このような均一性 ·規則性から、 本発明のミセル 含有有機ポリマー、 有機ポリマー多孔体及び多孔炭素材料は、 断熱性、 分離能及 ぴ吸着能等の優れた性能を発揮する。 また、 多孔炭素材料を電気二重層キャパシ タの電極に使用した際には、 径が均一な細孔を有するので有効に働く電極面積を 大きくでき、 電気二重層を高容量にできる。
さらに、 本発明の有機ポリマー多孔体及び多孔炭素材料は、 危険なフッ化水素 酸を使用する必要もないため、 有機ポリマー多孔体及び多孔炭素材料を極めて安 全かつ簡便に提供することができる。

Claims

請求の範囲
1. X線回折パターンにおいて、 少なくとも一つのピークを有し、 かつ当該ピ ークの回折角度 (2 0) と格子面間隔 (d) の少なくとも 1組が下記の関係式 ( 1) を満足し、 dは 0. 8 nm以上 1 50 nm以下の範囲内の 1つ以上の値であ ることを特徴とするミセル含有有機ポリマー。
2 0 = 2 s i n_1 (X/2 d) (1 )
(えは特性 X線の Kct 1の波長 (nm) を表す。 ) 2. ミセルが、 ポリマーマトリックスを形成する有機ポリマー (B) 中の界面 活性剤 (A) により形成されたものである請求の範囲第 1項記載のミセル含有有 機ポリマー。
3. 界面活性剤 (A) 、 カチオン界面活性剤 (A2) である請求の範囲第 2 項記載のミセル含有有機ポリマー。
4. カチオン界面活性剤 (A2) ヽ 第 4級アンモ-ゥム塩型カチオン界面活 性剤 (A2 a) である請求の範囲第 3項記載のミセル含有有機ポリマー。
5. 界面活性剤 (A) を、 有機ポリマー (B) 1 00重量部に対して 0. 5重 量部以上含む請求の範囲第 2〜 4項いずれか記載のミセル含有有機ポリマー。
6. 有機ポリマー (B) 1S 熱硬化性樹脂である請求の範囲第 2〜 5項いずれ か記載のミセル含有有機ポリマー。
7. ,有機ポリマー (B) 力 熱可塑性樹脂 (B 1) に架橋反応性基を導入した 熱硬化性樹脂 (B 1 a ) の架橋硬化体 (B 2 _ 1 ) ;熱可塑性樹脂 (B 1 ) の構 成モノマーと架橋性モノマーとから誘導される架橋樹脂 (B 2— 2) ; フエノー ル樹脂 (B 2— 4) 及ぴフラン樹脂 (B 2— 5) からなる群より選ばれる 1種以 上の熱硬化性樹脂 (B 2) である請求の範囲第 2〜 5項いずれか記載のミセル含 有有機ポリマー。
8. モノマー及ぴノ又はプレボリマー中に界面活性剤 (A) のミセルを形成さ せた後、 前記モノマー及び/又はプレボリマーを重合及ぴ硬化させることを特徴 とする、 ミセル含有有機ポリマーの製造方法。
9. 細孔直径分布曲線における最大ピークを示す細孔直径 Dm a xの ± 40 % の範囲内の直径に対応する細孔の合計細孔体積が、 全細孔体積に基づいて 50体 積%以上であることを特徴とする有機ポリマー多孔体。
10. X線回折パターンにおいて、 少なくとも一- ^のピークを有し、 かつ当該 ピークの回折角度 (20) と格子面間隔 (d) の少なくとも 1組が下記の関係式 (1) を満足し、 dは 0. 8 nm以上 150 nm以下の範囲内の 1つ以上の値で ある請求の範囲第 9項記載の有機ポリマー多孔体。
20 = 2 s i n -1 (え / 2 d) (1)
(λは特性 X線の Κο; 1の波長 (nm) を表す。 )
1 1. 細孔直径分布曲線における最大ピークを示す細孔直径 Dm a xが◦ . 3 nm以上 100 nm以下である請求の範囲第 9または 10項記載の有機ポリマー 多孔体。
1 2. 有機ポリマーが、 熱硬化性樹脂である請求の範囲第 9〜 11項いずれか 記載の有機ポリマー多孔体。
1 3. 有機ポリマーが、 熱可塑性樹脂 (B 1) に架橋反応性基を導入した熱硬 化性樹脂 (B l a) の架橋硬化体 (B 2— 1) ;熱可塑性樹脂 (B 1) の構成モ ノマーと架橋性モノマーとから誘導される架橋樹脂 (B 2— 2) ;フエノール樹 脂 (B 2— 4) 及ぴフラン樹脂 (B 2— 5) からなる群より選ばれる 1種以上の 熱硬化性樹脂 (B 2) である請求の範囲第 9〜12項いずれか記載の有機ポリマ 一多孔体。
14. モノマー及び/又はプレボリマー中に界面活性剤 (A) のミセルを形成 させた後、 前記モノマー及び Z又はプレボリマーを重合及び硬化させてミセル含 有有機ポリマーを形成し、 さらに界面活性剤 (A) を除去することを特徴とする、 有機ポリマー多孔体の製造方法。
15. 界面活性剤 (A) の除去を、 焼成及び Z又は溶媒抽出により行う請求の 範囲第 14項記載の有機ポリマー多孔体の製造方法。
16. 細孔直径分布曲線における最大ピークを示す細孔直径 Dm a xの ± 40 %の範囲内の直径に対応する細孔の合計細孔体積が、 全細孔体積に基づいて 50 体積%以上であることを特徴とする多孔炭素材料。
1 7. X線回折パターンにおいて、 少なくとも一^ 3のピークを有し、 かつ当該 ピークの回折角度 (20) と格子面間隔 (d) の少なくとも 1組が下記の関係式
(1) を満足し、 dは 0. 8 nm以上 150 nm以下の範囲内の 1つ以上の値で あることを特徴とする請求の範囲第 16項記載の多孔炭素材料。
20 = 2 s i n"'1 (^/2 d) (1)
(λは特性 X線の 1の波長 (nm) を表す。 )
1 8. 細孔直径分布曲線における最大ピークを示す細孔直径 Dma Xが 0. 3 nm以上 100 nm以下である請求の範囲第 16または 1 7項記載の多孔炭素材 料。
1 9. 請求の範囲第 16項記載の多孔炭素材料からなる電極。
20. 請求の範囲第 16項記載の多孔炭素材料からなる吸着材。
2 1 . モノマー及び/又はプレボリマー中に界面活性剤 (A) のミセルを形成 させた後、 前記モノマー及び Z又はプレボリマーを重合及ぴ硬化させてミセル含 有有機ポリマーを形成し、 さらに焼成炭素化を行うことを特徴とする、 多孔炭素 材料の製造方法。
PCT/JP2003/006978 2002-06-03 2003-06-03 ミセル含有有機ポリマー、有機ポリマー多孔体及び多孔炭素材料 WO2003106565A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP03733254A EP1516893A4 (en) 2002-06-03 2003-06-03 MICELL-CONTAINING ORGANIC POLYMER, POROUS MATERIAL OF ORGANIC POLYMER AND POROUS CARBON MATERIAL
US10/516,533 US20070149627A1 (en) 2002-06-03 2003-06-03 Micelle-containing organic polymer, organic polymer porous material and porous carbon material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002161119 2002-06-03
JP2002-161119 2002-06-03

Publications (1)

Publication Number Publication Date
WO2003106565A1 true WO2003106565A1 (ja) 2003-12-24

Family

ID=29727537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/006978 WO2003106565A1 (ja) 2002-06-03 2003-06-03 ミセル含有有機ポリマー、有機ポリマー多孔体及び多孔炭素材料

Country Status (3)

Country Link
US (1) US20070149627A1 (ja)
EP (1) EP1516893A4 (ja)
WO (1) WO2003106565A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013504669A (ja) * 2009-09-16 2013-02-07 スフィリテック・リミテッド 三次元多孔質構造体
CN111318266A (zh) * 2020-02-14 2020-06-23 南京师范大学 一种二维共价有机框架修饰离子交换树脂及其制备方法和应用

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010022831B4 (de) * 2010-02-17 2017-08-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Doppelschichtkondensator
JP5588713B2 (ja) * 2010-03-31 2014-09-10 イビデン株式会社 シミュレーション装置及びそのコンピュータプログラム
CN104525066B (zh) * 2015-01-09 2016-06-01 福州大学 一种单分散固结胶束微粒的制备方法
CN105542045B (zh) * 2016-01-15 2018-01-12 福州大学 一种结构固结的棒状胶束的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS601238A (ja) * 1983-06-20 1985-01-07 Kanebo Ltd フエノ−ル系樹脂多孔体の製造方法
EP0289238A2 (en) * 1987-04-24 1988-11-02 Unilever Plc Porous material and its preparation
JPH0782028A (ja) * 1993-09-20 1995-03-28 Hitachi Chem Co Ltd ガラス状炭素の製造法
JPH0867578A (ja) 1994-06-22 1996-03-12 Toyota Central Res & Dev Lab Inc 多孔体の製造方法
JPH09188565A (ja) * 1996-01-09 1997-07-22 Maruzen Petrochem Co Ltd 均一微細孔を持つ多孔質炭素成型体およびその製造方法
JP2000017102A (ja) 1998-07-03 2000-01-18 Toyota Central Res & Dev Lab Inc 有機/無機複合高分子多孔材料及び多孔材料の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS498707B1 (ja) * 1970-12-26 1974-02-27
JPS61275309A (ja) * 1985-05-29 1986-12-05 Mitsubishi Rayon Co Ltd アクリロニトリル系重合体
JPH0235919A (ja) * 1988-04-01 1990-02-06 Terumo Corp 多孔質膜の製造方法及びその方法により製造された多孔質膜
JP3391630B2 (ja) * 1996-05-22 2003-03-31 株式会社豊田中央研究所 合成樹脂組成物
JP3899733B2 (ja) * 1998-07-03 2007-03-28 株式会社豊田中央研究所 多孔材料及び多孔材料の製造方法
JP2000281331A (ja) * 1999-03-26 2000-10-10 Toyota Central Res & Dev Lab Inc メソ多孔体及びその製造方法
US6346140B2 (en) * 2000-03-31 2002-02-12 Kabushiki Kaisha Toyota Chuo Kenkyusho Porous solid for gas adsorption separation and gas adsorption separation process employing it
JP2001295139A (ja) * 2000-04-11 2001-10-26 Canon Inc シリカメソ構造体ファイバー、メソポーラスシリカファイバー、シリカメソ構造体ファイバーの製造方法及びメソポーラスシリカファイバーの製造方法
JP3521224B2 (ja) * 2000-10-03 2004-04-19 独立行政法人産業技術総合研究所 低分子量フッ素樹脂を原料とする多孔質炭素材料の製造方法及びその用途

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS601238A (ja) * 1983-06-20 1985-01-07 Kanebo Ltd フエノ−ル系樹脂多孔体の製造方法
EP0289238A2 (en) * 1987-04-24 1988-11-02 Unilever Plc Porous material and its preparation
JPH0782028A (ja) * 1993-09-20 1995-03-28 Hitachi Chem Co Ltd ガラス状炭素の製造法
JPH0867578A (ja) 1994-06-22 1996-03-12 Toyota Central Res & Dev Lab Inc 多孔体の製造方法
JPH09188565A (ja) * 1996-01-09 1997-07-22 Maruzen Petrochem Co Ltd 均一微細孔を持つ多孔質炭素成型体およびその製造方法
JP2000017102A (ja) 1998-07-03 2000-01-18 Toyota Central Res & Dev Lab Inc 有機/無機複合高分子多孔材料及び多孔材料の製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Chobunshi Kagaku", 1998, TOKYO KAGAKU DOZIN
NATURE, vol. 412, July 2002 (2002-07-01), pages 12
See also references of EP1516893A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013504669A (ja) * 2009-09-16 2013-02-07 スフィリテック・リミテッド 三次元多孔質構造体
CN111318266A (zh) * 2020-02-14 2020-06-23 南京师范大学 一种二维共价有机框架修饰离子交换树脂及其制备方法和应用
CN111318266B (zh) * 2020-02-14 2022-01-28 南京师范大学 一种二维共价有机框架修饰离子交换树脂及其制备方法和应用

Also Published As

Publication number Publication date
EP1516893A4 (en) 2008-03-12
US20070149627A1 (en) 2007-06-28
EP1516893A1 (en) 2005-03-23

Similar Documents

Publication Publication Date Title
JP4249172B2 (ja) 多孔炭素材料
JP3779700B2 (ja) ミセル含有有機ポリマー、有機ポリマー多孔体及び多孔炭素材料
JP6216320B2 (ja) イオン交換組成物、その製造方法、及びそれから調製された材料
EP3333198B1 (en) Method for preparing highly absorbent resin
JP7485619B2 (ja) 高活性複合金属シアン化物化合物
WO2003106565A1 (ja) ミセル含有有機ポリマー、有機ポリマー多孔体及び多孔炭素材料
KR101140793B1 (ko) 음이온 교환막의 제조방법 및 이로부터 제조된 음이온 교환막
US3716482A (en) Anion exchanger with sponge structure and process of using same
Cheng et al. Surface-initiated atom transfer radical polymerization grafting from nanoporous cellulose gels to create hydrophobic nanocomposites
US4373031A (en) Synthesis of anion exchange polymers employing ditertiary amines
JP2019085530A (ja) 水分散体およびコーティング剤
Herrera-González et al. Adsorption of anionic dyes using composites based on basic polyelectrolytes and physically activated carbon
JP2006052412A (ja) 有機ポリマー多孔体
KR101855352B1 (ko) 고흡수성 수지의 제조 방법
JP3555967B2 (ja) 耐溶出性アニオン吸着膜の製造方法およびその膜
JP2010115569A (ja) モノリス状有機多孔質アニオン交換体およびその製造方法
CN114080405B (zh) 吸水性树脂颗粒的制造方法及单体水溶液
WO2024181103A1 (ja) 樹脂組成物、プリプレグ、及び成形体
WO2024122428A1 (ja) 樹脂組成物、プリプレグ、金属箔張積層板、及びプリント基板
CN118165251A (zh) 非离子型双氨基亲水扩链剂及其制备方法以及非离子型水性非异氰酸酯聚氨酯及其制备方法
JP7341994B2 (ja) 構成要素付加重合
Lai et al. Preparation and Properties of Sepiolite Clay-based Superabsorbent Resin under Microwave Irradiation
JP2021502348A (ja) 触媒反応の方法
JP2021502434A (ja) 構成要素付加重合
JP2021502234A (ja) 構成要素添加重合

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003733254

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003733254

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007149627

Country of ref document: US

Ref document number: 10516533

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10516533

Country of ref document: US