WO2003100353A1 - Detecteur d'angle de rotation et son procede de correction de temperature - Google Patents

Detecteur d'angle de rotation et son procede de correction de temperature Download PDF

Info

Publication number
WO2003100353A1
WO2003100353A1 PCT/JP2003/006630 JP0306630W WO03100353A1 WO 2003100353 A1 WO2003100353 A1 WO 2003100353A1 JP 0306630 W JP0306630 W JP 0306630W WO 03100353 A1 WO03100353 A1 WO 03100353A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
rotation angle
output voltage
rotor
reference timing
Prior art date
Application number
PCT/JP2003/006630
Other languages
English (en)
French (fr)
Inventor
Noritake Ura
Original Assignee
Toyoda Koki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Koki Kabushiki Kaisha filed Critical Toyoda Koki Kabushiki Kaisha
Priority to US10/506,679 priority Critical patent/US7138795B2/en
Priority to EP03730652A priority patent/EP1508783B1/en
Publication of WO2003100353A1 publication Critical patent/WO2003100353A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/204Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils
    • G01D5/2073Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils by movement of a single coil with respect to two or more coils
    • G01D5/208Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils by movement of a single coil with respect to two or more coils using polyphase currents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D3/00Indicating or recording apparatus with provision for the special purposes referred to in the subgroups
    • G01D3/028Indicating or recording apparatus with provision for the special purposes referred to in the subgroups mitigating undesired influences, e.g. temperature, pressure
    • G01D3/032Indicating or recording apparatus with provision for the special purposes referred to in the subgroups mitigating undesired influences, e.g. temperature, pressure affecting incoming signal, e.g. by averaging; gating undesired signals

Definitions

  • the present invention relates to a rotation angle detection device and a temperature correction method thereof, and particularly to a derivation method thereof.
  • a rotation angle detecting device that detects a rotation angle using a conventional resolver
  • a conventional example there is, for example, one described in Japanese Patent Application No. 2002-127271 (hereinafter referred to as a conventional example).
  • the conventional example as shown in Fig. 5, when the excitation coil 122, the cos-phase coil 128, and the sin-phase coil 130 are grounded using a common ground wire 144, the sin-phase
  • the terminal 1 36 of the coil 130 has the impedance 1 4 4 of the ground wire 1 4 6 and the exciting current It is described that a voltage on which an AC bias voltage caused by the above is superimposed is output.
  • a conventional example discloses the following rotation angle detecting device. First, slowly rotate the handle for one revolution, sample the sin phase voltage, and store it in RAM. Next, from the data stored in RAM, data near the maximum peak value (handle angle: 90 degrees) and data near the maximum bottom value (handle angle: 270 degrees) are selected at four points in one sin phase voltage cycle. Add them sequentially. Then, when each of the values of the added data group is divided by 2, only the bias voltage can be derived. By subtracting this bias voltage from the sin phase voltage, the rotation angle voltage is obtained. The rotation angle can be derived from the rotation angle voltage.
  • the present invention has been made in view of the unsolved problems of the conventional example described above, and aims to provide a highly accurate rotation angle detection device which eliminates a rotation angle error due to an ever-changing temperature change. I have. Disclosure of the invention
  • an exciting coil having a rotating rotor, fixed to the rotor, an AC exciting current applied to one end, and an earth wire connected to the other end, and fixed around the rotor.
  • the output voltage is taken out from one end, and the ground wire is connected to the other end, and the impedance of the ground wire and the exciting current are applied to the AC rotation angle voltage whose amplitude increases and decreases depending on the rotation angle of the rotor.
  • a rotation angle detection device having a stator coil that outputs a voltage superimposed on the AC bias voltage caused by the temperature, the data required to calculate the value of the temperature-dependent element in relation to the elapsed time from the reference timing
  • a rotation angle voltage detection means for obtaining the AC rotation angle voltage by subtraction means for subtracting data stored in the storage means; From a Baiasu detecting means for data Ru sought by connexion the AC Baiasu voltage adding means for adding is, with the rotation angle voltage detecting means and said Baiasu detecting means
  • the phase difference between the amplitude value of the AC rotation angle voltage and the reference timing of the AC rotation angle voltage and the phase difference between the amplitude value of the AC bias voltage and the reference timing of the AC bias voltage are obtained from the values sampled at least at two different points. It is a rotation angle detection device provided with means.
  • one end of the stator coil when the rotor rotates with respect to the stator coil, one end of the stator coil has an AC rotation angle voltage whose amplitude increases and decreases depending on the rotation angle of the rotor, an impedance of the ground wire and an exciting current. This causes an output voltage on which the AC bias voltage resulting from the superposition is superimposed.
  • the data storage means which stores data necessary for calculating the value of the temperature-dependent element, calculates the AC rotation angle voltage and the AC bias voltage in relation to the time elapsed from the reference timing. Necessary data is stored.
  • the data storage means sequentially samples and stores the output voltage when the rotor rotates. I do.
  • the rotation angle voltage detection means obtains an AC rotation angle voltage by subtracting the first output voltage and the second output voltage having the same elapsed time from the reference timing of the data stored in the storage means by the subtraction means.
  • the bias detection means obtains an AC bias voltage by adding the first output voltage and the second output voltage having the same elapsed time from the reference timing of the data stored in the storage means by an adding means.
  • the amplitude value of the AC rotation angle voltage calculated by the rotation angle voltage detection means and the bias detection means using at least two different sampled values, the phase difference of the AC rotation angle voltage with respect to the reference timing, and the amplitude of the AC bias voltage Determine the value and the phase difference between the AC bias voltage and the reference timing.
  • the momentary moment is obtained.
  • a highly accurate rotation angle that is not affected by a changing temperature change can be detected.
  • the output voltage when the rotor is rotated is sequentially sampled and stored, and a maximum value among the stored output voltage groups is provided.
  • Means for specifying the first output voltage group for at least one cycle including the peak value, and means for specifying the second output voltage group for at least one cycle including the maximum bottom value among the stored output voltage groups Means for sequentially subtracting and adding the first output voltage and the second output voltage of the specified first output voltage group and the second output voltage group, which are equal in elapsed time from a reference timing. It is.
  • the rotation angle voltage also has a peak value at the electrical angle at which the output voltage obtained by superimposing the bias voltage on the rotation angle voltage has a peak value, and the rotation angle voltage also has a bottom value at the electrical angle having a bottom value. Therefore, the first output voltage group for at least one cycle including the maximum peak value is specified from among the stored output voltage groups, and the first output voltage group for at least one cycle including the maximum bottom value among the stored output voltage groups is specified.
  • the second output voltage group is specified, and the first output voltage and the second output voltage having the same elapsed time from the reference timing are sequentially subtracted and added to obtain the AC rotation angle voltage and the AC bias voltage.
  • the third invention is a rotary motor that outputs a voltage in which an AC bias voltage resulting from the impedance of an earth wire and an exciting current is superimposed on an AC rotation angle voltage whose amplitude increases and decreases depending on the rotation angle of the rotor.
  • Temperature to temperature that affects the output voltage of the angle detector A first step of sequentially sampling the output voltage while rotating a rotor, and a first output for at least one rotation angle cycle including a maximum peak value in a sampled output voltage group.
  • a temperature correction method comprising:
  • the output voltage is sequentially sampled while rotating the rotor, so that the first output voltage for at least one cycle including the maximum peak value in the sampled output voltage group is obtained.
  • Groups can be identified.
  • the second output voltage group for at least one cycle including the maximum bottom value among the sampled output voltage groups can be specified.
  • the AC rotation angle voltage can be obtained by sequentially subtracting the first output voltage and the second output voltage having the same elapsed time from the reference timing.
  • the AC bias voltage can be obtained by sequentially adding the first output voltage and the second output voltage having the same elapsed time from the reference timing.
  • the amplitude value of the AC rotation angle voltage, the phase difference with respect to the reference timing of the AC rotation angle voltage, the amplitude value of the AC bias voltage, and the AC The phase difference between the bias voltage and the reference timing can be obtained.
  • FIG. 1 is a configuration diagram of an electric power steering system to which a torque detection device according to an embodiment of the present invention is applied
  • FIG. 2 is a block diagram of the torque detection device
  • FIG. FIG. 4 is a graph of an output voltage at an electrical angle of 360 ° rotation
  • FIG. 4 is a diagram showing a maximum peak value and a maximum bottom value and respective voltage waveforms
  • FIG. 5 is a conventional rotation angle detection device. It is a block diagram of. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 shows the configuration of an electric power steering system 10 to which the present invention is applied.
  • This system 10 comprises a first rotation angle detection device mainly composed of an ECU 20 and a first resolver 15 s, and a second rotation angle detection device mainly composed of an ECU 20 and a second resolver 16 s. It consists of a device.
  • the ECU 20, the first resonator 15 s and the second resolver 16 s constitute a torque detection device that converts the steering of the driver's steering wheel into a torque value and detects it.
  • the handle 11 is connected to one end of a handle shaft 12, and the other end J of the handle shaft 12 is connected to one end of a torsion bar 14.
  • the pinion shaft 13 is connected to the other end of the torsion bar 14 via an output shaft.
  • the pione of the pinion shaft 13 is aligned with the rack 19.
  • the rack mechanism 18 is constituted by the rack 19 and the rack housing 18H.
  • the rack mechanism 18 allows the rack 19 to reciprocate in the rack housing 18H in the axial direction.
  • One end of a tie rod 21 is attached to each end of the rack mechanism 18.
  • One end of a knuckle arm 22 is connected to the other end of the tie rod 21.
  • a wheel 23 is connected to the other end of the knuckle arm 22.
  • a first resolver 15 s is provided around the lower end of the handle shaft 12 described above.
  • the first resonance lever 15 s functions as a first rotation angle detection unit that detects the first rotation angle ⁇ 1 of the handle shaft 12.
  • a second resolver 16 s is provided around the lower end side of the torsion bar 14.
  • the second resolver 16 s functions as a second rotation angle detection unit that detects the second rotation angle 02 of the pinion 13.
  • the first resolver / reservoir 15 s and the second resolver 16 s are electrically connected to the ECU 20.
  • ECU 20 first resolver
  • the torque detector 30 is constituted by 15 s and the second resolver 16 s.
  • the ECU 20 that constitutes the torque detection device operates the steering wheel 11 from the first rotation angle 01 detected by the first resolver 15 s and the second rotation angle ⁇ 2 detected by the second resolver 16 s.
  • ⁇ ⁇ ( ⁇ 1- ⁇ 2).
  • Note the kappa tau is a spring constant of the torsion bar 1 4.
  • the ECU 20 is connected to the motor ⁇ , converts the calculated torque value T into a command current using a predetermined torque Z current value conversion map, and performs PWM (pulse width modulation) control through a current control unit. More specific configurations of the torque detectors 30, 15 s and 16 s will be described later.
  • the motor M transmits the generated assist torque to the rack mechanism 18 via the speed reducer 17.
  • the steering shaft 12 rotates.
  • the pinion shaft 13 also rotates via the torsion bar 14.
  • the rack 19 corresponding to the pinion moves in the axial direction, and the running direction of the wheel 23 changes via the tie rod 21 and the knuckle arm 22.
  • the torque generated by the driver steering the handle 11 is detected by the torque detectors 30, 15 s and 16 s.
  • the ECU 20 constituting the torque detection device controls the motor M based on the torque.
  • the ECU 20 controls the motor M to generate a small assist torque. If the steering torque detected by the torque detection device 30 is large, the ECU 20 controls the motor M to generate a large assist torque. The assist torque generated by the motor M is transmitted to the rack mechanism 18 to assist the movement of the rack 19. Therefore, the driver can steer the steering wheel 11 with a small force.
  • FIG. 2 shows a block diagram of the torque detector 30.
  • the torque detector 30 includes a first rotation angle detector including the ECU 20 and the first resolver 15 s, and a second rotational angle detector including the ECU 20 and the second resolver 16 s. Includes rotation angle detector.
  • the ECU 20 includes a CPU 52, ROMs 56, ⁇ 58, and EEPR0M (electrically erasable ROM) 59 connected to the CPU 52 via an internal bus 53.
  • the CPU 52 has ports such as input ports 52b to 52e and output ports 52a. Input port 5 2 b to 5 2 e is connected to an A / D converter inside the CPU 52, and the analog signal is converted to a digital signal and processed by the CPU 52.
  • the output port 52a is connected to a DZA converter inside the CPU 52, and the digital signal is converted into an analog signal, which is output to the first resolver 15s, the second resolver 16s, and the motor M. .
  • the R0M56 stores a program for performing a temperature correction derivation process described later, a torque calculation program, and the like.
  • the first resolver 15 s includes a first rotor 31, a first excitation coil 32, a first sin phase coil (stator coil) 34, an l-cos phase coil (stator coil) 36, and the like.
  • the second resolver 16 s includes a second rotor 41, a second excitation coil 42, a second sin phase coil (steer coil) 43, a second cos phase coil (steer coil) 44, and the like.
  • the first rotor 31 has a first excitation coil 32. As the first rotor 31 rotates, the first exciting coil 32 also rotates.
  • the rotor coil groups are arranged so that the electrical angle is four times the mechanical rotation angle of the first rotor 31. Have been.
  • the electric angle is four times.
  • four pairs of N and S poles are configured.
  • mechanically high speed is performed electrically with gears and the like, and the resolution of the rotation angle is 4 times.
  • rotation angle means this electrical angle unless otherwise specified.
  • the first exciting coil 32 of the first resolver 15 s is wound around a slot of the first rotor 31.
  • One end of the first exciting coil 32 is supplied with an AC exciting voltage (formula (1) described later) from the output port 52 a of the CPU 52, and the other end thereof is connected to a common ground wire 46.
  • the second exciting coil 42 of the second resolver 16 s is wound around a slot of the second rotor 41. According to the ⁇ f rule, an AC excitation voltage (formula (1) described later) is applied to the second excitation coil 42 from the output port 52a of the CPU 52, and a common ground wire 46 is connected to the other end. It is connected.
  • the exciting coils 32, 42 constitute a transformer together with coils (not shown) built in the rotors 31, 41. Illustration The excitation voltage is applied to the excitation coil groups 32 and 42 by the voltage generated in the non-activated coil.
  • a non-contact type brush is described as a method of applying a non-contact type transformer. May be used.
  • the excitation voltage is expressed by equation (1).
  • the exciting current is expressed by equation (2).
  • amplitude of excitation voltage (volt)
  • angular velocity of excitation voltage (rad / s)
  • the first cos phase coil 36 of the first resolver 15s is wound concentrically with the first rotor 31 in a slot of a stator fixed around the first rotor 31.
  • the first cos phase voltage generated at one end is input to the input port 52b of the CPU 52, and the other end is connected to the common ground wire 46.
  • the first cos phase voltage (Equation (5) described later) is an AC rotation angle voltage whose amplitude increases and decreases depending on the cos value of the rotation angle ⁇ 1 of the first rotor 31 (Equation (3) ) Is a voltage obtained by superimposing the impedance 48 of the common ground line 46 and the AC bias voltage (Equation (4) described later) caused by the exciting current.
  • the rotation angle voltage of the first cos phase voltage is expressed by equation (3).
  • Vcosl EK (T) sin ( ⁇ + ⁇ ( ⁇ )) cos ( ⁇ 1) (3)
  • the bias voltage is expressed by equation (4).
  • Vbias R (T) Isin ( ⁇ + ⁇ ( ⁇ )) (4)
  • Equation (5) The lcos phase voltage is expressed by equation (5), which is obtained by adding equation (3) and equation (4).
  • VcoslT EK (T) sin ( ⁇ + ⁇ ( ⁇ )) cos ( ⁇ 1) + R ( ⁇ ) Isin ( ⁇ +] 3 ( ⁇ ))
  • ⁇ ( ⁇ ) transformer efficiency (unitless)
  • a (T) phase difference (rad) of the first cos phase voltage with respect to the excitation voltage
  • ⁇ 1 first rotation angle (rad) of the first rotor
  • R (T) This is the impedance ( ⁇ ) of the earth conductor.
  • the first sinusoidal coil 34 of the first resolver 15 s is placed concentrically with the first rotor 31 and in the slot of the stator fixed around the first rotor 31, and the first cos It is wound around the phase coil 36 with a phase difference of 90 degrees in electrical angle.
  • the first sin phase coil 34 the first sin phase voltage generated at one end is input to the input port 52c of the CPU 52, and the other end is connected to the common ground line 46.
  • the lsin phase voltage (Equation (7) described later) is an AC rotation angle voltage whose amplitude increases and decreases depending on the sin value of the rotation angle 01 of the first rotor 31 (Equation (6) described later).
  • this is a voltage obtained by superimposing the impedance 48 of the common ground line 46 and the AC bias voltage (Equation (4) described above) caused by the exciting current.
  • Vsinl EK (T) sin ( ⁇ + ⁇ ( ⁇ )) sin ( ⁇ l) (6)
  • Equation (7) The l-sin phase voltage is expressed by equation (7), which is obtained by adding equation (6) and equation (4).
  • VsinlT EK (T) sin ( ⁇ + ⁇ ( ⁇ )) sin ( ⁇ 1) + R ( ⁇ ) lsin ( ⁇ + ⁇ ( ⁇ ))
  • the second cos phase coil 44 and the second sin phase coil 43 of the second resolver 16 s are also connected to the common ground wire 46.
  • the other basic configuration is the same as that of the first resolver 15s, and thus the description is omitted.
  • the first excitation coil 31 of the first resolver 15 s the lco 5-phase coil 36, the lsin phase coil 34, the second excitation coil 42 of the second resolver 16 s, and the second cos phase coil 44. Since the second sin phase coil 43 is connected to the common ground wire 46 and grounded, the number of wires can be greatly reduced as compared to the case where it is connected to six separate ground wires.
  • the correction process may be performed at a certain time interval, or may be performed when a trigger for starting the temperature correction process is performed.
  • the driver rotates the handle 11 shown in FIG. 1 to rotate the electrical angle ⁇ 1 of the first rotor 31 from 0 to 360 degrees.
  • the CPU 52 samples the first sin phase voltage of the first resolver 15 s at a sampling interval of 50 ⁇ s, and stores the data in the RAM 58.
  • the AC waveform whose amplitude increases and decreases depending on sin ( ⁇ 1) as shown in Fig. 3. Becomes However, the waveform is actually much shorter than the waveform shown in Fig. 3. For example, assuming that the rotation frequency of the excitation voltage is 5 kHz, the cycle of the first sin phase voltage is 200 S, and if it takes one second for one rotation of the electric angle of the steering wheel to be actually rotated, 500 cycles are required for one cycle of the steering wheel. A pulse wave will be included.
  • the CPU 52 performs a process of detecting a voltage data group including the maximum peak value among the first sin phase voltage data group.
  • the rotation angle voltage also has a peak value.
  • a voltage data group in which the electrical angle 01 falls within the range (1 degree) of 89.5 degrees to 90.5 degrees is sampled.
  • the CPU 52 performs a process of detecting a voltage data group including the maximum bottom value from the first sin phase voltage data group.
  • the rotation angle voltage also has the bottom value.
  • a voltage data group whose electrical angle 01 falls within a range (1 degree) of 269.5 degrees to 270.5 degrees is sampled.
  • data in the range L2 in Fig. 3 is sampled.
  • Figures 4 (a) and 4 (b) are graphs with time on the horizontal axis and voltage on the vertical axis.
  • Fig. 4 (a) shows the first sin phase voltage data group near the maximum peak value, and the rotation angle voltage and bias voltage that make up this data group.
  • Fig. 4 (b) shows the first sin phase voltage data group near the maximum bottom value, and the rotation angle voltage and bias voltage that compose it.
  • FIG. 4 is the period of the first sin phase voltage, which is 200 ⁇ s in the present embodiment.
  • is the sampling interval of the first sin phase voltage by the CPU 52, which is 50 ⁇ s in the present embodiment.
  • the reference timing is such that the time elapsed from the start of the application of the excitation voltage is a timing that is an integral multiple of the period P.
  • the bias voltage including the temperature element is calculated by dividing the added value by 2.
  • the time required for the rotational angular velocity constituting the rotational angular voltage calculated by the above means is taken at two points, and the rotational angular voltage value at that time is read.
  • the values of two parameters including the temperature element that constitutes the rotation angle voltage are obtained.
  • two points of time required for the rotational angular velocity constituting the bias voltage calculated by the above means are taken, and the bias voltage value at that time is read.
  • the values of two parameters including the temperature element that constitutes the bias voltage are obtained.
  • the above contents can be described by a general formula as follows.
  • the general expression (8) for the first sin-phase voltage data group having the maximum peak value and the general expression (9) for the first sin-phase voltage data group having the maximum bottom value are represented by the following expressions.
  • Vsinlmax EK (T) sin ( ⁇ + ⁇ ( ⁇ )) sin (90 degrees) + R (T) Isin ( ⁇ + ⁇ (T))
  • Vsinlmin ⁇ ( ⁇ ) sin ( ⁇ + ⁇ ( ⁇ )) sin (270 degrees) + R ( ⁇ ) Isin ( ⁇ + ⁇ ( ⁇ ))
  • VsinlT is a value taken into the CPU 52 via the input port as the lsin phase voltage.
  • ⁇ , ⁇ , and I are values stored in the EEPROM 62, and the temperature-dependent elements K (T), hi (T), R (T), and j3 (T) are also calculated by the above-described calculation. I have.
  • This resolver has a configuration in which there is one excitation coil on the rotor side and two output coils on the stator side, but there are two excitation coils on the stator side and output coils on the rotor side. Of course, it may be applied to a resolver having one or two components.
  • the rotation angle detection device and the temperature correction method according to the present invention convert the rotation of the steering wheel by the driver into the axial motion of a rack shaft by a rack and pinion mechanism, and convert the axial motion of the rack shaft to a steering force by an electric motor. It is suitable for use in electric power steering systems for automobiles that amplify and assist the vehicle and deflect the wheels via tie rods and knuckle arms.

Description

明 細 書 回^^検出装置とその 去 技術分野
本発明は、 回転角検出装置とその温度補正方法、 特にその導出方法に関するも のである。 背景技術
従来のレゾルバを用いて回転角を検出する回転角検出装置としては、 例えば特願 2 0 0 2 - 1 2 7 1 7 3号公報 (以下、 従来例と称す) に記載されているものが ある。 従来例には、 第 5図に示す様に、 励磁コイル 1 2 2と cos相コイル 1 2 8 と、 sin相コイル 1 3 0を共通のアース線 1 4 6を用いてアースした場合、 sin 相コイル 1 3 0の端子 1 3 6には、 振幅がロータの回転角 Θの sin値に依存して 増減する交流の回転角電圧に加えて、 アース線 1 4 6のインピーダンス 1 4 4と 励磁電流に起因する交流のバイァス電圧が重畳された電圧が出力されることが記 述されている。 この結果、 sin相コイル 1 3 0の端子 1 3 6から出力される電圧 から得られるロータ 1 2 2の回転角の検出精度が低下してしまうという問題が生 じる。 この課題を解決するために従来例では以下の回転角検出装置が開示されて いる。 まずハンドルをゆつくり 1回転させ sin相電圧をサンプリングして RAM に格納する。 次に R AMに格納したデータから最大ピーク値 (ハンドル角で 9 0 度) 付近のデータと最大ボトム値 (ハンドル角で 2 7 0度) 付近のデータを sin 相電圧 1周期で 4点選択し、 それらを順次加算する。 そしてこれらの加算データ 群の値のそれぞれを 2で割ると、バイアス電圧のみを導出することができる。 sin 相電圧からこのバイアス電圧を減算すると回転角電圧が求まる。 そしてこの回転 角電圧より回転角が導出できる。
しカゝしながら、 上記従来例にあっては、 時々刻々変化する温度変化に対しては 充分な考慮がなされていなかった。 例えば、 インピーダンス 1 4 4の抵抗 が周 囲温度の変化により温度ドリフトし、その結果、 sin相コィノレ 1 3 0の端子 1 3 6 から出力される電圧もドリブトしてしまうため、 高精度な回転角を検出できない という未解決の課題がある。
そこで、 本発明は、 上記従来例の未解決の課題に着目してなされたものであり 時々刻々変化する温度変化による回転角誤差をなくし、 高精度な回転角検出装置 を提供することを目的としている。 発明の開示
第 1の発明は、 回転するロータと、 ロータに固定されており、 一端に交流の励 磁電流が印加され、 他端にアース線が接続されている励磁コイルと、 ロータの周 囲に固定されており、 一端から出力電圧が取り出され、 他端に前記アース線が接 続されており、 振幅がロータの回転角に依存して増減する交流の回転角電圧に、 アース線のインピーダンスと励磁電流に起因する交流バイアス電圧が重畳した電 圧を出力するステータコイルを有する回転角検出装置において、 基準タイミング からの経過時間との関係で、 温度に依存する要素の値を算出するのに必要なデー タを記憶している記憶手段と、 前記記憶手段に記憶されるデータを減算する減算 手段によつて前記交流の回転角電圧を求める回転角電圧検出手段と、 前記記憶手 段に記憶されるデータを加算する加算手段によつて前記交流バイァス電圧を求め るバイァス検出手段と、 前記回転角電圧検出手段と前記バイァス検出手段とから
、 少なくとも異なった 2点以上でサンプリングした値で交流回転角電圧の振幅値 と交流回転角電圧の基準タイミングに対する位相差、 および交流バイアス電圧の 振幅値と交流バイアス電圧の基準タイミングに対する位相差を求める手段を備え た回転角検出装置である。
第 1の発明によれば、 ロータがステータコイルに対して回転すると、 ステータ コィルの一端に、 振幅がロータの回転角に依存して増減する交流の回転角電圧に 、 アース線のインピーダンスと励磁電流に起因する交流バイアス電圧が重畳した 出力電圧が発生する。 温度に依存する要素の値を算出するのに必要なデータを記 憶しているデータ記憶手段は、 基準タイミングからの経過時間との関係で、 交流 回転角電圧と交流バイアス電圧を算出するのに必要なデータを記憶している。 デ ータ記憶手段は、 ロータが回転したときの出力電圧を順次サンプリングして記憶 する。 回転角電圧検出手段は、 記憶手段に記憶されたデータの基準タイミングか らの経過時間が等しい第 1出力電圧と第 2出力電圧を減算手段によつて減算して 交流の回転角電圧を求める。 バイアス検出手段は、 記憶手段に記憶されたデータ の基準タイミングからの経過時間が等しい第 1出力電圧と第 2出力電圧を加算手 段によって加算して交流バイアス電圧を求める。 少なくとも異なった 2点以上で サンプリングした値で回転角電圧検出手段とバイアス検出手段とによって演算し た交流回転角電圧の振幅値と、 交流回転角電圧の基準タイミングに対する位相差 および交流バイァス電圧の振幅値と、 交流バイァス電圧の基準タイミングに対す る位相差を求める。 これらの交流回転角電圧の振幅値と、 交流回転角電圧の基準 タイミングに対する位相差おょぴ交流バイアス電圧の振幅値と、 交流バイアス電 圧の基準タイミングに対する位相差を使用することによって、 時々刻々変化する 温度変化に影響されない高精度な回転角を検出することができる。
第 2の発明は、 上述の第 1の発明に係る回転角検出装置において、 ロータが回 転したときの前記出力電圧を順次サンプリングして記憶する手段と、 記憶された 出力電圧群の中で最大ピーク値を含む少なくとも 1周期分の第 1出力電圧群を特 定する手段と、 記憶された出力電圧群の中で最大ボトム値を含む少なくとも 1周 期分の第 2出力電圧群を特定する手段と、 特定された前記第 1出力電圧群と前記 第 2出力電圧群について、 基準タイミングからの経過時間が等しい第 1出力電圧 と第 2出力電圧を順次減算する手段および加算する手段を備えたことである。 第 2の発明によれば、 回転角電圧にバイァス電圧が重畳した出力電圧がピーク 値となる電気角では、 回転角電圧もピーク値となり、 ボトム値となる電気角では 、 回転角電圧もボトム値となるので、 記憶された出力電圧群の中で最大ピーク値 を含む少なくとも 1周期分の第 1出力電圧群を特定し、 記憶された出力電圧群の 中で最大ボトム値を含む少なくとも 1周期分の第 2出力電圧群を特定し、 基準タ ィミングからの経過時間が等しい第 1出力電圧と第 2出力電圧を順次減算および 加算して交流の回転角電圧および交流バイアス電圧を求めている。
また、 第 3の発明は、 振幅がロータの回転角に依存して増減する交流の回転角 電圧に、 アース線のィンピーダンスと励磁電流に起因する交流バイアス電圧が重 畳した電圧を出力する回転角検出装置の出力電圧に影響を与える温度に対する温 度捕正方法であって、 ロータを回転させながら前記出力電圧を順次サンプリ する第 1工程と、 サンプリングした出力電圧群の中で最大ピーク値を含む少なく とも回転角の 1周期分の第 1出力電圧群を特定する第 2工程と、 サンプリングし た出力電圧群の中で最大ポトム :を含む少なくとも回転角の 1周期分の第 2出力 電圧群を特定する第 3工程と、 特定された前記第 1出力電圧群と前記第 2出力電 圧群につ!/、て、 基準タィミングからの経過時間が等しレ、前記第 1出力電圧と前記 第 2出力電圧を順次減算して交流回転角電圧を求める第 4工程と、 基準タイミン グからの経過時間が等しレヽ前記第 1出力電圧と前記第 2出力電圧を順次加算して 交流バイアス電圧を求める第 5工程と、 前記第 4工程と、 前記第 5工程から少な くとも異なった 2点以上でサンプリングした値で前記交流回転角電圧の振幅値と 、 前記交流回転角電圧の基準タイミングに対する位相差および前記交流バイアス 電圧の振幅値と、 前記交流バイアス電圧の基準タイミングに対する位相差を求め る第 6工程と、 を有する温度補正方法である。
第 3の発明に係る温度捕正方法によれば、 ロータを回転させながら出力電圧を 順次サンプリングすることで、 サンプリングした出力電圧群の中で最大ピーク値 を含む少なくとも 1周期分の第 1出力電圧群を特定することができる。 また、 サ ンプリングした出力電圧群の中で最大ボトム値を含む少なくとも 1周期分の第 2 出力電圧群も特定することができる。 この特定された第 1出力電圧群と第 2出力 電圧群について、 基準タイミングからの経過時間が等しい第 1出力電圧と第 2出 力電圧を順次減算して交流回転角電圧を求めることができる。 また、 基準タイミ ングからの経過時間が等しい第 1出力電圧と第 2出力電圧を順次加算して交流バ ィァス電圧を求めるこができる。 交流回転角電圧と交流バイアス電圧から少なく とも異なった 2点以上でサンプリングした値で交流回転角電圧の振幅値と、 交流 回転角電圧の基準タイミングに対する位相差および交流バイアス電圧の振幅値と、 交流バイアス電圧の基準タイミングに対する位相差を求めることができる。 この 求められた交流回転角電庄の振幅値と位相差および交流バイァス電圧の振幅値と 位相差を使用することにより、 時々刻々変化する温度変化に影響されない高精度 な回転角検出装置が得られる。 図面の簡単な説明
第 1図は、 本発明の実施の形態に係るトルク検出装置が適用された電動パワー ステアリングシステム構成図であり、 第 2図は、 トルク検出装置のブロック図で あり、 第 3図は、 ロータの電気角 3 6 0度回転時の出力電圧のグラフ図であり、 第 4図は、 最大ピーク値及び最大ボトム値と各電圧波形を示す図であり、 第 5図 は、 従来の回転角検出装置のブロック図である。 発明を実施するための最良の形態
第 1図に本発明が適用される電動パワーステアリングシステム 1 0の構成を示 す。このシステム 1 0は、主に ECU 2 0と第 1レゾルバ 1 5 sで構成される第 1回 転角検出装置と、 ECU 2 0と第 2レゾルバ 1 6 sで構成される第 2回転角検出装置 からなる。 また、 これらの ECU 2 0、第 1レゾノレバ 1 5 sおよび第 2レゾルバ 1 6 s によって運転者のハンドル操舵をトルク値に変換して検出するトルク検出装置 が構成されている。 この電動パワーステアリングシステム 1 0では、 ハンドル 1 1がハンドル軸 1 2の一端側が接続されており、 ハンドル軸 1 2の他端佃 Jには、 トーションバー 1 4の一端側に接続されている。 トーシヨンバー 1 4の他端側に は、 出力軸を介してピニオン軸 1 3が接続されている。 ピニオン軸 1 3のピ-ォ ンはラック 1 9と嚙合っている。 ラック 1 9とラックハウジング 1 8 Hによって ラック機構 1 8が構成されている。 ラック機構 1 8によって、 ラック 1 9はラッ クハウジング 1 8 H内を軸方向に往復動するようになっている。 ラック機構 1 8 の両端には、 タイロッド 2 1の一端が装着されている。 タイロッド 2 1の他端に は、 ナックルアーム 2 2の一端が連結されている。 ナックルアーム 2 2の他端に は車輪 2 3が連結されている。
上記したハンドル軸 1 2の下端側の周囲には、 第 1レゾルバ 1 5 sが設けられ ている。 第 1レゾノレバ 1 5 s はハンドル軸 1 2の第 1回転角 θ 1を検出する第 1 回転角の検出部として機能する。 トーションバー 1 4の下端側の周囲には、 第 2 レゾルバ 1 6 sが設けられている。第 2レゾルバ 1 6 sはピニオン 1 3の第 2回転 角 0 2を検出する第 2回転角の検出部として機能する。 第 1レゾ/レバ 1 5 s と第 2レゾルバ 1 6 sは ECU 2 0に電気的に接続されている。 ECU 2 0、 第 1レゾルバ 1 5 sおよび第 2レゾルバ 1 6 sによってトルク検出装置 3 0が構成されている。 トルク検出装置を構成する ECU 2 0は第 1レゾルバ 1 5 s で検出した第 1回転角 0 1と第 2レゾルバ 1 6 s で検出した第 2回転角 Θ 2から運転者がハンドル 1 1 を操舵することで発生した操舵トルク値 Τ = ΚΤ ( θ 1 - θ 2 ) を演算する。 尚 Κτはトーシヨンバー 1 4のバネ定数である。 ECU 2 0はモータ Μに接続されてお り、 演算したトルク値 Tを所定のトルク Z電流値変換のマップにより指令電流に 変換し、 電流制御部を通して PWM (パルス幅変調) 制御する。 トルク検出装置 3 0、 1 5 s、 1 6 sのより具体的な構成については後述する。 モータ Mは発生し たアシストトルクを減速機 1 7を経由してラック機構 1 8に伝達する。
この電動パワーステアリングシステム 1 0の動作を説明する。 まず、 運転者が ハンドル 1 1を操舵すると、 ハンドル軸 1 2が回転する。 ハンドル軸 1 2が回転 するとトーシヨンバー 1 4を介してピニオン軸 1 3も回転する。 ピニオン軸 1 3 が回転するとそのピニオンと嚙合ったラック 1 9が軸方向に動き、 タイロッド 2 1とナックルアーム 2 2を介して車輪 2 3の走向方向が変化する。 運転者がハン ドル 1 1を操舵することで発生したトルクは、 トルク検出装置 3 0、 1 5 s、 1 6 sによって検出される。トルク検出装置を構成する ECU 2 0はこのトルクに基づい てモータ Mを制御する。
トルク検出装置 3 0が検出した操舵トルクが小さいと、 ECU 2 0はモータ Mに小 さなアシストトルクを発生させるように制御する。 トルク検出装置 3 0が検出し た操舵トルクが大きいと、 ECU 2 0はモータ Mに大きなアシストトルクを発生させ るように制御する。 モータ Mで発生したアシストトルクはラック機構 1 8に伝達 され、 ラック 1 9の動きを補助する。 従って運転者は軽い力でハンドル 1 1を操 舵することができる。
第 2図にトルク検出装置 3 0のブロック図を示す。 トルク検出装置 3 0は、 上 述したように ECU 2 0と第 1レゾルバ 1 5 sで構成される第 1回転角検出装置と、 ECU 2 0と第 2レゾルバ 1 6 sで構成される第 2回転角検出装置を含む。 ECU 2 0 は CPU 5 2と、 CPU 5 2と内部バス 5 3を介して接続された ROM 5 6、麵 5 8およ び EEPR0M (電気的消去可能 ROM) 5 9で構成されている。 CPU 5 2は入力ポート 5 2 b〜5 2 eや出力ポート 5 2 a等のポートを有している。入力ポート 5 2 b〜5 2 eは CPU 5 2の内部で A/D変換器に接続され、アナログ信号がデジタル信号に変 換され CPU 5 2で処理される。また出力ポート 5 2 aは CPU 5 2の内部で DZA変 换器に接続され、 デジタル信号がアナログ信号に変換され、 第 1レゾルバ 1 5 s や第 2レゾルバ 1 6 sおよびモータ Mに出力される。 R0M 5 6には、後述する温度 補正の導出処理を行なうためのプログラムやトルク算出のためのプログラム等が 格納されている。
第 1レゾルバ 1 5 s は第 1ロータ 3 1と、 第 1励磁コイル 3 2と、 第 1 sin相 コイル (ステータコイル) 3 4と、 第 l cos相コイル (ステータコイル) 3 6等 を備えている。第 2レゾルバ 1 6 sは第 2ロータ 4 1と、第 2励磁コイル 4 2と、 第 2 sin相コィノレ(ステ一タコィノレ) 4 3と、第 2 cos相コイル(ステ一タコィノレ) 4 4等を備えている。 第 1ロータ 3 1は第 1励磁コイル 3 2を有する。 第 1ロー タ 3 1の回転に伴って第 1励磁コイル 3 2も回転する。 本実施例では具体的な図 示は省略するが、 回転角検出精度を高めるため、 第 1ロータ 3 1の機械的な回転 角に対して、 電気角が 4倍となるようにロータコィノレ群が配置されている。 電気 角を 4倍とするため、 N極と S極の対が 4つ構成され、 一般的にはギアなどで機 械的に行なう增速を電気的に行なつており、回転角の分解能は 4倍となる。なお、 以下で「回転角」というときは特に断りがない限りこの電気角を意味するものとす る。
第 1レゾルバ 1 5 s の第 1励磁コイル 3 2は、 第 1ロータ 3 1のスロットに卷 かれている。 この第 1励磁コイル 3 2は、一端側では CPU 5 2の出力ポート 5 2 a から交流の励磁電圧 (後述する式 (1 ) ) が印加され、 他端には共通アース線 4 6が接続されている。 また、 第 2レゾルバ 1 6 s の第 2励磁コイル 4 2は、 第 2 ロータ 4 1のスロットに卷かれている。 この第 2励磁コィノレ 4 2にも一端^ f則では CPU 5 2の出力ポート 5 2 aから交流の励磁電圧(後述する式(1 ) )が印加され、 他端には共通アース線 4 6が接続されている。 従って、 共通アース線 4 6には、 第 1励磁コイル 3 2に流れる第 1励磁電流と、 第 2励磁コイル 4 2に流れる第 2 励磁電流を合計した電流が流れる。 以下では、 この第 1励磁電流と第 2励磁電流 を合計した電流を単に「励磁電流」という。 励磁コイル 3 2、 4 2はロータ 3 1、 4 1に内蔵されている図示しないコイルと相俟って変圧器を構成する。 その図示 しないコイルに発生する電圧によって、 励磁コイル群 3 2、 42に励磁電圧が印 加される。 本実施例では外部から第 1ロータ 3 1および第 2ロータ 4 1の励磁コ ィル群 3 2、 4 2に励磁電圧を印加する方法として非接触式の変圧器を記述した 力 接触式のブラシを用いてもよい。
励磁電圧は式 (1) で表わされる。
Ve=Esincot (1)
励磁電流は式 (2) で表わされる。
Ie=Isin (ωΐ+;3) (2)
ここで、 Ε :励磁電圧の振幅 (volt) 、 ω :励磁電圧の角速度 (rad/s)
I:励磁電流の振幅 (amp) 、 β :励磁電流の励磁電圧に対する位相差 (rad) で ある。 なお、励磁電圧の角速度 ωには ω== 2 π/Ρの関係があり、 この時の Ρは周 期 (s) である。 本実施例では Ρ= 2◦◦ /xsに設定されている。
第 1レゾルバ 1 5s の第 1 cos相コイル 3 6は第 1ロータ 3 1と同心上で第 1 ロータ 3 1の周囲に固定されているステータのスロット内に巻かれている。 この 第 1 cos相コイル 36は、一端に生じた第 1 cos相電圧が CPU 5 2の入力ポート 5 2bに入力され、他端には共通アース線 4 6が接続されている。第 1 cos相電圧 (後 述する式 (5) ) は、 振幅が第 1ロータ 3 1の回転角 θ 1の cos値に依存して増 減する交流の回転角電圧 (後述する式 (3) ) に、 共通アース線 46のインピー ダンス 48と励磁電流に起因する交流のバイアス電圧 (後述する式 (4) ) が重 畳した電圧である。
第 1 cos相電圧の回転角電圧は式 (3) で表わされる。
Vcosl=EK (T) sin (ωΐ+α (Τ) ) cos (θ 1) (3)
バイアス電圧は式 (4) で表わされる。
Vbias=R (T) Isin (ωί+β (Τ) ) (4)
第 lcos相電圧は式 (3) と式 (4) を加算した式 (5) で表わされる。
VcoslT=EK (T) sin (ωΐ+α (Τ) ) cos (θ 1) +R (Τ) Isin (ωΐ+]3 (Τ) )
(5)
ここで、 Κ (Τ) : トランス効率 (無単位) 、 a (T) :第 1 cos相電圧の励磁電 圧に対する位相差 (rad) 、 θ 1 :第 1ロータの第 1回転角 (rad) 、 R (T) :共 通アース線のインピーダンス (Ω) である。 また記号の後ろに (T) が付加され ているものは、 その状態が温度に依存することを示している。
次に、第 1レゾルバ 1 5 sの第 1 sin相コイル 34は第 1ロータ 3 1と同心上で 第 1ロータ 3 1の周囲に固定されているステータのスロット内に先に記述した第 1 cos相コイル 3 6と電気角で 9 0度の位相差を持って卷かれている。 この第 1 sin相コイル 34は、 一端に生じた第 1 sin相電圧が CPU 5 2の入力ポート 5 2c に入力され、 他端には共通アース線 4 6が接続されている。 第 lsin相電圧 (後 述する式 (7) ) は、 振幅が第 1ロータ 3 1の回転角 0 1の sin値に依存して増 減する交流の回転角電圧 (後述する式 (6) ) に、 共通アース線 46のインピー ダンス 48と励磁電流に起因する交流のバイアス電圧 (前述した式 (4) ) が重 畳した電圧である。
第 lsin相電圧の回転角電圧は式 (6) で表わされる。
Vsinl=EK (T) sin (ωΐ+α (Τ) ) sin (θ l) (6)
第 l sin相電圧は式 (6) と式 (4) を加算した式 (7) で表わされる。
VsinlT=EK (T) sin (ωί+α (Τ) ) sin ( θ 1 ) + R (Τ) lsin (ωί+β (Τ) )
(7)
ここで、 使用した記号は式 (1) 〜式 (5) で説明したものと同様である。
第 2レゾルバ 1 6 sの第 2 cos相コイル 44、第 2 sin相コイル 43も、共通の アース線 46に接続されている。 その他の基本的な構成についても第 1レゾルバ 1 5sと同様であるため、 説明を省略する。
またこのように、第 1レゾルバ 1 5sの第 1励磁コイル 3 1、第 lco5相コイル 3 6、第 lsin相コイル 34と、第 2レゾルバ 1 6 sの第 2励磁コイル 42、第 2 cos相コイル 44、第 2 sin相コイル 4 3は共通のアース線 4 6に接続されてァー スされているので、 別々の 6本のアース線に接続する場合に比べて配線数を大幅 に減少できる。
次に、本実施例のトルク検出装置 3 0を用いて温度の影響を補正する処理内容 を説明する。 本実施例では補正処理をリアルタイムに実施する例を示すが、 補正 処理はある時間間隔で実施しても、 また温度補正処理開始のトリガ等がかかつた ときに実施しても勿論よい。 まず、励磁電圧の印加開始後に、運転者が第 1図に示すハンドル 1 1を回転さ せて、 第 1ロータ 3 1の電気角 θ 1を 0〜3 6 0度まで回転させたとする。 この 回転動作が行なわれると回転動作中、 CPU 5 2は 5 0 μ sのサンプリング間隔で第 1レゾルバ 1 5 sの第 1 sin相電圧をサンプリングして、そのデータを RAM 5 8に 格納する。
サンプリングした第 1 sin相電圧データ群を横軸を回転角 0 1とし、 縦軸を電 圧値としてプロットすると第 3図に示す様に振幅が sin ( θ 1 ) に依存して増減 する交流波形となる。 但し、 実際には第 3図に示す波形より波長の非常に短い波 形である。例えば励磁電圧の回転周波数を 5 kHzとすると第 1 sin相電圧の周期は 2 0 0 S となり実際に回転させられるハンドルが電気角 1回転に 1秒かかった とするとハンドル 1周期に 5 0 0 0パルスの波 が含まれることになる。
CPU 5 2は、第 1 sin相電圧データ群のうち、最大ピーク値を含む電圧データ群 を検出する処理を行なう。 回転角電圧にバイアス電圧が重畳した出力電圧がピー ク値となる電気角では、 回転角電圧もピーク値となる。 回転角電圧がピーク値と なるのは sin ( θ 1 ) = 1、 即ち電気角 0 1 = 9 0度のときである。 本実施例で は、 電気角 0 1が 8 9 . 5度〜 9 0 . 5度の範囲 (1度) に含まれる電圧データ 群をサンプリングする。 イメージ的には第 3図の範囲 L 1のデータをサンプリン グする。 また CPU 5 2は、第 1 sin相電圧データ群のうち、最大ボトム値を含む電 圧データ群を検出する処理を行なう。 回転角電圧にバイァス電圧が重畳した出力 電圧がボトム値となる電気角では、 回転角電圧もボトム値となる。 回転角電圧が ボトム値となるのは sin ( θ 1 ) =ー 1、 即ち電気角 6 1 = 2 7 0度のときであ る。 本実施例では、 電気角 0 1が 2 6 9 . 5度〜 2 7 0 . 5度の範囲 (1度) に 含まれる電圧データ群をサンプリングする。 イメージ的には第 3図の範囲 L 2の データをサンプリングする。
第 4図 (a) 、 (b) は横軸を時間とし、 縦軸を電圧としたグラフである。 第 4 図 (a) は最大ピーク値付近の第 1 sin相電圧データ群と、 これを構成する回転角 電圧およびバイアス電圧を示す。 第 4図 (b) は最大ボトム値付近の第 1 sin相電 圧データ群と、これを構成する回転角電圧およびバイアス電圧を示す。第 4図 (a)、
(b)は、それぞれ第 3図の範囲 L 1と範囲 L 2の時間軸を拡大して示したもので ある。 第 4図の Pは第 1 sin相電圧の周期であり、 本実施例では 200 μ sであ る。第 4図の τは CPU 5 2による第 1 sin相電圧のサンプリング間隔であり、本実 施例では 5 0 μ sである。
上記のようにして最大ピーク値を含む何周期分かの第 1 sin相電圧データ群と、 同じく最大ポトム値を含む何周期分かの第 1 sin相電圧データ群をサンプリング した後、 基準タイミングからの経過時間が等しいデータ同士を順次減算する。 本 実施例では基準タイミングを励磁電圧の印加開始時からの時間経過が周期 Pの整 数倍のタイミングになるようにしている。 上記減算値を 2で割ることにより温度 要素を含んだ回転角電圧が算出される。
次に上記と同じく最大ピーク値を含む何周期分かの第 1 sin相電圧データ群と、 同じく最大ポトムィ直を含む何周期分かの第 1 sin相電圧データ群をサンプリング した後、 基準タイミングからの経過時間が等しいデータ同士を順次加算する。 上 記加算値を 2で割ることにより温度要素を含んだバイアス電圧が算出される。 上記手段により算出された回転角電圧を構成している回転角速度にかかる時間 を 2点とり、 その時の回転角電圧値を読み取る。 すると回転角電圧を構成してい る温度要素を含んだ 2つのパラメータの値が求まる。 また同じく上記手段により 算出されたバイアス電圧を構成している回転角速度にかかる時間を 2点とり、 そ の時のバイァス電圧値を読み取る。 するとバイアス電圧を構成している温度要素 を含んだ 2つのパラメータの値が求まる。 以上求められた温度要素を含んだ 4つ のパラメータを使用することによって、 いかなる時間に読み込んだ回転角も実時 間の温度変化の影響を受けない高精度な角度情報となる。
上記の内容を一般式で説明すると次のようになる。 最大ピーク値の第 1 sin相 電圧データ群の一般式 (8) と、 最大ボトム値の第 1 sin相電圧データ群の一般 式 (9) は次の式で表わされる。
Vsinlmax=EK (T) sin (ωί+α (Τ) ) sin (90度) +R (T) Isin (ωί+β (T) )
(8)
Vsinlmin= ΕΚ (Τ) sin (ωί+α (Τ) ) sin (270度) +R (Τ) Isin (ωΐ+β (Τ) )
(9)
式 (8) 力 ^式 (9) を減算して 2で割ると、 (Vsinlmax- Vsinlmin) /2=EK (T) sin (ωί+α (T) ) 1S 即ち温度要素 を含んだ回転角電圧が求まり、時間 tを変えて最低 2点を測定すれば、 K (T)、 a (T) が求まる。 また、 式 (8) と式 (9) を加算して 2で割ると、
(Vsinlmax+ Vsinlmin) /2=R (T) Isin (cot+]3 (T) ) 1S 即ち温度要素 を含んだバイアス電圧が求まり、時間 tを変えて最低 2点を測定すれば、 R (T)、 β (Τ) が求まる。
前述した式 (7) について、 VsinlTは第 lsin相電圧として入力ポートを介 して CPU52に取り込まれる値である。 また Ε、 ω、 Iは EEPROM 62に記憶され ている値であり、 温度に依存する要素 K (T) 、 ひ (T) 、 R (T) 、 j3 (T) も 前述の演算で算出されている。 それらを使って式 (7) を変形すると、
sin (θ 1) ={ VsinlT 一 R (T) Isin (ωΐ+β (T) ) }/ΕΚ (Τ) sin (ω t+a (Τ) )
となり温度変ィヒに影響されない 0 1を求めることが出来る。
以上、 本発明の具体例を詳細に説明したが、 これらは例示に過ぎず、 特許請求 の範囲を限定するものではない。 特許請求の範囲に記載の技術には、 以上に例示 した具体例を様々に変形、 変更したものが含まれる。
( 1 ) 上記実施例では、 回転角検出装置を 2つ備えたトルク検出装置に本発明 を適用した例を説明したが、 トルク検出装置ではない回転角検出装置に適用して も勿論よい。
(2) 本レゾルバは励磁コイルが回転子側に 1本あり、 出力コイルが固定子側に 2本ある構成を示したが、 励磁コイルが固定子側に 2本あり出力コイルが回転子 側に 1本または 2本ある構成のレゾルバに適用しても勿論よい。 産業上の利用可能性
本発明に係る回転角検出装置とその温度補正方法は、 運転者によるステアリン グホイールの回転をラックピニオン機構によってラック軸の軸動に変換し、 該ラ ック軸の軸動を電気モータにより操舵力を増幅して捕助し、 タイロッド及びナツ クルアームを介して車輪を偏向する自動車用の電気式動力操舵装置に使用するの に適している。

Claims

請 求 の 範 囲
1 . 回転するロータと、 ロータに固定されており、 一端に交流の励磁電流が印加 され、 他端にアース線が接続されている励磁コイルと、 ロータの周囲に固定され ており、 一端から出力電圧が取り出され、 他端に前記アース線が接続されており 、 振幅がロータの回転角に依存して増減する交流の回転角電圧に、 アース線のィ ンピーダンスと励磁電流に起因する交流バイアス電圧が重畳した電圧を出力する ステータコイルを有する回転角検出装置において、 基準タイミングからの経過時 間との関係で、 温度に依存する要素の値を算出するのに必要なデータを記憶して
Vヽる記憶手段と、 前記記憶手段に記憶されるデータを減算する減算手段によって 前記交流の回転角電圧を求める回転角電圧検出手段と、 前記記憶手段に記憶され るデータを加算する加算手段によって前記交流バイアス電圧を求めるバイアス検 出手段と、 前記回転角電圧検出手段と前記バイアス検出手段とから、 少なくとも 異なつた 2点以上でサンプリングした値で交流回転角電圧の振幅値と交流回転角 電圧の基準タイミングに対する位相差、 および交流バイアス電圧の振幅値と交流 バイアス電圧の基準タイミングに対する位相差を求める手段を備えた回転角検出
2 . ロータが回転したときの前記出力電圧を順次サンプリングして記憶する手段 と、 記憶された出力電圧群の中で最大ピーク値を含む少なくとも 1周期分の第 1 出力電圧群を特定する手段と、 記憶された出力電圧群の中で最大ボトム値を含む 少なくとも 1周期分の第 2出力電圧群を特定する手段と、 特定された前記第 1出 力電圧群と前記第 2出力電圧群について、 基準タィミングからの経過時間が等し い第 1出力電圧と第 2出力電圧を順次減算する手段および加算する手段を備えた ことを特徴とする請求項 1に記載の回転角検出装置。
3 . 振幅がロータの回転角に依存して増減する交流の回転角電圧に、 アース線の インピーダンスと励磁電流に起因する交流バイアス電圧が重畳した電圧を出力す る回転角検出装置の出力電圧に影響を与える温度に対する温度補正方法であって 、 ロータを回転させながら前記出力電圧を順次サンプリングする第 1工程と、 サ n ソ々、 'した出力電圧群の中で最大ピーク値を含む少なくとも回転角の 1周期 分の第 1出力電圧群を特定する第 2工程と、 サンプリングした出力電圧群の中で 最大ポトム値を含む少なくとも回転角の 1周期分の第 2出力電圧群を特定する第 3工程と、 特定された前記第 1出力電圧群と前記第 2出力電圧群について、 基準 タイミングからの経過時間が等しい前記第 1出力電圧と前記第 2出力電圧を順次 減算して交流回転角電圧を求める第 4工程と、 基準タイミングからの経過時間が 等しい前記第 1出力電圧と前記第 2出力電圧を順次加算して交流バイアス電圧を 求める第 5工程と、 前記第 4工程と、 前記第 5工程から少なくとも異なった 2点 以上でサンプリングした値で前記交流回転角電圧の振幅値と、 前記交流回転角電 圧の基準タイミングに対する位相差および前記交流バイアス電圧の振幅値と、 前 記交流バイアス電圧の基準タイミングに対する位相差を求める第 6工程と、 を有 する温度補正方法。
PCT/JP2003/006630 2002-05-29 2003-05-28 Detecteur d'angle de rotation et son procede de correction de temperature WO2003100353A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/506,679 US7138795B2 (en) 2002-05-29 2003-05-28 Rotation angle detector and its temperature correcting method
EP03730652A EP1508783B1 (en) 2002-05-29 2003-05-28 Rotational angle detector and its temperature correcting method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002155651A JP3953889B2 (ja) 2002-05-29 2002-05-29 回転角検出装置とその温度補正方法
JP2002-155651 2002-05-29

Publications (1)

Publication Number Publication Date
WO2003100353A1 true WO2003100353A1 (fr) 2003-12-04

Family

ID=29561429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/006630 WO2003100353A1 (fr) 2002-05-29 2003-05-28 Detecteur d'angle de rotation et son procede de correction de temperature

Country Status (4)

Country Link
US (1) US7138795B2 (ja)
EP (1) EP1508783B1 (ja)
JP (1) JP3953889B2 (ja)
WO (1) WO2003100353A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100439689C (zh) * 2005-05-18 2008-12-03 株式会社日立制作所 转角检测装置及其方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005047958A1 (de) 2005-10-06 2007-06-14 Jungheinrich Ag Antriebs- und Lenkvorrichtung für ein Flurförderzeug
JP4979352B2 (ja) * 2006-02-28 2012-07-18 日立オートモティブシステムズ株式会社 レゾルバ/デジタル変換器及び該レゾルバ/デジタル変換器を用いた制御システム
US7562591B2 (en) * 2006-06-26 2009-07-21 KRS Technologies Co. Steering angle sensor
JP5041419B2 (ja) * 2007-12-28 2012-10-03 東芝機械株式会社 レゾルバ装置およびレゾルバの角度検出装置とその方法
JP5040805B2 (ja) * 2008-05-19 2012-10-03 株式会社ジェイテクト 回転角度検出装置
US8115152B1 (en) 2008-06-03 2012-02-14 ADIC, Inc. Method of operating a photoconductor in an imaging system, and read-out circuit employing an AC-biased photoconductor
JP2010048760A (ja) * 2008-08-25 2010-03-04 Jtekt Corp レゾルバの異常検出装置および電気式動力舵取装置
JP5267031B2 (ja) * 2008-10-09 2013-08-21 株式会社ジェイテクト 電動パワーステアリング装置
JP4911271B1 (ja) * 2010-12-24 2012-04-04 トヨタ自動車株式会社 トルク検出装置
JP6489780B2 (ja) * 2014-09-25 2019-03-27 アイシン精機株式会社 制御装置
JP6550793B2 (ja) * 2015-02-27 2019-07-31 株式会社ジェイテクト 温度検出装置及び回転角検出装置
JP2018061350A (ja) * 2016-10-05 2018-04-12 ルネサスエレクトロニクス株式会社 半導体装置、モータ制御システム、及び半導体装置の制御方法
CN110987027B (zh) * 2019-11-14 2022-03-04 北京航天时代光电科技有限公司 一种双通道多对极旋转变压器的组合解算方法和系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0772025A1 (en) 1995-10-30 1997-05-07 Atsutoshi Goto Method for phase detection, for use in a position detection system
JP2000283861A (ja) * 1999-03-30 2000-10-13 Toyoda Mach Works Ltd トルク検出装置
EP1054238A2 (en) * 1999-05-19 2000-11-22 Atsutoshi Goto Method and apparatus for detecting position using phase-shifted signals
EP1090699A2 (en) * 1999-10-07 2001-04-11 Murata Kikai Kabushiki Kaisha Bending machine and its operation method
JP2002127173A (ja) 2000-10-23 2002-05-08 Neoex Lab Inc 中空構造物の補強具

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3851330A (en) * 1973-02-20 1974-11-26 Trw Inc Amplitude-to-phase conversion circuit
JP2515891B2 (ja) * 1989-09-20 1996-07-10 株式会社日立製作所 角度センサ及びトルクセンサ、そのセンサの出力に応じて制御される電動パワ―ステアリング装置
JP3173531B2 (ja) * 1992-09-18 2001-06-04 ソニー株式会社 位置検出方法
JP3624458B2 (ja) * 1995-04-10 2005-03-02 多摩川精機株式会社 ディジタル角度検出方法
JP3630410B2 (ja) * 2001-05-22 2005-03-16 三菱電機株式会社 位置検出装置および異常検出装置
JP3982319B2 (ja) 2002-04-26 2007-09-26 株式会社ジェイテクト 回転角検出装置の補正に用いるバイアス電圧の導出方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0772025A1 (en) 1995-10-30 1997-05-07 Atsutoshi Goto Method for phase detection, for use in a position detection system
JP2000283861A (ja) * 1999-03-30 2000-10-13 Toyoda Mach Works Ltd トルク検出装置
EP1054238A2 (en) * 1999-05-19 2000-11-22 Atsutoshi Goto Method and apparatus for detecting position using phase-shifted signals
EP1090699A2 (en) * 1999-10-07 2001-04-11 Murata Kikai Kabushiki Kaisha Bending machine and its operation method
JP2002127173A (ja) 2000-10-23 2002-05-08 Neoex Lab Inc 中空構造物の補強具

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1508783A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100439689C (zh) * 2005-05-18 2008-12-03 株式会社日立制作所 转角检测装置及其方法

Also Published As

Publication number Publication date
US7138795B2 (en) 2006-11-21
EP1508783A4 (en) 2005-12-28
EP1508783B1 (en) 2011-12-28
US20050127280A1 (en) 2005-06-16
EP1508783A1 (en) 2005-02-23
JP3953889B2 (ja) 2007-08-08
JP2003344109A (ja) 2003-12-03

Similar Documents

Publication Publication Date Title
WO2003100353A1 (fr) Detecteur d'angle de rotation et son procede de correction de temperature
US6694287B2 (en) Phase angle diagnostics for sinusoidal controlled electric machine
CN100522721C (zh) 电动式动力转向装置,及检测其角度检测器异常的方法
US6948382B2 (en) Angle detection device and torque sensor incorporating angle detection device
US7298967B2 (en) Electromagnetic sensor direct communication algorithm to a digital microprocessor
US20040095089A1 (en) Transient compensation voltage estimation for feedforward sinusoidal brushless motor control
JP5051404B2 (ja) トルク検出装置
JP4923730B2 (ja) レゾルバ角度検出における補償方法及びこれを用いた角度検出装置
US6931918B2 (en) Device and method for determining the rotary orientation of a motor through use of a resolver signal derived from the rotary orientation
JP6669318B2 (ja) 電動パワーステアリング装置、及び電動パワーステアリング装置用モータの回転角検出方法
US6525502B1 (en) Closed loop control of motor position and velocity
JP2003166803A (ja) 位置検出器の補正方法、及び、電気式動力舵取装置
JP4000896B2 (ja) モータ制御装置
CN104426439A (zh) 用于监测电机的旋转位置的方法和设备
JP4269278B2 (ja) ブラシレスモータの回転トルク方向検出装置
JP2002350181A (ja) レゾルバ及び回転角検出装置
JP3982319B2 (ja) 回転角検出装置の補正に用いるバイアス電圧の導出方法
EP2677292B1 (en) Torque detection device and electric power steering device
JP3847656B2 (ja) 角度検出装置における温度検出方法、角度検出装置及び角度検出装置を備えたアクチュエータ制御システム
JP2009133793A (ja) レゾルバの異常検出装置
JP3408238B2 (ja) レゾルバ/デジタル変換装置および変換方法
JP2012083279A (ja) トルク検出装置
JP2000055606A (ja) 位置検出装置
JP5459184B2 (ja) 電動パワーステアリング装置
JP2005247093A (ja) 車両の電動パワーステアリング装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10506679

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003730652

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003730652

Country of ref document: EP