WO2003100037A1 - Nouvelle bacterie produisant de l'ethanol et procede de production d'ethanol - Google Patents

Nouvelle bacterie produisant de l'ethanol et procede de production d'ethanol Download PDF

Info

Publication number
WO2003100037A1
WO2003100037A1 PCT/JP2003/006690 JP0306690W WO03100037A1 WO 2003100037 A1 WO2003100037 A1 WO 2003100037A1 JP 0306690 W JP0306690 W JP 0306690W WO 03100037 A1 WO03100037 A1 WO 03100037A1
Authority
WO
WIPO (PCT)
Prior art keywords
ethanol
clostridium
bacterium
strain
carbon
Prior art date
Application number
PCT/JP2003/006690
Other languages
English (en)
French (fr)
Inventor
Naomichi Nishio
Yutaka Nakashimada
Shigeyuki Watanabe
Hiroaki Otsuka
Osamu Chiyoda
Toru Tanaka
Original Assignee
Cosmo Oil Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Oil Co., Ltd. filed Critical Cosmo Oil Co., Ltd.
Priority to EP03733137A priority Critical patent/EP1550714A4/en
Priority to AU2003241854A priority patent/AU2003241854A1/en
Priority to BR0311412-0A priority patent/BR0311412A/pt
Priority to US10/515,920 priority patent/US20060051848A1/en
Publication of WO2003100037A1 publication Critical patent/WO2003100037A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • C12P7/065Ethanol, i.e. non-beverage with microorganisms other than yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/145Clostridium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the present invention relates to a bacterium capable of producing ethanol under high temperature conditions using a gaseous carbon compound such as carbon dioxide as a raw material, and an efficient method for producing ethanol using the same.
  • liquid fuel production methods include hydrocarbon production from natural gas, methanol production from syngas, liquefaction of coal, and ethanol production from molasses starch. Above all, ethanol has been used as a gasoline base overseas due to its high octane properties, and its use is expected in Japan.
  • ethanol production has been fermentative production using microorganisms, and is based on agricultural crops such as sugarcane and corn.
  • it In order for ethanol to be used as a fuel, it must be manufactured at low cost.However, conventional production methods are expensive because raw materials compete with food, making inexpensive ethanol production extremely difficult. difficult. Therefore, in recent years, attention has been paid to the development of ethanol production technology using inexpensive raw materials.
  • inexpensive organic waste such as agricultural waste and waste wood as raw materials, perform saccharification treatment with acid or enzyme, and ferment the solution to produce ethanol.
  • This method can be expected to produce inexpensive ethanol because the raw material is waste, but it requires secondary treatment equipment such as wastewater treated during the saccharification stage and high-load water after culture.
  • An object of the present invention is to provide a bacterium capable of efficiently producing ethanol from a gas such as carbon dioxide under higher temperature conditions.
  • the present invention relates to the following (1) to (17).
  • a bacterium that produces ethanol at a temperature of 40 ° C or higher from a carbon compound that is gaseous at normal temperature and normal pressure (2) The bacterium according to (1), wherein the carbon compound is at least one selected from the group consisting of carbon monoxide, carbon dioxide, methane, ethane, and ethylene.
  • Clostridium sp. No. 16-1 strain (FERM BP-8372), Clostridium sp. No. 16-2 strain (FERM BP-8373), Clostridium sp. No. 22-1 strain (FERM BP-8373) 8374) or the related bacterium, the bacterium according to any one of (1) to (6).
  • a method for producing ethanol which comprises culturing a bacterium that produces ethanol at a temperature of 40 ° C. or more at a temperature of 40 ° C. or more from a carbon compound that is in a gaseous state at normal temperature and normal pressure.
  • Clostridium sp. No. 16-1 strain (FERM BP-8372), Clostridium sp. No. 16-2 strain (FERM BP-8373), Clostridium sp. No. 22-1 strain (FERM BP-8372)
  • a bacterium that produces ethanol at a temperature of 40 ° C or higher from a carbon compound that is in a gaseous state at normal temperature and pressure is cultured at a temperature of 40 ° C or higher,
  • the produced ethanol is vaporized and separated from the culture solution
  • a method for producing ethanol comprising: BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a diagram showing the ethanol-producing ability of the strain of the present invention.
  • FIG. 2 is a diagram showing the ethanol-producing ability of the strain of the present invention by enrichment culture.
  • FIG. 3 is a diagram schematically showing a continuous culture system according to the present invention.
  • FIG. 4 is a graph showing changes in the amount of ethanol produced by continuous culture according to the present invention.
  • the present inventors have made intensive studies to solve the above problems, and as a result, it has been found that specific bacteria produce ethanol from a gas such as carbon dioxide as a raw material under a high temperature condition of 40 ° C or more.
  • the present inventors have found that in a method for producing ethanol using gas as a raw material under high-temperature conditions, ethanol production can be performed while continuously recovering generated ethanol from a culture solution, and the present invention. completed.
  • the bacterium used in the ethanol production method of the present invention is a bacterium capable of producing ethanol at a temperature of 40 ° C. or higher (also referred to as “the ethanol-producing bacterium of the present invention”). Conventionally, no bacteria producing ethanol under high temperature conditions of 40 ° C or higher have been known.
  • the present invention The ethanol production temperature of the ethanol-producing bacterium is preferably 50 to 100 ° C, more preferably 50 to 80 ° C.
  • a bacterium capable of producing ethanol from a carbon compound which is in a gaseous state (also referred to as a gas) at normal temperature and normal pressure is preferable.
  • normal temperature and normal pressure refer to 25 ° C. atmospheric pressure.
  • the carbon compound include carbon monoxide, carbon dioxide, methane, ethane, ethylene and the like, and among them, one or two selected from carbon monoxide and carbon dioxide are preferable.
  • hydrogen, hydrogen sulfide, and the like can be used in combination.
  • the mixed gas examples include a mixed gas of carbon monoxide and hydrogen, a mixed gas of carbon dioxide and hydrogen, and a mixed gas of carbon monoxide, carbon dioxide, and hydrogen.
  • an inert gas such as nitrogen or other kinds of gas such as methane gas and hydrogen sulfide are mixed as long as ethanol production is not hindered.
  • the mixing ratio of each component in the mixed gas is not particularly limited as long as ethanol production is not hindered.
  • These carbon compounds can be added in gaseous form, but it is also possible to add carbon dioxide and other substances that can serve as a carbon dioxide generating source to generate carbon dioxide in the culture solution. Of these, the use of carbon dioxide and hydrogen is the most effective in reducing greenhouse gases.
  • the carbon dioxide and carbon monoxide in the present invention also include those produced by oxidizing a raw material containing carbon, that is, a gas such as methane / ethane or an organic substance such as coal or wood by combustion or the like.
  • the hydrogen in the present invention includes those produced by oxidizing a substance containing hydrogen such as hydrogen sulfide / methane.
  • the ethanol-producing bacterium of the present invention is not particularly limited as long as it is a bacterium that produces ethanol under a high temperature condition of 40 ° C. or higher using a gaseous carbon compound as a raw material under normal temperature and normal pressure. Although there is no problem with any of the bacteria, preferably, it is classified as CLUSTER V, VI, VII in the report of Collins et al. (Collins MD International Journal of Systematic Bacteriology, Oct., 812-826 (1994)).
  • Clostridium sp. No. 16-1 Clostridium sp.
  • Clostridium sp. A new species of bacteria discovered for the first time in the present invention.
  • No. 16-2 Clostridium 'SP No. 22-1, and related bacteria having the same species as these bacteria can be preferably used.
  • FERM BP_8372 22-1 strain are referred to as FERM BP_8372, FERM BP-8373, and FERM BP-8374, respectively. It has been deposited internationally on May 2, 2003 at the National Institute of Advanced Industrial Science and Technology (AIST) at the Patent Organism Depositary Center (1-1, Higashi 1-1, Tsukuba, Ibaraki, Japan). As described above, these fungi found in the present invention are a new kind of fungi, belonging to the genus Clostridium, and belonging to the genera Thermoanaerobataterium, Thermoanaerobacter, which are derivatives of the genus Clostridium.
  • the bacterium found in the present invention produces an organic acid such as acetic acid in addition to ethanol.
  • the ethanol-producing bacterium of the present invention is mutated, it is included in the scope of the present invention as a related bacterium as long as the mutant produces ethanol under a high temperature condition of 40 ° C. or higher.
  • the treatment for causing mutation include ultraviolet irradiation, X-ray irradiation, irradiation with radiation, treatment with a mutagenic substance such as utrosogua-zindiacridine dye, treatment with a genetic engineering technique, and the like.
  • the cultivation method using anaerobic bacteria is basically the same as that for general microorganisms, but it is necessary to prevent the contamination of oxygen.
  • In the laboratory in a culture vessel closed with a butyl rubber stopper, etc. A method of standing or shaking is used.
  • a commonly used fermenter can be used, and an anaerobic condition can be created by replacing the oxygen in the device with an inert gas such as nitrogen or a raw material gas such as carbon dioxide. is there.
  • inorganic salts such as carbonates that can generate carbon dioxide can also be used.
  • the carbon source is not limited to gas alone, and sugars and amino acids commonly used in culture can also be used in combination.
  • the ethanol-producing bacterium of the present invention can produce ethanol not only using gas as a raw material but also using sugar as a raw material (Example 1).
  • the gas supply method There is no particular limitation on the gas supply method, and a method of pressurizing the gas to dissolve the gas in the medium or a method of continuously supplying the gas at normal pressure can be used.
  • a salt capable of generating a gas for example, a carbonate or a bicarbonate.
  • nitrogen source various nitrogen compounds that can be used for normal fermentation, such as ammonium salt such as ammonium salt and nitrate such as sodium nitrate, can be used.
  • ammonium salt such as ammonium salt and nitrate such as sodium nitrate
  • nitrate such as sodium nitrate
  • additive of inorganic compounds such as copper sulfate and sodium molybdate and vitamin sources such as yeast extract can be performed as in usual culture.
  • ethanol is produced by culturing gas at a high temperature of 40 ° C or higher using gas as a raw material.Ethanol produced by culturing at a high temperature is vaporized and separated from the culture solution. It was found that this would improve the production hindrance due to the accumulation of ethanol, and that the vaporized ethanol discharged together with the unreacted gas could be easily separated and recovered by cooling or the like, thus enabling continuous production.
  • Such continuous cultivation is applied not only to ethanol production using the above-mentioned gas as a raw material, but also to ethanol production using conventional raw materials such as sugars by using a bacterium capable of producing ethanol under high temperature conditions. It is also possible.
  • the medium composition in the continuous culture is the same as described above and is not particularly limited.
  • the form of culture in the continuous production is not particularly limited. Generally, for efficient production, it is necessary to increase the bacterial concentration during culture.
  • a known method known by those skilled in the art can be used.
  • the immobilization method include a method using beads, a method using a membrane, and a method using a hollow fiber, which are commonly used.
  • the method using holofibers has been a technical issue, such as clogging due to the raw material. Although a problem was pointed out, this problem can be solved by using gas as a raw material.
  • the conditions for vaporizing the produced ethanol can be any of pressurized, normal, and depressurized conditions.However, it should be determined in consideration of aspects such as temperature conditions and gas solubility from the continuity of culture. Is good.
  • the method of liquefying the vaporized ethanol there is no particular limitation on the method of liquefying the vaporized ethanol, and for example, a known cooling method such as cooling using water as a refrigerant, cooling using air as a refrigerant, or a method using gas as a refrigerant can be used.
  • the cooling temperature is not particularly limited as long as the vaporized ethanol is liquefied, but it is preferable to perform the cooling at a temperature lower than the boiling point of ethanol (78 ° C or lower) at normal pressure.
  • strains No. 16-1, No. 16-2, and No. 22-1 are described. Since the formal names have not yet been given to them, in the present invention, Clostridium sp. No. 16-1 strain (FERM BP-8372), Clostridium sp. No. 16-2 strain ( FERM BP-8373) and Clostridium 'SP No. 22-1 strain (FERM BP-8374).
  • This strain is a strain isolated from soil collected in Shiobara-gun, Tochigi Prefecture, Japan. That is, 5 mL of the liquid medium shown in Table 1 is dispensed into test tubes, and after sterilization, about 0.5 g of soil Was added, and sealed with a butyl rubber stopper. The gas phase was replaced with a gas containing hydrogen (75%) and carbon dioxide (25%), cultured at 55 ° C with shaking, and subcultured every three weeks .
  • Cell shape and size single or double culm (with curvature), width 0.5 m, length 3.0-4.0 im
  • composition of basic medium in 1L of distilled water
  • Nitrilotnacetic acid 2.0g (adjusted to pH 6.0 with K0H) nS0 4 -3 ⁇ 40 l.Og
  • the growth on the agar medium with 2% agar added to the composition shown in Table 1 is as follows. Shape: circular
  • Attitude to oxygen obligate anaerobic
  • Growth temperature range optimal temperature 60 ° C, growth range 40-65 ° C
  • Vitamin requirements Thiamine Carbon assimilation, etc .:
  • a biochemical property test was performed using the API system (bioMerieux France) according to the method for measuring API20A. In addition, the following tests were conducted as additional tests to confirm the assimilation of carbon sources.
  • Sorbitol, glycerin, D-rafinose Sorbitol, glycerin, D-rafinose.
  • Genomic DNA from the fungus was extracted using the PrepMan® Method (Applied Biosystems, US). Using the extracted genomic DNA as type I, about 500 bp of the base sequence of 16S rDNA was amplified by PCR, and the base sequence was sequenced and used for analysis. For purification and cycle sequencing of PCR products, MicroSeq® 500 16S rDNA Bacterial Sequencing Kit (Applied Biosystems, US) was used. The procedure from genomic DNA extraction to cycle sequencing was performed in accordance with the protocol of Applied Biosystems (P / N4308132 Rev. A) . The GeneAmp PCR System 9600 (Applied Biosystems, US) was used for the Thermorecycler, and the DNA sequencer was used for the DNA sequencer. ABI PRISM 377 DNA Sequencer (Applied Biosystems, US) was used. The partial nucleotide sequence of 16S rDNA of this bacterium was the nucleotide sequence shown in SEQ ID NO: 1.
  • No. 16-1 is an obligately anaerobic spore spore fungus whose major fermentation metabolite is a strain characterized by producing ethanol and acetic acid from carbon dioxide and hydrogen. . Based on this property, searching by referring to Purges, Mayual, Opt, Deterministic, Pacteriology, Eighth Edition, Barges, Manual, Off, Systematic, Pacteriology, Microbial Classification and Identification (2nd volume) It is considered to be a strain belonging to Clostridium.
  • this strain is considered to be a new strain belonging to the genus Clostridium, and was named Clostridium 'SP No. 16-1.
  • This strain is a strain isolated from soil collected in Shiobara-gun, Tochigi Prefecture, Japan. That is, 5 mL of the liquid medium shown in Table 1 is dispensed into test tubes, and after sterilization, about 0.5 g of soil After sealing with a butyl rubber stopper, the gas phase is replaced with a gas containing hydrogen (75%) and carbon dioxide (25%), cultured with shaking at 55 ° C, and subcultured every three weeks Was. After subculture twice in a liquid medium, the cells are isolated by the roll tube method using an agar medium supplemented with 0.5% fructose and 2% agar, and the gas phase is hydrogen (75%) and carbon dioxide. (25%) in a liquid medium as shown in Table 1 with shaking culture at 55 ° C and growth. Microscopic findings:
  • Cell shape and size single or double culm (with curvature), width 0.6-0.7 m, length 3.0-5.0 m
  • the growth on the agar medium obtained by adding 2% agar to Itokatsu in Table 1 is as follows. Shape: circular
  • Attitude to oxygen obligate anaerobic
  • Growth temperature range optimal temperature 60 ° C, growth range 45-65 ° C
  • Vitamin requirements '14 None Carbon source utilization, etc .:
  • a biochemical property test was performed using the API system (bioMerieux France) according to the method for measuring API20A. In addition, the following tests were conducted as additional tests to confirm the assimilation of carbon sources.
  • Genomic DNA was extracted from the bacteria using the PrepMan® Method (Applied Biosystems, US). Using the extracted genomic DNA as rust, the base sequence of about 16 bp of the 16S rDNA was amplified by PCR, and the base sequence was sequenced and used for analysis. For purification and cycle sequencing of PCR products, MicroSeq® 500 16S rDNA Bacterial Sequencing Kit (Applied Biosystems, US) was used. The procedure from genomic DNA extraction to cycle sequencing was performed according to the protocol of Applied Biosystems (P / N4308132 Rev. A) . The GeneAmp PCR System 9600 (Applied Biosystems, US) was used for the thermal cycler, and the DNA sequencer was Using ABI PRISM 377 DNA Sequencer (Applied Biosystems, US)
  • the partial nucleotide sequence of 16S rDNA of this bacterium was the nucleotide sequence shown in SEQ ID NO: 2.
  • a homology search was performed on the obtained 16S rDNA against the DNA base sequence database (GenBank / EMBL / DDBJ) using BLAST.
  • Clostridium thermoaceticum showed 98.90% homology to ATCC 39037 strain and 98.71% homology to Moorella thermoacetica (Clostridium thermoaceticum) ET-5a strain, indicating that this bacterium belongs to the genus Clostridium. Comparison with native similar species:
  • No. 16-2 is an obligately anaerobic culm and its major fermentation metabolite is ethanol and acetic acid from carbon dioxide and hydrogen.
  • the search for Bergie's Manual, Ob, Deterministic, Nocterio Essay 8th Edition, Purge's Manual, Obob, Systematic, Batteriology, Microbial Classification and Identification It is considered to be a strain belonging to Rhidium.
  • Purges'Manuals' Obb Deterministic Pacteriology-Eighth Edition, Purges Mayualu Op-Systematic 'Batateriology I, Handbook of Extreme Environmental Microorganisms (Yasuo Oshima Science Forum 1991) have various properties. No bacterial species corresponding to No.
  • this strain is considered to be a new strain belonging to the genus Clostridium, and was named Clostridium sp. No. 16-2.
  • This strain was isolated from underground soil collected in Chiba, Japan. That is, 5 mL of the liquid medium shown in Table 1 is dispensed into a test tube, sterilized, added with about 0.5 g of soil, sealed with butyl rubber, and the gas phase is hydrogen (75%) and carbon dioxide (25%) The mixture was replaced with a gas containing, and cultured with shaking at 55 ° C, and subcultured every three weeks. After subculture twice in a liquid medium, the cells were isolated by the roll tube method using an agar medium supplemented with 0.5% fructose and 2% agar, and the gas phase was hydrogenated (75%) and carbon dioxide ( (25%) in a liquid medium shown in Table 1 with shaking culture at 55 ° C to grow the cells. Microscopic findings:
  • Shape and size of cell single or double culm, width 0.5-0.6jUm, length
  • the growth on the agar medium with 2% agar added to the composition shown in Table 1 is as follows.
  • Attitude to oxygen obligate anaerobic
  • Growth temperature range optimal temperature 60 ° C, growth range 40-75 ° C
  • Vitamin Requirement None Utilization of carbon source, etc .:
  • a biochemical property test was performed using the API system (bioMerieux France) according to the method for measuring API20A. In addition, the following tests were conducted as additional tests to confirm the assimilation of carbon sources.
  • D-Gnorecose D-Fnolectose, Galactose, Xylose, Arabinose, Trenoperose, Ribose, Fructose, Manoletose, Salicin, D-Cellobiose, D-Mannose,
  • Genomic DNA from the fungus was extracted using the PrepMan® Method (Applied Biosystems, US). Using the extracted genomic DNA as type I, about 500 bp of the base sequence of 16S rDNA was amplified by PCR, and the base sequence was sequenced and used for analysis. MicroSeq® 500 16S rDNA Bacterial Sequencing Kit (Applied Biosystems, US) was used for purification and cycle sequencing of PCR products. The procedure from genomic DNA extraction to cycle sequencing is in accordance with Applied Biosystems' protocol (P / N4308132 Rev. A), GeneAmp PCR System 9600 (Applied Biosystems, US) for thermal cycler, DNA sequencing ABI PRISM 377 DNA Sequencer (Applied Biosystems, US) was used for the sample.
  • the partial nucleotide sequence of the 16S rDNA of this bacterium was the nucleotide sequence shown in SEQ ID NO: 3.
  • a homology search was performed on the obtained 16S rDNA against a DNA base sequence database (GenBank / EMBL / DDBJ) using BLAST, a 98.14 strain was added to the Thermoanaerobacterium aotearoense JW / SL-NZ613T strain. %, 97.18% to Clostridium thermoamylolyticum strain DSM2335 and 97.18% to Thermoanaerobacterium sp. C38-4 strain, indicating that the bacterium belongs to the genus Clostridium. Comparison with native similar species:
  • No. 16-2 is an obligately anaerobic bacillus whose major fermentation metabolite is a strain characterized by producing ethanol and acetic acid from carbon dioxide and hydrogen. Based on these properties, purging, manual, ob, deterministic, paterilogy, 8th edition, barges, manual, systematic, pateriology, and microbial classification and identification It is considered a strain. Also, Bargie's Manual of Deterministic Pacteriology, Eighth Edition, Purges' Manual of Systematic Batteriology, Extreme Environmental Microbial Handbook (Yasuo Oshima Science Forum 1991) However, there was no description of a bacterial species whose properties matched No. 22-1.
  • this strain was considered to be a new strain belonging to the genus Clostridium, and was named Clostridium sp. No. 22-1. Moorella thermoacetice Moorella thermoautotrophica QostridiLiTi sp. Clostridium sp. Gostridiiin sp.
  • Clostridium 'SP No. 16-1 strain, Clostridium sp. No. 16-2 strain, and Clostridium' SP No. 22-1 strain obtained by the present invention were cultured as follows. After dispensing 5 mL of the medium shown in Table 1 into test tubes, replace the gas phase with a disinfecting gas containing carbon dioxide (25%) and hydrogen ( 75 %), and bring the pressure to 2 atm with the same gas. Then, 250 jUL of a culture solution of each bacterium cultured in the same medium was added with a sterile syringe, and cultivation was performed at 55 ° C and shaking at 150 rpm for 10 days.
  • Clostridium 'SP No. 16-2 strain was cultured as follows. After dispensing 5 mL of the medium shown in Table 1 into test tubes, the gas phase is sterilized gas containing carbon monoxide (60%), carbon dioxide (10%) and hydrogen (30%) (hereinafter referred to as gas A). ), Carbon dioxide (25%) and hydrogen (75%), each with a disinfecting gas (hereinafter referred to as gas B), and adjusted to 2 atm with each gas. 250 / L of the culture solution of each bacterium cultured in the above was added with a sterile syringe and cultured at 55 ° C with shaking at 150 rpm.
  • Enrichment culture was performed using Clostridium sp. No. 16-2 strain. Using a medium shown in Table 1 supplemented with 0.5% fructose, the cells were cultured at 60 ° C for 3 days, and the bacteria were collected by centrifugation. After disinfecting the culture medium shown in Table 1 into test tubes at 5 raL, the gas phase was replaced with a disinfecting gas containing carbon dioxide (25%) and hydrogen (75%), and the gas became 2 atm. After adjustment, add a bacterium prepared so that the absorbance at 660 nm becomes 4.0 with a sterile syringe, and incubate at 55 ° C with shaking at 150 rpm. I got it. A part of the culture solution on days 7 and 14 was subjected to centrifugal separation to separate the cells, and the product was quantified by gas chromatography. As a result, ethanol production up to llmM was confirmed (Fig. 2).
  • a bacterium that efficiently produces ethanol from a gas such as carbon dioxide at a high temperature of 40 ° C. or higher.
  • ethanol such as carbon dioxide, which causes global warming, can be produced inexpensively, efficiently, and continuously using the gas without cooling.

Description

明 細 書 新規エタノール生産菌及びエタノールの生産法 技術分野
本発明は二酸化炭素などの気体状炭素化合物を原料として高温条件でエタノ ール生産能を有する菌及びこれを用いた効率的なエタノールの生産法に関する。 背景技術
石油の枯渴化や地球温暖化に伴う炭酸ガス問題などを背景として、 これまで に多くのエネルギー源の開発が進められている。 なかでも輸送用などに用いら れる移動体エネルギーとしては、 既存の設備利用や安全面から比較的容易に導 入されると考えられる新規液体燃料の開発に注目が集まっている。 これまでの 液体燃料製造方法としては、 天然ガスからの炭化水素製造、 合成ガスからのメ タノール製造、 石炭の液化、 糖蜜 'でんぷんからのエタノール製造などが挙げ られる。 なかでもエタノールは、 オクタン価が高いという物性から、 海外では ガソリン基材としての利用がなされており、 国内においてもその利用について 期待されでいる。
これまでのエタノール製造は微生物を用いた発酵生産であり、 サトウキビや トウモロコシといった農作物を原料としている。 エタノールが燃料として利用 されるためには、 安価に製造される必要があるが、 これまでの生産方法では原 料が食糧と競合していることから原料が高価となり、 安価なエタノール生産は 非常に難しい。 そのため、 近年安価な原料を用いたエタノール生産技術開発が 注目されている。 そのひとつに、 農業廃棄物や廃木材といった安価な有機性廃 棄物を原料とし、 酸や酵素による糖化処理を行い、 その溶液を発酵しエタノー ル生産する方法がある。 この方法は、 原料が廃棄物であることから安価なエタ ノール生産が期待できるが、 糖化段階で生じる処理水や培養後の高負荷水の排 水処理など二次的処理設備が必要となることなど、 コスト面や技術面で解決す べき点が多く、 そのため糖を原料としないエタノール生産技術開発が望まれて レ、た。 その解決策として、 一酸化炭素、 二酸化炭素等のガスを原料としたエタノー ル生産技術開発が進められている。 この技術は、 ガスを利用できる微生物を用 い、 燃焼等により得られたガスをま原料としてエタノールを生産する技術であ る。 これまでに、 ガスを原料してエタノールを生産する微生物として知られて いる ものは、 Clostridium ljyungdahlii (USP- 5173429 (1992) ) 、 及ぴ Clostridium autoethanogenum sp. (Jamal Abrini , Arch. Microbiol. 161 : 345-351 (1994) ) が知られている。 いずれも一酸化炭素を含んだガスを原 料として、 37°Cの条件で生育及びエタノールを生産するとされている。
し力 しながら、 これらの菌を利用してエタノール生産をする際、 原料となる 一酸化炭素、 二酸化炭素等のガスは高温 ·高圧条件で製造されることが多い。 そのため、 37°Cの条件でェタノールを生育及ぴ生産する菌を用いる場合には、 熱交換システムや大型タンクなどのガスの冷却設備が必要となり、 設備面にお いて膨大な費用がかかる。 また、 生産されるエタノールは菌に対して毒性があ ることから、 培養液中から抜きながら培養して連続生産をすることが効率的な 生産方法であると考えられるが、 従来の菌は培養温度及びエタノール生産温度 が低いことから生産物を抜くために費やされるエネルギーが大きくなつてしま うことなどがあり、 生産温度が低いことは工業的生産利用には不利である。 そ のため、 より高温でガスを原料としてエタノールを生産する菌が望まれていた。 また、 前述にあるように、 従来技術では一酸ィヒ炭素が含まれているガスが原 料として用いられているが、 炭素源として温暖化ガスの 1種である二酸化炭素 を利用してエタノール生産をできる菌が得られれば、 温暖化ガスの削減効果が 期待できる。 発明の開示
本発明の目的は、 より高温条件において二酸化炭素等のガスを原料として高 効率にエタノールを生産できる菌を提供することである。
さらに本発明の目的は、 当該菌を用いて高温条件下でガスを原料として効率 よくエタノールを生産する方法を提供することである。
本発明は、 以下の (1 )〜(1 7 ) に関する。
( 1 ) 常温常圧下で気体状である炭素化合物を原料として 40°C以上の温度で エタノールを生産する菌。 (2) 炭素化合物が、 一酸化炭素、 二酸化炭素、 メタン、 エタン及ぴェチレ ンからなる群から選ばれる少なくとも 1種である、 (1) 記載の菌。
(3) 炭素化合物が、 一酸化炭素及び二酸化炭素からなる群から選ばれる少 なくとも 1種である、 (1) 又は (2) のいずれか 1項に記載の菌。
(4) クロストリジゥム属又はその派生属に属する、 (1)〜(3) のいずれ か 1項に記載の菌。
(5) クロストリジゥム属又はその派生属が、 クロストリジゥム属、 サーモ アナエロバタテリゥム属、 サーモアナエロパクター属又はモーレラ属である、 (4) 記載の菌。
(6) クロストリジゥム属に属する、 (1)〜(5) のいずれか 1項に記載の 菌。
(7) クロストリジゥム ·エスピー No.16-1 株 (FERM BP- 8372)、 クロスト リジゥム ·エスピー No.16-2株 (FERM BP - 8373)、 クロストリジゥム 'エスピ 一 No.22-1株 (FERM BP - 8374) 又はこれらの類縁菌である、 (1)〜(6) のい ずれか 1項に記載の菌。
( 8 ) 常温常圧下で気体状である炭素化合物を原料として 40°C以上の温度で エタノールを生産する菌を、 40°C以上の温度で培養することを含む、 エタノー ルを生産する方法。
(9) 培養が常温常圧下で気体状である炭素化合物の存在下で行われる、 (8) 記載の方法。
(10) 炭素化合物が、 一酸化炭素、 二酸化炭素、 メタン、 ェタン及びェチ レンからなる群から選ばれる少なくとも 1種である、 (8) 又は (9) 記載の 方法。
(1 1) 炭素化合物が、 一酸化炭素及び二酸化炭素からなる群から選ばれる 少なくとも 1種である、 (8)〜(10) のいずれか 1項に記載の方法。
(1 2) 菌がクロストリジゥム属又はその派生属に属する、 (8)〜(1 1) のいずれか 1項に記載の方法。
(1 3) クロストリジゥム属又はその派生属が、 クロストリジゥム属、 サー モアナエロパクテリゥム属、 サーモアナエロパクター属又はモーレラ属である、 (12) 記載の方法。 ( 1 4 ) 菌がクロストリジゥム属に属する、 (8 )〜(1 3 ) のいずれか 1項 に記載の方法。
( 1 5 ) 菌がクロストリジゥム 'エスピー No. 16-1 株 (FERM BP- 8372)、 ク ロストリジゥム 'エスピー No. 16-2株 (FERM BP- 8373)、 クロストリジゥム · ェスピー No. 22-1 株 (FERM BP- 8374) 又はこれらの類縁菌である、 ( 8 )〜( 1 4 ) のいずれか 1項に記載の方法。
( 1 6 ) 生成したエタノールを気化させて培養液から分離し、
分離したエタノールを液化させる、
ことをさらに含む、 (8 )〜(1 5 ) のいずれか 1項に記載の方法。
( 1 7 ) 常温常圧下で気体状である炭素化合物を原料として 40°C以上の温度 でェタノールを生産する菌を、 40°C以上の温度で培養し、
生成したエタノールを気化させて培養液から分離し、
分離したェタノールを液化させる、
ことを含む、 エタノールを生産する方法。 図面の簡単な説明
第 1図は、 本発明の菌株によるエタノール生産能を示す図である。
第 2図は、 本発明の菌株の集積培養によるエタノール生産能を示す図である。 第 3図は、 本発明による連続培養システムの概略を示す図である。
第 4図は、 本発明の連続培養によるエタノール生産量の推移を示す図である。 発明を実施するための最良の形態
本発明者らは、 上記課題を解決すべく鋭意検討を重ねた結果、 特定の菌が 40°C以上の高温条件下で二酸化炭素等のガスを原料としてエタノールを生産す ること、 またこのような菌を用いれば高温条件下でのガスを原料とするエタノ ール生産方法において、 生成したエタノールを培養液から連続的に回収しなが らエタノール生産を行うことができることを見出し、 本発明を完成した。
本発明のェタノール生産法に用いられる菌は、 40°C以上の温度でエタノール 生産能を有する菌である ( 「本発明のエタノール生産菌」 とも称す)。 従来、 40°C以上の高温条件でエタノールを生産する菌は全く知られていない。 本発明 のエタノール生産菌の好ましいエタノール生産温度は 50〜100°Cであり、 さら に 50〜80°Cが特に好ましい。
また、 本発明のエタノール生産菌としては、 常温常圧下で気体状 (ガスとも いう) である炭素化合物を原料としてエタノールを生産する能力を有するもの が好ましい。 ここで常温常圧とは、 25°C大気圧をいう。 当該炭素化合物として は、 一酸化炭素、 二酸化炭素、 メタン、 ェタン、 エチレンなどが挙げられ、 こ のうち一酸化炭素及び二酸化炭素から選ばれる 1種又は 2種が好ましい。 これ らの炭素化合物に加えて、 水素、 硫化水素等を併用することもできる。 混合ガ スの例としては、 一酸化炭素と水素の混合ガス、 二酸化炭素と水素の混合ガス、 一酸化炭素と二酸化炭素と水素の混合ガス等が挙げられる。 その際には、 窒素 などの不活性ガスやメタンガス、 硫化水素などの他種類のガス等が混合してい てもエタノール生産に阻害がない限り特に問題はない。 また、 混合ガス中の各 成分の混合比も、 エタノール生産に阻害がない限り特に限定されない。 また、 これらの炭素化合物は、 ガス状で添加することも可能であるが、 炭酸塩などの 二酸化炭素発生源となりうる物質を添カ卩し培養液中で二酸化炭素を発生させて もよい。 これらの中で、 二酸ィヒ炭素と水素の使用が温暖化ガスの削減効果が最 も高い。 なお、 本発明における二酸化炭素や一酸化炭素には、 炭素を含む原料、 すなわちメタンゃエタンなどのガスや石炭や木材などの有機性物質を燃焼など による酸化によって製造したものも含む。 また、 本発明における水素には、 硫 化水素ゃメタン等の水素を含む物質を酸化して製造したものも含まれることは いうまでもない。
本発明のエタノー 生産菌としては、 常温常圧下で気体状の炭素化合物を原 料として、 40°C以上の高温条件でエタノールを生産する菌であれば特に制限は なく、 好気性菌、 嫌気性菌のいずれでも問題はないが、 好ましくは Collins ら (Collins M. D. International Journal of Systematic Bacteriology, Oct. , 812-826 (1994) ) の報告にて CLUSTER V、 VI、 VII に分類されている、 クロス トリジゥム (Clostridium) 属またはその派生属であるサーモアナエロバクテ ジ ゥ ム (Thermoanaerobacterium) 属、 サーモ アナェ Ο ノ ク タ一 (Thermoanaerobact er) 属、 モーレラ (Moorella) 属に属する菌が挙げられる。 さらには、 本発明において初めて見出された新種の菌である、 クロストリジゥ ム . エスピー (Clostridium sp. ) No. 16-1、 クロス トリジゥム ·エスピー No. 16- 2、 クロストリジゥム 'エスピー No. 22-1、 及びこれらの菌と同様の種と しての性質を有する類縁菌を好ましく用いることができる。 クロストリジゥ ム ·エスピー No. 16-1 株、 クロストリジゥム 'エスピー No. 16-2 株、 およびク ロストリジゥム · エスピー No. 22-1 株は、 それぞれ FERM BP_8372、 FERM BP - 8373、 および FERM BP- 8374 として、 平成 15年 5月 2 日付で独立行政法人産 業技術総合研究所 特許生物寄託センター (日本国茨城県つくば市東 1 丁目 1 番地中央第 6) に国際寄託されている。 なお、 上記したように、 本発明で見出 されたこれらの菌は新種の菌であり、 クロストリジゥム属に属し、 クロストリ ジゥム属の派生種であるサーモアナエロバタテリゥム属、 サーモアナエロパク ター属及びモーレラ属の性質も有するが、 属種を決定する際の指標である諸性 質が公知の同属菌とは明らかに異り、 新種である可能性が非常に高い。 なお、 本発明において見出された菌は、 エタノールの他に酢酸などの有機酸も生産す る。
また、 本発明のエタノール生産菌が変異したものであっても、 該変異株が 40°C以上の高温条件でエタノールを生産する限り、 類縁菌として本発明の範囲 に包含される。 変異を起こさせる処理としては、 紫外線照射、 X線照射、 放射 線照射や、 ュトロソグァ-ジンゃァクリジン色素などの突然変異誘発物質によ る処理、 遺伝子工学的手法による処理などが挙げられる。
嫌気性菌利用による培養方法では、 原則的には一般の微生物の場合と同様で あるが、 酸素の混入を防ぐことが必要であり、 実験室ではプチルゴム栓等で密 閉した培養器中で、 静置あるいは振とうする方法が用いられる。 やや大きい規 模では通常用いられる発酵槽が利用でき、 装置内の酸素は窒素などの不活性ガ スゃ炭酸ガスなどの原料ガスなどで置換することにより嫌気的な状態を作るこ とが可能である。
培養に用いることができる炭素源は、 二酸化炭素や一酸化炭素などの気体状 炭素化合物の他、 炭酸塩など二酸化炭素を発生することのできる無機塩も利用 することができる。 しかしながら、 炭素源としてはガスのみに制限されるので はなく、 通常培養で利用される糖類、 アミノ酸類などを併用することもできる。 なお、 本発明のエタノール生産菌は、 ガスを原料としてエタノールを生産する だけでなく、 糖を原料としてもエタノールを生産することができる (実施例 1 また、 ガスの供給方法にも特に制限はなく、 培地中にガスを溶解させるため に加圧する方法、 あるいは、 常圧にて連続してガスを供給する方法などが挙げ られる。 また、 培地中へ溶解させる方法としてはガスを発生させることができ る塩類、 例えば炭酸塩、 炭酸水素塩を加えることも可能である。
窒素源は塩ィヒアンモニゥムのようなアンモユウム塩ゃ硝酸ソーダのような硝 酸塩のように、 通常発酵に用いうる各種窒素化合物を用いることができる。 ま た、 培地への添加成分にも特に制限はなく、 必要に応じ、 リン酸二水素力リウ ム、 硫酸マグネシウム、 硫酸マンガン、 塩ィ匕ナトリウム、 塩ィ匕コバルト、 塩ィ匕 カルシウム、 硫酸亜鉛、 硫酸銅、 モリブデン酸ナトリウムなどの無機化合物や 酵母エキスなどのビタミン源を添加することは、 通常培養で行われるとおりで める。
培養の形態には特に制限はなく、 通常利用されている攪拌混合槽のほか、 一 段あるいは多段の気泡塔型発酵槽、 ドライチューブ型の発酵槽、 充てん型発酵 槽、 流動層型発酵槽などでも利用できる。
本発明のエタノール生産方法は、 ガスを原料として 40°C以上の高温条件下で 培養してエタノールを生産するものであるが、 高温で培養することにより生成 したエタノールを気化して培養液から分離すればエタノールの蓄積による生産 阻害を改善し、 また、 未反応ガスとともに排出された気化エタノールは冷却な どで容易に分離回収できるので、 連続生産ができることを見出した。 このよう な連続培養は前記のガスを原料とするエタノール生産の他、 高温条件でエタノ ールを生することのできる菌を用いれば、 従来の糖などの原料をもちいたエタ ノール生産に応用することも可能である。 なお、 当該連続培養における培地組 成については、 前述と同様であり特に制限はない。
また、 当該連続生産における培養の形態も、 特に制限はない。 一般に効率良 く生産させるためには培養時の菌濃度を高くする必要があるが、 本発明におい ても当業者によって知られている公知の方法を利用することができる。 例えば、 第 3図のフロー図に示す方法の他、 集積菌を利用する方法や固定化菌を利用す る方法などを利用することができる。 固定化法においては通常利用されている ビーズを利用した方法、 膜を利用した方法、 ホロファイバーを利用した方法な どが例として挙げられる。 なお、 これまで糖を原料としたエタノール生産にお いてホロファイバーを利用した方法では原料由来による目詰まりなどの技術的 問題が指摘されていたが、 ガスを原料とすることでこの問題の解決が可能であ る。
生成したエタノールを気化させる条件としては、 加圧、 常圧、 減圧のいずれ の状態においても可能であるが、 培養の連続性から温度条件やガスの溶解性な どの面を考慮して決定するのがよい。
気化したエタノールを液化する方法については、 特に制限はなく、 例えば水 を冷媒に用いた冷却、 空気を冷媒に用いた冷却、 ガスを冷媒に用いた方法など 公知の冷却方法を利用することができる。 また、 冷却温度については、 気化し たエタノールが液化する温度であれば特に制限はないが、 常圧であればエタノ ールの沸点以下の温度 (78°C以下) で行うことが好ましい。
以下、 具体的例により本発明を説明するが、 本発明はこれら実施例により制 限されるものではない。 実施例 1
本発明にて見出した菌は、 公知の同属種あるいは近縁種には高熱性の酢酸菌 があるが、 エタノールを生産する点や後に述べる諸性質において公知の同属菌 と相違しており、 新菌種であると考えられる。 見出した菌株のうち、 No. 16-1、 No. 16 - 2、 No. 22 - 1 の株について菌分類学的性質を記す。 これらには、 正式名称 はまだ付されていない為、 本発明ではクロス ト リジゥム · エスピー (Clostridium sp. ) No. 16-1株 (FERM BP- 8372)、 クロストリジゥム ·エスピー No. 16-2株 (FERM BP- 8373)、 クロストリジゥム 'エスピー No. 22-1 株 (FERM BP - 8374) として表示する。 この菌学的性質の検討には、 「微生物の分類と同 定 (下巻)」 (長谷川武治著、 学会出版センター)、 パージーズ.マニュアル. ォブ · システマティ ック ' パクテリォロジ一 (BERGEY' S MANUAL OF Systematic Bacteriology 1984) に記載されている方法に従って行った。 また、 16SrDNAの部分塩基配列約 500bpを調査し、 帰属分類群の推定を行った。
(1) No. 16-1の菌分類学的性質
創生法:
本株は、 日本国栃木県塩原郡にて採取された土壌から分離された菌株である。 すなわち、 表 1 に示す液体培地 5mLを試験管に分注し、 滅菌後約 0. 5gの土壌 を添加してプチルゴム栓で密栓後、 気相を水素 (75%) と二酸化炭素 (25%) を含むガスに置換し、 55°Cで振とう培養し、 3週間ごとに植え継ぎを行った。 2 回液体培地で植え継いだ後、 0.5%フルクトース及ぴ 2%寒天を加えた寒天培地 を用いてローノレチューブ法 (メソッド 'イン 'マイクロバイオロジー、 3卷 B、 117 項 (1969) アカデミックプレス) により単菌分離し、 さらに気相を水素 (75%) と二酸化炭素 (25%) を含むガスに置換した表 1 に示す液体培地にて 55°Cで振とう培養して生育させて本菌を得た。 顕微鏡的所見:
1. 細胞の形および大きさ :単独もしくは 2連の稈菌 (湾曲あり)、 幅 0.5 m、 長さ 3.0-4.0 im
2. 鞭毛:あり
3. 胞子:あり
4. グラム染色:陽性 (培養後期は不定) 培地組成:
表 1に例示する。
表 1
基本培地の組成 (蒸留水 1L中)
NH4C1 1.0 g
KC1 O.lg
MgS04-7H20 0.2g
NaCl 0.8g
KH2P04 0. lg
CaCl2-2H20 0.02g
酵母エキス l.Og
NaHC03 2. Og
ミネラル溶液(1) lOmL
ビタミン溶液 (2) lOmL
レサズリン溶液 (0. ί%) lmL
還元溶液 (3) lOmL
pH 6.5
(1)ミネラル溶液 (蒸留水 1L中)
Nitrilotnacetic acid 2.0g (K0Hにて pH6.0に調整) nS04-¾0 l.Og
Fe(S04)2(NH4)2-6H20 0.8g
CoCl2-6H20 0.2g
ZnS04-7H20 0.2g
CuCl2-2H20 0.02g
NiCl2-6H20 0.02g
Na2Mo04-2H20 0.02g
Na2Se04 0.02g
Na204 0.02g
(2)ビタミン溶液 (蒸留水 IL中)
ピオチン 2.0mg
2.0mg
塩酸ピリドキシン lO.Omg
塩酸チアミン 5. Omg
リボフラビン 5. Omg
ニコチン酸 5. Omg
カルシウムパントテン酸 5. Omg
ビタミン B12 0. lmg
P -ァミノ安息香酸 5. Omg
チォクト酸 5. Omg
(3)還元溶液 (蒸留水 0.1L中)
塩酸システィン 1水和物 4.0g
硫化ナトリウム 9τΚ和物 4.0g
水酸化ナトリゥム 0.9g 生育状態:
表 1の組成に 2%の寒天を加えた寒天培地での生育は次のとおりである。 形状:円形
周縁:円滑
隆起:わずかに隆起
表面:円滑 ·光沢あり
色調:クリーム色 生理学的性質:
酸素に対する態度:偏性嫌気性
生育 ρΗ範囲:至適 ρΗ7. 0、 生育範囲 ρΗ5. 0-8. 0
生育温度範囲:至適温度 60°C、 生育範囲 40- 65°C
ィンドール産生:一
ゼラチンの加水分解: +
エスタリン加水分解: +
カタラーゼ産生:一
色素の生成:一
ビタミン要求性:チアミン 炭素源の資化など:
API システム (bioMerieux France) により、 API20A の測定方法に従い、 生 化学的性状試験を実施した。 さらに、 追加試験として以下の試験を行ない、 炭 素源、の資化性の確認をした。
炭素源を 1 %添加した表 1の培地 5mLを試験管に加え、 無菌培地を作製して 本菌を植菌し、 気相を窒素の除菌ガスに置換し、 60°Cで 7 日間静置培養した。 生育は 660mn の吸光度を分光光度計 (UV2100PC 島津製作所製) で測定した。 660nm の吸光度が炭素源を含まないコントロールとの差が 0. 1 未満のものを 「資化しない」 、 0. 1以上 0. 3未満を 「わずかに資化する」 、 0. 3以上のもの を 「資化する」 とした。 「資化するもの」
D -グルコース、 D-フルク トース、 ガラク トース、 D-キシロース、 ァラピノー ス、 トレハロース、 マンニトール、 乳糖、 マルトース、 サリシン、 D-セロピオ ース、 D-マンノース。
また、 一酸化炭素や水素のある環境下では二酸化炭素も資化した。
「わずかに資化するもの」
ラムノース、 リボース。
「資化しないもの」
ソルビトール、 グリセリン、 D-ラフイノース。 生成物:
資化することが確認できた炭素源 1 %添加した表 1の培地 5mLを試験管に加 え、 無菌培地を作製して本菌を植菌し、 気相を窒素の除菌ガスに置換し、 60°C で 7 日間静置培養した。 いずれの炭素源においても、 エタノール、 酢酸の生産 が確認された。
また、 二酸化炭素を炭素源とした場合、 表 1 の培地 5mLを試験管に加え、 無 菌培地を作製して本菌を植菌し、 気相を二酸化炭素 (25%)、 水素 (75%) の 除菌ガスに置換し、 55。Cで 7 日間振とう培養した。 その場合には、 エタノール 及び酢酸の生産が確認された。
16SrDNAの部分塩基配列:
PrepMan (登録商標) Method (Applied Biosystems, US) を使用し、 本菌か らのゲノム DNA を抽出した。 抽出したゲノム DNA を錄型として PCR により 16SrDNA の塩基配列約 500bp を増幅し、 塩基配列をシーケンスして解析に使用 した。 PCR産物の精製、 サイクルシーケンスには MicroSeq (登録商標) 500 16SrDNA Bacterial Sequencing Kit (Applied Biosystems, US) 使用した。 ゲノム DNA 抽出からサイクルシーケンスまでの操作に関しては Applied Biosystems のプロ トコール (P/N4308132 Rev. A) に従い、 サーマノレサイクラ一 には GeneAmp PCR System 9600 (Applied Biosystems, US) を、 DNA シーケン サ一には ABI PRISM 377 DNA Sequencer (Applied Biosystems, US) を使用し た。 本菌の 16SrDNAの部分塩基配列は、 配列番号 1に示す塩基配列であった。
得られた 16S r DNA について BLAST を用いた DNA塩基配列データベース (GenBank/EMBL/DDBJ) に 対 し て相 同性検 索 を 行 っ た と こ ろ 、 Thermoanaerobacterium aotearoense JW/SL - NZ613T 株 に 98. 34 % 、 Thermoanaerobacterium sp. C_l 抹 ίこ 97. 18 %、 Thermoanaerobacterium sp. C38-4株に 97. 18%、 Clostridium sp. C- 4株に 96. 97%、 Clostridium sp. C41 - 3株に 95. 79%と、 クロストリジゥム属に帰属することが推定された。 在来類似種との比較など:
上記菌学的性質から、 No. 16-1 は偏性嫌気性の有胞子稈菌で、 その主要発酵 代謝産物は二酸化炭素と水素からはェタノールと酢酸を生産することを特徴と する菌株である。 この性状からパージーズ ·マエユアル ·ォプ ·デターミネィ ティブ ·パクテリォロジ一第 8版、 バージーズ ·マニュアル ·オフ、、 · システマ ティック ·パクテリォロジ一、微生物の分類と同定 (下巻) を参照して検索す ると、 クロストリジゥムに属する菌株であると考えられる。 また、 パージ一 ズ ·マニュアル ·オフ、、 ·デターミネィティブ ·パクテリォロジ一第 8版、 バー ジーズ 'マニュアル'ォブ 'システマティック 'バタテリォロジ一、極限環境 微生物ハンドブック (大島泰郎 サイエンスフォーラム 1991) には、 諸性状が No. 16-1 と一致する菌種の記載は無かった。 50°C以上の高温条件で生育し、 二 酸化炭素と水素で生育して酢酸を生産する菌としては Moorella thermoacetica (Clostridium tnermoaceticum、 Moorella thermoautotrophi ca (Clostridium thermoautotrophicum)、 Acetogeniura kivui 力 s知られている力 S、 同原科力、らは エタノールと酢酸を生産する菌はこれまでに認められていない。 また、 これら の菌との性状比較を行うと、 表 2に示す点で異なっていた。
以上のことから、 本菌株はクロストリジゥム属に属する新菌種であると考え られること力、ら、 クロストリジゥム 'エスピー No. 16-1と命名した。
(2) No. 16-2の菌分類学的性質
創生法:
本株は、 日本国栃木県塩原郡にて採取された土壌から分離された菌株である。 すなわち、 表 1 に示す液体培地 5mLを試験管に分注し、 滅菌後約 0. 5gの土壌 を添加してプチルゴム栓で密拴後、 気相を水素 (75%) と二酸化炭素 (25%) を含むガスに置換し、 55°Cで振とう培養し、 3週間ごとに植え継ぎを行った。 2 回液体培地で植え継いだ後、 0. 5%フルクトース及ぴ 2%寒天を加えた寒天培地 を用いてロールチューブ法により単菌分離し、 さらに気相を水素 (75%) と二 酸化炭素 (25%) を含むガスに置換した表 1に示す液体培地にて 55°Cで振とう 培養して生育させて本菌を得た。 顕微鏡的所見:
1 . 細胞の形および大きさ :単独もしくは 2 連の稈菌 (湾曲あり)、 幅 0. 6- 0. 7 m、 長さ 3. 0-5. 0 m
2 . 鞭毛:あり
3 . 胞子:あり
4 . グラム染色:陽性 (培養後期は不定) 培地組成:
表 1に例示する。 生育状態:
表 1の糸且成に 2%の寒天を加えた寒天培地での生育は次のとおりである。 形状:円形
周縁:円滑
隆起:わずかに隆起
表面:円滑 ·光沢あり
色調:クリーム色 生理学的性質:
酸素に対する態度:偏性嫌気性
生育 pH範囲:至適 PH7. 0、 生育範囲 PH5. 0-8. 0
生育温度範囲:至適温度 60°C、 生育範囲 45- 65°C
ィンドール産生:一
ゼラチンの加水分解: + エスタリン加水分解: +
カタラーゼ産生:一
色素の生成: 一
ビタミン要求 '14: なし 炭素源の資化など:
API システム (bioMerieux France) により、 API20A の測定方法に従い、 生 化学的性状試験を実施した。 さらに、 追加試験として以下の試験を行ない、 炭 素源の資化性の確認をした。
炭素源を 1%添加した表 1の培地 5mLを試験管に加え、 無菌培地を作製して 本菌を植菌し、 気相を窒素の除菌ガスに置換し、 60°Cで 7 日間静置培養した。 生育は 660nmの吸光度を分光光度計 (UV2100PC 島津製作所製) で測定した。 660nm の吸光度が炭素源を含まないコントロールとの差が 0. 1 未満のものを
「資化しない」 、 0. 1以上 0. 3未満を 「わずかに資化する」 、 0. 3以上のもの を 「資化する」 とした。
「資化するもの」
D-グルコース、 D -フルクトース、 ガラク トース、 キシロース、 ァラビノース、 トレ /ヽロース、 D-マン-トーノレ、 乳糖、 マルトース、 サリシン、 グリセリン、 セロビ才ース、 D -マンノース、 D_ラフイノース、
また、 一酸化炭素や水素のある環境下では二酸化炭素も資化した。
「わずかに資化するもの」
ラムノース、
「資ィ匕しないもの」
リボース、 ソノレビトール 生成物:
資化することが確認できた炭素源 1 %添加した表 1 の培地 5mLを試験管に加 え、 無菌培地を作製して本菌を植菌し、 気相を窒素の除菌ガスに置換し、 60°C で 7 日間静置培養した。 いずれの炭素源においても、 エタノール、 酢酸の生産 が確認された。 また、 二酸化炭素を炭素源とした場合、 表 1の培地 5mLを試験管に加え、 無 菌培地を作製して本菌を植菌し、 気相を二酸化炭素 (25%)、 水素 (75%) の 除菌ガスに置換し、 55°Cで 7 日間振とう培養した。 その場合には、 エタノール 及ぴ酢酸の生産が確認された。
16SrDNAの部分塩基配列:
PrepMan (登録商標) Method (Applied Biosystems, US) を使用し、 本菌力 らのゲノム DNA を抽出した。 抽出したゲノム DNA を銹型として PCR により 16SrDNA の塩基配列約 500bp を増幅し、 塩基配列をシーケンスして解析に使用 した。 PCR産物の精製、 サイクルシーケンスには MicroSeq (登録商標) 500 16SrDNA Bacterial Sequencing Kit (Applied Biosystems, US) 使用した。 ゲノム DNA 抽出からサイクルシーケンスまでの操作に関しては Applied Biosystems のプロトコ一ノレ (P/N4308132 Rev. A) に従い、 サーマルサイクラ一 には GeneAmp PCR System 9600 (Applied Biosystems, US) を、 DNA シーケン サ一には ABI PRISM 377 DNA Sequencer (Applied Biosystems, US) を使用し
/し
本菌の 16SrDNAの部分塩基配列は、 配列番号 2に示す塩基配列であった。 得られた 16S r DNA について BLAST を用いた DNA塩基配列データベース (GenBank/EMBL/DDBJ) に対して相同性検索を行ったと ころ、 Moorella thermoautotrophica (Clostridium thermoautotropnicum) DSM1974 株 に 99. 08 %、 Moorella thermoacetica (Clostridium thermoaceticum) ATCC 39037株に 98. 90%、 Moorella thermoacetica (Clostridium thermoaceticum) ET-5a株に 98. 71%の相同性を示したことから、 本菌はクロストリジゥム属に 帰属することが推定された。 在来類似種との比較など:
上記菌学的性質から、 No. 16- 2 は偏性嫌気性の稈菌で、 その主要発酵代謝産 物は二酸化炭素と水素からはェタノールと酢酸であることを特徴とする菌株で ある。 この性状からバージーズ ·マニュアル ·ォブ ·デターミネィティブ · ノ クテリオ口ジー第 8版、 パージーズ ·マニュアル ·ォブ · システマティック · バタテリォロジ一、微生物の分類と同定下巻を参照して検索すると、 クロスト リジゥムに属する菌株であると考えられる。 また、 パージーズ'マニュアル' ォブ ·デターミネィティブ ·パクテリォロジ一第 8版、 パージーズ ·マユユア ル ·ォプ · システマティック 'バタテリォロジ一、極限環境微生物ハンドプッ ク (大島泰郎サイエンスフォーラム 1991) には、 諸性状が No. 16_1 と一致す る菌種の記載は無かった。 50°C以上の高温条件で生育し、 二酸化炭素と水素で 生育して酢酸を生産する菌としては Moorella thermoacetica (Clostridium therraoaceticum) 、 Moorella thermoautotropnica (し lostridium thermoautotrophicum) N Acetogenium kivui 力 S矢口られて ヽるカ S、 ヽずれの菌も エタノールと酢酸を生産するという報告はない。 また、 これらの菌との性状比 較を行うと、 表 2に示す点で異なっていた。
以上のことから、 本菌株はクロストリジゥム属に属する新菌種であると考え られることから、 クロストリジゥム ·エスピー No. 16 - 2と命名した。
(3) No. 22-1の菌分類学的性質
創生法:
本株は、 日本国千葉県にて採取された地下土壌から分離された菌株である。 すなわち、 表 1 に示す液体培地 5mLを試験管に分注し、 滅菌後約 0. 5gの土壌 を添加してプチルゴム拴で密栓後、 気相を水素 (75%) と二酸化炭素 (25%) を含むガスに置換し、 55°Cで振とう培養し、 3週間ごとに植え継ぎを行った。 2 回液体培地で植え継いだ後、 0. 5%フルクトース及び 2%寒天を加えた寒天培地 を用いてロールチューブ法により単菌分離し、 さらに気相を水素 (75%) と二 酸化炭素 (25%) を含むガスに置換した表 1に示す液体培地にて 55°Cで振とう 培養して生育させて本菌を得た。 顕微鏡的所見:
1 . 細胞の形および大きさ :単独もしくは 2連の稈菌、 幅 0. 5- 0. 6jU m、 長さ
2. 0-3. 0 m
2 . 鞭毛:あり
3 . 胞子:あり
4. グラム染色:陽性 培地組成:
表 1に例示する。 生育状態:
表 1の組成に 2%の寒天を加えた寒天培地での生育は次のとおりである。
形状:円形
周縁:円滑
隆起:わずかに隆起
表面:円滑 ·光沢あり
色調:クリーム色 生理学的性質:
酸素に対する態度:偏性嫌気性
生育 pH範囲:至適 pH7. 0、 生育範囲 PH5. 0-7. 5
生育温度範囲:至適温度 60°C、 生育範囲 40- 75°C
ィンドール産生 一
ゼラチンの加水分解: +
エスタリン加水分解: +
カタラーゼ産生:一
色素の生成:一
ビタミン要求性:なし 炭素源の資化など:
API システム (bioMerieux France) により、 API20A の測定方法に従い、 生 化学的性状試験を実施した。 さらに、 追加試験として以下の試験を行ない、 炭 素源の資化性の確認をした。
炭素源を 1%添加した表 1の培地 5mLを試験管に加え、 無菌培地を作製して 本菌を植菌し、 気相を窒素の除菌ガスに置換し、 60°Cで 7 日間静置培養した。 生育は 660mnの吸光度を分光光度計 (UV- 2100PC 島津製作所製) で測定した。 660nmの吸光度が炭素源を含まないコントロールとの差が 0. 1 未満のものを 「資化しない」 、 0. 1 以上 0. 3未満を 「わずかに資化する」 、 0. 3以上のもの を 「資化する」 とした。
「資化するもの」
D -グノレコース、 D-フノレク トース、 ガラク トース、 キシロース、 ァラビノース、 トレノヽロース、 リボース、 孚し糖、 マノレトース、 サリシン、 D-セロビオース、 D - マンノース、
また、 一酸化炭素や水素のある環境下では二酸化炭素も資化した。
「わずかに資化するもの」
ラムノース、
「資化しないもの」
'一ル、 グリセリン、 ラフイノース 生成物:
資化することが確認できた炭素源 1%添カ卩した表 1の培地 5mLを試験管に加 え、 無菌培地を作製して本菌を植菌し、 気相を窒素の除菌ガスに置換し、 60°C で 7 日間静置培養した。 いずれの炭素源においても、 エタノール、 酢酸の生産 が確認された、
また、 二酸化炭素を炭素源とした場合、 表 1 の培地 5mLを試験管に加え、 無 菌培地を作製して本菌を植菌し、 気相を二酸化炭素 (25%)、 水素 (75%) の 除菌ガスに置換し、 55°Cで 7 日間振とう培養した。 その場合には、 エタノール 及び酢酸の生産が確認された。
16SrDNAの部分塩基配列:
PrepMan (登録商標) Method (Applied Biosystems, US) を使用し、 本菌か らのゲノム DNA を抽出した。 抽出したゲノム DNA を铸型として PCR により 16SrDNA の塩基配列約 500bp を増幅し、 塩基配列をシーケンスして解析に使用 した。 PCR 産物の精製、 サイクルシーケンスには MicroSeq (登録商標) 500 16SrDNA Bacterial Sequencing Kit (Applied Biosystems, US) を使用した。 ゲノム DNA 抽出からサイクルシーケンスまでの操作に関しては Applied Biosystems のプロトコ一ノレ (P/N4308132 Rev. A) に従い、 サーマルサイクラ" には GeneAmp PCR System 9600 (Applied Biosystems, US) を、 DNA シーケン サ一には ABI PRISM 377 DNA Sequencer (Applied Biosystems, US) を使用し た。
本菌の 16SrDNAの部分塩基配列は、 配列番号 3に示す塩基配列であった。 得られた 16S r DNA について BLAST を用いた DNA塩基配列データベース (GenBank/EMBL/DDBJ) に対 し て相 同性検 索 を 行 っ た と こ ろ 、 Thermoanaerobacterium aotearoense JW/SL-NZ613T 株 に 98. 14 % 、 Clostridium thermoamylolyticum DSM2335 株 に 97. 58 % 、 Thermoanaerobacterium sp. C38-4株に 97. 18%の相同性を示したことより、 本菌はクロストリジゥム属に帰属することが推定された。 在来類似種との比較など:
上記菌学的性質から、 No. 16-2 は偏性嫌気性の桿菌で、 その主要発酵代謝産 物は二酸化炭素と水素からはエタノールと酢酸を生産することを特徴とする菌 株である。 この性状からパージーズ ·マニュアル ·ォブ ·デターミネィティ ブ ·パクテリォロジ一第 8版、 バージーズ ·マニュアル ·ォブ · システマティ ック ·パクテリォロジ一、微生物の分類と同定下巻を参考に検索すると、 クロ ストリジゥムに属する菌株であると考えられる。 また、 バージーズ ·マ二ユア ル ·ォブ ·デターミネィティブ ·パクテリォロジ一第 8版、 パージーズ ·マ二 ュアル ·ォブ · システマティック ·バタテリォロジ一、 極限環境微生物ハンド プック (大島泰郎 サイエンスフォーラム 1991) には、 諸性状が No. 22-1 と一 致する菌種の記載は無かった。 50°C以上の高温条件で生育し、 二酸化炭素と水 素で生育して酢酸を生産する菌と しては Moorella thermoacetica (Clostridium thermoaceticura)、 Moore丄 la thermoautotrophica (し丄 ostridium thermoautotrophicum) Acetogenium kivui 力 s知られてレヽる力 s、 レヽずれの囷 t> エタノールと酢酸を生産するという報告はない (表 2)。 また、 同菌は No. 16 - 1 と 16SrDNAの部分塩基配列が類似していたが、 菌の形状やビタミン要求性が異 なることから、 区別できるものであった。 また、 これらの菌との性状比較を行 うと、 表 2に示す点で異なっていた。
以上のことから、 本菌株はクロストリジゥム属に属する新菌種であると考え られること力、ら、 クロストリジゥム ·エスピー No. 22-1と命名した。 Moorella thermoacetice Moorella thermoautotrophica QostridiLiTi sp. Clostridium sp. Gostridiiin sp.
(C.1hemx>aceticum) (Cthernioautotrophicurri) o.16-1 No.16-2 o.22-1
(mm {■ m ( 藤 繊の形態 稈菌 稈菌 稈菌 (湾曲あり) 稈菌 (湾曲あり) 離 生育 pH 5.0-7.0 4.7-7.5 5.0-8.0 5.0-8.0 5.0-7.5 生育 45-65 36-70 40-65 45-65 40-80 ゼ^1ンの加水 + + +
Xクリン力咏 + + +
Ο * の資化
'リボース + ± +
'ァラビノ一ス + + +
CO •=jh — +
小レ /、口一ス + + +
OCO2/H2
エタノール + + + 麵 + + + + +
実施例 2
本発明にて得たクロストリジゥム 'エスピー No. 16- 1 株、 クロストリジゥ ム ·エスピー No. 16- 2株、 クロストリジゥム 'エスピー No. 22-1 株を以下のよ うに培養した。 表 1に示す培地を試験管に 5mL分注滅菌後、 気相を二酸化炭素 (25%) と水素 (75%) を含む除菌ガスにて置換し、 さらに同ガスにて 2気圧 になるように調整した後、 同培地で培養を行った各菌の培養液 250 jU L を滅菌 シリンジにて添加して 55°C、 150rpm振とうにて 10 日間培養を行った。 培養液 の一部を遠心分離機にて菌体を分離し、 ガスクロマトグラフィーにより生成物 の定量を行った。 その結果、 クロストリジゥム 'エスピー No. 16- 1 株では 0. 5mM、 クロストリジゥム 'エスピー No. 16-2株では 1. 8ηιΜ、 クロストリジゥ ム .エスピー No. 22-1株では 1. 5mMのエタノールを生成していた。 実施例 3
クロストリジゥム 'エスピー No. 16-2株を以下のように培養した。 表 1 に示 す培地を試験管に 5mL分注滅菌後、 気相を一酸化炭素 (60%)、 二酸化炭素 (10%) と水素 (30%) を含む除菌ガス (以下ガス A とする) と二酸化炭素 (25%) と水素 (75%) を含む除菌ガス (以下ガス B とする) にてそれぞれ置 換し、 さらに各ガスにて 2気圧になるように調整した後、 同培地で培養を行つ た各菌の培養液 250 / Lを滅菌シリンジにて添加して 55°C、 150rpm振とう培養 した。 7、 14 日目の培養液の一部を遠心分離機にて菌体を分離し、 ガスクロマ トグラフィ一により生成物の定量を行った。 ガス A を用いてクロストリジゥ ム ·エスピー No. 16- 2株を培養した結果、 エタノール生産量が最大 3. 8mMであ つた (第 1図)。 実施例 4
クロストリジゥム ·エスピー No. 16- 2株を用いて、 集積培養を行った。 表 1 に示す培地に 0. 5%フルク トースを添加した培地を用いて 60°Cにて 3 日間静置 培養し、 遠心分離により菌を回収した。 表 1に示す培地を試験管に 5raL分注滅 菌後、 気相を二酸化炭素 (25%) と水素 (75%) を含む除菌ガスにて置換し、 さらに同ガスにて 2気圧になるように調整した後、 660nmの吸光度が 4. 0にな るように調製した菌を滅菌シリンジにて添加し、 55°C、 150rpm振とう培養を行 つた。 7、 14 日目の培養液の一部を遠心分離機にて菌体を分離し、 ガスクロマ トグラフィ一により生成物の定量を行った。 その結果、 最大 llmMのエタノー ル生産を確認した (第 2図)。 実施例 5
クロストリジゥム ·エスピー No. 16- 2株の集積菌を用いて、 連続培養を行つ た。 表 1に示す培地 0. 5%フルクトースを添加した培地を用いて 60°Cにて 5 日 間静置培養し、 遠心分離により菌を回収した。 表 1 に示す培地を 1L培養槽に 300mL添加して滅菌後、 気相を二酸化炭素 (25%) と水素 (75%) を含む除菌 ガスにて置換した。 660nmの吸光度が 4. 0 になるように回収した菌を調製した 後、 シリンジにて培養槽に添加し、 第 3図に示す装置により 60°C、 常圧、 800rpmにて攪拌培養を行った。 20°Cの水を用いた冷却管の出口から得られた溶 液を回収し、 ガスクロマトグラフィーによりエタノールの定量を行った。 その 結果、 28 日間の連続培養の結果、 平均 1. Og/L/dayの生産を維持することがで きた (第 4図)。 本発明を詳細にまた特定の実施態様を参照して説明したが、 本発明の精神と 範囲を逸脱すること無く様々な変更や修正を加えることができることは当業者 にとつて明らかである。
本出願は、 2002年 5月 29 日出願の日本特許出願 (特願 2002-155085) に基 づくものであり、 その内容はここに参照として取り込まれる。 ここに引用され るすべての参照は全体として取り込まれる。 産業上の利用可能性
本発明によれば、 40°C以上の高温で二酸化炭素等のガスを原料としてエタノ ールを効率良く生産する菌が提供できる。 また、 この菌を用いれば、 地球温暖 化の原因となる二酸化炭素等のガスを冷却することなくそのまま用いて安価に、 効率良く、 かつ連続してエタノールを生産することができる。

Claims

請 求 の 範 囲
1 . 常温常圧下で気体状である炭素化合物を原料として 40°C以上の温度でェ タノールを生産する菌。
2 . 炭素化合物が、 一酸化炭素、 二酸化炭素、 メタン、 ェタン及びエチレン からなる群から選ばれる少なくとも 1種である、 請求の範囲 1記載の菌。
3 . 炭素化合物が、 一酸化炭素及び二酸化炭素からなる群から選ばれる少な くとも 1種である、 請求の範囲 1又は 2記載の菌。
4 . クロストリジゥム属又はその派生属に属する、 請求の範囲 1〜3のいず れか 1項に記載の菌。
5 . クロストリジゥム属又はその派生属が、 クロストリジゥム属、 サーモア ナエロパクテリゥム属、 サーモアナエロパクター属又はモーレラ属である、 請 求の範囲 4記載の菌。
6 . クロストリジゥム属に属する、 請求の範囲 1〜5のいずれか 1項に記載 の菌。
7 . クロストリジゥム 'エスピー No. 16- 1株 (FERM BP- 8372)、 クロストリ ジゥム 'エスピー No. 16-2株 (FERM BP-8373)、 クロストリジゥム 'エスピー No. 22 - 1株 (FERM BP-8374) 又はこれらの類緣菌である、 請求の範囲:!〜 6の いずれか 1項に記載の菌。
8 . 常温常圧下で気体状である炭素化合物を原料として 40°C以上の温度でェ タノールを生産する菌を、 40°C以上の温度で培養することを含む、 エタノール を生産する方法。
9 . 培養が常温常圧下で気体状である炭素化合物の存在下で行われる、 請求 の範囲 8記載の方法。
1 0 . 炭素化合物が、 一酸化炭素、 二酸化炭素、 メタン、 エタン及ぴェチレ ンからなる群から選ばれる少なくとも 1種である、 請求の範囲 8又は 9記載の 方法。
1 1 . 炭素化合物が、 一酸化炭素及び二酸化炭素からなる群から選ばれる少 なくとも 1種である、 請求の範囲 8〜1 0のいずれか 1項に記載の方法。
1 2 . 菌がクロストリジゥム属又はその派生属に属する、 請求の範囲 8〜1 1のいずれか 1項に記載の方法。
1 3 . クロストリジゥム属又はその派生属が、 クロストリジゥム属、 サーモ アナエロパクテリゥム属、 サーモアナエロパクター属又はモーレラ属である、 請求の範囲 1 2記載の方法。
1 4 . 菌がクロストリジゥム属に属する、 請求の範囲 8〜1 3のいずれか 1 項に記載の方法。
1 5 . 菌がクロストリジゥム 'エスピー No. 16-1株 (FERM BP- 8372)、 ク口 ストリジゥム 'エスピー No. 16-2株 (FERM BP- 8373)、 クロストリジゥム ·ェ スピー No. 22-1株 (FERM BP- 8374) 又はこれらの類縁菌である、 請求の範囲 8 〜 1 4のいずれか 1項に記載の方法。
1 6 . 生成したエタノールを気化させて培養液から分離し、
分離したエタノールを液化させる、
ことをさらに含む、 請求の範囲 8〜 1 5のいずれか 1項に記載の方法。
1 7 . 常温常圧下で気体状である炭素化合物を原料として 40°C以上の温度で エタノールを生産する菌を、 40°C以上の温度で培養し、 生成したェタノールを気化させて培養液から分離し、 分離したエタノールを液化させる、
とを含む、 エタノールを生産する方法。
PCT/JP2003/006690 2002-05-29 2003-05-28 Nouvelle bacterie produisant de l'ethanol et procede de production d'ethanol WO2003100037A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP03733137A EP1550714A4 (en) 2002-05-29 2003-05-28 NOVEL ETHANOL-PRODUCING BACTERIUM AND PROCESS FOR PRODUCING ETHANOL
AU2003241854A AU2003241854A1 (en) 2002-05-29 2003-05-28 Novel ethanol producing bacterium and process for producing ethanol
BR0311412-0A BR0311412A (pt) 2002-05-29 2003-05-28 Bactéria para produção de etanol e processo para a produção de etanol
US10/515,920 US20060051848A1 (en) 2002-05-29 2003-05-28 Novel ethanol producing bacterium and process for producing ethanol

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-155085 2002-05-29
JP2002155085A JP2003339371A (ja) 2002-05-29 2002-05-29 新規エタノール生産菌及びエタノールの生産法

Publications (1)

Publication Number Publication Date
WO2003100037A1 true WO2003100037A1 (fr) 2003-12-04

Family

ID=29561396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/006690 WO2003100037A1 (fr) 2002-05-29 2003-05-28 Nouvelle bacterie produisant de l'ethanol et procede de production d'ethanol

Country Status (6)

Country Link
US (1) US20060051848A1 (ja)
EP (1) EP1550714A4 (ja)
JP (1) JP2003339371A (ja)
AU (1) AU2003241854A1 (ja)
BR (1) BR0311412A (ja)
WO (1) WO2003100037A1 (ja)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ546496A (en) * 2006-04-07 2008-09-26 Lanzatech New Zealand Ltd Gas treatment process
US8556999B2 (en) * 2007-07-27 2013-10-15 Swift Fuels, Llc Renewable engine fuel and method of producing same
US8907150B2 (en) 2006-07-27 2014-12-09 Swift Fuels, Llc Biogenic fuel and method of making same
US8049048B2 (en) * 2006-07-27 2011-11-01 Swift Enterprises, Ltd. Renewable engine fuel
US8552232B2 (en) * 2006-07-27 2013-10-08 Swift Fuels, Llc Biogenic turbine and diesel fuel
NZ553984A (en) * 2007-03-19 2009-07-31 Lanzatech New Zealand Ltd Alcohol production process
US9145566B2 (en) 2007-07-27 2015-09-29 Swift Fuels, Llc Renewable engine fuel and method of producing same
EA022710B1 (ru) * 2007-11-13 2016-02-29 Ланзатек Нью Зиленд Лимитед Штамм бактерии clostridium autoethanogenum, способный продуцировать этанол и ацетат путем анаэробной ферментации субстрата, содержащего co
JP5248139B2 (ja) * 2008-02-26 2013-07-31 三井造船株式会社 新規微生物
JP5214272B2 (ja) * 2008-02-26 2013-06-19 三井造船株式会社 新規微生物
JP5410685B2 (ja) * 2008-02-26 2014-02-05 三井造船株式会社 エタノール生産方法
US8119844B2 (en) * 2008-05-01 2012-02-21 Lanzatech New Zealand Limited Alcohol production process
JP2009273420A (ja) * 2008-05-15 2009-11-26 National Institute Of Advanced Industrial & Technology バイオマス生成物の製造装置及びバイオマス生成物の製造方法
JP2010017131A (ja) * 2008-07-10 2010-01-28 Mitsui Eng & Shipbuild Co Ltd モーレラ属細菌及びプライマー
CA2747492A1 (en) * 2008-12-22 2010-07-01 Mascoma Corporation Production of ethanol from lignocellulosic biomass
US9096847B1 (en) 2010-02-25 2015-08-04 Oakbio, Inc. Methods for control, measurement and enhancement of target molecule production in bioelectric reactors
CA2799821A1 (en) * 2009-09-18 2011-03-24 Swift Fuels, Llc Mesitylene as an octane enhancer for automotive gasoline, additive for jet fuel, and method of enhancing motor fuel octane and lowering jet fuel carbon emissions
US8143037B2 (en) * 2010-03-19 2012-03-27 Coskata, Inc. Ethanologenic Clostridium species, Clostridium coskatii
CN103282505A (zh) * 2010-08-26 2013-09-04 新西兰郎泽科技公司 通过发酵产生乙醇和乙烯的方法
CA2848574A1 (en) 2011-09-12 2013-03-21 Oakbio Inc. Chemoautotrophic conversion of carbon oxides in industrial waste to biomass and chemical products
KR101331119B1 (ko) * 2011-11-21 2013-11-19 명지대학교 산학협력단 신규한 클로스트리디움속 미생물 및 이를 이용한 에탄올 생산 방법
JP2014183780A (ja) * 2013-03-22 2014-10-02 Mitsui Eng & Shipbuild Co Ltd エタノール製造システム
US9816041B2 (en) 2013-12-09 2017-11-14 Swift Fuels, Llc Aviation gasolines containing mesitylene and isopentane
US20150259619A1 (en) 2014-03-11 2015-09-17 Swift Fuels, Llc Motor fuel formulation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61209584A (ja) * 1985-03-13 1986-09-17 Res Assoc Petroleum Alternat Dev<Rapad> エタノ−ル高生産性変異株およびそれを利用するエタノ−ルの製法
WO1998000558A1 (en) * 1994-11-30 1998-01-08 Bioengineering Resources, Inc. Biological production of acetic acid from waste gases
WO2000068407A1 (en) * 1999-05-07 2000-11-16 Bioengineering Resources, Inc. Clostridium strains which produce ethanol from substrate-containing gases
KR20010077015A (ko) * 2000-01-29 2001-08-17 변유량 신규한 고도호열성 미생물 서모언에어로박터 연세이kb-1(kfcc-11116)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5173429A (en) * 1990-11-09 1992-12-22 The Board Of Trustees Of The University Of Arkansas Clostridiumm ljungdahlii, an anaerobic ethanol and acetate producing microorganism
EA006106B1 (ru) * 2000-07-25 2005-08-25 Эммаус Фаундейшн, Инк. Способ стабильной непрерывной выработки этанола

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61209584A (ja) * 1985-03-13 1986-09-17 Res Assoc Petroleum Alternat Dev<Rapad> エタノ−ル高生産性変異株およびそれを利用するエタノ−ルの製法
WO1998000558A1 (en) * 1994-11-30 1998-01-08 Bioengineering Resources, Inc. Biological production of acetic acid from waste gases
WO2000068407A1 (en) * 1999-05-07 2000-11-16 Bioengineering Resources, Inc. Clostridium strains which produce ethanol from substrate-containing gases
KR20010077015A (ko) * 2000-01-29 2001-08-17 변유량 신규한 고도호열성 미생물 서모언에어로박터 연세이kb-1(kfcc-11116)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1550714A4 *

Also Published As

Publication number Publication date
BR0311412A (pt) 2005-06-07
JP2003339371A (ja) 2003-12-02
EP1550714A1 (en) 2005-07-06
US20060051848A1 (en) 2006-03-09
AU2003241854A1 (en) 2003-12-12
EP1550714A4 (en) 2006-07-05

Similar Documents

Publication Publication Date Title
WO2003100037A1 (fr) Nouvelle bacterie produisant de l&#39;ethanol et procede de production d&#39;ethanol
EP2217696B1 (en) Novel bacteria and methods of use thereof
Do et al. Growth of Rhodospirillum rubrum on synthesis gas: conversion of CO to H2 and poly‐β‐hydroxyalkanoate
US10494600B2 (en) Bacteria and methods of use thereof
US7972824B2 (en) Microbial fermentation of gaseous substrates to produce alcohols
US8900836B2 (en) Acid production by fermentation
Sinha et al. Biohydrogen production from various feedstocks by Bacillus firmus NMBL-03
CA2548221A1 (en) Method of producing ethanol by direct or indirect fermentation of biomass with clostridium carboxidivorans
JP2009539407A (ja) 溶媒耐性微生物および単離方法
WO2010031793A2 (en) Thermophilic fermentative bacterium producing butanol and/or hydrogen from glycerol
EP3129513B1 (en) Production of lactic acid from organic waste or biogas or methane using recombinant methanotrophic bacteria
WO2014133668A1 (en) A butyrate producing clostridium species, clostridium pharus
Danko et al. Effect of arabinose concentration on dark fermentation hydrogen production using different mixed cultures
US8852918B2 (en) Bacteria and methods of use thereof
RU2375451C1 (ru) РЕКОМБИНАНТНАЯ ПЛАЗМИДНАЯ ДНК, СОДЕРЖАЩАЯ ГЕНЫ СИНТЕЗА БУТАНОЛА ИЗ Clostridium acetobutylicum (ВАРИАНТЫ), РЕКОМБИНАНТНЫЙ ШТАММ Lactobacillus brevis - ПРОДУЦЕНТ Н-БУТАНОЛА (ВАРИАНТЫ) И СПОСОБ МИКРОБИОЛОГИЧЕСКОГО СИНТЕЗА Н-БУТАНОЛА
JP2006166875A (ja) 脱窒菌株およびこれを用いた硝酸の除去方法
JP5248139B2 (ja) 新規微生物
JP5214272B2 (ja) 新規微生物
JP2009201388A (ja) エタノール生産方法
Ramachandriya Effect of biomass generated producer gas, methane and physical parameters on producer gas fermentations by Clostridium strain P11
AU2008321615B2 (en) Novel bacteria and methods of use thereof
Yang et al. Hydrogen Production from Food Waste by Anaerobic Fermentation

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2006051848

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2003733137

Country of ref document: EP

Ref document number: 10515920

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2003733137

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10515920

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2003733137

Country of ref document: EP