WO2003097869A2 - Mikrosatellitenmarker für genetische analysen und zur unterscheidung von rosen - Google Patents

Mikrosatellitenmarker für genetische analysen und zur unterscheidung von rosen Download PDF

Info

Publication number
WO2003097869A2
WO2003097869A2 PCT/DE2003/001572 DE0301572W WO03097869A2 WO 2003097869 A2 WO2003097869 A2 WO 2003097869A2 DE 0301572 W DE0301572 W DE 0301572W WO 03097869 A2 WO03097869 A2 WO 03097869A2
Authority
WO
WIPO (PCT)
Prior art keywords
rms
rms09
rms08
rms07
rms06
Prior art date
Application number
PCT/DE2003/001572
Other languages
English (en)
French (fr)
Other versions
WO2003097869A3 (de
Inventor
Tino Schultze
Karl-Heinz Süss
Original Assignee
Con / Cipio Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Con / Cipio Gmbh filed Critical Con / Cipio Gmbh
Priority to AU2003245833A priority Critical patent/AU2003245833A1/en
Publication of WO2003097869A2 publication Critical patent/WO2003097869A2/de
Publication of WO2003097869A3 publication Critical patent/WO2003097869A3/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6881Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for tissue or cell typing, e.g. human leukocyte antigen [HLA] probes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/13Plant traits
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Definitions

  • the invention relates to novel genetic markers for genetic analysis and for distinguishing roses.
  • Possible applications include marker-based selection and origin and variation analysis in plant breeding, horticulture and agriculture.
  • Rosa is a genus of over 20 species in Germany alone, whose taxonomic classification is still largely in the discussion (Haeupler H., Muer T., Picture Atlas of fern and flowering plants in Germany).
  • the genus includes species of different Ploidieworkn and of different geographical origin.
  • a Niel number of wild rose species occurs on all continents of the northern hemisphere.
  • natural hybrids of common rose species are common, which further complicates the definition of clearly differentiated species.
  • the easy crossability of different types of roses is the basis of the great variety of cultivated varieties.
  • This variety includes varieties with different flower color and shape, different flowering time (only once a year flowering or remontent), plant size and growth habit (shrub, hedge, bedding, climbing, ground cover roses, etc.), type of foliage and barbelling, appearance of fruits (rose hips), hardiness, disease resistance and soil quality requirements.
  • the object of the invention is to provide new microsatellite markers for the genetic analysis of plants of the genus Rosa.
  • the markers according to the invention are based on the amplification of certain hypervariable genome segments, the so-called microsatellites, with the aid of the polymerase chain reaction (PCR).
  • PCR polymerase chain reaction
  • two primers are required for each microsatellite locus, left and right respectively in the flanking sequences. These primers are on average 23 +/- 5 bases long and defined by their sequences.
  • a microsatellite marker is in principle a sequence tagged site (STS) defined by two specific primers. These primers flank, in each case a so-called microsatellite sequence on the left and on the right.
  • a microsatellite sequence is defined as tandem repeating repetition of a di-, tri- or tetranucleotide sequence, for example (GA) n , where n is 8.
  • Compound microsatellite sequences also occur, for example (GT) n (AT) n , as well as imperfect sequences in which single bases are mutated, for example (GT) "CA (AT) n .
  • GT codonucleatellite sequence
  • fragments differ in length: the second variety is 4 bp larger than the first variety, the third variety is 10 bp larger.
  • This difference in length can e.g. by various techniques of high resolution electrophoresis (e.g., capillary electrophoresis).
  • electrophoresis e.g., capillary electrophoresis
  • the separation and detection of the resulting PCR products can be carried out with various technical variants.
  • the separation can also be carried out by mass spectrometry.
  • the detection of the fragments can be carried out by ethidium bromide staining, silver staining or by radioactive labeling of the PCR fragments by autoradiography.
  • Another very effective variant of the separation and detection is the use of an automatic sequencer with dye-labeled or fluorescently labeled primers. For this purpose, it is necessary to synthesize a primer from each microsatellite primer pair with dye or fluorescence labeling.
  • the PCR amplification results in a labeled product which can be detected by the sequencer.
  • dye-labeled or fluorescence-labeled size standards are also separated in the same lane for each sample.
  • a special software allows to calculate the absolute size of each separated fragment and to compare fragments between different gel runs. With this method, several hundred samples per day can be analyzed largely automatically. If one investigates a larger number of varieties, this uniqueness is lost: For 100 varieties, several varieties will show the same PCR product size and be indistinguishable by a single microsatellite marker. Therefore, several microsatellite markers that vary in length independently of each other must be studied in parallel. This results in a distinct combination of microsatellite fragment lengths for each type of rose examined, which can be termed the "fingerprint" of this variety.
  • microsatellite markers which contain the following primer pairs with associated microsatellite sequences or a number thereof and amplify the loci of different chromosomes of the genome of plants of the genus Rosa and therefore find use for gene labeling.
  • markers are therefore useful for DNA fingerprinting, variety identification, derangement and all forms of genetic mapping, including single gene and quantitative trait mapping (QTLs).
  • QTLs quantitative trait mapping
  • their use is very well suited for automation and it is possible to carry out the detection of the products by non-radioactive methods.
  • Another Norteil of the invention is the identification or assignment of anonymous Rosenherkünfte to a Nerwandtschaftsucc. Furthermore, it becomes possible to identify lines traded under different variety names. Also, the genetic diversity of a group of lines can be determined (eg, the genetic diversity in the breeding material of a single breeder). It also becomes possible to estimate the genetic distance of parents of a planned intersection and thus possibly also the chances of success of the intersection.
  • 100 mg leaf material was ground into liquid nitrogen and processed according to the manufacturer's instructions.
  • the concentration of the recovered genomic rose DNA was estimated via an agarose gel.
  • a dilution of 2.5 ng / ⁇ l was made in water. 2 ⁇ l each of these dilutions were placed in PCR plates and dried and stored in this condition until use at room temperature until use.
  • the PCR reactions were performed in 25 ⁇ l volume in a 96-well microtiter plate.
  • the reaction contained: 200 nM primer 1 200 nM primer 2
  • MgCl, 0.1% Triton ® X-100 is supplied as 10x stock to polymerase # M2668) about 5ng genomic rose DNA
  • the PCR was performed in GeneAmp PCR System 9700 PCR machines (Applied Biosystems).
  • the temperature profile is shown in the following table:
  • Injection time t 20 ms, voltage: 15 kV, running time: 1080 s
  • NED-labeled fragments of length 73 bp, 121 bp, 156 bp, 235 bp, 303 bp, 377 bp and 434 bp were used.
  • Fragments contributed one of the three marker colors HEX, ROX, or FLU for later high-throughput multiplexing.
  • DNA of the rose variety "Lichtblick" was isolated from foliage leaves and this DNA was subjected to digestion with the restriction enzyme Pst I.
  • the fraction of the restriction fragments of about 5 to 30 kb was isolated via a preparative agarose gel and subjected to further restriction digestion with the enzyme bol.
  • the fragments in the range of 500-1500 bp were isolated via a second preparative gel and cloned into the plasmid vector pUC18.
  • the resulting genomic plasmid library from Rose was transformed (E. coli XL2-Blue MRF ') and plated on Petri dishes.
  • the bacterial colonies were transferred as reference library (one clone per well) in microtiter plates.
  • the clones were then spotted in high density array on nylon membranes by radioactive hybridization with a synthetic microsatellite oligonucleotide (GA n or GT n ) were identified the plasmid clones containing a corresponding microsatellite.
  • G n or GT n synthetic microsatellite oligonucleotide
  • These plasmids were prepared and sequenced for sequencing on a microgram scale using special software (Primer 3.0 or DNAStar / PrimerSelect from Lasergene) to derive primer pairs that include the microsatellite motif and produce a theoretical product of 80-250 bp.
  • Reliable functioning polymorphic microsatellites that allow for a clear differentiation of the 30 varieties of roses used for a preliminary test are selected as a marker set for further genotyping.
  • the results from the examination of the different varieties are archived in a database which allows to identify additional varieties as identical or not identical to already examined varieties or lines or alternatively to determine affinity to the already examined varieties. Performing the genotyping
  • microsatellite markers After genotyping, which was carried out twice on independently prepared DNA, the analyzed microsatellite markers could be classified according to their quality into two categories: "usable” and "good” markers.
  • Table 2 Datasheet for microsatellite marker RMS059. Columns denote different alleles of the marker in base pairs (bp), lines denote the 32 different rose varieties; a 1 stands for presence, a 0 for the absence of an allis in the examined variety. The last line indicates how many times an allele has been observed in the examined material. The last column contains the number of alleles in one species.
  • RMS059 contains a microsatellite with the dinucleotide repeat motifs AT and GT and therefore shows alleles with a size difference of 2 bp (with the exception of the largest allele).
  • Rose shows a high average number of alleles per variety (last column in Table 2), a high number of different alleles per microsatellite marker and relatively few null allele. This reflects the heterogeneity of the studied genetic material and the complex genetics of Rose.
  • results of the genotyping were used for a kinship analysis of the examined rose varieties via the program NTSYS. Once only the data generated with the 41 "good” markers and once the data generated with all 84 “useful” markers were charged. The results are presented in the form of pedigrees in Figures 3 and 4. The horizontal axis shows the genetic distance between the theoretical values 0 (no genetic relationship) and 1.00 (agreement of all examined marker data). Essentially, both dendrograms differ only in the upper half, where branches follow each other at very short intervals. The kinship relationships in the lower half are relatively consistent when using 41 or 84 markers.
  • the dendrogram has been able to ascertain a rough tendency from wild species over old varieties to more modern varieties.
  • the species Rosa nultiflora at the bottom shows in both analyzes a low relationship of only 0.22 to all other varieties tested.
  • the species Rosa xanthina with the variety 'Canary Bird' is hardly with the other varieties related.
  • the moss roses' Zoe 'and' Comtesse de Murinais' were created in 1861 and 1843, respectively.
  • the remontant hybrids' Abraham Zimmermann '(1876) and' Dr. Georges Martin '(1908) are from the second half of the 19th century and from the early 20th century.
  • the relatively young tea hybrids 'Autumn' (1928), 'Sommer Kunststoffe' (1988) and 'Spes' (1970) are in the upper half of the dendrogram. In each case at the upper end are the two Floribundarosen 'Ulrike' (1973) and 'Jan Spek' (1966) to find.
  • the varieties 'Spreeglut' (shrub rose, 1985), 'Sangerhausen' (Polyantha hybrid, 1938) and 'Lichtblick' (shrub rose, 1972) are poorly classified. Although they form a group in both dendrograms, in Figure 2 they are rather placed in the relationship of the tea hybrids and in Figure 3 more in the relationship of the Floribunda roses.
  • microsatellite markers suitable for genotyping have been achieved.
  • a total of 84 usable microsatellite markers were developed, of which 41 are particularly useful.
  • a set of 25 microsatellite markers has been defined, with which a reliable genotyping of further rose varieties can be performed. The most important information and usage instructions for the use of the markers are contained in the created database. Further description of the microsatellite markers
  • microsatellite markers The detailed description of the microsatellite markers is shown in the following table.
  • Figure 1 two-sided, a and b: electropherogram of PCR products of rose varieties 10 to 18 with primer combination RMS059. Peaks denote alleles whose size has been automatically calculated (lower number below the peak) and assigned to one allele category (upper number).
  • Figure 2 Nerwandtschaftsanalyse the 32 varieties using 41 microsatellite markers of the category "good”. The further a branch between two varieties is shifted to the right, the closer they are related.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Analytical Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

Mikrosatelliten aus Pflanzen der Gattung Rosa, einschließlich den isolierten Mikrosatelliten, Primern aus flankierenden Regionen der Mikrosatelliten, ein Verfahren zur Herstellung der Mikrosatelliten und deren Verwendung zur Genotypisierung von Pflanzen der Gattung Rosa.

Description

Mikrosatellitenmarker für genetische Analysen und zur Unterscheidung von Rosen
Der Erfindung betrifft neuartige genetische Marker für genetische Analysen und zur Unterscheidung von Rosen.
Mögliche Anwendungsgebiete sind marker-gestützte Selektion und Herkunfts- und Nariationsanalysen in Pflanzenzüchtung, Gartenbau und Landwirtschaft.
Stand der Technik
Rosa ist eine Gattung mit über 20 Arten allein in Deutschland, deren taxonomische Einteilung sich noch weitgehend in der Diskussion befindet (Haeupler H., Muer T., Bildatlas der Farn- und Blütenpflanzen Deutschlands). Die Gattung umfaßt Arten unterschiedlicher Ploidiestufen und unterschiedlichster geographischer Herkunft. Eine Nielzahl von Wildrosenarten kommt auf allen Kontinenten der Νordhalbkugel vor. Zudem sind natürliche Hybriden von im selben Habitat vorkommenden Rosenarten häufig, wodurch die Definition klar differenzierter Arten zusätzlich erschwert wird.
Andererseits ist die leichte Kreuzbarkeit von verschiedenen Rosenarten die Grundlage der großen Nielfalt von durch Züchtung entstandenen Sorten. Diese Nielfalt umfaßt Sorten mit unterschiedlicher Blütenfarbe und -form, unterschiedlicher Blühdauer (jährlich nur einmal blühend oder remontierend), Pflanzengröße und Wuchsform (Strauch-, Hecken-, Beet-, Kletter-, Bodendeckerrosen usw.), Art der Belaubung und Bestachelung, Aussehen der Früchte (Hagebutten), Winterhärte, Krankheitsresistenz und Ansprüchen an die Bodenqualität.
Für eine sichere Bestimmung von Arten und Sorten (die meist Ergebnisse komplexer Kreuzungen sind) ist in den meisten Fällen Blüte, Frucht, Bestachelung, Belaubung und Wuchsform mit einzubeziehen. Somit ist im Allgemeinen auch für den Fachmann kurzfristig lediglich eine Zuordnung zu einer Gruppe von Arten und Sorten möglich, nicht aber eine eindeutige Bestimmung. Aufgabe-Lösungszusammenhang
Die Aufgabe der Erfindung besteht darin, neue Mikrosatellitenmarker zur genetischen Analyse von Pflanzen der Gattung Rosa bereitzustellen.
Die Aufgabe der Erfindung wird gemäß den Ansprüchen realisiert.
Wesen der Erfindung
Die erfindungsgemäßen Marker basieren auf der Amplifikation bestimmter hypervariabler Genomabschnitte, den sogenannten Mikrosatelliten, mit Hilfe der Polymerasekettenreaktion (PCR). Zur spezifischen Amplifikation werden für jeden Mikrosatelliten-Locus zwei Primer, jeweils links und rechts in den flankierenden Sequenzen benötigt. Diese Primer sind im Durchschnitt 23 +/- 5 Basen lang und durch ihre Sequenzen definiert. Ein Mikrosatellitenmarker ist im Prinzip eine sequence tagged site (STS), welche durch zwei spezifische Primer definiert ist. Diese Primer flankieren, jeweils links und rechts eine sogenannte Mikrosatellitensequenz. Eine Mikrosatellitensequenz ist definiert als tandemrepetitive Wiederholung einer Di-, Trioder Tetranukleotidsequenz, beispielsweise (GA)n, wobei n 8 ist. Es treten auch zusammengesetzte Mikrosatellitensequenzen auf, beispielsweise (GT)n(AT)n , sowie imperfekte Sequenzen, bei welchen einzelne Basen mutiert sind, beispielswise (GT)„CA(AT)n. Zwischen verschiedenen Linien und Sorten kommt es zu Variationen der Anzahl der Repeats an einem bestimmten Locus. Dies führt nach Amplifikation des Mikrosatelliten mittels der spezifischen Primer in den flankierenden Sequenzen zu PCR-Produkten verschiedener Länge und damit zu Polymorphismus. Diese Polymorphismen werden stabil vererbt und können daher als genetische Marker verwendet werden. In manchen Fällen treten auch Nullallele (kein sichtbares Fragment) auf, wenn Mutationen innerhalb der Bindungsstelle für die Primer vorhanden sind.
Über die biologische Funktion dieser der repetitiven Fraktion des Genoms zugeordneten Motive gibt es bisher keine gesicherten Erkenntnisse. Es wurde jedoch festgestellt, daß die Anzahl der Wiederholungen eines Mikrosatellitenmotivs zwischen nah verwandten Arten, Sorten und Linien variabler ist als der übrige (insbesondere codierende) Teil des Genoms. So könnten z.B. drei Rosensorten einen Mikrosatelliten tragen, der in der Länge variiert (12, 14 und 17 Wiederholungen des Motivs GT), dessen flankierende Sequenzen aber in allen drei Sorten identisch sind. Somit kann durch PCR relativ leicht ein Längenunterschied nachgewiesen werden: ein Primerpaar bestehend aus je einem Primer links und rechts von der Mikrosatellitensequenz wird zur Amplifikation eines DNA-Fragments aus jeder der drei Linien verwendet.
Diese Fragmente unterscheiden sich dann in ihrer Länge: das Produkt der zweiten Sorte ist um 4 bp grösser als das der ersten Sorte, das Produkt der dritten Sorte um 10 bp. Dieser Längenunterschied (Längenpolymorphismus) kann z.B. durch verschiedene Techniken der hochauflösenden Elektrophorese (z.B. Kapillarelektrophorese) nachgewiesen werden. Damit sind diese drei Rosensorten eindeutig unterscheidbar, und zwar in jeder Entwicklungs- und Verarbeitungsstufe, aus der DNA gewonnen werden kann (Blatt, Blüte, Frucht, Same, Keimling, evtl. auch Rosenöl, Hagebuttenmarmelade, Tee, Trockensträuße usw.).
Die Auftrennung und Detektion der erhaltenen PCR-Produkte kann mit verschiedenen technischen Varianten durchgeführt werden. Für die Auftrennung der Fragmente können hochauflösende Agarosegele, native Polyacrylamidgele oder denaturierende Polyacrylamidgele (=Sequenziergele) verwendet werden. Die Auftrennung kann auch auf massenspektrometrischem Wege durchgeführt werden. Die Detektion der Fragmente kann je nach Trennungssystem über Ethidiumbromidfärbung, Silberfarbung oder bei radioaktiver Markierung der PCR-Fragmente über Autoradiographie erfolgen. Eine weitere sehr effektive Variante der Auftrennung und Detektion besteht im Einsatz eines automatischen Sequenziergerätes mit farbstoff- bzw. fluoreszenzmarkierten Primem. Hierzu ist erforderlich, einen Primer aus jedem MikrosateUiten-Primerpaar farbstoff- bzw. fluoreszenzmarkiert zu synthetisieren. Aus der PCR-Amplifikation resultiert ein markiertes Produkt, welches von dem Sequenziergerät detektiert werden kann. Dabei werden für jede Probe farbstoff- bzw. fluoreszenzmarkierte Größenstandards in derselben Spur mit aufgetrennt. Eine spezielle Software erlaubt es danach, die absolute Größe jedes aufgetrennten Fragmentes zu berechnen und somit auch Fragmente zwischen verschiedenen Gelläufen zu vergleichen. Mit dieser Methode können pro Tag mehrere hundert Proben weitgehend automatisch analysiert werden. Untersucht man eine größere Zahl von Sorten, so geht diese Eindeutigkeit verloren: Bei 100 Sorten werden mehrere Sorten dieselbe PCR-Produktgröße zeigen und durch einen einzigen Mikrosatellitenmarker nicht voneinander unterscheidbar sein. Deshalb müssen mehrere Mikrosatellitenmarker, die unabhängig voneinander in ihrer Länge variieren, parallel untersucht werden. Daraus ergibt sich für jede untersuchte Rosensorte eine eindeutige Kombination von Mikrosatelliten-Fragmentlängen, die als der „Fingerprint" dieser Sorte bezeichnet werden kann.
Für Rose wird eine Anzahl von 25 Mikrosatellitenmarkern ausreichen, um über 90% der im Handel befindlichen Sorten voneinander zu unterscheiden. Bei Weizen liegt die Zahl z.B. bei 21 Markern für eine Unterscheidung von 95% aller Sorten. Mit diesem Ansatz nicht unterscheidbar bleiben sogenannte „Sports", also neue Rosensorten, die durch Spontanmutation aus einer bereits existierenden Sorte hervorgegangen sind und sich in nur einer Eigenschaft (z.B. Blütenfarbe oder Wuchsform) von dieser unterscheiden. Die beiden Genome sind in diesem Fall, abgesehen von der Mutation, identisch und mit dem beschriebenen Markerset wahrscheinlich nicht zu differenzieren.
Erfindungsgemäß werden Mikrosatellitenmarker bereitgestellt, die folgende Primerpaare mit zugeordneten Mikrosatellitensequenzen bzw. eine Anzahl davon enthalten und die Loci verschiedener Chromosomen des Genoms von Pflanzen der Gattung Rosa amplifizieren und daher zur Genmarkierung Verwendung finden.
Name Motiv Produkt Tm Primer F* 5'->3' Tm Primer R 5'->3' -große (bp) in "Lichtblick"
RMS001 GT&GC 242 57.1 TTCAAAATTGCTGCCCCCTTAG 44.8 TACCAGTTGAGTGAGAAATAGTT
RMS002 GA 138 36.5 AATAATTTTTCTTTTGGTA 36.6 GATTTGTTTTCACTATTCA
RMS003 GA 151 52.9 TGGGAAAGGGAAAGCAACA 53.0 AAGGTAGGCAGAAGTGACAGACAT
RMS004 GT&AT 143 55.0 CAGGCCAAGGAAGAGGTAAGTAAA 55.7 CGTATGCGCGTGTAGGAAGG
RMS005 GA 143 53.1 CTACCGGTGACCAGTGACGA 51.9 ATTTTGCCCTCTCCCTTTGT m TJ CΛ RMS006 GT&GA 114 53.0 ACCGGTCTCATCTTTCCATTG 52.2 GTAGGTCGGTCCGTCTGTCA
> H N RMS007 GA 171 48.4 TCTTTCCGACTCCGACAA 54.8 TATGCCATTCAGACTCTCCAACAC CD
RMS008 GA 176 53.4 TCTCTGCGACAAAAACAAACACT 61.9 CCATGAAGCGGCGGAGAGGA
RMS009 CT&GT 145 47.3 ATTGGCAAAAGATTCTCCTAC 46.5 ACTTGGTAATTTCGAGCATAA m o RMS010 GA 105 61.2 GGTTGGGGGAAATTGAAGCAGAGA 58.9 TCTTTTCTTCTACAAACCCCAACCAA m r RMS011 GT 190 47.9 TAGAAACGACCAATAAAAGAGG 48.0 TAACGAAACATCATCAATAGCA σ.
RMS012 GT 141 48.8 ATAGAAAAATAGAGGGGGTGTG 46.4 GATCGAAAAGTGGTCAAAATA
RMS013 GA 208 57.8 GCCTTAGCCGGGGTTTTCAA 45.6 GATCAATACCGAACTAACAAAG
RMS014 GA 124 56.1 TATTCTTTCTTCCCACCGACGAC 56.2 CCTCACTGCCAACCCAACTGT
RMS015 GA 185 46.5 TAATGTAGGCAGATATAAAGGAGT 52.1 GCAGCTGCACAACAAGGAA
RMS016 GA 121 55.1 GGCCTGGACCTTTCTCATTTG 56.9 AACCGCTGCTGCTTTCATTTTT
RMS017 AT&GT 246 46.2 AGGTCCCGTTATTTCAGG 46.2 AGTTGGCTTATGGCTTTTT
Figure imgf000007_0001
"sf σs 00 o o r*- σs f- i— ι S VO ON in 00
< O σ*ϊ o oo f- f- o SO 00 m o o o <3\ o C cn e
C <N t <
Figure imgf000007_0002
RMS038 GA 115 50.3 GTGATAAGAGCAAAACAAGATGG 53.8 CTCGCGGAAGCCTCAAAA
RMS039 2xGA 124 52.1 GCTGCTTTCTCCAATCAACAA 52.1 CAGCTCAGCAAAGGGGACTA
RMS040 GT 143 46.6 AACCCCAAACTTCCTAAACT 45.7 TCTGTATCTACTGTGGCTAACC
RMS041 GA 249 49.2 TTAACCCAAAGCACCAAAAT 48.5 ACCTTCACCGATGTATCACC
RMS042 AT&GT 181 55.4 GCATGGCCAGGCTCTTCAC 55.5 ATGCCAAACGTCTCAGTCAACC
RMS043 GA 215 52.6 GATCAAAGATGGGTTCTCCTCTC 54.6 AGGGGAATCTTTGAAAGTCGTTC
RMS044 AT 204 49.6 ACCGATGGATGGCAATAAC 49.7 ATACAGGACATAAACGGCTACC
RMS045 AT&GT&AT 233 40.0 GAAAATAAGGACATCATCTAC 41.4 GGTGCCTCCATTATTTAC
&GA m TJ RMS046 AT&GT 247 45.0 AAAGGATTGCTGGATGTG 42.4 TATTCGCGTGGACTCTAT CΛ
>
H RMS047 GA 98 51.6 GCTCCCTCAATTTCCACTCA 51.7 ACCAACCCAATTCGCTCAT N CD r- RMS048 GA&AT 197 41.8 ATAAGTATGAAAAAGTAAAATGAT 44.0 GTATACTAGAAAAACAAAACTGGT >
H H RMS049 AT&GT 178 39.9 AAAAATACAACCGAAAAA 52.6 CCAACCCGTCAAGGCTAAA m RMS050 AT&GA 169 43.1 TAAGCCTAAGAAAAACTCATT 48.6 CAGCCGTCAGATTCACTTG O m r- RMS051 GT 215 46.5 AGTAGACTGTCCTCCATTTAGC 50.9 ATACCATCAGAGAAGAGACGACAC
RMS052 GA 224 59.8 TTAGCCGTTAATTGAGTCGACAACCT 57.0 TGATGAACCCAATAGAATGAAAACA C GA
RMS053 GA 160 56.9 GGCGGTAGCTAGTGACTGGAATCT 55.4 CCCTTACCCTTACCCCTTTGTTAC
RMS054 AT&GA 239 48.8 CTGGGAGGAGAACTCTGTCA 48.7 TAGCTTATTAGTCTGCATTGATGA
RMS055 GA 192 53.4 TGATCACAAGAGCTTTTCAAGTTTAG 53.4 AGTTAGGCGCATGTACAAGAAAAT
RMS056 GA 133 36.7 TGTGTAGATTAGCATTCC 35.2 GATCTAGGATGATTCAATA
RMS057 GAA / GA 174 63.4 CGAGGTGGGTAAGGGCGAACAAAG 63.5 CCCATCCAAAGCGAGACGACGAC
RMS058 GT 143 50.6 CAACCCCTGAAGCCTGAA 47.4 TTTGTAACCCATTTGACCATA
RMS059 AT&GT 126 42.6 ACAGTCTTATAGTGGCTTCC 44.9 TACAGGGTTCTAATTGATACATAC
RMS060 GA 219 41.6 CATTCATTTGACTCTAAGGA 43.5 TATTCTGGTCTAAGCTATTGTAA
RMS061 GT 211 49.6 ATATCAGCCGTCCCATCAG 38.9 TTAGAAAATCCCAAACAT
RMS062 GA&GT 189 50.4 GCGAACGGCATTTACTTGT 50.5 GGTTGTTCTGGGTGGTTTTT
RMS063 GAA 90 60.4 CCACCGCCCACAATCACAATG 59.9 GCTCTGCGGAGTGGGAATGGT
RMS064 GA, GT 227 43.7 TTTTTGCAATATGTGAAGC 50.3 GATTGGTCAACCGATATGTAGAA
RMS065 GA 111 42.2 TATAGCTCGGTAGATTCAAA 56.2 CCAGACTGCCCCCAACTCATA m TJ RMS066 GA 198 48.8 TCCACCCACAGACCACAG 49.5 AAGCTCCCTACGATTTCACTC
>
H RMS067 GA 169 50.2 CAATCTGCAATCCGAATCC 47.5 ATGGTGAAAAACAGAAATACTACA N CD r- RMS068 GA 199 52.8 GTGCGCTTTCTGCTCCATT 51.8 CATTTTGTCCTACGTTTTCACTTC >
H H RMS069 GT&GA 232 53.0 TCGGAGATTAAGAGTGAGGTGAGT 56.9 GTGCCCACTTACCCAAACCATC m RMS070 GA 173 45.2 TGCCTCTCGATACAAACC 54.0 AATAAGAACCAATACCCCGAAGAG O m r- RMS071 GT 90 44.4 GTTAGCATCTGGCACATTAT 46.3 AGTTCCTTGACCAGCAGAG
RMS072 GA 110 46.3 TTAGCTCAAGAATTCATCAAAG 51.9 TCCAAACCGAGCTAAGAAAACT
RMS073 AT&GT/GA 156 46.0 AAACCCCTTTTATGTAGAAGTAG 45.5 TAAAACATGAAATTATAACAATAGT
A
RMS074 AT&GT 237 51.5 GCTTCTATCCACAGTTTCACCTC 51.0 TTCATGTCAACGCTTCTGTAATAG
RMS075 AT&GT 237 54.4 GCCCGTAAAAGCCCGTAAA 48.3 TTGGTCAACCGATATGTAGAAT
RMS076 GA 180 48.9 TGGATGCAAACACCTACAAA 58.1 CGTCGCCGGCATTCGTC
RMS077 GA&GT 154 60.375 AGGTGAACATGGGCCAACTA 57.436 TCAAAGAATGAGTGCCTACTAAGA
RMS078 GT 112 59.585 CCATTCCAAAGTTGCACGTA 60.049 CTCTACTGCCAGCAACCACA
RMS079 GA 182 59.502 CCGGTATGGAGAGGAATGAG 59.841 GCAATTATCCTTGACAGAACCC
RMS080 GT 213 59.585 GCTTTCAAAGATGGGAAACCT 59.470 TTGGTATCACATTTACTCTCATTGC
RMS081 GT&GA 164 57.402 TTTGACACACACACACAAACAT 59.784 GACTGAGAAACAAGTCCGTCCT
RMS082 2xGA 113 59.469 AACAACACACGCGGAATATG 59.873 TGCAGTTGGAGTTGGAGTTG
RMS083 GT 90 60.837 GACGTCCGCACTTTAGCAAC 61.720 AGGTCCTCAGCATAGACGGC
RMS084 GT 185 59.893 GGGAGTCTCAAGAGCTACCGT 58.787 CTTCATGTAAGCCACTGGACA
RMS085 GA 204 59.923 ATGCCCATGACTATCTTGCC 61.110 TCCAAGATGAAGAATTGCGG m TJ RMS086 GA 150 60.195 TTCTGTTTCATCTGGCCTCC 59.700 GTTCGTAGATTCAGGTCGGC
> RMS087 GA 229 60.328 GCCCAACTATTCCTCCCACT 60.454 CCCACAGTTGTCCAACACAA
N CD r- RMS088 GA 207 59.955 TCCTGATTCGTATCATCCACTG 59.817 GAAGGCCTCAAGGTTCCTCT
>
H H RMS089 AT&GT 161 59.107 TTCTTATTGTTGGTTTGGAAGAAA 59.394 TCAATAGTGAGGTGCGAGGA m RMS090 GT&GC 204 59.837 TGTGTGTGTATCCATGGCCT 60.080 ATCTGCAATGACAATGGCAA
O m r- RMS091 GA&GT 207 59.513 GATCAGGGTGAATACCGAGC 59.589 GCCACTCTTCTCTGTCCTCAA
RMS092 AT&GT 208 59.546 TGAAATGAGAGACCAATTCCAA 58.762 ATCAAGTGAGCCGATGGAG
RMS093 GA 116 60.301 CGTTCTCGTTGTTGTCATCG 60.540 CCCTCTCTCTCCAGTCACGA
RMS094 GA 175 59.918 TCCTATCCACACCGACATCA 60.125 TCACAAATACCTTCCACTCGC
RMS095 GA 163 59.649 CCAATCTCCTCAACTCCCAG 59.730 TCAGGGCTTCTAAAGCTTGC
RMS096 AT&GT&AT 203 59.485 TGACCAATATGACAGAGAACCAA 58.143 TGATAGCCTTACATATGGAAACATT
RMS097 GA&GT 163 60.162 ATCTGGCTGAACACCACACA 60.132 CATGCTAACTCTCCATGTTCCA
RMS098 GT / GA 172 59.790 CACGTCCCATTCCAGAATTT 59.943 CCCTCAATGGAGAGCAAGAG
RMS099 GA 166 60.088 GGTCTGGTTCCTTGAGGTGA 60.096 CTCTCTCGTCCGAAAGCATC
RMS100 GT&AT 169 59.556 AGAGCTCCGCTCTGGATATG 59.911 AAGCCAAAGCTTACGTGCAT
RMS101 GA 133 59.291 GAAGAGACTGAAAGCTTGAAGGA 60.388 CTCCTCTCCACTCCTCACCA
RMS102 GT 170 59.891 AACTAAATGGTTGAGATGCCAAA 59.642 GGAATTTCGTTCCTTAAGCTAAGTT
RMS103 GT 193 59.960 ATTATGCGAACCAAACGAGG 60.214 TGGCAGCATTCTCCCTAAAC
RMS104 GA 209 57.011 CTAAAGCTTGAGCAAACAAATG 59.955 GGAGTATTGGCCGTAGGTGA
RMS105 GT&AT 189 58.857 TTGGTCTAATGCCCTATCCC 60.053 CCAGCCCTAGCCATAATTGA
RMS106 GA 189 58.100 CTCTCCCTCTCTGCATCAAA 59.982 CCTCTTCTCTGCAACCCAAG m TJ RMS107 AT&GT 194 60.073 CGACCTTGAACTCGATGGAT 59.266 CATGAAAGTGGAGCTAGCTAAGAA
> H RMS108 GA 183 61.395 GATCGCCATGGCATGTAAAG 59.592 TTCTTCTAGTTTCCGGCTGC N CD RMS109 GT 115 59.625 TGCAAACCTAAATTCCACAGAA 60.012 TGGCCTCTACAGCTCCTGTT
RMS110 GT 194 59.673 TATGAGAATGAGCGTGTGGG 60.532 TTCCCTCTCATTCCTCTCCC
73 m RMS111 GA 135 57.738 TTAGTCATCATCTTCAGTTATCAAGA 59.933 ATTCAATTGGCTTCACTGGG o m A r
RMS112 AT&GT 227 59.294 CAAGGATACCAGTCGGAGAGA 59.813 AGAAATGGACAGCTCCGAAA
RMS113 GA 174 60.263 CATGGATTGCGTGTCTTCTG 59.955 GGCATCAGAAAGCTGAAAGG
RMS114 GA 224 60.134 AGTCGCATAACAGGACTGGG 59.894 TTGGGATTTCGGATAAGTCG
RMS115 GA 222 60.027 CGTGAAGACGCAAAGTCAAA 60.059 GGAGGAGAAGGAGGATTTGTG
RMS116 AT&GT 228 59.989 CACCCACTGGAATACTGGCT 58.724 CGACAAGCATGACCTGAAAT
RMS117 GA 199 59.950 TCTTCTTCTCTCACCGCCAT 60.074 GGCCGATTTGTTGACCTAGA
RMS118 (AT&)GT 168 59.075 TGGCTATGGGAAGAACATGA 59.545 TCAGACAAATAATGCGTTACCAA
RMS119 AT&GT 122 59.857 GCACGCACACATATATAACAACAA 59.807 GATATCCGCAGCCAAGAAAG
RMS120 GT 193 57.360 CAGTTGAAGAGAACCAAGGG 60.162 TGGTGGGTAGGGAAATGAAA
RMS121 GT 94 60.001 TCCTCTCCAAGACACAATATTCAA 60.999 GCCCTCTCTGCTCTCCCTAA
RMS122 GA 229 60.822 ATTCCACTTCCTCCTTCCCA 59.874 GGATTCTTTCCTCCTGACCC
RMS123 GA 167 59.128 AAACACTCTAAGGAGGTATTCCCTAA 59.137 CGAAGTCTCCCATGGTTTCT
RMS124 GT 107 57.353 TTTGTGGTCGTGTGTGTGTAT 58.149 AGGCACAAATACTATCCACCTG
RMS125 GA 160 60.589 AAGTGAAGACTGAGCGACCG 59.694 CTACTCCAATGTCCGCTTCC
RMS126 GT 210 59.822 AACGACCGCCTAGGAGAAA 58.048 TTGTTTCTGTTCGAATGGGT m 73 RMS127 GA 220 59.967 TGCCTTTCTAGATTTGCTGGA 60.812 TAGTTGTTCGTCACCCACCC
>
H RMS128 GA 230 60.016 AGCATCACGAGCACATTCAG 60.470 GCGAAGATTCACCCAATGAC N
C rD RMS129 GT 229 59.203 ACGTGCACACACTCACACAC 57.100 ACTGATGCAGTTTGCTCTGA >
H H RMS130 GA 126 59.518 CAAATCAATCTGCAAACCCA 59.833 TTTGCGAATACCAGATGCAG m6 RMS131 GA 230 60.615 CGGCCAGAGATAACAGATGG 58.938 TGTTTGTTGCTTAACTACTACAACCT
Q m r RMS132 GA 184 59.454 TGTGGTTATGAATTGCTGGTG 59.956 TTCAGTTTGGTTGAATGGGAG r
RMS133 GA 124 59.731 TCTGCAACAATCAGCAGAAGA 59.901 ATTTCTGGCAAATCCGAATG
RMS134 GA 226 58.173 TGAGCTCAAGCAATATGCAA 58.817 GGCTGTCTCTGATTCCAGTATG
RMS135 GA 190 60.011 GACCGATTGGAGAGGAATGA 58.909 TTGCCTTTCTCCCTTCTGTT
RMS136 GA 114 57.218 GATCATGAGAGTCGCCAAA 59.939 AAGAGGCAGATATGGAGCGA
RMS137 GA 228 60.362 TGTACATGATGATGGGACGC 59.847 GGCAATTGCAAAGACAGTCA
RMS138 GA&andere 157 60.022 CTTCTGAGAGCCACACACCA 60.339 GCAAACACATCCCATCATCA
RMS139 GA 187 60.169 CAAGTATCTGCTCAGGCAAGC 60.218 CCATCACATTCGGCTCTTCT
RMS140 GT 123 59.792 CCAATAGCGATGCAATGAGA 59.052 TTGGCTACCACTAACCTCCC
RMS141 GT 202 58.624 ACAGAGACTTGACGCTGCAT 59.668 AGCGTGTGTAGCTAGGGAGC
RMS142 2 GA 186 60.255 TGGCCTCAACGTCTTCTACC 58.588 CCTGAAATATCCCTATGTCAGAAA
RMS143 GA 230 60.261 GTGGGAAGTGTGGGAACAAC 59.617 GCCTCATCCTGTCCATCTTC
RMS144 GT 202 57.412 TTTATCACTGTCACAAGGCATTA 59.661 GAGCTCCATGAGGTGTTTCC
RMS145 2 x GA 122 60.397 TGCTCACTTACCCAGAAGCC 59.350 TCTCTCTCATTTCAAGAGTAAACCC
RMS146 GT 186 59.454 ACAAGGCATTCACCTTGGTT 58.253 TTTCTGGGCCTGCATAAATA
RMS147 AT&GT 191 59.583 CCAATCTCAATAACACCGAGC 59.767 TCTTTGTGCTGCTAATGCTCA m 7) RMS148 GT 230 59.756 TTTAGCAGGCATTGGCACTAT 59.698 ACCTCCAGCACCAACTCCT
> — | RMS149 AT&GT&AT 203 59.566 CGGTGTGTAGTTGATTCGGA 60.195 TCAAATTCTGGCCTCTGTCC
N CD RMS150 GT 209 60.251 TGCTGCAGTATGATGCCAAT 59.055 TGGAAATCCTTTCCTTTCCTT
>
H H
7> m Q m r r
Erklärung zur obenstehenden Tabelle:
Spalte A: Name Name des Mikrosatellitenmarkers; RMS für
RosenMikroSatellit; fortlaufende Nummern von 001 bis
150
Spalte B: Motiv Mikrosatellitenmotiv in der DNA-Sequenz, fuer das ein
Primerpaar gesetzt wurde
Spalte C: Produktgrößee anhand der DNA-Sequenz ermittelte theoretische Groesse (bp) des PCR-Produkts in der Rosensorte Lichtblick
Spalte D: Tm theoretische optimale Annealingtemperatur des F-Primers
Spalte E: Primer F* 5'->3' Sequenz des F-Primers
Spalte F: Tm theoretische optimale Annealingtemperatur des R-Primers
Spalte G: Primer R 5'->3' Sequenz des R-Primers
Diese Marker zeichnen sich durch einen hohen Grad an Polymorphismus zwischen verschiedenen Rosensorten bzw. -linien aus und detektieren in der Regel in verschiedenen Rosenlinien mehrere Allele pro genetischem Locus.
Sie sind daher für "DNA fingerprinting", Sortenidentifikation, Nerwandschaft- bzw. Ähnlichkeitss dien und alle Formen von genetischen Kartierungen, einschließlich der Kartierung von Einzelgenen und quantitativen Merkmalen (QTLs) verwendbar. Außerdem ist ihr Ensatz sehr gut für eine Automatisierung geeignet und es ist möglich, die Detektion der Produkte mit nichtradioaktiven Methoden durchzuführen. Mit Hilfe dieser erfindungsgemäßen Marker ist z.B. die Möglichkeit einer Unterschiedung nahezu aller im Handel erhältlichen Rosensorten gegeben.
Damit wird es möglich, Rosensorten und -arten, die sich bereits in der Datenbank befinden, im vegetativen Zustand zu bestimmen. Ein weiterer Norteil der Erfindung liegt in der Identifikation oder Zuordnung anonymer Rosenherkünfte zu einer Nerwandtschaftsgruppe. Ferner wird es möglich, Linien, welche unter verschiedenen Sortennamen gehandelt werden, zu identifizieren. Auch kann die genetische Nielfalt einer Gruppe von Linien festgestellt werden (z.B. die genetische Nielfalt im Zuchtmaterial eines einzelnen Züchters). Es wird auch möglich, die genetische Distanz von Eltern einer geplanten Kreuzung und damit möglicherweise auch die Erfolgsaussichten der Kreuzung abzuschätzen. Ausführungsbeispiel
Das folgende Ausführungsbeispiel dient der Erläuterung der Erfindung und schränkt die Erfindung in keinem Falle ein.
Verwendete Methoden
DNA-Isolierung a. Präparation nach der Methode von Saghai Maroof et al. (1994) Proc. Natl Acad Sei USA 91: 5466-5470:
Etwa 1.5 g Blattmaterial wurden in flüssigen Stickstoff gemörsert, mit 15 ml CTAB- Puffer versetzt und 60 min bei 65 inkubiert. Die Mischung wurde zweimal mit Chloroform extrahiert und die DNA mit Ethanol gefällt. DNA-Fäden wurden gefischt, in 70% Ethanol gewaschen und in TE-Puffer aufgenommen. Nach RNase- Verdau wurde mit Phenol und nochmals mit Chloroform extrahiert, mit Ethanol gefällt und wieder in TE gelöst.
b. DNeasy Plant Mini Kit (Qiagen #69104)
100 mg Blattmaterial wurden in flüssigen Stickstoff gemörsert und nach Anleitung des Herstellers verarbeitet.
In beiden Fällen wurde die Konzentration der gewonnenen genomische Rosen-DNA über ein Agarosegel abgeschätzt. Für jede Sorte wurde eine Verdünnung von 2.5 ng/μl in Wasser hergestellt. Je 2μl dieser Verdünnung wurden in PCR-Platten vorgelegt und eingetrocknet und konnten in diesem Zustand bis zur Verwendung bei Raumtemperatur bis zur Verwendung gelagert werden.
2. PCR-Reaktionen
Die PCR-Reaktionen wurden im 25 μl-Volumen in einer 96-well-Mikrotiterplatte durchgeführt. Die Reaktion enthielt: 200 nM Primer 1 200 nM Primer 2
je 200 μM dATP, dGTP, dTTP, dCTP
1 x PCR-Puffer (50 mM KC1, lOmM TRIS-HC1 (pH 9.0 bei 25°C), 1.5 mM
MgCl , 0.1% Triton® X-100; wird als 10 x Stock zur Polymerase #M2668 mitgeliefert) ca. 5 ng genomische Rosen-DNA
0.5 U Taq-Polymerase (Promega #M2668)
Die PCR wurde in GeneAmp PCR System 9700 PCR-Maschinen (Applied Biosystems) durchgeführt. Das Temperaturprofil ist in der folgenden Tabelle dargestellt:
Figure imgf000016_0001
3. Fragmentanalyse
Die Größenanalyse der PCR-Produkte wurde auf einem ABI3100-Sequenziergerät durchgeführt. Es wurden Kapillaren einer Länge von 36 cm verwendet, die mit einer aus dem Polymer POP4 (Applied Biosystems) gefüllt waren. Die Laufbedingungen waren:
Injektionszei:t 20 ms, Spannung: 15 kV, Laufzeit: 1080 s
Als interne Standardfragmente wurden NED-markierte Fragmente der Länge 73 bp, 121 bp, 156 bp, 235 bp, 303 bp, 377 bp und 434 bp verwendet. Die zu analysierenden PCR-
Fragmente trugen für ein später im Hochdurchsatz anzustrebendes Multiplexing eine der drei Markierungsfarben HEX, ROX oder FLU.
Die Analyse der gewonnenen Daten erfolgte über die Programme GeneScan und
GenoTyper (Applied Biosystems).
Erstellen einer genomischen Plasmidbibliothek
DNA der Rosensorte „Lichtblick" wurde aus Laubblättern isoliert. Diese DNA wurde einem Verdau mit dem Restriktionsenzym PstI unterzogen. Über ein präparatives Agarosegel wurde die Fraktion der Restriktionsfragmente von ca. 5 bis 30 kb isoliert und einem weiteren Restriktionsverdau mit dem Enzym bol unterzogen. Über ein zweites präparatives Gel wurden die Fragmente im Bereich von 500-1500 bp isoliert und in den Plasmidvektor pUC18 kloniert. Die so entstandene genomische Plasmidbibliothek von Rose wurde transformiert (E. coli XL2-Blue MRF') und auf Petrischalen plattiert.
Entwicklung der Mikrosatelliten
Durch einen Pipettierroboter wurden die Bakterienkolonien als Referenzbibliothek (ein Klon pro Vertiefung) in Mikrotiterplatten überführt. Die Klone wurden dann in hochdichter Anordnung („High-density-array") auf Nylonmembranen überführt (spotting). Durch radioaktive Hybridisierung mit einem synthetischen Mikrosatelliten- Oligonukleotid (GAn oder GTn) wurden die Plasmidklone identifiziert, die einen entsprechenden Mikrosatelliten enthalten. Diese Plasmide wurden für die Sequenzierung im μg-Maßstab präpariert und sequenziert. Durch spezielle Software (Primer 3.0 bzw. DNAStar/PrimerSelect von Lasergene) wurde Primerpaare abgeleitet, die das Mikrosatellitenmotiv einschließen und ein theoretisches Produkt von 80-250 bp erzeugen.
Auswahlkriterien
Durch PCR und Auftrennung der entstandenen PCR-Fragmente über ein ABI3100- Sequenziergerät von Perkin Eimer wurden Funktionalität (es entsteht ein Fragment im erwarteten Größenbereich) und Spezifität (es entstehen ein oder wenige klar ansprechbare Fragmente) der PCR mit den Primerpaaren überprüft und bei Bedarf optimiert. Zuverlässig funktionierende, polymorphe Mikrosatelliten, die eine klare Differenzierung der 30 für einen Vortest verwendeten Rosensorten erlauben, werden als Markerset für weitere Genotypisierungen ausgewählt. Die Ergebnisse aus der Untersuchung der verschiedenen Sorten werden in einer Datenbank archiviert, die es erlaubt, hinzukommende Sorten als identisch oder nicht identisch mit bereits untersuchten Sorten oder Linien zu identifizieren oder alternativ Verwandtschaft zu den bereits untersuchten Sorten zu bestimmen. Durchführung der Genotypisierung
Für die weitere Analyse der 84 für die Genotypisierung geeigneten Marker wurden 32 Rosenlinien verwendet (Tabelle 1). Wiederum wurde zunächst DNA präpariert, wobei größere Schwierigkeiten bei der DNA-Präparation aus den im Spätsommer 2001 erhaltenen ausgewachsenen Laubblätter auftraten. Wahrscheinlich werden die Probleme durch lösliche Kohlenhydrate verursacht, die sich in älteren Blättern ansammeln. Das Pflanzenmaterial vom Mai diesen Jahres dagegen ließ sich problemlos verarbeiten. Die Ergebnisse der Fragmentanalysen, die als "Fingerprint" einer Sorte bezeichnet werden können, wurden in einer Datenbank erfasst. Als Beispiel sind die Daten für Mikrosatellitenmarker RMS059 dargestellt (Tabelle 2).
Nach der Genotypisierung, die zweimal an unabhängig präparierter DNA durchgeführt wurde, konnten die analysierten Mikrosatellitenmarker nach ihrer Qualität in zwei Kategorien eingeteilt werden: "brauchbare" und "gute" Marker.
Als Bewertungskriterien wurden folgende Punkte herangezogen: wird eine überschaubare Zahl von Fragmenten (Allelen) pro Rosensorte erzeugt (in der Regel 1-4 Fragmente)? werden verschiedene Allele etwa gleich stark amplifiziert? erschweren Stotterbanden und Schattenpeaks die Auswertung? sind die Fragmente in unabhängigen Experimenten reproduzierbar? ist die Amplifikation unabhängig von DNA-Qualität und -Menge? besteht ein Gleichgewicht zwischen den Allelen, d.h. kommen die verschiedenen Allele im untersuchten Material etwa gleich häufig vor oder gibt es viele nur selten auftretende Allele?
In die Kategorie "gut" fielen 41 (27%) der ursprünglich 150 untersuchten funktionalen Mikrosatellitenmarker und in die Kategorie "brauchbar" 43 Marker (29%). Die anderen 66 Primerkombinationen (44%) waren bereits bei der Testung (siehe oben) als nicht nutzbar bewertet worden. Über 20 dieser für die Genotypisierung nicht nutzbaren Marker können aber für die genetische Kartierung verwendet werden.
Figure imgf000019_0001
Tabelle 2: Datenblatt für Mikrosatellitenmarker RMS059. Spalten bezeichnen verschiedene Allele des Markers in Basenpaaren (bp), Zeilen bezeichnen die 32 verschiedenen Rosensorten; eine 1 steht für Anwesenheit, eine 0 für Abwesenheit eines Alleis in der untersuchten Sorte. Die letzte Zeile gibt an, wie oft ein Allel im untersuchten Material beobachtet wurde. Die letzte Spalte enthält die Zahl der Allele in einer Sorte. RMS059 enthält einen Mikrosatelliten mit den dinukleotiden Wiederholungsmotiven AT und GT und zeigt daher Allele mit einem Größenunterschied von 2 bp (mit Ausnahme des größten Allels).
Figure imgf000020_0001
Ergebnisse der Genotypisierung
Im Vergleich zu anderen Kulturpflanzen wie z.B. Weizen, Raps oder Zuckerrübe zeigt Rose eine hohe durchschnittliche Anzahl von Allelen pro Sorte (letzte Spalte in Tabelle 2), eine hohe Zahl von verschiedenen Allelen pro Mikrosatellitenmarker und relativ wenige Nullallele. Das spiegelt die Heterogenität des untersuchten genetischen Materials und die komplexe Genetik von Rose wider.
Die Ergebnisse der Genotypisierung wurden für eine Verwandtschaftsanalyse der untersuchten Rosensorten über das Programm NTSYS verwendet. Dabei wurden einmal nur die mit den 41 "guten" Markern erzeugten Daten und einmal die mit allen 84 "brauchbaren" Markern erzeugten Daten verrechnet. Die Ergebnisse sind in Form von Stammbäumen in Abbildung 3 und 4 dargestellt. Auf der horizontalen Achse ist jeweils die genetische Distanz angegeben, die zwischen den theoretischen Werten 0 (keine genetische Verwandtschaft) und 1,00 (Übereinstimmung aller untersuchten Markerdaten) liegt. Beide Dendrogramme unterscheiden sich im Wesentlichen nur in der oberen Hälfte, wo Verzweigungen in sehr kurzen Abständen aufeinander folgen. Die Verwandtschaftsbeziehungen in der unteren Hälfte stellen sich bei Verwendung von 41 oder 84 Markern relativ gut übereinstimmend dar.
Das Ziel der Untersuchung, die eindeutige Unterscheidung aller untersuchten Sorten mit Hilfe von Mikrosatellitenmarkern, wurde damit erreicht. Für jede der Sorten existiert nun ein genetischer Fingerabdruck, der mit dem anderer Sorten verglichen werden kann. Je mehr Markerdaten zwischen zwei Sorten übereinstimmen, desto näher sind sie im Dendrogramm benachbart. Die Ergebnisse der durchgeführten Analyse können daher nicht nur zur Unterscheidung von Sorten verwendet werden, sondern auch Verwandtschaften und Züchtungswege offenlegen.
Unter Nutzung der Information, die im Internet zugänglich ist (z.B. www.everyrose.com, www.rogersroses.com), konnte im Dendrogramm von unter nach oben eine grobe Tendenz von Wildarten über alte Sorten zu moderneren Sorten festgestellt werden. Die ganz unten stehende Art Rosa ?nultiflora zeigt übereinstimmend in beiden Analysen eine geringe Verwandtschaft von nur 0,22 zu allen anderen untersuchten Sorten. Auch die Art Rosa xanthina mit der Sorte 'Canary Bird' ist kaum mit den übrigen Sorten verwandt. Die Moosrosen 'Zoe' und 'Comtesse de Murinais' entstanden 1861 bzw. 1843. Die weiter oben stehenden Remontant-Hybriden 'Abraham Zimmermann' (1876) und 'Dr. Georges Martin' (1908) stammen aus der 2. Hälfte des 19. Jahrhunderts bzw. aus dem frühen 20. Jahrhundert. Die relativ junge Teehybriden 'Autumn' (1928), 'Sommerliebe' (1988) und 'Spes' (1970) stehen in der oberen Hälfte des Dendrogramms. Jeweils am oberen Ende sind die beiden Floribundarosen 'Ulrike' (1973) und 'Jan Spek' (1966) zu finden. Schlecht einzuordnen sind die Sorten 'Spreeglut' (Strauchrose, 1985), 'Sangerhausen' (Polyantha-Hybride, 1938) und 'Lichtblick' (Strauchrose, 1972). Sie bilden zwar in beiden Dendrogrammen eine Gruppe, werden jedoch in Abbildung 2 eher in die Verwandtschaft der Teehybriden und in Abbildung 3 eher in die Verwandtschaft der Floribundarosen gestellt.
Definierung eines Sets von 25 Mikrosatellitenmarkern
Für die weitere Genotypisierung einer größeren Zahl von Sorten wurden aus den 41 guten Markern 25 ausgewählt, die verläßliche Ergebnisse liefern, eindeutig unterscheidbare Allele aufweisen und einen hohen Informationsgehalt haben: RMS023, RMS029, RMS038, RMS047, RMS052, RMS057, RMS059, RMS062, RMS065, RMS070, RMS077, RMS088, RMS089, RMS095, RMS097, RMS102, RMS103, RMS104, RMS112, RMS115, RMS120, RMS128, RMS139, RMS146 und RMS148. Mit Hilfe dieses Sets sollte es möglich sein, mindestens 90% aller Rosensorten zu unterscheiden. Für eine Abstammungsanalyse z.B. zum genauen nachvollziehen von Züchtungswegen sollte aber eine größere Zahl von Markern eingesetzt werden. Generell steigt die Zuverlässigkeit solcher Analysen proportional mit der Zahl der verwendeten Marker (zumindest im Bereich von unter 100 verwendeten Markern).
Das Ziel der Erfindung, die Entwicklung von mindestens 25 für die Genotypisierung geeigneten Mikrosatellitenmarkern, ist erreicht worden. Insgesamt wurden 84 nutzbare Mikrosatellitenmarker entwickelt, von denen 41 besonders gut einsetzbar sind. Ein Set von 25 Mikrosatelitenmarkern wurde definiert, mit dem eine verläßliche Genotypisierung von weiteren Rosensorten durchgeführt werden kann. Die wichtigsten Angaben und Nutzungshinweise für den Gebrauch der Marker sind in der erstellten Datenbank enthalten. Nähere Beschreibung der Mikrosatellitenmarker
Die nähere Beschreibung der Mikrosatellitenmarker wird in der folgenden Tabelle dargestellt.
Figure imgf000024_0001
Figure imgf000025_0001
m TJ
> H N 00
7) m o m r
Figure imgf000026_0001
m TJ
> H N 00
73 m o m r
Figure imgf000027_0001
Figure imgf000028_0001
m
73 <J>
> H N 00
73 m o m ro σ.
Figure imgf000029_0001
m
73 <J> H > N 00
73 m o m ro σ.
Figure imgf000030_0001
m
73 <J>
> H N 00
73 m o m ro σ.
Figure imgf000031_0001
m
73 <J>
> H N 00
73 m o m ro σ.
Figure imgf000032_0001
Figure imgf000033_0001
Figure imgf000034_0001
Figure imgf000035_0001
m
73 <J>
> H N 00
73 m o m ro σ.
Figure imgf000036_0001
m
73 <J>
> H N 00
73 m o m ro
Figure imgf000037_0001
m
73 <J>
> H N 00
73 m o m ro σ.
Figure imgf000038_0001
Tabelle: Beschreibung der Mikrosatelittenmarker
m
73 <J>
> H N 00
73 m o m ro σ.
Figure imgf000039_0001
Legenden zu den Abbildungen:
Abbildung 1 (zweiseitig, a und b): Elektropherogramm der PCR-Produkte der Rosensorten 10 bis 18 mit der Primerkombination RMS059. Peaks bezeichnen Allele, deren Größe automatisch berechnet (untere Zahl unter dem Peak) und einer Allelkategorie zugeordnet wurde (obere Zahl).
Abbildung 2: Nerwandtschaftsanalyse der 32 Sorten anhand von 41 Mikrosatellitenmarkern der Kategorie "gut". Je weiter eine Verzweigung zwischen zwei Sorten nach rechts verschoben ist, desto näher sind sie verwandt.
Abbildung 3: Nerwandtschaftsanalyse der 32 Sorten anhand von 84 Mikrosatellitenmarkern der Kategorie "gut" und "brauchbar"

Claims

Ansprüche
1. Oligonukleotide von Mikrosatellitenmarkern des Rosengenoms gekennzeichnet durch folgende Sequenzen:
Name RMS Primer F* 5'->3' RMS Primer R 5'->3' Motiv
RMS00 TTCAAAATTGCTGCCCCCTTAG TACCAGTTGAGTGAGAAATAGTT GT&G
1 C RMS00 AATAATTTTTCTTTTGGTA GATTTGTTTTCACTATTCA GA 2
RMS00 TGGGAAAGGGAAAGCAACA AAGGTAGGCAGAAGTGACAGACA GA
3 T
RMS00 CAGGCCAAGGAAGAGGTAAGTAA CGTATGCGCGTGTAGGAAGG GT&A
4 A T RMS00 CTACCGGTGACCAGTGACGA ATTTTGCCCTCTCCCTTTGT GA 5
RMSOO ACCGGTCTCATCTTTCCATTG GTAGGTCGGTCCGTCTGTCA GT&G
6 A RMSOO TCTTTCCGACTCCGACAA TATGCCATTCAGACTCTCCAACAC GA 7
RMSOO TCTCTGCGACAAAAACAAACACT CCATGAAGCGGCGGAGAGGA GA
8
RMSOO ATTGGCAAAAGATTCTCCTAC ACTTGGTAATTTCGAGCATAA CT&G
9 T
RMSOl GGTTGGGGGAAATTGAAGCAGAG TCTTTTCTTCTACAAACCCCAACCA GA
0 A AC
RMSOl TAGAAACGACCAATAAAAGAGG TAACGAAACATCATCAATAGCA GT
1
RMSOl ATAGAAAAATAGAGGGGGTGTG GATCGAAAAGTGGTCAAAATA GT
2
RMSOl GCCTTAGCCGGGGTTTTCAA GATCAATACCGAACTAACAAAG GA
3
RMSOl TATTCTTTCTTCCCACCGACGAC CCTCACTGCCAACCCAACTGT GA
4
RMSOl TAATGTAGGCAGATATAAAGGAG GCAGCTGCACAACAAGGAA GA
5 T
RMSOl GGCCTGGACCTTTCTCATTTG AACCGCTGCTGCTTTCATTTTT GA
6
RMSOl AGGTCCCGTTATTTCAGG AGTTGGCTTATGGCTTTTT AT&G
7 T RMSOl TTTTGGGTGGGTAAGTTTT TTGGCCAATAAGGAAGACA GT 8
RMSOl ACCGTTTCCATTACCCTTTCACC CGTCGGCCATGGATTTTTGTA GA
9
RMS02 AGGCGCCCATGCAAAATCAA TTCCTAACGCAAACTATGTAAAT GA
0
RMS02 AATTCCCTCTTACCCAAAACAC CCGGCGAAGTCCCCTATG GA
1
RMS02 AAGAAGATAAATTAGGGGGAAA GCGCGAACATATTGATTGGT GA
2 AA
RMS02 TTTGCTATTAATTACAGATGAA TAAACAATATAAATGGGGGAGTAA GT
3 AT RMS02 ACTACTGTAAAATATGAAAAATC GTAGTAGCGGTTGCAAGAAAATA AT&G
4 C T
RMS02 TAATGTAAGCTAACTAATCT TTTTAAATTTTCGGTGGAGA AT /
5 GT
RMS02 ATAGATATGTTTGGGTTCA AATGTCAGGTTTTGTTATG GT
6
RMS02 ACCGTTGTGCTTATCAGGA ATTGGTGGTGCTTTTACATTAC AT&G
7 T
RMS02 TAGGCAAGACCATGAACCAG TGTGCCTGTTTGCTTGTGTA AT&G T
RMS02 GGATAAAACCAACGGGACAGACT TCCGACACCATCCCTCCTACATAA GA
9 C
RMS03 GATAAATTTCAAGGCGAGAG AAAAGATGAACGACCCAAATAAT GA
0
RMS03 TATATTAAAGAACAAGTGAGAAC GTGGCTATCGAAAAACAA GA
1
RMS03 AGAAACCAACCTTAGCAT AACCATCCATATTTCAGTCA AT&G
2 T
RMS03 CAAGAGATGTCGGAAAAGCAGGA TGCACACCCAAATTTACAAACCAC GA
•3 AGT A
RMS03 GCTTCTCGGTCTCGTGCTCTC CTCCCGCTCAAATCAATAAATCTC GA
4
RMS03 CCTCCTTGGCAGCCTTTTCATT ATCGGCTATCCACATCGTCTACAC GA
5
RMS03 CTCGCGGCCCAAATAACAAT TTGCCCTTACATTTTCTCTACTCCA GA
6 TA
RMS03 AACCTCGGAGCCGCATTTCAC AGTTTTCCTCGCCAGATAAGC GA
7
RMS03 GTGATAAGAGCAAAACAAGATGG CTCGCGGAAGCCTCAAAA GA
RMS03 GCTGCTTTCTCCAATCAACAA CAGCTCAGCAAAGGGGACTA 2xGA
RMS04 AACCCCAAACTTCCTAAACT TCTGTATCTACTGTGGCTAACC GT
0
RMS04 TTAACCCAAAGCACCAAAAT ACCTTCACCGATGTATCACC GA
1
RMS04 GCATGGCCAGGCTCTTCAC ATGCCAAACGTCTCAGTCAACC AT&G
2 T
RMS04 GATCAAAGATGGGTTCTCCTCTC AGGGGAATCTTTGAAAGTCGTTC GA
3
RMS04 ACCGATGGATGGCAATAAC ATACAGGACATAAACGGCTACC AT
4
RMS04 GAAAATAAGGACATCATCTAC GGTGCCTCCATTATTTAC AT&G
5 T&AT
&GA
RMS04 AAAGGATTGCTGGATGTG TATTCGCGTGGACTCTAT AT&G
6 T
RMS04 GCTCCCTCAATTTCCACTCA ACCAACCCAATTCGCTCAT GA
7
RMS04 ATAAGTATGAAAAAGTAAAATGA GTATACTAGAAAAACAAAACTGGT GA&A
8 T T
RMS04 AAAAATACAACCGAAAAA CCAACCCGTCAAGGCTAAA AT&G
9 T
RMS05 TAAGCCTAAGAAAAACTCATT CAGCCGTCAGATTCACTTG AT&G
0 A RMS05 AGTAGACTGTCCTCCATTTAGC ATACCATCAGAGAAGAGACGACA GT
1 C
RMS05 TTAGCCGTTAATTGAGTCGACAA TGATGAACCCAATAGAATGAAAAC GA
2 CCTC AGA
RMS05 GGCGGTAGCTAGTGACTGGAATC CCCTTACCCTTACCCCTTTGTTAC GA
3 T
RMS05 CTGGGAGGAGAACTCTGTCA TAGCTTATTAGTCTGCATTGATGA AT&G
4 A
RMS05 TGATCACAAGAGCTTTTCAAGTTT AGTTAGGCGCATGTACAAGAAAAT GA
5 AG
RMS05 TGTGTAGATTAGCATTCC GATCTAGGATGATTCAATA GA
6
RMS05 CGAGGTGGGTAAGGGCGAACAAA CCCATCCAAAGCGAGACGACGAC GAA /
7 G GA
RMS05 CAACCCCTGAAGCCTGAA TTTGTAACCCATTTGACCATA GT
8
RMS05 ACAGTCTTATAGTGGCTTCC TACAGGGTTCTAATTGATACATAC AT&G
9 T
RMS06 CATTCATTTGACTCTAAGGA TATTCTGGTCTAAGCTATTGTAA GA
0
RMS06 ATATCAGCCGTCCCATCAG TTAGAAAATCCCAAACAT GT
1
RMS06 GCGAACGGCATTTACTTGT GGTTGTTCTGGGTGGTTTTT GA&G
2 T
RMS06 CCACCGCCCACAATCACAATG GCTCTGCGGAGTGGGAATGGT GAA
3
RMS06 TTTTTGCAATATGTGAAGC GATTGGTCAACCGATATGTAGAA GA,
4 GT
RMS06 TATAGCTCGGTAGATTCAAA CCAGACTGCCCCCAACTCATA GA
5
RMS06 TCCACCCACAGACCACAG AAGCTCCCTACGATTTCACTC GA
6
RMS06 CAATCTGCAATCCGAATCC ATGGTGAAAAACAGAAATACTACA GA
7
RMS06 GTGCGCTTTCTGCTCCATT CATTTTGTCCTACGTTTTCACTTC GA
8
RMS06 TCGGAGATTAAGAGTGAGGTGAG GTGCCCACTTACCCAAACCATC GT&G
9 T A
RMS07 TGCCTCTCGATACAAACC AATAAGAACCAATACCCCGAAGA GA
0 G
RMS07 GTTAGCATCTGGCACATTAT AGTTCCTTGACCAGCAGAG GT
1
RMS07 TTAGCTCAAGAATTCATCAAAG TCCAAACCGAGCTAAGAAAACT GA
2
RMS07 AAACCCCTTTTATGTAGAAGTAG TAAAACATGAAATTATAACAATAG AT&G
3 TG T/GAA
RMS07 GCTTCTATCCACAGTTTCACCTC TTCATGTCAACGCTTCTGTAATAG AT&G
4 T
RMS07 GCCCGTAAAAGCCCGTAAA TTGGTCAACCGATATGTAGAAT AT&G
5 T
RMS07 TGGATGCAAACACCTACAAA CGTCGCCGGCATTCGTC GA
6
RMS07 AGGTGAACATGGGCCAACTA TCAAAGAATGAGTGCCTACTAAGA GA&G
7 T
RMS07 CCATTCCAAAGTTGCACGTA CTCTACTGCCAGCAACCACA GT RMS07 CCGGTATGGAGAGGAATGAG GCAATTATCCTTGACAGAACCC GA
9
RMS08 GCTTTCAAAGATGGGAAACCT TTGGTATCACATTTACTCTCATTGC GT
0
RMS08 TTTGACACACACACACAAACAT GACTGAGAAACAAGTCCGTCCT GT&G
1 A
RMS08 AACAACACACGCGGAATATG TGCAGTTGGAGTTGGAGTTG 2xGA
2
RMS08 GACGTCCGCACTTTAGCAAC AGGTCCTCAGCATAGACGGC GT
3
RMS08 GGGAGTCTCAAGAGCTACCGT CTTCATGTAAGCCACTGGACA GT
4
RMS08 ATGCCCATGACTATCTTGCC TCCAAGATGAAGAATTGCGG GA
5
RMS08 TTCTGTTTCATCTGGCCTCC GTTCGTAGATTCAGGTCGGC GA
6
RMS08 GCCCAACTATTCCTCCCACT CCCACAGTTGTCCAACACAA GA
7
RMS08 TCCTGATTCGTATCATCCACTG GAAGGCCTCAAGGTTCCTCT GA
8
RMS08 TTCTTATTGTTGGTTTGGAAGAAA TCAATAGTGAGGTGCGAGGA AT&G
9 T
RMS09 TGTGTGTGTATCCATGGCCT ATCTGCAATGACAATGGCAA GT&G
0 C
RMS09 GATCAGGGTGAATACCGAGC GCCACTCTTCTCTGTCCTCAA GA&G
1 T
RMS09 TGAAATGAGAGACCAATTCCAA ATCAAGTGAGCCGATGGAG AT&G
2 T
RMS09 CGTTCTCGTTGTTGTCATCG CCCTCTCTCTCCAGTCACGA GA
3
RMS09 TCCTATCCACACCGACATCA TCACAAATACCTTCCACTCGC GA
4
RMS09 CCAATCTCCTCAACTCCCAG TCAGGGCTTCTAAAGCTTGC GA
5
RMS09 TGACCAATATGACAGAGAACCAA TGATAGCCTTACATATGGAAACAT AT&G
6 T T&AT
RMS09 ATCTGGCTGAACACCACACA CATGCTAACTCTCCATGTTCCA GA&G
7 T
RMS09 CACGTCCCATTCCAGAATTT CCCTCAATGGAGAGCAAGAG GT /
8 GA
RMS09 GGTCTGGTTCCTTGAGGTGA CTCTCTCGTCCGAAAGCATC GA
9
RMS10 AGAGCTCCGCTCTGGATATG AAGCCAAAGCTTACGTGCAT GT&A
0 T
RMS 10 GAAGAGACTGAAAGCTTGAAGGA CTCCTCTCCACTCCTCACCA GA
1
RMS10 AACTAAATGGTTGAGATGCCAAA GGAATTTCGTTCCTTAAGCTAAGTT GT
2
RMS10 ATTATGCGAACCAAACGAGG TGGCAGCATTCTCCCTAAAC GT
3
RMS 10 CTAAAGCTTGAGCAAACAAATG GGAGTATTGGCCGTAGGTGA GA
4
RMS10 TTGGTCTAATGCCCTATCCC CCAGCCCTAGCCATAATTGA GT&A
5 T RMS 10 CTCTCCCTCTCTGCATCAAA CCTCTTCTCTGCAACCCAAG GA
6
RMS 10 CGACCTTGAACTCGATGGAT CATGAAAGTGGAGCTAGCTAAGAA AT&G
7 T
RMS10 GATCGCCATGGCATGTAAAG TTCTTCTAGTTTCCGGCTGC GA
RMS10 TGCAAACCTAAATTCCACAGAA TGGCCTCTACAGCTCCTGTT GT
9
RMSll TATGAGAATGAGCGTGTGGG TTCCCTCTCATTCCTCTCCC GT
0
RMSl l TTAGTCATCATCTTCAGTTATCAA ATTCAATTGGCTTCACTGGG GA
1 GAA
RMSl l CAAGGATACCAGTCGGAGAGA AGAAATGGACAGCTCCGAAA AT&G
2 T
RMSl l CATGGATTGCGTGTCTTCTG GGCATCAGAAAGCTGAAAGG GA
3
RMSl l AGTCGCATAACAGGACTGGG TTGGGATTTCGGATAAGTCG GA
4
RMSll CGTGAAGACGCAAAGTCAAA GGAGGAGAAGGAGGATTTGTG GA
5
RMSl l CACCCACTGGAATACTGGCT CGACAAGCATGACCTGAAAT AT&G
6 T
RMSll TCTTCTTCTCTCACCGCCAT GGCCGATTTGTTGACCTAGA GA
7
RMSl l TGGCTATGGGAAGAACATGA TCAGACAAATAATGCGTTACCAA (AT&)
8 GT
RMSll GCACGCACACATATATAACAACA GATATCCGCAGCCAAGAAAG AT&G
9 A T
RMS 12 CAGTTGAAGAGAACCAAGGG TGGTGGGTAGGGAAATGAAA GT
0
RMS12 TCCTCTCCAAGACACAATATTCAA GCCCTCTCTGCTCTCCCTAA GT
1
RMS12 ATTCCACTTCCTCCTTCCCA GGATTCTTTCCTCCTGACCC GA
2
RMS12 AAACACTCTAAGGAGGTATTCCC CGAAGTCTCCCATGGTTTCT GA
3 TAA
RMS12 TTTGTGGTCGTGTGTGTGTAT AGGCACAAATACTATCCACCTG GT
4
RMS12 AAGTGAAGACTGAGCGACCG CTACTCCAATGTCCGCTTCC GA
5
RMS12 AACGACCGCCTAGGAGAAA TTGTTTCTGTTCGAATGGGT GT
6
RMS12 TGCCTTTCTAGATTTGCTGGA TAGTTGTTCGTCACCCACCC GA
7
RMS12 AGCATCACGAGCACATTCAG GCGAAGATTCACCCAATGAC GA
8
RMS12 ACGTGCACACACTCACACAC ACTGATGCAGTTTGCTCTGA GT
9
RMS13 CAAATCAATCTGCAAACCCA TTTGCGAATACCAGATGCAG GA
0
RMS13 CGGCCAGAGATAACAGATGG TGTTTGTTGCTTAACTACTACAACC GA
1 TT
RMS13 TGTGGTTATGAATTGCTGGTG TTCAGTTTGGTTGAATGGGAG GA
2
RMS 13 TCTGCAACAATCAGCAGAAGA ATTTCTGGCAAATCCGAATG GA 3
RMS13 TGAGCTCAAGCAATATGCAA GGCTGTCTCTGATTCCAGTATG GA
4
RMS 13 GACCGATTGGAGAGGAATGA TTGCCTTTCTCCCTTCTGTT GA
5
RMS13 GATCATGAGAGTCGCCAAA AAGAGGCAGATATGGAGCGA GA
6
RMS 13 TGTACATGATGATGGGACGC GGCAATTGCAAAGACAGTCA GA
7
RMS13 CTTCTGAGAGCCACACACCA GCAAACACATCCCATCATCA GA&a
8 ndere
RMS13 CAAGTATCTGCTCAGGCAAGC CCATCACATTCGGCTCTTCT GA
9
RMS14 CCAATAGCGATGCAATGAGA TTGGCTACCACTAACCTCCC GT
0
RMS14 ACAGAGACTTGACGCTGCAT AGCGTGTGTAGCTAGGGAGC GT
1
RMS14 TGGCCTCAACGTCTTCTACC CCTGAAATATCCCTATGTCAGAAA 2 x GA
2
RMS14 GTGGGAAGTGTGGGAACAAC GCCTCATCCTGTCCATCTTC GA
3
RMS14 TTTATCACTGTCACAAGGCATTA GAGCTCCATGAGGTGTTTCC GT
4
RMS14 TGCTCACTTACCCAGAAGCC TCTCTCTCATTTCAAGAGTAAACCC 2 x GA
5
RMS14 ACAAGGCATTCACCTTGGTT TTTCTGGGCCTGCATAAATA GT
6
RMS14 CCAATCTCAATAACACCGAGC TCTTTGTGCTGCTAATGCTCA AT&G
7 T
RMS 14 TTTAGCAGGCATTGGCACTAT ACCTCCAGCACCAACTCCT GT
RMS14 CGGTGTGTAGTTGATTCGGA TCAAATTCTGGCCTCTGTCC AT&G
9 T&AT
RMS 15 TGCTGCAGTATGATGCCAAT TGGAAATCCTTTCCTTTCCTT GT
0
2. Testkit zur genetischen Analyse von Kultur- und Wildformen der Gattung Rosa umfassend ein oder mehrere Oligonukleotidpaare nach Anspruch 1.
Testkit nach Anspruch 2 umfassend mindestens ein Oligonukleotidpaar folgender Mikrosatellitenmarker: RMS001 RMS003 RMS008 RMSOl 1 RMS015 RMS017 RMS024 RMS030 RMS034 RMS035 RMS039 RMS042 RMS043 RMS044 RMS045 RMS046 RMS050 RMS051 RMS054 RMS055 RMS060 RMS061 RMS071 RMS073 RMS078 RMS079 RMS080 RMS082 RMS086 RMS091 RMS094 RMS108 RMS110 RMS116 RMS117 RMS118 RMS122 RMS125 RMS126 RMS129 RMS132 RMS137 RMS 147 RMS023 RMS027 RMS029 RMS037 RMS038 RMS047 RMS052 RMS057 RMS058 RMS059 RMS062 RMS063 RMS065 RMS066 RMS070 RMS072 RMS077 RMS084 RMS059 RMS062 RMS063 RMS065 RMS066 RMS070 RMS072 RMS077 RMS084 RMS088 RMS089 RMS090 RMS095 RMS097 RMS098 RMS 102 RMS 103 RMS104 RMS107 RMS112 RMS113 RMS115 RMS120 RMS128 RMS138 RMS139 RMS140 RMS143 RMS144 RMS145 RMS146 RMS148.
4. Testkit nach Anspruch 2 umfassend mindestens ein Oligonukleotidpaar folgender Mikrosatellitenmarker: RMS023 RMS027 RMS029 RMS037 RMS038 RMS047 RMS052 RMS057 RMS058 RMS059 RMS062 RMS063 RMS065 RMS066 RMS070 RMS072 RMS077 RMS084 RMS088 RMS089 RMS090 RMS095 RMS097 RMS098 RMS102 RMS103 RMS104 RMS107 RMS112 RMS113 RMS115 RMS120 RMS128 RMS138 RMS139 RMS140 RMS143 RMS144 RMS145 RMS146 RMS148
5. Testkit nach Anspruch 2 umfassend mindestens ein Oligonukleotidpaar aus folgendem Set: RMS023, RMS029, RMS038, RMS047, RMS052, RMS057, RMS059, RMS062, RMS065, RMS070, RMS077, RMS088, RMS089, RMS095, RMS097, RMS102, RMS103, RMS104, RMS112, RMS115, RMS120, RMS128, RMS139, RMS146 oder RMS148.
6. Testkit nach Anspruch 2 oder 3 umfassend folgende Oligonukleotidpaare: RMS023, RMS029, RMS038, RMS047, RMS052, RMS057, RMS059, RMS062, RMS065, RMS070, RMS077, RMS088, RMS089, RMS095, RMS097, RMS102, RMS103, RMS104, RMS 112, RMS115, RMS120, RMS128, RMS139, RMS146 oder RMS148.
7. Nerfahren zur Herstellung von Mikrosatellitenmarkern für Pflanzen der Gattung Rosa, dadurch gekennzeichnet, dass hypervariable Genomabschnitte (sogenannte Mikrosatelliten) mit Hilfe der Polymerasekettenreaktion (PCR) zu polymorphen Fragmenten in Gegenwart mindestens eines Oligonukleotidpaares gemäß Anspruch 1, das links und rechts für jeden Mikrosatelliten-Locus eine Mikrosatellitensequenz flankiert, amplifiziert, anschließend aufgetrennt und detektiert werden.
8. Nerfahren nach Anspruch 7, dadurch gekennzeichnet, daß die Auftrennung der Mikrosatellitenmarker gelelektrophoretisch, insbesondere durch hochauflösende Agarosegele, native Polyacrylamidgele, denaturierende Polyacrylamidgele oder massenspektrometrisch erfolgt.
9. Nerfahren nach Anspruch 7, dadurch gekennzeichnet, daß die Detektion je nach Trennungssystem über Ethidiumbromidfärbung, Silberfärbung, bei radioaktiver Markierung über Autoradiographie oder mittels automatischem Sequenziergerät unter Verwendung farbstoff- bzw. fluoreszenzmarkierter Primer oder massenspektrometrisch erfolgt.
10. Nerwendung der Oligonukleotide nach Anspruch 1 zur genetischen Analyse von Kultur- und Wildformen der Gattung Rosa.
11. Nerwendung nach dem Anspruch 10 zur genetischen Kartierung und Markierung von monogenen und polygenen Eigenschaften und deren Selektion, zur Nerwandtschaftsanalyse und Sortemdentifikation sowie zur Evaluierung von Sortenreinheit, Hybrididentifikation und Pflanzenzüchtung.
PCT/DE2003/001572 2002-05-17 2003-05-16 Mikrosatellitenmarker für genetische analysen und zur unterscheidung von rosen WO2003097869A2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003245833A AU2003245833A1 (en) 2002-05-17 2003-05-16 Microsatellite markers for genetic analyses and the differentiation of roses

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10222632A DE10222632B4 (de) 2002-05-17 2002-05-17 Mikrosatellitenmarker für genetische Analysen und zur Unterscheidung von Rosen
DE10222632.6 2002-05-17

Publications (2)

Publication Number Publication Date
WO2003097869A2 true WO2003097869A2 (de) 2003-11-27
WO2003097869A3 WO2003097869A3 (de) 2004-08-12

Family

ID=29432206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2003/001572 WO2003097869A2 (de) 2002-05-17 2003-05-16 Mikrosatellitenmarker für genetische analysen und zur unterscheidung von rosen

Country Status (3)

Country Link
AU (1) AU2003245833A1 (de)
DE (1) DE10222632B4 (de)
WO (1) WO2003097869A2 (de)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005111057A3 (en) * 2004-04-02 2006-07-27 Coley Pharm Group Inc Immunostimulatory nucleic acids for inducing il-10 responses
WO2008117860A1 (ja) * 2007-03-23 2008-10-02 International Flower Developments Proprietary Limited 野生種のバラにおける園芸種のバラとの交雑の有無を検定する方法
US7956175B2 (en) 2003-09-11 2011-06-07 Ibis Biosciences, Inc. Compositions for use in identification of bacteria
US7964343B2 (en) 2003-05-13 2011-06-21 Ibis Biosciences, Inc. Method for rapid purification of nucleic acids for subsequent analysis by mass spectrometry by solution capture
US8084207B2 (en) 2005-03-03 2011-12-27 Ibis Bioscience, Inc. Compositions for use in identification of papillomavirus
US8088582B2 (en) 2006-04-06 2012-01-03 Ibis Biosciences, Inc. Compositions for the use in identification of fungi
US8097416B2 (en) 2003-09-11 2012-01-17 Ibis Biosciences, Inc. Methods for identification of sepsis-causing bacteria
US8148163B2 (en) 2008-09-16 2012-04-03 Ibis Biosciences, Inc. Sample processing units, systems, and related methods
US8158936B2 (en) 2009-02-12 2012-04-17 Ibis Biosciences, Inc. Ionization probe assemblies
US8158354B2 (en) 2003-05-13 2012-04-17 Ibis Biosciences, Inc. Methods for rapid purification of nucleic acids for subsequent analysis by mass spectrometry by solution capture
US8163895B2 (en) 2003-12-05 2012-04-24 Ibis Biosciences, Inc. Compositions for use in identification of orthopoxviruses
US8173957B2 (en) 2004-05-24 2012-05-08 Ibis Biosciences, Inc. Mass spectrometry with selective ion filtration by digital thresholding
US8182992B2 (en) 2005-03-03 2012-05-22 Ibis Biosciences, Inc. Compositions for use in identification of adventitious viruses
US8187814B2 (en) 2004-02-18 2012-05-29 Ibis Biosciences, Inc. Methods for concurrent identification and quantification of an unknown bioagent
US8214154B2 (en) 2001-03-02 2012-07-03 Ibis Biosciences, Inc. Systems for rapid identification of pathogens in humans and animals
US8265878B2 (en) 2001-03-02 2012-09-11 Ibis Bioscience, Inc. Method for rapid detection and identification of bioagents
US8268565B2 (en) 2001-03-02 2012-09-18 Ibis Biosciences, Inc. Methods for identifying bioagents
US8298760B2 (en) 2001-06-26 2012-10-30 Ibis Bioscience, Inc. Secondary structure defining database and methods for determining identity and geographic origin of an unknown bioagent thereby
US8407010B2 (en) 2004-05-25 2013-03-26 Ibis Biosciences, Inc. Methods for rapid forensic analysis of mitochondrial DNA
US8534447B2 (en) 2008-09-16 2013-09-17 Ibis Biosciences, Inc. Microplate handling systems and related computer program products and methods
US8546082B2 (en) 2003-09-11 2013-10-01 Ibis Biosciences, Inc. Methods for identification of sepsis-causing bacteria
US8551738B2 (en) 2005-07-21 2013-10-08 Ibis Biosciences, Inc. Systems and methods for rapid identification of nucleic acid variants
US8550694B2 (en) 2008-09-16 2013-10-08 Ibis Biosciences, Inc. Mixing cartridges, mixing stations, and related kits, systems, and methods
US8563250B2 (en) 2001-03-02 2013-10-22 Ibis Biosciences, Inc. Methods for identifying bioagents
US8822156B2 (en) 2002-12-06 2014-09-02 Ibis Biosciences, Inc. Methods for rapid identification of pathogens in humans and animals
US8871471B2 (en) 2007-02-23 2014-10-28 Ibis Biosciences, Inc. Methods for rapid forensic DNA analysis
US8950604B2 (en) 2009-07-17 2015-02-10 Ibis Biosciences, Inc. Lift and mount apparatus
US9080209B2 (en) 2009-08-06 2015-07-14 Ibis Biosciences, Inc. Non-mass determined base compositions for nucleic acid detection
US9149473B2 (en) 2006-09-14 2015-10-06 Ibis Biosciences, Inc. Targeted whole genome amplification method for identification of pathogens
US9194877B2 (en) 2009-07-17 2015-11-24 Ibis Biosciences, Inc. Systems for bioagent indentification
US9393564B2 (en) 2009-03-30 2016-07-19 Ibis Biosciences, Inc. Bioagent detection systems, devices, and methods
US9416409B2 (en) 2009-07-31 2016-08-16 Ibis Biosciences, Inc. Capture primers and capture sequence linked solid supports for molecular diagnostic tests
US9598724B2 (en) 2007-06-01 2017-03-21 Ibis Biosciences, Inc. Methods and compositions for multiple displacement amplification of nucleic acids
US9719083B2 (en) 2009-03-08 2017-08-01 Ibis Biosciences, Inc. Bioagent detection methods
US9758840B2 (en) 2010-03-14 2017-09-12 Ibis Biosciences, Inc. Parasite detection via endosymbiont detection
US9873906B2 (en) 2004-07-14 2018-01-23 Ibis Biosciences, Inc. Methods for repairing degraded DNA
US9890408B2 (en) 2009-10-15 2018-02-13 Ibis Biosciences, Inc. Multiple displacement amplification

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19811506A1 (de) * 1998-03-17 1999-10-21 Gvs Ges Fuer Erwerb Und Verwer Mikrosatellitenmarker für Secale cereale, Triticale und verwandte Spezies

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
AMSELLEM L: "Isolation and characterizsation of polymorphic microsatellite loci in Rubus alceifolius Poir (Rosaceae), an invasive weed in la Réunion island" MOLECULAR ECOLOGY NOTES, Bd. 1, 2001, Seiten 33-35, XP001156138 *
DEBENER T. ET AL.: "A molecular marker map for roses" ACTA HORTICULTURAE, Bd. 547, 2001, Seiten 283-287, XP001155892 *
R. BOTTA AND A. SCHNEIDER: "Within cultivar grapevine variability studied by morphometrical and molecular marker based techniques" ACTA HORTICULURAE, Bd. 528, 2000, Seiten 91-96, XP001155890 *
S. RAJAPASKE ET AL.: "Two genetic linkage maps of tetrapoid roses" THEORETIAL & APPLIED GENETICS, Bd. 103, 2001, Seiten 575-583, XP002262584 *
VAINSTEIN A. AND BEN-MEIR H.: "DNA Fingerprint analysis of Roses" J. AMER. SOC. HORT. SCI, Bd. 119, Nr. 5, 1994, Seiten 1099-1103, XP009021320 *
VAINSTEIN A. ET AL.: "Molecular markers and genetic transformatin in the breeding of ornamentals" ACTA HORTICULTURAE, Bd. 420, 1995, Seiten 65-67, XP001155891 *

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9416424B2 (en) 2001-03-02 2016-08-16 Ibis Biosciences, Inc. Methods for rapid identification of pathogens in humans and animals
US8815513B2 (en) 2001-03-02 2014-08-26 Ibis Biosciences, Inc. Method for rapid detection and identification of bioagents in epidemiological and forensic investigations
US9752184B2 (en) 2001-03-02 2017-09-05 Ibis Biosciences, Inc. Methods for rapid forensic analysis of mitochondrial DNA and characterization of mitochondrial DNA heteroplasmy
US8563250B2 (en) 2001-03-02 2013-10-22 Ibis Biosciences, Inc. Methods for identifying bioagents
US8802372B2 (en) 2001-03-02 2014-08-12 Ibis Biosciences, Inc. Methods for rapid forensic analysis of mitochondrial DNA and characterization of mitochondrial DNA heteroplasmy
US8268565B2 (en) 2001-03-02 2012-09-18 Ibis Biosciences, Inc. Methods for identifying bioagents
US8265878B2 (en) 2001-03-02 2012-09-11 Ibis Bioscience, Inc. Method for rapid detection and identification of bioagents
US8214154B2 (en) 2001-03-02 2012-07-03 Ibis Biosciences, Inc. Systems for rapid identification of pathogens in humans and animals
US8380442B2 (en) 2001-06-26 2013-02-19 Ibis Bioscience, Inc. Secondary structure defining database and methods for determining identity and geographic origin of an unknown bioagent thereby
US8921047B2 (en) 2001-06-26 2014-12-30 Ibis Biosciences, Inc. Secondary structure defining database and methods for determining identity and geographic origin of an unknown bioagent thereby
US8298760B2 (en) 2001-06-26 2012-10-30 Ibis Bioscience, Inc. Secondary structure defining database and methods for determining identity and geographic origin of an unknown bioagent thereby
US9725771B2 (en) 2002-12-06 2017-08-08 Ibis Biosciences, Inc. Methods for rapid identification of pathogens in humans and animals
US8822156B2 (en) 2002-12-06 2014-09-02 Ibis Biosciences, Inc. Methods for rapid identification of pathogens in humans and animals
US8158354B2 (en) 2003-05-13 2012-04-17 Ibis Biosciences, Inc. Methods for rapid purification of nucleic acids for subsequent analysis by mass spectrometry by solution capture
US8476415B2 (en) 2003-05-13 2013-07-02 Ibis Biosciences, Inc. Methods for rapid purification of nucleic acids for subsequent analysis by mass spectrometry by solution capture
US7964343B2 (en) 2003-05-13 2011-06-21 Ibis Biosciences, Inc. Method for rapid purification of nucleic acids for subsequent analysis by mass spectrometry by solution capture
US8013142B2 (en) 2003-09-11 2011-09-06 Ibis Biosciences, Inc. Compositions for use in identification of bacteria
US8546082B2 (en) 2003-09-11 2013-10-01 Ibis Biosciences, Inc. Methods for identification of sepsis-causing bacteria
US8242254B2 (en) 2003-09-11 2012-08-14 Ibis Biosciences, Inc. Compositions for use in identification of bacteria
US7956175B2 (en) 2003-09-11 2011-06-07 Ibis Biosciences, Inc. Compositions for use in identification of bacteria
US8097416B2 (en) 2003-09-11 2012-01-17 Ibis Biosciences, Inc. Methods for identification of sepsis-causing bacteria
US8394945B2 (en) 2003-09-11 2013-03-12 Ibis Biosciences, Inc. Compositions for use in identification of bacteria
US8288523B2 (en) 2003-09-11 2012-10-16 Ibis Biosciences, Inc. Compositions for use in identification of bacteria
US8163895B2 (en) 2003-12-05 2012-04-24 Ibis Biosciences, Inc. Compositions for use in identification of orthopoxviruses
US8187814B2 (en) 2004-02-18 2012-05-29 Ibis Biosciences, Inc. Methods for concurrent identification and quantification of an unknown bioagent
US9447462B2 (en) 2004-02-18 2016-09-20 Ibis Biosciences, Inc. Methods for concurrent identification and quantification of an unknown bioagent
WO2005111057A3 (en) * 2004-04-02 2006-07-27 Coley Pharm Group Inc Immunostimulatory nucleic acids for inducing il-10 responses
US8173957B2 (en) 2004-05-24 2012-05-08 Ibis Biosciences, Inc. Mass spectrometry with selective ion filtration by digital thresholding
US9449802B2 (en) 2004-05-24 2016-09-20 Ibis Biosciences, Inc. Mass spectrometry with selective ion filtration by digital thresholding
US8987660B2 (en) 2004-05-24 2015-03-24 Ibis Biosciences, Inc. Mass spectrometry with selective ion filtration by digital thresholding
US8407010B2 (en) 2004-05-25 2013-03-26 Ibis Biosciences, Inc. Methods for rapid forensic analysis of mitochondrial DNA
US9873906B2 (en) 2004-07-14 2018-01-23 Ibis Biosciences, Inc. Methods for repairing degraded DNA
US8182992B2 (en) 2005-03-03 2012-05-22 Ibis Biosciences, Inc. Compositions for use in identification of adventitious viruses
US8084207B2 (en) 2005-03-03 2011-12-27 Ibis Bioscience, Inc. Compositions for use in identification of papillomavirus
US8551738B2 (en) 2005-07-21 2013-10-08 Ibis Biosciences, Inc. Systems and methods for rapid identification of nucleic acid variants
US8088582B2 (en) 2006-04-06 2012-01-03 Ibis Biosciences, Inc. Compositions for the use in identification of fungi
US9149473B2 (en) 2006-09-14 2015-10-06 Ibis Biosciences, Inc. Targeted whole genome amplification method for identification of pathogens
US8871471B2 (en) 2007-02-23 2014-10-28 Ibis Biosciences, Inc. Methods for rapid forensic DNA analysis
WO2008117860A1 (ja) * 2007-03-23 2008-10-02 International Flower Developments Proprietary Limited 野生種のバラにおける園芸種のバラとの交雑の有無を検定する方法
JPWO2008117860A1 (ja) * 2007-03-23 2010-07-15 インターナショナル フラワー ディベロプメンツ プロプライアタリー リミティド 野生種のバラにおける園芸種のバラとの交雑の有無を検定する方法
US8206928B2 (en) 2007-03-23 2012-06-26 Suntory Holdings Limited Method for determination of presence of crossing with cultivated rose in wild rose
US9598724B2 (en) 2007-06-01 2017-03-21 Ibis Biosciences, Inc. Methods and compositions for multiple displacement amplification of nucleic acids
US8252599B2 (en) 2008-09-16 2012-08-28 Ibis Biosciences, Inc. Sample processing units, systems, and related methods
US9027730B2 (en) 2008-09-16 2015-05-12 Ibis Biosciences, Inc. Microplate handling systems and related computer program products and methods
US8609430B2 (en) 2008-09-16 2013-12-17 Ibis Biosciences, Inc. Sample processing units, systems, and related methods
US9023655B2 (en) 2008-09-16 2015-05-05 Ibis Biosciences, Inc. Sample processing units, systems, and related methods
US8550694B2 (en) 2008-09-16 2013-10-08 Ibis Biosciences, Inc. Mixing cartridges, mixing stations, and related kits, systems, and methods
US8534447B2 (en) 2008-09-16 2013-09-17 Ibis Biosciences, Inc. Microplate handling systems and related computer program products and methods
US8148163B2 (en) 2008-09-16 2012-04-03 Ibis Biosciences, Inc. Sample processing units, systems, and related methods
US8158936B2 (en) 2009-02-12 2012-04-17 Ibis Biosciences, Inc. Ionization probe assemblies
US8796617B2 (en) 2009-02-12 2014-08-05 Ibis Biosciences, Inc. Ionization probe assemblies
US9165740B2 (en) 2009-02-12 2015-10-20 Ibis Biosciences, Inc. Ionization probe assemblies
US9719083B2 (en) 2009-03-08 2017-08-01 Ibis Biosciences, Inc. Bioagent detection methods
US9393564B2 (en) 2009-03-30 2016-07-19 Ibis Biosciences, Inc. Bioagent detection systems, devices, and methods
US8950604B2 (en) 2009-07-17 2015-02-10 Ibis Biosciences, Inc. Lift and mount apparatus
US9194877B2 (en) 2009-07-17 2015-11-24 Ibis Biosciences, Inc. Systems for bioagent indentification
US9416409B2 (en) 2009-07-31 2016-08-16 Ibis Biosciences, Inc. Capture primers and capture sequence linked solid supports for molecular diagnostic tests
US10119164B2 (en) 2009-07-31 2018-11-06 Ibis Biosciences, Inc. Capture primers and capture sequence linked solid supports for molecular diagnostic tests
US9080209B2 (en) 2009-08-06 2015-07-14 Ibis Biosciences, Inc. Non-mass determined base compositions for nucleic acid detection
US9890408B2 (en) 2009-10-15 2018-02-13 Ibis Biosciences, Inc. Multiple displacement amplification
US9758840B2 (en) 2010-03-14 2017-09-12 Ibis Biosciences, Inc. Parasite detection via endosymbiont detection

Also Published As

Publication number Publication date
WO2003097869A3 (de) 2004-08-12
AU2003245833A1 (en) 2003-12-02
DE10222632A1 (de) 2003-12-11
DE10222632B4 (de) 2006-03-09

Similar Documents

Publication Publication Date Title
WO2003097869A2 (de) Mikrosatellitenmarker für genetische analysen und zur unterscheidung von rosen
DE60028760T2 (de) Verfahren zur gewinnung einer pflanze mit andauernder resistenz gegen ein pathogen
Zamani et al. Genetic relationships among pomegranate genotypes studied by fruit characteristics and RAPD markers
AU631562B2 (en) Genetic linkages between agronomically important genes and restriction fragment length polymorphisms
Kyriakopoulou et al. Genetic and morphological diversity of okra (Abelmoschus esculentus [L.] Moench.) genotypes and their possible relationships, with particular reference to Greek landraces
Diaz et al. Identification of Phoenix dactylifera L. varieties based on amplified fragment length polymorphism (AFLP) markers
Pirkhezri et al. Genetic diversity in different populations of Matricaria chamomilla l. Growing in southwest of Iran, based on morphological
Ellstrand et al. Isozymes confirm hybrid parentage for ‘G755’selections
DE69937299T2 (de) Neuartige, genetische materialien zur übertragung in den mais
DE69632520T2 (de) Methode für die identifizierung genetischer varianten des hopfens
Rebecca et al. Evaluation of genetic diversity among Ocimum sanctum
Vo Assessing genetic diversity in Vietnam tea [Camellia sinensis (L.) O. Kuntze] using morphology, inter-simple sequence repeat (ISSR) and microsatellite (SSR) markers
CN112695122A (zh) 一种抗菌核病油菜品系的筛选方法及其应用
AT410674B (de) Süsskartoffel-klassifizierung
Azeez et al. Morphological and molecular studies of three species of Boerhavia L. from Ile-Ife, Nigeria
Gailing et al. QTL mapping reveals specific genes for the evolutionary reduction of microsporangia in Microseris (Asteraceae)
Pettenkofer Genetic analyses to determine the genetic variation and region of origin of introduced northern red oak (Quercus rubra L.) populations
KR102066594B1 (ko) 참빗살나무 신품종 &#39;코리아 골드&#39; 및 이를 판별하기 위한 분자마커
Kassa Molecular and Morphologicalgenetic Diversity of Potato (Solanum Tuberosum) Clones Conserved in Ethiopia Using Simple Sequence Repeat (Ssr) Markers.
Sathya et al. Cross species amplification of Adzukibean derived Microsatellite Loci and Diversity analysis in Greengram and related Vigna species
Jawarneh Systematic investigation of Pimpinella saxifraga in Germany
O'Malley et al. Electrophoretic evidence for mosaic ‘diploids’ in megagametophytes of knobcone pine (Pinus attenuata Lemm.)
DE69220028T2 (de) Verfahren zur Identifikation von BNYV-Viren-resistenten Zuckerrübenpflanzen bzw. Saatgut und RFLP-Sonde für die Durchführung dieses Verfahrens
Schanzer The Ninth Conference in Memory of Alexei K. Skvortsov
Dissanayake et al. Diversity analysis of selected Solanum species in Sri Lanka using molecular and morphological descriptors.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP