WO2003091357A1 - Element organique electroluminescent - Google Patents

Element organique electroluminescent Download PDF

Info

Publication number
WO2003091357A1
WO2003091357A1 PCT/JP2002/004097 JP0204097W WO03091357A1 WO 2003091357 A1 WO2003091357 A1 WO 2003091357A1 JP 0204097 W JP0204097 W JP 0204097W WO 03091357 A1 WO03091357 A1 WO 03091357A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
organic
electroluminescent device
organic electroluminescent
mixture
Prior art date
Application number
PCT/JP2002/004097
Other languages
English (en)
French (fr)
Inventor
Tadashi Ishibashi
Mari Ichimura
Shinichiro Tamura
Naoyuki Ueda
Original Assignee
Sony Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2000329902A priority Critical patent/JP2002134276A/ja
Priority claimed from JP2000329902A external-priority patent/JP2002134276A/ja
Application filed by Sony Corporation filed Critical Sony Corporation
Priority to US10/297,017 priority patent/US20040202891A1/en
Priority to PCT/JP2002/004097 priority patent/WO2003091357A1/ja
Priority to EP02722757A priority patent/EP1498465A1/en
Publication of WO2003091357A1 publication Critical patent/WO2003091357A1/ja
Priority to US11/262,019 priority patent/US20060051617A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3

Definitions

  • the present invention relates to an organic electroluminescent device (organic EL device) in which an organic layer having a light emitting region is provided between an anode and a cathode.
  • CRTs cathode ray tubes
  • liquid crystal displays with active matrix drive have been commercialized as lightweight and highly efficient flat panel displays.
  • liquid crystal displays have a narrow viewing angle, are not self-luminous, and consume large amounts of power in backlights in dark environments, and high-definition high-speed video signals expected to be put to practical use in the future.
  • the response performance is not sufficient.
  • it is difficult to manufacture a large screen display and there are also problems such as high cost.
  • a display using light-emitting diodes may be possible, but the manufacturing cost is still high and one It is difficult to form a matrix structure of light-emitting diodes on a plate, and the like.
  • organic electroluminescent device using an organic luminescent material has attracted attention as a flat panel display that may solve these problems.
  • organic EL device organic electroluminescent device
  • the use of an organic compound as a light emitting material is expected to realize a flat panel display that is self-luminous, has a high response speed, and has no viewing angle dependence.
  • the configuration of the organic electroluminescent element is such that an organic thin film containing a luminescent material that emits light by current injection is formed between a translucent positive electrode and a metal cathode.
  • CW Tang SA VanSlyke et al. Reported in a research report published in Applied Physics Letters Vol. 51, No. 12, pp. 9 13-9 15 (1989) that organic thin films were composed of hole-transporting materials.
  • As a two-layer structure consisting of a thin film and a thin film made of an electron transporting material we have developed an element structure that emits light by recombination of holes and electrons injected into the organic film from each electrode (single-hetero structure).
  • Organic EL device ).
  • either the hole transporting material or the electron transporting material also serves as the light emitting material, and light emission occurs in a wavelength band corresponding to the energy gap between the ground state and the excited state of the light emitting material.
  • the three colors G (green) and B (blue) are aligned with inorganic thin films.
  • T. Tsutsui, DU Kim is BSB- BCN was seafood tell in Inorganic and Organic electroluminescence conference (1 9 9 6, B er 1 in) is, the 1 0 0 0 cd / m 2 or more of the high brightness Realization However, the chromaticity of red corresponding to full color is not perfect.
  • Japanese Patent Application Laid-Open No. 7-188649 Japanese Patent Application No. 6-148879 proposes using a specific distyryl compound as an organic electroluminescent material. Is blue, not red.
  • a specific distyryl compound proposes using a specific distyryl compound as an organic electroluminescent material. Is blue, not red.
  • by creating an energetic confinement structure of holes and electrons in the stacked structure of the organic electroluminescent device holes and electrons are efficiently combined in the light-emitting layer, resulting in high brightness and a unique light-emitting material. It has been reported that luminescence can be obtained (Japanese Patent Application Laid-Open No. H10-79292, Japanese Patent Application Laid-Open No. H11-2044-258, Japanese Patent Application Laid-Open No. H11-2004, Japanese Patent Application Laid-Open No. H11-11)
  • the target emission color is still blue, not red.
  • An object of the present invention is to provide an organic electroluminescent device having high luminance and stable red or red-like light emission.
  • a second object of the present invention is to provide an organic electroluminescent device containing a mixture containing the compound of the present invention, which originally has a high fluorescence yield and is also excellent in thermal stability, with holes in the light emitting layer.
  • An object of the present invention is to provide an organic electroluminescent device that promotes electron recombination and emits light with higher luminance and higher efficiency. Disclosure of the invention
  • the present invention has achieved stable use of a mixture of a specific styryl compound and a material capable of efficiently transmitting energy as a luminescent material. Further, they have found that a highly reliable red light-emitting element extremely useful for realizing a high-luminance full-color display can be provided, and have reached the present invention.
  • the present invention provides an organic electroluminescent device in which an organic layer having a light emitting region is provided between an anode and a cathode, wherein at least a part of the organic layer has the following general formula [I] or [II] ], And a mixture containing at least one kind of the aminostyryl compound represented by the formula (1).
  • X 1 is any one of the following general formulas (1) to (4)
  • R 25 to R 32 is a group selected from a halogen atom (eg, fluorine, chlorine, etc .; the same applies hereinafter), a nitro group, a cyano group, and a trifluoromethyl group, and the other is a hydrogen atom ,
  • a halogen atom eg, fluorine, chlorine, etc .; the same applies hereinafter
  • a nitro group, a cyano group, and a trifluoromethyl group and the other is a hydrogen atom
  • An alkyl group, an aryl group, an alkoxy group, a halogen atom, a nitro group, a cyano group and a trifluoromethyl group They may be the same or different.
  • X 2 is a group represented by any of the following general formulas (5) to (17);
  • R 33 to R 141 are a hydrogen atom or a group selected from a halogen atom, a nitro group, a cyano group and a trifluoromethyl group, and they are the same. Or different.
  • Y ′, Y 2 and Y 3 in the general formulas [I] and [II] represent a hydrogen atom, an alkyl group which may have a substituent, or the following general formulas (18) to (20) Or a group selected from aryl groups which may have a substituent represented by any of the above, and they may be the same or different.
  • Z 1 and Z 2 in the general formula (18) are groups selected from a hydrogen atom, an alkyl group which may have a substituent, or an aryl group which may have a substituent.
  • R 142 to R 158 each represent a hydrogen atom or an alkyl group which may have a substituent.
  • mixture refers to at least one kind of the aminostyryl compound represented by the above general formula [I] and is advantageous for achieving the object of the present invention.
  • Mixtures with other compounds having the following properties; or represented by the above general formula [II] A mixture of at least one aminostyryl compound to be obtained and another compound having advantageous properties to achieve the object of the present invention; and a mixture of at least one aminostyryl compound represented by the above general formula [I].
  • a mixture of at least one of the aminostyryl compounds represented by the general formula [II] and at least one of the aminostyryl compounds represented by the general formula [I]; At least one aminostyryl compound represented by the formula [II] and another compound having advantageous properties to achieve the object of the present invention. Means a mixture with the compound.
  • the present invention uses a mixture containing at least one kind of the aminostyryl compound represented by the above general formula [I] or [II] as a light emitting material, so that high luminance and stable red light emission can be obtained, An element excellent in electrical, thermal, or chemical stability can be provided.
  • Materials that can be used to form the mixture according to the present invention containing the aminostyryl compound represented by the above general formula [I] or [II] used in the present invention are not particularly limited, but may be any ones.
  • a hole transport material for example, aromatic amines or the like
  • an electron transport material for example, Alq 3 , pyrazolines, etc.
  • a series of compounds generally used as dopants for red emission DCM and its analogs, porphyrins, phthalocyanines, perylene compounds, nile red, squarylium compounds, etc.
  • the X ′ (the general formulas (1) to (4)) and the X 2 (the general formula (5) ) To (17)) are important in that the light emitting material used in the present invention emits red light. For example, as the number of benzene rings increases, the emission wavelength of the organic light emitting material shifts toward longer wavelengths. Tends to foot.
  • the aminostyryl compound represented by the general formula [I] or the general formula [II], which is a luminescent material is, for example, a compound represented by the following structural formula (21) — 1 to (21) — At least one kind of molecular structure such as 20 can be used.
  • an organic electroluminescent device in which an organic layer having a light emitting region is provided between an anode and a cathode, at least a part of the organic layer has the structural formula (21) —1 ⁇ (21)-At least one of the aminostyryl compounds represented by 20;
  • the present invention relates to an organic electroluminescent device comprising a mixture containing a red light-emitting dye having a light emission maximum in the range of up to 700 M.
  • the red light-emitting dye is 600 ⁇ ! There is no particular limitation as long as the compound has an emission maximum in the range of 700 nm to 700 nm. , Perylene compounds, nile red, squarium compounds, etc.). '
  • the organic layer has an organic laminated structure in which a hole transport layer and an electron transport layer are laminated.
  • At least the electron transport layer is made of an aminostyryl compound represented by the general formula [I] or [II] or an aminostyryl compound represented by the structural formula (21) -1 to (21) -20. It may be a mixture layer containing at least one species.
  • the organic layer has an organic laminated structure in which a hole transport layer and an electron transport layer are laminated, and at least one of the organic layers has the general formula [I] or It may be an aminostyryl compound represented by the formula [II] or a mixed layer containing at least one of the aminostyryl compounds represented by the structural formulas (21) -1 to (21) -20.
  • the organic layer has an organic laminated structure in which a hole transport layer and an electron transport layer are laminated, and the hole transport layer is an aminostyryl represented by the general formula [I] or [II].
  • the organic layer has an organic laminated structure in which a hole transporting layer, a light emitting layer, and an electron transporting layer are laminated, and at least the light emitting layer of the organic layer has the general formula [I] Or an amino styryl compound represented by [II], or a mixture layer containing at least one of the aminostyryl compounds represented by the structural formulas (21) —1 to (21) —20. .
  • the present invention relates to the aminostyryl compound in the mixture. It is preferable that the proportion of the substance is 10 to 100% by weight.
  • the present invention provides an organic electroluminescent device containing a mixture containing the compound of the present invention, which originally has a high fluorescence yield and is also excellent in thermal stability, wherein By placing a single-hole (hole) blocking layer, the recombination of holes and electrons is efficiently performed in the light-emitting layer, and an organic material that can emit pure light unique to the light-emitting material with high brightness and high efficiency.
  • an electroluminescent device has been provided.
  • the present invention also provides an organic electroluminescent device in which an organic layer having a light emitting region is provided between an anode and a cathode, wherein at least a part of the organic layer has the general formula [I] or [II].
  • a mixture containing at least one kind of an aminostyryl compound represented by the structural formula (21) —1 to (21) -20 (hereinafter the same). May include the above-mentioned red light-emitting dye having an emission maximum at 600 nn to 700 nm: the same applies to the following), and a hole blocking layer is present in contact with the cathode side of the layer composed of the parenthesis mixture.
  • the present invention relates to an organic electroluminescent device.
  • the organic layer has an organic laminated structure in which a hole transport layer and an electron transport layer are laminated, and at least one of the organic layers has the electron transport layer of the general formula [I] or [ And a hole blocking layer that is in contact with the cathode side of the mixture layer, and that the hole blocking layer is present.
  • the organic layer has an organic laminated structure in which a hole transport layer and an electron transport layer are laminated, and at least one of the organic layers has the general formula [I] or Aminos represented by ⁇ ⁇ It is a mixture layer containing at least one kind of a tyryl compound, and the hole blocking layer can be present in contact with the cathode side of the mixture layer.
  • the organic layer has an organic laminated structure in which a hole transport layer and an electron transport layer are laminated, and the hole transport layer is an aminostyryl represented by the general formula [I] or [II].
  • a mixture layer containing at least one kind of compound, and the electron transporting layer is a mixture layer containing at least one kind of aminostyryl compound represented by the general formula [I] or [II].
  • the hole blocking layer may be present in contact with the electron transporting light emitting layer on the cathode side.
  • the organic layer has an organic laminated structure in which a hole transporting layer, a light emitting layer, and an electron transporting layer are laminated, and at least the light emitting layer of the organic layer has the general formula [I Or a mixture layer containing at least one of the aminostyryl compounds represented by [II], and the hole blocking layer can be present in contact with the cathode side of the mixture layer.
  • the ratio of the aminostyryl compound in the mixture is preferably 10 to 100% by weight.
  • the material suitable for the hole blocking layer has the following energy state. That is, the highest occupied molecular orbital level of the material forming the hole blocking layer is at an energy level lower than the highest occupied molecular orbital level of the material forming the layer in contact with the anode side of the hole blocking layer.
  • the lowest unoccupied molecular orbital level of the material forming the layer forms the layer in contact with the hole blocking layer on the anode side. Energy level higher than the lowest unoccupied molecular orbital level of the material to be formed, and lower than the lowest unoccupied molecular orbital level of the material forming the layer in contact with the cathode side of the hole blocking layer. It is.
  • phenanthroline derivative shown in 59 and the like can be mentioned, but is not limited to the phenanthroline derivative as long as it satisfies the above energy level conditions.
  • FIG. 1 is a schematic sectional view of a main part of an example of an organic electroluminescent device according to the present invention.
  • FIG. 2 is a schematic cross-sectional view of a main part of another example of the organic electroluminescent device.
  • FIG. 3 is a schematic cross-sectional view of a main part of another example of the organic electroluminescent device.
  • FIG. 4 is a schematic cross-sectional view of a main part of another example of the organic electroluminescent device.
  • FIG. 5 is a schematic sectional view of a main part of another example of the organic electroluminescent device.
  • FIG. 6 is a schematic sectional view of a main part of another example of the same organic electroluminescent device.
  • FIG. 7 is a schematic cross-sectional view of a main part of another example of the organic electroluminescent device.
  • FIG. 8 is a schematic cross-sectional view of a main part of still another example of the organic electroluminescent device.
  • FIG. 8 is a schematic cross-sectional view of a main part of still another example of the organic electroluminescent device.
  • FIG. 9 is a configuration diagram of a full-color planar display using the organic electroluminescent device.
  • FIGS. 1 to 4 and FIGS. 5 to 8 show examples of an organic electroluminescent device based on the present invention, respectively.
  • FIG. 1 shows a transmission type organic electroluminescent device A in which emitted light 20 passes through the cathode 3, and the emitted light 20 can be observed from the side of the protective layer 4.
  • FIG. 2 shows a reflective organic electroluminescent element B in which the reflected light from the cathode 3 is also obtained as the emitted light 20.
  • reference numeral 1 denotes a substrate for forming an organic electroluminescent device, which can be made of glass, plastic, or another appropriate material.
  • the substrate can be shared.
  • 2 is a transparent electrode (anode), ITO (I ndiumtinoxide), can be used S n 0 2 or the like.
  • Reference numeral 5 denotes an organic light emitting layer, which contains a mixture containing the above-mentioned aminostyryl compound as a light emitting material.
  • various conventionally known structures can be used as a layer structure for obtaining the organic electroluminescent light 20.
  • a structure in which these thin films are laminated can be used.
  • one or both of the hole transport layer and the electron transport layer have a structure in which thin films of a plurality of materials are stacked, or a plurality of materials.
  • Consisting of a mixture of Does not prevent the use of thin films in order to enhance the light emission performance, at least one kind of fluorescent material is used, and the thin film is sandwiched between the hole transport layer and the electron transport layer.
  • a structure in which a material having a property is included in the hole transport layer or the electron transport layer, or both of them may be used.
  • a thin film for controlling hole or electron transport can be included in the layer structure in order to improve the light emission efficiency.
  • the aminostyryl compound exemplified in the above structural formula (21) has both electron transporting performance and hole transporting performance
  • a mixture containing the aminostyryl compound which also serves as an electron transporting layer in the device structure It is also possible to use as a light emitting layer composed of a mixture containing the above-mentioned aminostyryl compound, which also serves as a hole transport layer. It is also possible to adopt a structure in which a mixture containing this aminostyryl compound is used as a light emitting layer and sandwiched between an electron transporting layer and a hole transporting layer. 5 and 6 show that, in addition to the above configuration, a hole blocking layer 21 made of a phenanthroline derivative is provided in contact with the light emitting layer 5 on the cathode side.
  • reference numeral 3 denotes a cathode, and as an electrode material, active metals such as Li, Mg, and Ca and Ag, Al An alloy with a metal such as In, In or the like, or a structure in which these are laminated can be used.
  • active metals such as Li, Mg, and Ca and Ag, Al
  • an alloy with a metal such as In, In or the like, or a structure in which these are laminated
  • the protective film 4 in the figure is a sealing / protective layer, The effect is increased by adopting a structure that covers the entire organic electroluminescent element. As long as the airtightness is maintained, an appropriate material can be used.
  • Reference numeral 8 denotes a drive power supply for current injection.
  • the organic layer has an organic laminated structure (single hetero structure) in which a hole transport layer and an electron transport layer are laminated, and the hole transport layer or the electron transport layer A mixture containing the aminostyryl compound ′ may be used as a material for forming the above.
  • the organic layer has an organic laminated structure (double hetero structure) in which a hole transport layer, a light emitting layer, and an electron transport layer are sequentially laminated, and includes the styryl compound as a material for forming the light emitting layer. Mixtures may be used.
  • Fig. 3 shows an example of an organic electroluminescent device having such an organic laminated structure.
  • Fig. 3 shows that a light-transmitting anode 2, a hole-transporting layer 6, and an electron-transporting layer are formed on a light-transmitting substrate 1.
  • the organic electroluminescent device C has a single-hetero structure, which has a laminated structure in which an organic layer 5 a composed of a cathode 7 and a cathode 3 are sequentially laminated, and the laminated structure is sealed with a protective film 4.
  • a hole blocking layer 21 is provided in contact with the electron transport layer 7 and Z or the hole transport layer 6 on the cathode side.
  • emitted light 20 of a predetermined wavelength is generated from the interface between the hole transport layer 6 and the electron transport layer 7. These luminescence is observed from the substrate 1 side.
  • FIG. 4 shows that a light-transmitting anode 2, an organic layer 5 b composed of a hole transport layer 10, a light-emitting layer 11, and an electron transport layer 12 are provided on a light-transmitting substrate 1.
  • An organic electroluminescent device D having a double hetero structure, having a laminated structure in which a cathode 3 and a cathode 3 are sequentially laminated, and the laminated structure is sealed with a protective film 4.
  • a hole blocking layer 21 is provided in contact with the light emitting layer 11 on the cathode side.
  • a positive voltage injected from the anode 2 is applied by applying a DC voltage between the anode 2 and the cathode 3.
  • the holes pass through the hole transport layer 10, and the electrons injected from the cathode 3 reach the light emitting layer 11 via the electron transport layer 12.
  • electron / hole recombination occurs to generate singlet excitons, and the singlet excitons emit light of a predetermined wavelength.
  • the substrate 1 can be made of a light-transmitting material such as glass, plastic, or the like as appropriate. This substrate may be shared when the laminated structures shown in Fig. 3 and Fig. 4, Fig. 7 and Fig. 8 are arranged in a matrix, etc.
  • both elements C and D are Both transmissive and reflective structures can be used.
  • the anode 2 is a transparent electrode, ITO (indi um tinoxide) and S n 0 2 or the like can be used '.
  • a thin film made of an organic substance or an organometallic compound may be provided between the anode 2 and the hole transport layer 6 (or the hole transport layer 10) for the purpose of improving the charge injection efficiency.
  • the protective film 4 is made of a conductive material such as a metal, an insulating film may be provided on the side surface of the anode 2.
  • the organic layer 5a in the organic electroluminescent element C is an organic layer in which the hole transport layer 6 and the electron transport layer 7 are laminated, and a mixture containing any one or both of the above-mentioned aminostyryl compounds. And may be used as the luminescent hole transport layer 6 or the electron transport layer 7.
  • the organic layer 5b in the organic electroluminescent device D is an organic layer in which the hole transport layer 10 and the light emitting layer 11 containing the mixture containing the above-mentioned aminostyryl compound and the electron transport layer 12 are laminated.
  • various other laminated structures can be adopted.
  • one or both of the hole transport layer and the electron transport layer may have a light emitting property.
  • a hole transport layer in which a plurality of types of hole transport materials are stacked may be formed in order to improve hole transport performance.
  • the light emitting layer may be the electron transport layer 7, but depending on the voltage applied from the power supply 8, light may be emitted from the hole transport layer 6 or its interface.
  • the layer emitting light may be the electron transport layer 12 or the hole transport layer 10 in addition to the light emitting layer 11.
  • the light emitting layer 11 using at least one kind of fluorescent material is sandwiched between the hole transport layer and the electron transport layer.
  • a structure in which this fluorescent material is contained in the hole transporting layer or the electron transporting layer, or both of them may be constituted.
  • a thin film such as a hole blocking layer or an exciton generation layer for controlling the transport of holes or electrons can be included in the layer configuration.
  • an alloy of an active metal such as Li, Mg, and Ca and a metal such as Ag, Al, and In can be used.
  • the structure may be as follows. Incidentally, by appropriately selecting the thickness and material of the cathode, an organic electroluminescent device suitable for the intended use can be produced.
  • the protective film 4 functions as a sealing film, and by having a structure covering the entire organic electroluminescent element, the charge injection efficiency and the luminous efficiency can be improved. If the airtightness is maintained, the material can be appropriately selected, such as a single metal such as aluminum, gold, and chromium, or an alloy.
  • the current applied to each of the above-mentioned organic electroluminescent elements is usually a direct current, but a pulse current or an alternating current may be used.
  • the current value and voltage value are not particularly limited as long as they are within a range that does not cause element destruction. Considering the power consumption and life of the battery, it is desirable to emit light efficiently with as little electrical energy as possible.
  • FIG. 9 shows a configuration example of a flat display using the organic electroluminescent device of the present invention.
  • the light emitting layers 5 organic layers 5a and 5b capable of emitting the three primary colors of red (R), green (G) and blue (B) are provided.
  • the cathode 3 and the anode 2 can be provided in the form of stripes crossing each other, and are selected by a luminance signal circuit 14 and a control circuit 15 with a built-in shift register, and a signal voltage is applied to each of them.
  • the organic layer at the position (pixel) where the selected cathode 3 and anode 2 intersect is configured to emit light.
  • FIG. 9 shows, for example, an 8 ⁇ 3 RGB simple matrix in which a light-emitting layer 5 composed of a hole-transporting layer and at least one of a light-emitting layer and an electron-transporting layer is composed of a cathode 3 and an anode 2.
  • a light-emitting layer 5 composed of a hole-transporting layer and at least one of a light-emitting layer and an electron-transporting layer is composed of a cathode 3 and an anode 2.
  • Both the cathode and the anode are patterned in stripes, are orthogonal to each other in a matrix, and apply a signal voltage in chronological order by a control circuit 15 and a luminance signal circuit 14 with a built-in shift register. It is configured to emit light at the crossover position.
  • the EL element having such a configuration can be used not only as a display for characters and symbols, but also as an image reproducing device.
  • striped patterns of the cathode 3 and the anode 2 are arranged for each color of red (R), green (G), and blue (B) to form a multi-color or full-color all-solid-state flat panel display. It becomes possible.
  • a glass substrate of 30 mm ⁇ 30 mm having an anode made of ITO having a thickness of 100 nm formed on one surface was set in a vacuum evaporation apparatus.
  • deposition mask a plurality of 2. 0 mm X 2. 0 to mm metal mask having a unit openings was placed close to the substrate, the structure under a vacuum below 1 0- 4 P a by vacuum evaporation ( 2 1)
  • the weight ratio of 1-1 to ⁇ -NPD which is a hole transport material is 1: 1.
  • a film was formed to a thickness of 5 O nm as a hole transport layer (also serving as a light emitting layer).
  • the deposition rates were 0.1 nm / sec.
  • A1q3 (tris (8-quinolinol) aluminum) having the following structural formula was deposited as an electron transport layer material in contact with the hole transport layer.
  • the thickness of this electron transport layer made of A 1 Q 3 was also set to, for example, 50 nm, and the deposition rate was set to 0.2 nmZ.
  • a laminated film of Mg and Ag was adopted, and this was also used for the deposition rate of 5 nm (Mg film) and 15 nm (Ag film), for example, as the deposition rate I n mZ seconds.
  • An organic electroluminescent device as shown in FIG. 3 according to Example 1 was fabricated.
  • Example 1 To the organic electroluminescent device of Example 1 thus manufactured, a forward bias DC voltage was applied in a nitrogen atmosphere to evaluate the light emitting characteristics. The color of the emitted light was red, and as a result of performing spectroscopic measurement, a spectrum having an emission peak at around 680 nm was obtained. For spectrometry, a spectrometer using a photodiode array made by Otsuka Electronics Co., Ltd. as a detector was used. In addition, when the voltage-brightness measurement was performed, a luminance of 500 cd / m 2 was obtained at 8 V.
  • a glass substrate of 30 mm ⁇ 30 mm having an anode made of ITO having a thickness of 100 nm formed on one surface was set in a vacuum evaporation apparatus.
  • a plurality of metal masks each having a unit opening of 2.0 mm x 2.0 mm are disposed close to the substrate as a vapor deposition mask, and the above-described structural formula is obtained by a vacuum vapor deposition method under a vacuum of 10 to 4 Pa or less.
  • One NPD was formed as a hole transport layer to a thickness of, for example, 5 O nm.
  • the deposition rate was 0.1 nm / sec.
  • the aminostyryl compound represented by the formula (21) -11 and the electron transporting material A1q3 were deposited in contact with the hole transporting layer at a weight ratio of 1: 1.
  • the thickness of the electron transport layer (also as a light-emitting layer) composed of a mixture of the aminostyryl compound of the above structural formula (21) -1 and A1q3 is, for example, 5 O nm, and the vapor deposition rate is 0.2 nm each. / Sec.
  • a cathode material a laminated film of Mg and Ag was adopted, which was also deposited at a deposition rate of l nm / sec, for example, 5 O nm (Mg film) and 15 O nm (Ag film). Then, an organic electroluminescent device as shown in FIG. 3 according to Example 2 was produced.
  • a forward bias DC voltage was applied to the organic electroluminescent device of Example 2 thus manufactured in a nitrogen atmosphere to evaluate the light emitting characteristics.
  • the emission color was red, and the result of spectroscopic measurement performed in the same manner as in Example 1 indicated that A spectrum having an emission peak near nm was obtained.
  • a luminance of 600 cd Zm 2 was obtained at 8 V.
  • a glass substrate of 30 mm ⁇ 30 mm having an anode made of ITO having a thickness of 100 nm formed on one surface was set in a vacuum evaporation apparatus.
  • a deposition mask a plurality of metal masks having a unit opening of 2.0 mm X 2.0 mm are arranged close to the substrate, and the above-described structural formula is obtained by a vacuum deposition method under a vacuum of 10 to 4 Pa or less.
  • the deposition rate was 0.2 nm seconds.
  • the structural formula as a light-emitting material (2 1) - 1 Aminosuchi Lil compound and the electron transporting material in which A 1 q 3 the weight ratio of 1: was deposited in contact with the hole transport layer at 1.
  • the thickness of the light-emitting layer composed of a mixture of the aminostyryl compound of the above structural formula (21) -1 and A1q3 was also set to, for example, 30 nm, and the vapor deposition rate was set to 0.2 nm for each second.
  • Et al is was deposited in contact with the A 1 q 3 of the above structural formula to a light-emitting layer as an electron transporting material.
  • a 1 q 3 film thickness of, for example, 30 nm, evaporation The rate was 0.2 nm / sec.
  • a laminated film of Mg and Ag was adopted, and this was also used for the deposition rate of 50 nm (Mg film) and 150 nm (Ag film) at a deposition rate of lnm / sec.
  • An organic electroluminescent device as shown in FIG. 4 according to Example 3 was fabricated.
  • the organic electroluminescent device of Example 3 fabricated in this manner was evaluated by applying a forward bias DC voltage in a nitrogen atmosphere under a nitrogen atmosphere.
  • the luminescent color was red, and as a result of spectroscopic measurement, a spectrum having a luminescent peak at 690 nm was obtained. Further, when the voltage-brightness measurement was performed, a luminance of 800 cdm 2 was obtained at 8 V.
  • an aminostyryl compound of the following structural formula (21) -8 and an aminostyryl compound of the above structural formula (21) -1 were In this example, an organic electroluminescent device having a double hetero structure was manufactured by using a mixture of these as a light emitting layer.
  • a glass substrate of 30 mm ⁇ 30 mm having an anode made of ITO having a thickness of 100 nm formed on one surface was set in a vacuum evaporation apparatus.
  • a deposition mask a plurality of metal masks having a unit opening of 2.0 mm X 2.0 mm are arranged in close proximity to the substrate, and the above-described structural formula is formed by a vacuum deposition method under a vacuum of 10 to 4 Pa or less.
  • Hi NPD was formed as a hole transport layer to a thickness of, for example, 30 nm.
  • the deposition rate was 0.2 nm seconds.
  • an amisostyryl compound of the above structural formula (21) -8 and an aminostyryl compound of the above structural formula (21) -1 were deposited in contact with the hole transport layer at a weight ratio of 1: 3.
  • the thickness of the light emitting layer composed of a mixture of the aminostyryl compound of the above structural formula (21) -18 and the aminostyryl compound of the above structural formula (21) -1 is also set to, for example, 30 nm.
  • the compound of (21) -8 was set to 0.1 n mZ seconds, and the compound of the above structural formula (21) -1 was set to 0.3 n mZ seconds.
  • a 1 Q 3 was deposited in contact with the A 1 q 3 of the above structural formula to a light-emitting layer as an electron transporting material.
  • the film thickness of A 1 Q 3 was , for example, 30 nm, and the deposition rate was 0.2 nm / sec.
  • FIG. 4 according to the fourth embodiment. An organic electroluminescent device as shown in was prepared.
  • Example 4 To the organic electroluminescent device of Example 4 thus manufactured, a forward bias DC voltage was applied in a nitrogen atmosphere to evaluate the light emitting characteristics. The luminescent color was red, and as a result of spectral measurement, a spectrum having a luminescent peak at 70 nm was obtained. Further, when voltage-brightness measurement was performed, a luminance of 300 cd / m 2 was obtained at 8 V.
  • an aminostyryl compound of the following structural formula (21) _9 and an aminostyryl compound of the following structural formula (21) -2 In this example, an organic electroluminescent device having a double hetero structure was manufactured by using a mixture (weight ratio of 1: 3) as a light emitting layer. An organic electroluminescent device was manufactured according to Example 4 in both the layer structure and the film forming method. Structural formula (2 1) 1 2
  • the organic electroluminescent device of Example 5 thus manufactured was evaluated by applying a forward bias DC voltage in a nitrogen atmosphere to evaluate the light emitting characteristics.
  • the emitted light was red, and as a result of spectroscopic measurement, a spectrum having an emission peak at 75 nm was obtained. Further, when voltage-luminance measurement was performed, a luminance of 20 cd Zm 2 was obtained at 8 V.
  • this organic electroluminescent device After manufacturing this organic electroluminescent device, it was left under a nitrogen atmosphere for one month, but no device deterioration was observed. In addition, when current was supplied at a constant value at an initial luminance of 200 cd / m 2 to continuously emit light and forcedly deteriorated, it took 100 hours until the luminance was reduced by half.
  • an aminostyryl compound of the following structural formula (21) -110 and an aminostyryl compound of the following structural formula (21) -3 This is an example in which a mixture with a compound (weight ratio 1: 3) was used as a light emitting layer to produce an organic electroluminescent device having a double hetero structure.
  • An organic electroluminescent device was manufactured according to Example 4 in both the layer structure and the film forming method.
  • a forward bias DC voltage was applied to the organic electroluminescent device of Example 6 thus manufactured in a nitrogen atmosphere to evaluate the light emitting characteristics.
  • the color of the emitted light was orange.
  • a spectrum having an emission peak at 60 nm was obtained.
  • a luminance of 500 cd Zm 2 was obtained at 8 V.
  • the organic light emitting device After the organic light emitting device was fabricated, it was left under a nitrogen atmosphere for one month, but no device deterioration was observed. In addition, when current was supplied at a constant value at an initial luminance of 100 cd Zm 2 and continuous light emission was performed to cause forced deterioration, it took 250 hours until the luminance was reduced by half.
  • an aminostyryl compound of the following structural formula (21) -111 and an aminostyryl compound of the following structural formula (21) -4 Organic electroluminescent device with double hetero structure using mixture with compound (weight ratio 1: 3) as light emitting layer This is an example in which is manufactured.
  • An organic electroluminescent device was manufactured according to Example 4 in both the layer structure and the film forming method.
  • a forward bias DC voltage was applied to the organic electroluminescent device of Example 7 thus manufactured in a nitrogen atmosphere to evaluate the light emitting characteristics. It emitted red light, and was found by spectrometry to have a spectrum having a peak at 660 nm. In addition, when voltage-brightness measurement was performed, a luminance of 250 cd / m 2 was obtained at 8 V.
  • this organic electroluminescent device After manufacturing this organic electroluminescent device, it was left under a nitrogen atmosphere for one month, but no device deterioration was observed. In addition, when the current value was constantly supplied at an initial luminance of 100 cd / m 2 and continuous light emission was performed to cause forced deterioration, it took 100 hours until the luminance was reduced by half.
  • Example 8 In this example, among the aminostyryl compounds of the general formula [I] or [II], an aminostyryl compound of the following structural formula (21) -13 and an aminostyryl compound of the following structural formula (21) -5 This is an example in which a mixture with a compound (weight ratio 1: 3) was used as a light emitting layer to produce an organic electroluminescent device having a double hetero structure. An organic electroluminescent device was manufactured according to Example 4 in both the layer structure and the film forming method. Structural formula (2 1)-5
  • a light emitting characteristic was evaluated by applying a forward bias DC voltage under a nitrogen atmosphere to the organic electroluminescent device of Example 8 thus manufactured.
  • the color of the emitted light was orange.
  • a spectrum having an emission peak at 615 nm was obtained.
  • a luminance of 320 cd Zm 2 was obtained at 8 V.
  • an aminostyryl compound of the following structural formula (21) -14 and an aminostyryl compound of the following structural formula (21) -6 This is an example in which a mixture with a compound (weight ratio 1: 3) was used as a light emitting layer to produce an organic electroluminescent device having a double hetero structure.
  • An organic electroluminescent device was manufactured according to Example 4 in both the layer structure and the film forming method.
  • the organic electroluminescent device of Example 9 fabricated in this manner was added to a nitrogen atmosphere.
  • the light emission characteristics were evaluated by applying a forward bias DC voltage under air. It emitted a red light, which was found by spectrometry to have a peak at 670 nm.
  • a voltage-brightness measurement was performed, a luminance of 230 cd / m 2 was obtained at 8 V.
  • this organic electroluminescent device After manufacturing this organic electroluminescent device, it was left under a nitrogen atmosphere for one month, but no device deterioration was observed. In addition, when the current was supplied at a constant value at an initial luminance of 100 cd / m 2 and continuous light emission was performed for forced deterioration, it took 170 hours until the luminance was reduced by half.
  • an aminostyryl compound of the following structural formula (21) -15 and an aminostyryl compound of the following structural formula (21) -7 This is an example in which a mixture with a styryl compound (weight ratio 1: 3) was used as a light emitting layer to produce an organic electroluminescent device having a double hetero structure.
  • An organic electroluminescent device was manufactured according to Example 4 in both the layer structure and the film forming method.
  • this organic electroluminescent device After manufacturing this organic electroluminescent device, it was left under a nitrogen atmosphere for one month, but no device deterioration was observed. In addition, when current was supplied at a constant value at an initial luminance of 50 cd / m 2 and continuous light emission was performed for forced deterioration, it took 300 hours until the luminance was reduced by half.
  • an aminostyryl compound of the following structural formula (21) -18 and an aminostyryl compound of the above structural formula (21) -1 This is an example in which a mixture with a compound (weight ratio 3: 1) was used as a light emitting layer to produce an organic electroluminescent device having a double hetero structure.
  • An organic electroluminescent device was manufactured according to Example 4 in both the layer structure and the film forming method.
  • a forward bias DC voltage was applied to the organic electroluminescent device of Example 11 thus manufactured in a nitrogen atmosphere to evaluate the light emitting characteristics.
  • the emitted light was red, and as a result of spectroscopic measurement, a spectrum having an emission peak at 64 nm was obtained.
  • voltage-luminance measurement was performed, a luminance of 450 cd Zm 2 was obtained at 8 V.
  • Example 12 To the organic electroluminescent device of Example 12 manufactured in this way, a forward bias DC voltage was applied in a nitrogen atmosphere to evaluate the light emitting characteristics. It emitted a red light, which was found by spectrometry (as in Example 1) to have a peak at about 72 O nm. In addition, voltage-luminance measurement showed a luminance of 300 cd Zm 2 at 8 V.
  • a light emitting characteristic was evaluated by applying a forward bias DC voltage under a nitrogen atmosphere to the organic electroluminescent device of Example 13 manufactured as described above. It emitted a red light, which was found by spectrometry (as in Example 1) to have a peak at about 66 O nm. In addition, voltage-brightness measurement showed that a luminance of 500 cd Zm 2 was obtained at 8 V.
  • the emission characteristics were evaluated by applying a forward bias DC voltage to the organic electroluminescent device of Example 14 thus manufactured in a nitrogen atmosphere. It emitted a red light, which was found by spectrometry (as in Example 1) to have a peak at about 65 O nm. In addition, when the voltage-brightness measurement was performed, a luminance of 850 cd Zm 2 at 8 V was obtained.
  • this organic electroluminescent device After the fabrication of this organic electroluminescent device, it was left under a nitrogen atmosphere for one month, but no device degradation was observed. In addition, when the current value was kept constant at an initial luminance of 100 cd / m 2 and continuous light emission was performed and forced deterioration was performed, it took 500 hours until the luminance was reduced by half.
  • the organic electroluminescent device of Example 19 manufactured in this manner was evaluated by applying a forward bias DC voltage in a nitrogen atmosphere by applying a forward bias DC voltage. It emitted a red light, which was found by spectrometry (as in Example 1) to have a peak at about 66 O nm. In addition, voltage-brightness measurement showed that a luminance of 500 cd Zm 2 was obtained at 8 V.
  • this organic electroluminescent device After the fabrication of this organic electroluminescent device, it was left under a nitrogen atmosphere for one month, but no device degradation was observed. In addition, when the current was kept constant at an initial luminance of 100 cd dZm 2 to continuously emit light and was forcibly deteriorated, it took 450 hours until the luminance was reduced by half.
  • a light emitting characteristic was evaluated by applying a forward bias DC voltage to the organic electroluminescent device of Example 20 thus manufactured in a nitrogen atmosphere. It emitted an orange light, which was found by spectrometry (as in Example 1) to have a peak at about 61 O nm. Further, When a voltage was one luminance measurement, 7 5 0 cd luminance of Z m 2 was obtained at 8 V.
  • Example 21 To the organic electroluminescent device of Example 21 thus manufactured, a forward bias DC voltage was applied in a nitrogen atmosphere to evaluate the light emitting characteristics. It emitted an orange light, which was found by spectrometry (as in Example 1) to have a peak at about 62 O nm. In addition, when the voltage-brightness measurement was performed, a luminance of 1200 cdm 2 was obtained at 8 V.
  • this organic electroluminescent device After the fabrication of this organic electroluminescent device, it was left under a nitrogen atmosphere for one month, but no device degradation was observed. In addition, when the current value was kept constant at an initial luminance of 100 cd dZm 2 to continuously emit light and was forcibly deteriorated, it took 660 hours until the luminance was reduced by half.
  • a light emitting characteristic was evaluated by applying a forward bias DC voltage under a nitrogen atmosphere to the organic electroluminescent device of Example 22 manufactured as described above. It emitted an orange light, which was found by spectrometry (as in Example 1) to have a peak at about 59 O nm. In addition, when voltage-luminance measurement was performed, a luminance of 1500 cd / m 2 was obtained at 8 V.
  • a light emitting characteristic was evaluated by applying a forward bias DC voltage under a nitrogen atmosphere to the organic electroluminescent device of Example 23 manufactured as described above. It emitted a red light, which was found by spectrometry (as in Example 1) to have a peak at about 63 O nm. In addition, when the voltage-brightness measurement was performed, a luminance of 110 cd Zm 2 was obtained at 8 V.
  • Example 21) -15 To the organic electroluminescent device of Example 24 manufactured in this manner, a forward bias DC voltage was applied in a nitrogen atmosphere to evaluate the light emitting characteristics. It emitted a red light, which was found by spectrometry (as in Example 1) to have a peak at about 63 O nm. In addition, when the voltage-brightness measurement was performed, a luminance of 700 cd / m 2 was obtained at 8 V.
  • a glass substrate of 30 mm ⁇ 30 mm with an anode made of ITO having a thickness of 100 nm formed on one surface was set in a vacuum evaporation apparatus.
  • the material ⁇ -NPD was formed as a hole transport layer (also as a light-emitting layer) at a weight ratio of 1: 1 and a thickness of, for example, 50 nm.
  • the deposition rates were each 0.1 nm / sec.
  • bathocuproine of the following structural formula was deposited as a hole blocking layer material in contact with the hole transport layer.
  • the thickness of this hole blocking layer made of bathocuproine was, for example, 15 nm, and the vapor deposition rate was 0.1 nmZ seconds.
  • A1q3 tris (8-quinolinol) aluminum
  • the deposition rate was at 0. 2 nm / sec.
  • a multilayer film of Mg and Ag was adopted, which was also deposited at a deposition rate of lnm / sec, for example, with a thickness of 50 nm (Mg film) and 150 nm (Ag film). Then, an organic electroluminescent device as shown in FIG. 7 according to Example 26 was produced. ⁇
  • the organic electroluminescent device of Example 26 fabricated in this manner was evaluated by applying a forward bias DC voltage under a nitrogen atmosphere to evaluate the light emitting characteristics. Glow The color was red, and as a result of spectroscopic measurement, a spectrum having an emission peak near 720 nm was obtained.
  • a spectrometer using a photodiode array made by Otsuka Electronics Co., Ltd. as a detector was used for spectrometry. Voltage-brightness measurement showed a luminance of 250 cd / m 2 at 8 V.
  • a glass substrate of 30 mm ⁇ 30 mm on which an anode made of IT ⁇ having a thickness of 100 nm was formed on one surface was set in a vacuum evaporation apparatus.
  • a plurality of metal masks having a unit aperture of 2.0 mm X 2.0 mm are arranged close to the substrate as a vapor deposition mask, and the above structural formula is obtained by a vacuum vapor deposition method under a vacuum of 10 to 4 Pa or less.
  • the evaporation rate was 0.2 nm / sec.
  • an aminostyryl compound of the above structural formula (21) -1 as a light emitting material and A1q3 as an electron transporting material were deposited in contact with the hole transporting layer at a weight ratio of 1: 1.
  • the thickness of the light-emitting layer composed of a mixture of the aminostyryl compound of the above structural formula (21) -1 and A1q3 was also set to, for example, 30 nm, and the deposition rate was set to 0.2 nmZ seconds.
  • bathocuproine of the above structural formula was deposited as a hole blocking layer in contact with the light emitting layer.
  • the thickness of this hole blocking layer made of bathocuproine was, for example, 15 nm, and the deposition rate was 0.1 nm / sec.
  • Et al is, as an electron transport layer material was deposited in contact with the A 1 q 3 of the formula in the hole blocking layer.
  • the thickness of this electron transport layer made of A 1 Q 3 was also set to, for example, 30 nm, and the vapor deposition rate was set to 0.2 nmZ.
  • the cathode material As the cathode material, a laminated film of Mg and Ag was adopted, and this was also deposited, and the deposition rate was 50 nm (Mg film) and 150 nm (Ag film), for example, as the deposition rate I n mZ seconds. Then, an organic electroluminescent device as shown in FIG. 8 according to Example 27 was produced.
  • the organic electroluminescent device of Example 27 fabricated in this manner was evaluated by applying a forward bias DC voltage to the device under a nitrogen atmosphere. It emitted red light.
  • a spectrum having a luminescent peak at around 72 O nm was obtained.
  • a luminance of 220 cdZm 2 was obtained at 8 V.
  • a glass substrate of 30 mm ⁇ 30 mm having an anode made of 100 nm thick ITO formed on one surface was set in a vacuum evaporation apparatus.
  • a metal mask having a unit opening of the plurality of 2. 0 mm X 2. 0 mm and arranged close to the substrate, under a vacuum of less than 1 0- 4 P a by vacuum vapor deposition of the structural formula ⁇ -NPD was formed as a hole transport layer to a thickness of, for example, 3 O nm.
  • the deposition rate was 0.2 nm Z seconds.
  • the aminostyryl compound of the above structural formula (21) -8 and the aminostyryl compound of the above structural formula (21) -11 were deposited in contact with the hole transport layer at a weight ratio of 1: 3.
  • the thickness of the light emitting layer composed of a mixture of the aminostyryl compound of the above structural formula (21) _8 and the aminostyryl compound of the above structural formula (21) -1 is also set to, for example, 30 nm. Is 0.1 nm / sec for the compound of the above structural formula (21) -8, and 0.3 nm / sec for the compound of the above structural formula (21) -1.
  • pasokproin having the above structural formula was deposited in contact with the light-emitting layer.
  • the thickness of the hole blocking layer made of bathocuproine was, for example, 15 nm, and the deposition rate was 0.1 nmZ seconds.
  • a 1 Q 3 of the above structural formula as an electron transporting material was deposited in contact with the light emitting layer.
  • the thickness of the A lq 3 example 3 0 nm, deposition, single-DOO was 0. 2 nm / sec.
  • a multilayer film of Mg and Ag was used, which was also deposited at a deposition rate of 1 nm / sec, such as 5 O nm (Mg film). Then, an organic electroluminescent device as shown in FIG. 8 according to Example 28 was produced.
  • the organic electroluminescent device of Example 2.8 thus manufactured was evaluated by applying a forward bias DC voltage in a nitrogen atmosphere by applying a forward bias DC voltage. It emitted a red light, which was found by spectrometry (as in Example 26) to have a peak at about 70 nm. In addition, voltage-luminance measurement showed that luminance of 250 cd / m 2 was obtained at 8 V.
  • the organic electroluminescent device of Example 29 manufactured as described above was evaluated by applying a forward bias DC voltage in a nitrogen atmosphere to the light emitting characteristics. It emitted a red light, which was found by spectrometry (as in Example 26) to have a spectrum with a luminescence peak at about 700 nm. In addition, when voltage-luminance measurement was performed, a luminance of 15 cd / m 2 was obtained at 8 V.
  • the aminostyryl compound of the structural formula (21) -10 and the aminostyryl compound of the structural formula (21) _3 This is an example of producing an organic electroluminescent device using a mixture with a compound (weight ratio 1: 3) as an electron transporting light emitting layer.
  • An organic electroluminescent device was manufactured according to Example 28, in both the layer structure and the film forming method.
  • a light emitting characteristic was evaluated by applying a forward bias DC voltage to the organic electroluminescent device of Example 30 thus manufactured in a nitrogen atmosphere. It emitted an orange light, which was found by spectrometry (as in Example 26) to have a peak at about 62 O nm. In addition, when voltage-luminance measurement was performed, a luminance of 450 cd Zm 2 was obtained at 8 V.
  • this organic electroluminescent device After the fabrication of this organic electroluminescent device, it was left under a nitrogen atmosphere for one month, but no device degradation was observed. In addition, when the current value was kept constant at an initial luminance of 100 cd / m 2 to continuously emit light and was forcibly deteriorated, it took 350 hours until the luminance was reduced by half.
  • the aminostyryl compound of the structural formula (21) -11 and the aminostyryl of the structural formula (21) -4 This is an example of producing an organic electroluminescent device using a mixture with a compound (weight ratio 1: 3) as an electron transporting light emitting layer. Both the layer structure and the film formation method were based on Example 28. An organic electroluminescent device was manufactured.
  • Example 31 To the organic electroluminescent device of Example 31 thus manufactured, a forward bias DC voltage was applied in a nitrogen atmosphere to evaluate the light emitting characteristics. It emitted red light. By spectral analysis in the same manner as in Example 26, a spectrum having an emission peak at around 66 O nm was obtained. In addition, when the voltage-brightness measurement was performed, a luminance of 200 cd Zm 2 was obtained at 8 V.
  • this organic electroluminescent device After the fabrication of this organic electroluminescent device, it was left under a nitrogen atmosphere for one month, but no device degradation was observed. In addition, when the current value was kept constant at an initial luminance of 100 cd / m 2 to continuously emit light and was forcibly deteriorated, it took 150 hours until the luminance was reduced by half.
  • the aminostyryl compound of the structural formula (21) -13 and the aminostyryl compound of the structural formula (21) -15 This is an example of producing an organic electroluminescent device using a mixture with a compound (weight ratio 1: 3) as an electron transporting light emitting layer.
  • An organic electroluminescent device was manufactured according to Example 28, in both the layer structure and the film forming method.
  • the organic electroluminescent device of Example 32 manufactured in this manner was evaluated by applying a forward bias DC voltage to the organic electroluminescent device in a nitrogen atmosphere. It emitted an orange light, which was found by spectrometry (as in Example 26) to have a peak at about 615 nm. In addition, when the voltage-brightness measurement was performed, a luminance of 280 cd Zm 2 was obtained at 8 V.
  • this organic electroluminescent device After the fabrication of this organic electroluminescent device, it was left under a nitrogen atmosphere for one month, but no device degradation was observed. Also, the initial luminance is 100 c DZM 2 continuously emitting light by applying a constant current thereto, the time of forced degradation was 2 5 0 hours luminance to decrease by half.
  • Example 33 To the organic electroluminescent device of Example 33 manufactured in this manner, a forward bias DC voltage was applied in a nitrogen atmosphere to evaluate the light emitting characteristics. It emitted a red light, which was found by spectrometry (as in Example 26) to have a peak at about 67 O nm. In addition, when voltage-luminance measurement was performed, a luminance of 210 cd Zm 2 was obtained at 8 V.
  • the organic electroluminescent device of the present invention in an organic electroluminescent device in which an organic layer having a light emitting region is provided between an anode and a cathode, at least a part of the organic layer has the general formula [ Since it is composed of a mixture containing at least one of the aminostyryl compounds represented by [I] or [II], it is possible to provide an organic electroluminescent device having high luminance and stable red or red-like emission. Becomes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Description

明細 有機電界発光素子 技術分野
本発明は、 発光領域を有する有機層が陽極と陰極との間に設け られている有機電界発光素子 (有機 E L素子) に関するものであ る。 背景技術
軽量で高効率のフラッ トパネルディスプレイが、 例えばコンビ ュ—夕やテレビジョ ンの画面表示用として盛んに研究、 開発され ている。
まず、 ブラウン管 ( C R T ) は、 輝度が高く、 色再現性が良い ため、現在ディスプレイとして最も多く使われているが、嵩高く、 重く、 また消費電力も高いという問題がある。
また、 軽量で高効率のフラッ トパネルディスプレイ として、 ァ クティ ブマ ト リ ックス駆動などの液晶ディスプレイが商品化さ れている。 しかしながら、 液晶ディ スプレイは、 視野角が狭く、 また、 自発光でないため周囲が暗い環境下ではバックライ トの消 費電力が大きいことや、 今後実用化が期待されている高精細度の 高速ビデオ信号に対して十分な応答性能を有しない等の問題点 がある。 特に、 大画面サイズのディスプレイを製造することは困 難であり、 そのコス トが高い等の課題もある。
これに対する代替'として、 発光ダイオードを用いたディスプレ ィの可能性があるが、 やはり製造コス トが高く、 また、 1つの基 板上に発光ダイオー ドのマ ト リ ックス構造を形成することが難 しい等の問題があり、 ブラウン管に取って代わる低価格のデイス プレイ候補としては、 実用化までの課題が大きい。
これらの諸課題を解決する可能性のあるフラッ トパネルディ スプレイ として、 最近、 有機発光材料を用いた有機電界発光素子 (有機 E L素子) が注目されている。 即ち、 発光材料として有機 化合物を用いることにより、 自発光で、 応答速度が高速であ り、 視野角依存性の無いフラッ トパネルディスプレイの実現が期待 されている。
有機電界発光素子の構成は、 透光性の正極と金属陰極との間に 電流の注入によって発光する発光材料を含む有機薄膜を形成し たものである。 C. W. Tang, S. A. VanSlyke等は Appl ied Phys ics Letters 第 5 1巻 1 2号 9 1 3〜 9 1 5頁 ( 1 9 8 7年) 掲載の 研究報告において、 有機薄膜を正孔輸送性材料からなる薄膜と電 子輸送性材料からなる薄膜との 2層構造として、 各々の電極から 有機膜中に注入されたホールと電子が再結合することにより発 光する素子構造を開発した (シングルヘテロ構造の有機 E L素 子)。
この素子構造では、 正孔輸送材料または電子輸送材料のいずれ かが発光材料を兼ねており、 発光は発光材料の基底状態と励起状 態のエネルギギャップに対応した波長帯で起きる。 このような 2 層構造とすることにより、 大幅な駆動電圧の低減、 発光効率の改 善が行われた。
その後、 C. Adachi 、 S. Toki ta 、 T. Tsutsui, S. SaitQ等の Japanese Journal of Appl ied Physics第 2 7巻 2号: L 2 6 9〜 L 2 7 1頁 ( 1 9 8 8年) 掲載の研究報告に記載されているよう に、 正孔輸送材料、 発光材料、 電子輸送材料の 3層構造 (ダブル ヘテロ構造の有機 E L素子) が開発され、 更に、 W. Tang, S. A. VanSlyke, C. H. Chen等の Journal of Applied Physics 第 6 5巻 9号 3 6 1 0〜 3 6 1 6頁 ( 1 9 8 9年) 掲載の研究報告 に記載されているように、 電子輸送材料中に発光材料を含ませた 素子構造などが開発された。 これらの研究により、 低電圧で、 高 輝度の発光の可能性が検証され、 近年、 研究開発が非常に活発に 行われている。
発光材料に用いる有機化合物は、 その多様性から、 理論的には 分子構造を変化させる ことによって発光色を任意に変えること ができるという利点があると言える。 従って、 分子設計を施すこ とにより、 フルカラーディスプレイに必要な色純度の良い R (赤)
G (緑)、 B (青) の 3色を揃えることは、 無機物を用いた薄膜
E L素子と比べて容易であると言える。
しかしながら、 実際には有機電界発光素子においても、 解決し なければならない問題がある。 安定した高輝度の赤色発光素子の 開発は難しく、 現在報告されている電子輸送材料として、 トリス ( 8 —キノ リ ノール) アルミニウム (以下、 A 1 Q 3 と略称。) に D C M 〔 4ージシァノメチレン一 6 — ( p—ジメチルアミノス チリル) 一 2 —メチルー 4 H—ピラン〕 をドープした赤色発光の 例 ( Chem. Func t . Dyes, Proc. Int . Symp. , 2nd P.536 ( 1993)等にお ても、 最高輝度、 信頼性ともにディスプレイ材料としては満足の 行く ものではない。
ま 7こ 、 T. Tsutsui , D. U. Kim が Inorganic and Organic electroluminescence 会議 ( 1 9 9 6、 B e r 1 i n ) で幸 告し た B S B— B C Nは、 1 0 0 0 c d /m2 以上の高い輝度を実現 しているが、 フルカラーに対応する赤色としての色度が完全なも のとは言えない。
さ らに高輝度で安定かつ色純度の高い赤色発光素子の実現が、 望まれているのが現状である。
また、特開平 7 — 1 8 8 6 4 9号(特願平 6 — 1 4 8 7 9 8号) においては、 特定のジスチリル化合物を有機電界発光材料とする ことを提案しているが、 目的の発光色が青色であり、 赤色用では ない。 一方、 有機電界発光素子の積層構造の中にホールと電子の エネルギー的な閉じ込め構造を作る ことによって発光層にてホ ールと電子が効率良く結合し、 高い輝度および発光材料独自の純 粋な発光を得られることが報告されている (特開平 1 0 — 7 9 2 9 7、 特開平 1 1 — 2 0 4 2 5 8、 特開平 1 1 一 2 0 4 2 6 4、 特開平 1 1 — 2 0 4 2 5 9等) が、 目的の発光色はやはり青色で あり、 赤色用ではない。
本発明の目的は、 高輝度かつ安定な赤色又は赤色様発光を有す る有機電界発光素子を提供することにある。
本発明の第二の目的は、 本来高い蛍光収率を有し、 また熱安定 性にも優れた本発明の化合物を含んだ混合物を含有する有機電 -界発光素子において発光層でのホールと電子の再結合を促進し、 さ らに高輝度かつ高効率な発光を呈する有機電界発光素子を提 供することにある。 発明の開示
本発明は上記課題を解決するために鋭意検討した結果、 発光材 料-として特定のスチリル化合物と、 効率良くエネルギーを伝達す ることが可能な材料等との混合物を用いることによって、 安定し た、 高輝度のフルカラーディスプレイ実現に極めて有用な高信頼 性の赤色発光素子を提供できることを見出し、 本発明に到達した ものである。
即ち、 本発明は、 発光領域を有する有機層が陽極と陰極との間 に設けられている有機電界発光素子において、 前記有機層の少な く とも 1部が、 下記一般式 [ I ] 又は [II] で表されるアミ ノス チリル化合物の少なく とも 1種を含んだ混合物からなる こ とを 特徴とする、 有機電界発光素子に係わるものである。
一般式 [ I ] :
Y'-CH=CH-X'-CH=CH-Y2
一般式 [Π] :
Y3-CH=CH-X2
[但し、 前記一般式 [ I ] において、 X1は下記一般式 ( 1 ) 〜 ( 4 ) のいずれか
で表される基であり、
Figure imgf000007_0001
(1) (2) (3)
Figure imgf000007_0002
(4)
(但し、 前記一般式 ( 1 ) 〜 ( 4 ) 中の R1〜!8、 R9〜R16、 R17〜R24、 及び R25〜R32のそれぞれにおいて、 少なく とも一つがハロゲン原 子 (例えばフッ素、 塩素など : 以下、 同様)、 ニトロ基、 シァノ 基、 トリ フルォロメチル基から選ばれた基であり、 その他は水素 原子、 アルキル基、 ァリール基、 アルコキシ基、 ハロゲン原子、 ニ トロ基、 シァノ基及びト リフルォロメチル基から選ばれた基で ある。 また、 それら-が同一であっても異なっても良い。)
また、 前記一般式 [ I I ] において、 X2は下記一般式 ( 5 ) 〜 ( 1 7 ) のいずれかで表される基であり、
Figure imgf000008_0001
(5) (6) (7)
Figure imgf000008_0002
(8) (9) (10)
Figure imgf000008_0003
(11) (12) (13)
Figure imgf000009_0001
(14)
Figure imgf000009_0002
(但し、 前記一般式 ( 5 ) 〜 ( 1 7 ) において、 R33〜R141は水素 原子、 又はハロゲン原子、 ニトロ基、 シァノ基及びト リフルォロ メチル基から選ばれた基であり、 それらが同一であっても異なつ ても良い。)
また、 前記一般式 [ I ]及び [II]中の Y'、 Y2及び Y3は水素原子、 置換基を有しても良いアルキル基、又は下記一般式( 1 8 )〜( 2 0 ) のいずれかで表される置換基を有しても良いァリール基から 選ばれた基であり、 それらが同一であっても異なっても良い。
Figure imgf000010_0001
(19)
(但し、 前記一般式 ( 1 8 ) 中の Z 1及び Z 2は水素原子、 置換基 を有しても良いアルキル基、 又は置換基を有しても良いァリール 基から選ばれた基であり、 それらが同一であっても異なっても良 い。 また、 前記一般式 ( 1 9 ) 及び ( 2 0 ) において、 R142〜R1 58 は水素原子、 置換基を有しても良いアルキル基、 置換基を有して も良いァリール基、 置換基を有しても良いアルコキシ基、 ハロゲ ン原子、 ニトロ基、 シァノ基及びト リ フルォロメチル基から選ば れた基であって、 それらが同一であっても異なっても良い。)] ここで、 上記 「混合物」 とは、 上記一般式 [ I ]で表されるアミ ノスチリル化合物の少なく とも 1種と、 本発明の目的を達成する のに有利な性質を有するその他の化合物との混合物;又は上記一 般式 [ I I ]で表されるアミノスチリル化合物の少なく とも 1種と、 本発明の目的を達成するのに有利な性質を有するその他の化合 物との混合物;更には上記一般式 [ I ]で表されるアミノスチリル 化合物の少なく とも 1種と、 上記一般式 [ I I ]で表されるアミノス チリル化合物の少なく とも 1種との混合物 ; 或いは上記一般式 [ I ]で表されるアミノスチリル化合物の少なく とも 1種と、 上記 一般式 [ I I ]で表されるアミノスチリル化合物の少なく とも 1種 と、 本発明の目的を達成するのに有利な性質を有するその他の化 合物との混合物を意味する。
本発明は、 上記一般式 [ I ]又は [II]で表されるアミノスチリル 化合物の少なく とも 1種を含んだ混合物を発光材料に用いるの で、 高輝度で安定な赤色発光が得られると共に、 電気的、 熱的或 いは化学的にも安定性に優れた素子を提供できる。
本発明に用いる上記一般式 [ I ]又は [II]で表されるアミ ノス チリル化合物を含む本発明に基づく混合物を形成するために使 用可能な材料は、 特に限定されるべきものではないが、 例えば、 本発明の上記一般式 [ I ]又は [II]で表されるアミ ノスチリル化 合物の他に、 ホール輸送材料 (例えば、 芳香族ァミン類等)、 電 子輸送材料 (例えば、 Alq3、 ピラゾリ ン類等)、 又は一般に赤色 発光用 ドーパント として用いられる一連の化合物 (D CM及びそ の類似化合物、 ポルフィ リン類、 フタロシアニン類、 ペリ レン化 合物、ナイルレツ ド、スクァリ リウム化合物等)等が挙げられる。
上記例示したような各化合物を、 上記一般式 [ I ]又は [II]で表 されるアミノスチリル化合物を含む、 本発明に基づく混合物の形 成材料として用いることによって、 正孔輸送性能、 電荷輸送性能 又は発光性能の向上を図ることが可能となり、 より高輝度で安定 な赤色発光が得られると共に、 電気的、 熱的或いは化学的にも.一 層優れた素子とすることができる。
本発明に用いる上記一般式 [ I ]又は [II]で表されるアミ ノス チリル化合物において、 上記 X' (上記一般式 ( 1 ) 〜 ( 4 )) 及 び上記 X2 (上記一般式 ( 5 ) 〜 ( 1 7 )) は'、 本発明に用いる発 光材料が赤色発光を生じる上で重要であるが、 例えばベンゼン環 の数が増えるに従って、 有機発光材料の発光波長は長波長側にシ フ トする傾向がある。 本発明の有機電界発光素子において、 発光材料である上記一般 式 [ I ] 及び上記一般式 [II] で示されるアミ ノスチリル化合物 は、 例えば下記構造式 ( 2 1 ) — 1 〜 ( 2 1 ) — 2 0 のような分 子構造の少なく とも一種が使用可能である。
Figure imgf000012_0001
(21)- 1
Figure imgf000012_0002
(21 2
Figure imgf000012_0003
Figure imgf000013_0001
(21)-4
Figure imgf000013_0002
(21)-5
Figure imgf000013_0003
(21)-6
Figure imgf000013_0004
(21 )-7
Figure imgf000014_0001
Figure imgf000014_0002
(21)42 (21)43
(2D-11
Figure imgf000014_0003
(21)-14 (21)-15
Figure imgf000014_0004
(21 )-16 (21)-17 T JP02/04097
13
Figure imgf000015_0001
(21)48 (21)-19 (21)-20 本発明者はまた、 上記課題を解決するために鋭意検討した結果, 特定のアミノスチリル化合物と、 特定の赤色発光色素とを含んだ 混合物で発光領域を有する有機層の少なく とも 1 部を構成した 有機電界発光素子を作製し、 更に高輝度及び高信頼性の素子を提 供する本発明に到達したものである。
即ち、 本発明は、 発光領域を有する有機層が陽極と陰極との間 に設けられている有機電界発光素子において、 前記有機層の少な く とも 1部が、 上記構造式 ( 2 1 ) — 1 〜 ( 2 1 ) — 2 0で示さ れるアミ ノスチリル化合物の少なく とも 1 種と、 6 00nn!〜 700 M の範囲に発光極大を有する赤色発光色素とを含んだ混合物から なることを特徴とする、 有機電界発光素子に係わるものである。
上記赤色発光色素は、 6 00 ηπ!〜 700nmの範囲に発光極大を有する 化合物ならば特に限定されるべきものではないが、 上述した如く、 一般に赤色発光用 ドーパントとして用いられる一連の化合物 (D C M及びその類似化合物、 ポルフィ ン類、 フタロシアニン類、 ぺ リ レン化合物、 ナイルレッ ド、 スクァリ リゥム化合物等) などが 挙げられる。 '
上記赤色発光色素を含むことによって、 発光性能をより上げる ことができ、 一層高輝度で安定な赤色発光を得ることができる。 本発明は、 例えば、 前記有機層が、 ホール輸送層と電子輸送層 とが積層された有機積層構造を有しており、 前記有機層のうちの 少なく とも電子輸送層が、 前記一般式 [ I ] 又は [ II] で表され るアミノスチリル化合物、 若しくは前記構造式( 2 1 ) ― 1〜( 2 1 ) - 2 0で示されるアミ ノスチリル化合物の少なく とも 1種を 含んだ混合物層であってよい。
また、 前記有機層が、 ホール輸送層と電子輸送層とが積層され た有機積層構造を有しており、 前記有機層のうちの少なく ともホ ール輸送層が、 前記一般式 [ I ] 又は [II] で表されるアミノス チリル化合物、 若しくは前記構造式 ( 2 1 ) — 1〜 ( 2 1 ) — 2 0で示されるアミ ノスチリル化合物の少なく とも 1種を含んだ 混合物層であってよい。
また、 前記有機層が、 ホール輸送層と電子輸送層とが積層され た有機積層構造を有しており、 前記ホール輸送層が、 上記一般式 [ I ] 又は [II] で表されるアミノスチリル化合物、 若しくは前 記構造式 ( 2 1 ) — 1〜 ( 2 1 ) — 2 0で示されるアミノスチリ ル化合物の少なく とも 1種を含んだ混合物層であり、 かつ前記電 子輸送層が、 上記一般式 [ I ] 又は [II] で表されるアミノスチ リル化合物、 若しく は前記構造式 ( 2 1 ) — 1〜 ( 2 1 ) — 2 0 で示されるアミ ノスチリル化合物の少なく とも 1種を含んだ混 合物層であってよい。
また、 前記有機層が、 ホール輸送層と発光層と電子輸送層とが 積層された有機積層構造を有しており、 前記有機層のうちの少な く とも発光層が、 前記一般式 [ I ] 又は [II] で表されるァミノ スチリル化合物、 若しくは前記構造式 ( 2 1 ) — 1〜 ( 2 1 ) — 2 0で示されるアミ ノスチリル化合物の少なく とも 1種を含ん だ混合物層であってよい。
さ らに本発明は、 前記混合物における前記アミノスチリル化合 物の割合が、 1 0〜 1 0 0重量%であることが好ましい。
また、 本発明は、 本来高い蛍光収率を有し、 また熱安定性にも 優れた上記の本発明の化合物を含んだ混合物を含有する有機電 界発光素子において、 発光層の陰極側にホ一ル (正孔) ブロッキ ング層を置く ことによ り、 発光層にてホールと電子の再結合が効 率良く行われ、 発光材料独自の純粋な発光が高輝度かつ高効率に 得られる有機電界発光素子を提供するに至ったものである。
即ち、 本発明はまた、 発光領域を有する有機層が陽極と陰極と の間に設けられている有機電界発光素子において、 前記有機層の 少なく とも 1部が、 前記一般式 [ I ] 又は [ I I ] で表されるアミ ノスチリル化合物、 若しくは前記構造式 ( 2 1 ) — 1〜 ( 2 1 ) - 2 0で示されるアミ ノスチリル化合物 (以下、 同様) の少なく とも 1種を含んだ混合物 (この混合物には、 前記した 600nn!〜 700nmに発光極大を有する赤色発光色素が含まれてよい。 : 以下、 同様) からなり、 かっこの混合物で構成された層の陰極側に接し てホールブロッキング層が存在することを特徴とする、 有機電界 発光素子に係わるものである。
例えば、 前記有機層が、 ホール輸送層と電子輸送層とが積層さ れた有機積層構造を有しており、 前記有機層のうちの少なく とも 電子輸送層が、 前記一般式 [ I ] 又は [ Π ] で表されるァミノス チリル化合物の少なく とも 1種を含んだ混合物層であり、 かつ前 記混合物層の陰極側に接して前記ホールブロッキング層が存在 することが可能である。
また、 前記有機層が、 ホール輸送層と電子輸送層とが積層され た有機積層構造を有しており、 前記有機層のうちの少なく ともホ ール輸送層が、 前記一般式 [ I ] 又は Π Π で表されるアミノス チリル化合物の少なく とも 1種を含んだ混合物層であり、 かつ前 記混合物層の陰極側に接して前記ホールブロッキング層が存在 することが可能である。
また、 前記有機層が、 ホール輸送層と電子輸送層とが積層され た有機積層構造を有しており、 前記ホール輸送層が、 前記一般式 [ I ] 又は [ I I ] で表されるアミノスチリル化合物の少なく とも 1種を含んだ混合物層であり、 かつ前記電子輸送層が、 前記一般 式 [ I ] 又は [ I I ] で表されるアミノスチリル化合物の少なく と も 1種を含んだ混合物層であり、 かっこの電子輸送性発光層の陰 極側に接して前記ホールブロッキング層が存在することが可能 である。
また、 前記有機層が、 ホール輸送層と発光層と電子輸送層とが 積層された有機積層構造を有しており、 前記有機層のうちの少な く とも前記発光層が、 前記一般式 [ I ] 又は [ I I ] で表されるァ ミノスチリル化合物の少なく とも 1種を含んだ混合物層であり、 かつ前記混合物層の陰極側に接して前記ホールブロッキング層 が存在することが可能である。
さらに、 前記混合物における前記アミノスチリル化合物の割合 が 1 0〜 1 0 0重量%であることが好ましい。
また、 ホールブロッキング層に適した材料とは、 次のようなェ ネルギ一状態を有するものであることが望ましい。 すなわち、 ホ ールブロッキング層を形成する材料の最高占有分子軌道レベル が、 ホールブロッキング層の陽極側に接する層を形成する材料の 最高占有分子軌道レベルより低いエネルギーレベルにあること、 なおかつホールブロッキング層を形成する材料の最低非占有分 子軌道レベルが、 ホールブロッキング層の陽極側に接する層を形 成する材料の最低非占有分子軌道レベルよ り高いエネルギーレ ベルにあり、 またホールブロッキング層の陰極側に接する層を形 成する材料の最低非占有分子軌道レベルよ り低いエネルギーレ ベルにあることである。
このような材料として、 特開平 1 0 — 7 9 2 9 7、 特開平 1 1 一 2 0 4 2 5 8、 特開平 1 1 — 2 0 4 2 6 4、 特開平 1 1 — 2 0 4 2 5 9等に示されたフエナント口 リ ン誘導体が挙げられるが、 上記のエネルギーレベルの条件を満たすものであれば、 フエナン トロリ ン誘導体に限定されるものではない。 図面の簡単な説明
第 1 図は、 本発明に基づく有機電界発光素子の一例の要部概略 断面図である。
第 2図は、 同、 有機電界発光素子の他の例の要部概略断面図で ある。
第 3 図は、 同、 有機電界発光素子の他の例の要部概略断面図で ある。
第 4図は、 同、 有機電界発光素子の他の例の要部概略断面図で ある。
第 5 図は、 同、 有機電界発光素子の他の例の要部概略断面図で ある。
第 6 図は、 同、 有機電界発光素子の他の例の要部概略断面図で ある。
第 7 図は、 同、 有機電界発光素子の他の例の要部概略断面図で ある。
第 8 図は、 同、 有機電界発光素子の更に他の例の要部概略断面 図である。
第 9 図は、 同、 有機電界発光素子を用いたフルカラーの平面デ イスプレイの構成図である。 発明を実施するための最良の形態
第 1 図〜第 4図及び第 5図〜第 8図は、 本発明に基づく有機電 界発光素子の例をそれぞれ示すものである。
第 1 図は陰極 3 を発光光 2 0 が透過する透過型有機電界発光 素子 Aであって、 発光光 2 0 は保護層 4の側からも観測できる。 第 2 図は陰極 3での反射光も発光光 2 0 として得る反射型有機 電界発光素子 Bを示す。
図中、 1 は有機電界発光素子を形成するための基板であり、 ガ ラス、 プラスチック及び他の適宜の材料を用いることができる。 また、 有機電界発光素子を他の表示素子と組み合わせて用いる場 合には、 基板を共用することもできる。 2は透明電極 (陽極) で あり、 I T O ( I n d i u m t i n o x i d e )、 S n 02 等 を使用できる。
また、 5 は有機発光層であり、 上記したアミノスチリル化合物 を含んだ混合物を発光材料として含有している。 この発光層につ いて、 有機電界発光光 2 0 を得る層構成としては、 従来公知の 種々の構成を用いることができる。 後述するように、 例えば、 正 孔輸送層と電子輸送層のいずれかを構成する材料が発光性を有 する場合、 これらの薄膜を積層した構造を使用できる。 更に本発 明の目的を満たす範囲で電荷輸送性能を上げるために、 正孔輸送 層と電子輸送層のいずれか若しくは両方が、 複数種の材料の薄膜 を積層した構造、 または、 複数種の材料を混合した組成からなる 薄膜を使用するのを妨げない。 また、 発光性能を上げるために、 少なく とも 1種以上の蛍光性の材料を用いて、 この薄膜を正孔輸 送層と電子輸送層の間に挟持した構造、 更に少なく とも 1種以上 の蛍光性の材料を正孔輸送層若しくは電子輸送層、 またはこれら の両方に含ませた構造を使用しても良い。 これらの場合には、 発 光効率を改善するために、 正孔または電子の輸送を制御するため の薄膜をその層構成に含ませることも可能である。
例えば上記の構造式 ( 2 1 ) で例示したアミノスチリル化合物 は、電子輸送性能と正孔輸送性能の両方を持っため、素子構成中、 電子輸送層を兼ねた、 上記アミノスチリル化合物を含んだ混合物 からなる発光層としても、 或いは正孔輸送層を兼ねた、 上記アミ ノスチリル化合物を含んだ混合物からなる発光層としても用い ることが可能である。 また、 このアミ ノスチリル化合物を含んだ 混合物を発光層として、 電子輸送層と正孔輸送層とで挟み込んだ 構成とすることも可能である。 第 5図及び第 6図は、 上記の構成 に加えて、 発光層 5の陰極側に接してフエナントロリ ン誘導体か らなるホールブロッキング層 2 1 を設けたものである。
なお、 第 1 図及び第 2図、 第 5図及び第 6図中、 3は陰極であ り、 電極材料としては、 L i 、 M g 、 C a等の活性な金属と A g 、 A l 、 I n等の金属との合金、 或いはこれらを積層した構造を使 用できる。 透過型の有機電界発光素子においては、 陰極の厚さを 調節することにより、 用途に合った光透過率を得ることができる , また、 図中の保護膜 4は封止 · 保護層であり、 有機電界発光素子' 全体を覆う構造とすることにより、 その効果が上がる。 気密性が 保たれれば、 適宜の材料を使用することができる。 また、 8は電 流注入用の駆動電源である。 本発明に基づく有機電界発光素子において、 有機層が、 正孔輸 送層と電子輸送層とが積層された有機積層構造 (シングルヘテロ 構造) を有しており、 正孔輸送層又は電子輸送層の形成材料とし て前記アミノスチリル化合物'を含んだ混合物が用いられてよい。 或いは、 有機層が、 正孔輸送層と発光層と電子輸送層とが順次積 層された有機積層構造 (ダブルへテロ構造) を有しており、 発光 層の形成材料として前記スチリル化合物を含んだ混合物が用い られてよい。
このような有機積層構造を有する有機電界発光素子の例を示 すと、 第 3図は、 透光性の基板 1上に、 透光性の陽極 2 と、 正孔 輸送層 6 と電子輸送層 7 とからなる有機層 5 aと、 陰極 3 とが順 次積層された積層構造を有し、 この積層構造が保護膜 4によって 封止されてなる、 シングルヘテロ構造の有機電界発光素子 Cであ る。 第 7 図では、 電子輸送層 7及び Z又は正孔輸送層 6の陰極側 に接してホールブロッキング層 2 1が設けられている。
第 3 図、 第 7図に示すように発光層を省略した層構成の場合に は、 正孔輸送層 6 と電子輸送層 7の界面から所定波長の発光光 2 0 を発生する。 これらの発光は基板 1側から観測される。
また、 第 4図は、 透光性の基板 1上に、 透光性の陽極 2 と、 正 孔輸送層 1 0 と発光層 1 1 と電子輸送層 1 2 とからなる有機層 5 b と、 陰極 3 とが順次積層された積層構造を有し、 この積層構 造が保護膜 4によって封止されてなる、 ダブルへテロ構造の有機 電界発光素子 Dである。 第 8図では、 発光層 1 1 の陰極側に接し てホールブロッキング層 2 1が設けられている。
第 4図に示した有機電界発光素子においては、 陽極 2 と陰極 3 の間に直流電圧を印加することにより、 陽極 2から注入された正 孔が正孔輸送層 1 0 を経て、 また陰極 3から注入された電子が電 子輸送層 1 2を経て、それぞれ発光層 1 1 に到達する。 この結果、 発光層 1 1 においては電子/正孔の再結合が生じて一重項励起 子が生成し、 この一重項励起子から所定波長の発光を発生する。
上述した各有機電界発光素子( 、 Dにおいて、 基板 1 は、 例え ば、 ガラス、 プラスチック等の光透過性の材料を適宜用いること ができる。 また、 他の表示素子と組み合わせて用いる場合や、 第 3図及び第 4図、 第 7図及び第 8 図に示した積層構造をマ ト リ ッ クス状に配置する場合等は、 この基板を共用としてよい。 また、 素子 C、 Dはいずれも、 透過型、 反射型のいずれの構造も採り う る。
また、 陽極 2は、 透明電極であり、 I T O ( i n d i um t i n o x i d e) や S n 0 2 等が使用できる'。 この陽極 2 と正孔輸送層 6 (又は正 孔輸送層 1 0 ) との間には、 電荷の注入効率を改善する目的で、 有機物若しくは有機金属化合物からなる薄膜を設けてもよい。 な お、 保護膜 4が金属等の導電性材料で形成されている場合は、 陽 極 2の側面に絶縁膜が設けられていてもよい。
また、 有機電界発光素子 Cにおける有機層 5 aは、 正孔輸送層 6 と電子輸送層 7 とが積層された有機層であり、 これらのいずれ か又は双方に上記したアミ ノスチリル化合物を含んだ混合物が 含有され、 発光性の正孔輸送層 6又は電子輸送層 7 としてよい。 有機電界発光素子 Dにおける有機層 5 bは、 正孔輸送層 1 0 と上 記したアミ ノスチリル化合物を含んだ混合物を含有する発光層 1 1 と電子輸送層 1 2 とが積層された有機層であるが、 その他、 種々の積層構造を取ることができる。 例えば、 正孔輸送層と電子 輸送層のいずれか若しくは両方が発光性を有していてもよい。 また、正孔輸送層において、正孔輸送性能を向上させるために、 複数種の正孔輸送材料を積層した正孔輸送層を形成してもよい。
また、 有機電界発光素子 Cにおいて、 発光層は電子輸送層 7で あってよいが、 電源 8から印加される電圧によっては、 正孔輸送 層 6やその界面で発光される場合がある。 同様に、 有機電界発光 素子 Dにおいて、 発光する層は発光層 1 1以外に、 電子輸送層 1 2であってもよく、 正孔輸送層 1 0であってもよい。 発光性能を 向上させるために、 少なく とも 1種の蛍光性材料を用いた発光層 1 1 を正孔輸送層と電子輸送層との間に挟持させた構造である のがよい。または、 この蛍光性材料を正孔輸送層又は電子輸送層、 或いはこれら両層に含有させた構造を構成してよい。 このような 場合、 発光効率を改善するために、 正孔又は電子の輸送を制御す るための薄膜 (ホールブロッキング層やエキシトン生成層など) をその層構成に含ませることも可能である。
また、 陰極 3 に用いる材料としては、 L i 、 M g、 C a等の活 性な金属と A g 、 A l 、 I n等の金属との合金を使用でき、 これ らの金属層が積層した構造であってもよい。 なお、 陰極の厚みや 材質を適宜選択することによって、 用途に見合った有機電界発光 素子を作製できる。
また、 保護膜 4は、 封止膜として作用するものであり、 有機電 界発光素子全体を覆う構造とすることで、 電荷注入効率や発光効 率を向上できる。なお、その気密性が保たれれば、アルミニウム、 金、クロム等の単金属又は合金など、適宜その材料を選択できる。
上記した各有機電界発光素子に印加する電流は通常、 直流であ るが、 パルス電流や交流を用いてもよい。 電流値、 電圧値は、 素 子破壊しない範囲内であれば特に制限はないが、 有機電界発光素 子の消費電力や寿命を考慮すると、 なるべく小さい電気工ネルギ —で効率良く発光させることが望ましい。
次に、 第 9図は、 本発明の有機電界発光素子を用いた平面ディ スプレイの構成例である。 図示の如く、 例えばフルカラ一デイス プレイの場合は、 赤 ( R )、 緑 ( G ) 及び青 ( B ) の 3原色を発 光可能な発光層 5 (有機層 5 a、 有機層 5 b ) が、 陰極 3 と陽極 2 との間に配されている。 陰極 3及び陽極 2は、 互いに交差する ス トライプ状に設けることができ、 輝度信号回路 1 4及びシフ ト レジスタ内蔵の制御回路 1 5により選択されて、 それぞれに信号 電圧が印加され、 これによつて、 選択された陰極 3及び陽極 2が 交差する位置 (画素) の有機層が発光するように構成される。
即ち、 第 9 図は例えば 8 X 3 R G B単純マ ト リ ックスであって 正孔輸送層と、 発光層および電子輸送層のいずれか少なく とも一 方とからなる発光層 5 を陰極 3 と陽極 2 の間に配置したもので ある (第 3図及び第 7 図、 又は第 4図及び第 8図参照)。 陰極と 陽極は、 ともにス トライプ状にパターニングするとともに、 互い にマ ト リ クス状に直交させ、 シフ トレジスタ内蔵の制御回路 1 5 および輝度信号回路 1 4により時系列的に信号電圧を印加し、 そ の交叉位置で発光するように構成されたものである。 かかる構成 の E L素子は、 文字 · 記号等のディスプレイ としては勿論、 画像 再生装置としても使用できる。 また陰極 3 と陽極 2のス トライプ 状パターンを赤 (R )、 緑 (G )、 青 (B ) の各色毎に配し、 マル チカラ一あるいはフルカラーの全固体型フラッ トパネルデイス プレイを構成することが可能となる。
次に本発明を実施例について具体的に説明するが、 本発明は以 下の実施例に限定されるものではない。 実施例 1
本実施例は、 一般式 [ I ]のアミノスチリル化合物のうち、 下記 構造式 ( 2 1 ) — 1 のアミノスチリル化合物と下記構造式の α— N P D ( ひ 一ナフチルフエ二ルジァミン) との混合物を正孔輸送 性発光層として用い、 シングルヘテロ構造の有機電界発光素子を 作製した例である。 構造式 ( 2 1. ) — 1 :
Figure imgf000026_0001
(21 1
a - N P D
Figure imgf000026_0002
まず、 真空蒸着装置中に、 1 0 0 n mの厚さの I T Oからなる 陽極が一表面に形成された 3 0 mm X 3 0 mmのガラス基板を セッティ ングした。 蒸着マスクとして、 複数の 2. 0 mm X 2. 0 mmの単位開口を有する金属マスクを基板に近接して配置し、 真空蒸着法により 1 0—4P a以下の真空下で上記構造式 ( 2 1 ) 一 1 と正孔輸送材料である α— N P Dを重量比 1 : 1で、 例えば 5 O n mの厚さに正孔輸送層 (兼発光層) として成膜した。 蒸着 レートは各々 0. l nm/秒とした。
さ らに、 電子輸送層材料として下記構造式の A 1 q 3 (ト リス ( 8 —キノ リ ノール) アルミニウム) を正孔輸送層に接して蒸着 した。 A 1 Q 3 からなるこの電子輸送層の膜厚も例えば 5 0 n m とし、 蒸着レ一卜は 0. 2 n mZ秒とした。
A 1 q
Figure imgf000027_0001
陰極材料としては M g と A gの積層膜を採用し、 これも蒸着に より、 蒸着レート I n mZ秒として例えば 5 O n m (M g膜) 及 び 1 5 O n m (A g膜) の厚さに形成し、 実施例 1 による第 3図 に示したが如き有機電界発光素子を作製した。
このように作製した実施例 1の有機電界発光素子に、 窒素雰囲 気下で順バイァス直流電圧を加えて発光特性を評価した。 発光色 は赤色であり、 分光測定を行った結果、 6 8 0 n m付近に発光ピ ークを有するスぺク トルを得た。 分光測定は、 大塚電子社製のフ オ トダイオードアレイを検出器とした分光器を用いた。 また、 電 圧一輝度測定を行ったところ、 8 Vで 5 0 0 c d /m2 の輝度が 得られた。
この有機電界発光素子を作製後、 窒素雰囲気下に 1力月間放置 したが、 素子劣化は観察されなかった。 また、 初期輝度 1 0 0 c d /m2 で電流値を一定に通電して連続発光し、 強制劣化させた 際、 輝度が半減するまで 2 5 0時間であった。
実施例 2
本実施例は、 一般式 [ I ]のアミ ノスチリル化合物のうち、 上記 構造式 ( 2 1 ) — 1 のアミ ノスチリル化合物と A l Q 3 との混合 物を電子輸送性発光層として用い、 シングルヘテロ構造の有機電 界発光素子を作製した例である。
まず、 真空蒸着装置中に、 1 0 0 n mの厚さの I T Oからなる 陽極が一表面に形成された 3 0 mm X 3 0 mmのガラス基板を セッティ ングした。 蒸着マスクとして、 複数の 2 · 0 mm X 2. 0 mmの単位開口を有する金属マスクを基板に近接して配置し、 真空蒸着法により 1 0— 4P a以下の真空下で、 上記構造式の 一 N P Dを例えば 5 O nmの厚さに正孔輸送層として成膜した。 蒸 着レートは 0. l nm/秒とした。
さらに、 上記構造式 ( 2 1 ) 一 1 のアミノスチリル化合物と電 子輸送性材料である A 1 q 3 を重量比 1 : 1で正孔輸送層に接し て蒸着した。 上記構造式 ( 2 1 ) — 1 のアミノスチリル化合物と A 1 q 3 との混合物からなる電子輸送層 (兼発光層) の膜厚も例 えば 5 O n mとし、 蒸着レートは各々 0. 2 n m /秒とした。 陰極材料としては M gと A gの積層膜を採用し、 これも蒸着に より、 蒸着レー ト l nm /秒として例えば 5 O n m (M g膜) 及 び 1 5 O n m (A g膜) の厚さに形成し、 実施例 2 による第 3図 に示した如き有機電界発光素子を作製した。
このよう に作製した実施例 2の有機電界発光素子に、 窒素雰囲 気下で順バイァス直流電圧を加えて発光特性を評価した。 発光色 は赤色であ り、 実施例 1 と同様に分光測定を行つた結果、 6 9 0 n m付近に発光ピークを有するスぺク トルを得た。 また、 電圧一 輝度測定を行ったところ、 8 Vで 6 0 0 c d Zm2 の輝度が得ら れた。
この有機電界発光素子を作製後、 窒素雰囲気下に 1力月間放置 したが、 素子劣化は観察されなかった。 また、 初期輝度 1 0 0 c d Zm2 で電流値を一定に通電して連続発光し、 強制劣化させた 際、 輝度が半減するまで 2 0 0時間であった。
実施例 3
本実施例は、 一般式 [ I ]のアミノスチリル化合物のうち、 上記 構造式 ( 2 1 ) — 1 のアミノスチリル化合物と A 1 Q 3 との混合 物を電子輸送性発光層として用い、 ダブルへテロ構造の有機電界 発光素子を作製した例である。
まず、 真空蒸着装置中に、 1 0 0 n mめ厚さの I T Oからなる 陽極が一表面に形成された 3 0 mm X 3 0 mmのガラス基板を セッティ ングした。 蒸着マスクとして、 複数の 2 . 0 mm X 2 . 0 mmの単位開口を有する金属マスクを基板に近接して配置し、 真空蒸着法により 1 0— 4P a以下の真空下で、 上記構造式の α — N P Dを例えば 3 0 n mの厚さに正孔輸送層として成膜した。 蒸 着レートは 0 . 2 n m 秒とした。
さらに、 発光材料として上記構造式 ( 2 1 ) — 1 のアミノスチ リル化合物と電子輸送性材料である A 1 q 3 を重量比 1 : 1で正 孔輸送層に接して蒸着した。 上記構造式 ( 2 1 ) — 1 のアミノス チリル化合物と A 1 q 3 との混合物からなる発光層の膜厚も例え ば 3 0 n mとし、 蒸着レートは各々 0 . 2 n mノ秒とした。
さ らに、 電子輸送性材料として上記構造式の A 1 q 3 を発光層 に接して蒸着した。 A 1 q 3 の膜厚を例えば 3 0 n mとし、 蒸着 レートは 0. 2 n m /秒とした。
陰極材料としては M g と A gの積層膜を採用し、 これも蒸着に より、 蒸着レー ト l n m/秒として例えば 5 0 n m (M g膜) 及 び 1 5 0 n m (A g膜) の厚さに形成し、 実施例 3 による第 4図 に示したが如き有機電界発光素子を作製した。
このよう に作製した実施例 3 の有機電界発光素子に、 窒素雰囲 気下で順バイァス直流電圧を加えて発光特性を評価した。 発光色 は赤色であり、 分光測定を行った結果、 6 9 0 n mに発光ピーク を有するスペク トルを得た。 また、 電圧一輝度測定を行ったとこ ろ、 8 Vで 8 0 0 c d m2の輝度が得られた。
この有機電界発光素子を作製後、 窒素雰囲気下に 1力月間放置 したが、 素子劣化は観察されなかった。 また初期輝度 1 0 0 c d Z m 2 で電流値を一定に通電して連続発光して強制劣化させた際 輝度が半減するまで 5 0 0時間であった。
実施例 4
本実施例は、 一般式 [ I ]又は [II]のアミノスチリル化合物のう ち、 下記構造式 ( 2 1 ) — 8 のアミノスチリル化合物と上記構造 式 ( 2 1 ) — 1 のアミノスチリル化合物との混合物を発光層とし て用い、 ダブルへテロ構造の有機電界発光素子を作製した例であ る。 構造式 ( 2 1 ) - 8 :
Figure imgf000031_0001
(21)-8
まず、 真空蒸着装置中に、 1 0 0 n mの厚さの I T Oからなる 陽極が一表面に形成された 3 0 mm X 3 0 mmのガラス基板を セッティ ングした。 蒸着マスクとして、 複数の 2 . 0 mm X 2 . 0 mmの単位開口を有する金属マスクを基板に近接して配置し、 真空蒸着法により 1 0—4P a以下の真空下で上記構造式のひ 一 N P Dを例えば 3 0 n mの厚さに正孔輸送層として成膜した。 蒸着 レートは 0 . 2 n m 秒とした。
さらに、 発光材料として上記構造式 ( 2 1 ) - 8 のアミソスチ リル化合物と上記構造式 ( 2 1 ) — 1 のアミノスチリル化合物を 重量比 1 : 3で正孔輸送層に接して蒸着した。 上記構造式 ( 2 1 ) 一 8のアミノスチリル化合物と上記構造式 ( 2 1 ) — 1のァミノ スチリル化合物との混合物からなる発光層の膜厚も例えば 3 0 n mとし、 蒸着レートは上記構造式 ( 2 1 ) — 8 の化合物は 0 . I n mZ秒、 上記構造式 ( 2 1 ) — 1 の化合物は 0 . 3 n mZ秒 とした。
さらに、 電子輸送性材料として上記構造式の A 1 q 3 を発光層 に接して蒸着した。 A 1 Q 3 の膜厚を例えば 3 0 n mとし、 蒸着 レートは 0 . 2 n m /秒とした。
陰極材料としては M g と A gの積層膜を採用し、 これも蒸着に より、 蒸着レート l n mZ秒として例えば 5 0 n m (M g膜) 及 び 1 5 0 n m (A g膜) の厚さに形成し、 実施例 4による第 4図 に示したが如き有機電界発光素子を作製した。
このように作製した実施例 4の有機電界発光素子に、 窒素雰囲 気下で順バイアス直流電圧を加えて発光特性を評価した。 発光色 は赤色であり、 分光測定を行った結果、 7 1 0 n mに発光ピーク を有するスペク トルを得た。 また、 電圧一輝度測定を行ったとこ ろ、 8 Vで 3 0 0 c d /m2の輝度が得られた。
この有機電界発光素子を作製後、 窒素雰囲気下に 1力月間放置 したが、 素子劣化は観察されなかった。 また初期輝度 5 0 c d / m 2 で電流値を一定に通電して連続発光して強制劣化させた際、 輝度が半減するまで 2 0 0時間であった。
実施例 5
本実施例は、 一般式 [ I ]又は [II]のアミノスチリル化合物のう ち、 下記構造式 ( 2 1 ) _ 9のアミノスチリル化合物と下記構造 式 ( 2 1 ) — 2のアミノスチリル化合物との混合物 (重量比 1 : 3 ) を発光層として用い、 ダブルへテロ構造の有機電界発光素子 を作製した例である。 層構造、 成膜法とも、 実施例 4に準拠して 有機電界発光素子を作製した。 構造式 ( 2 1 ) 一 2
Figure imgf000032_0001
構造式 ( 2 1 ) - 9
Figure imgf000033_0001
このように作製した実施例 5 の有機電界発光素子に、 窒素雰囲 気下で順バイアス直流電圧を加えて発光特性を評価した。 発光色 は赤色であり、 分光測定を行った結果、 7 5 0 n mに発光ピーク を有するスペク トルを得た。 また、 電圧—輝度測定を行ったとこ ろ、 8 Vで 2 0 c d Zm2の輝度が得られた。
この有機電界発光素子を作製後、 窒素雰囲気下に 1ヶ月間放置 したが、 素子劣化は観察されなかった。 また初期輝度 2 0 c d / m2 で電流値を一定に通電して連続発光して強制劣化させた際、 輝度が半減するまで 1 0 0時間であった。
実施例 6
本実施例は、 一般式 [ I ]又は [II]のアミノスチリル化合物のう ち、 下記構造式 ( 2 1 ) 一 1 0のアミノスチリル化合物と下記構 造式( 2 1 ) — 3 のアミノスチリル化合物との混合物(重量比 1 : 3 ) を発光層として用い、 ダブルへテロ構造の有機電界発光素子 を作製した例である。 層構造、 成膜法とも、 実施例 4に準拠して 有機電界発光素子を作製した。 構造式 ( 2 1 ) — 3
Figure imgf000034_0001
Figure imgf000034_0002
(21)-10
このように作製した実施例 6の有機電界発光素子に、 窒素雰囲 気下で順バイアス直流電圧を加えて、 発光特性を評価した。 発光 色は橙色であり、 分光測定を行った結果、 6 2 0 nmに発光ピ一 クを有するスペク トルを得た。 また、 電圧—輝度測定を行ったと ころ、 8 Vで 5 0 0 c d Zm2の輝度が得られた。
この有機竃界発光素子を作製後、 窒素雰囲気下に 1 ヶ月間放置 したが、 素子劣化は観察されなかった。 また初期輝度 1 0 0 c d Zm2 で電流値を一定に通電して連続発光して強制劣化させた際 輝度が半減するまで 2 5 0時間であった。
実施例 7
本実施例は、 一般式 [ I ]又は [II]のアミ ノスチリル化合物のう ち、 下記構造式 ( 2 1 ) 一 1 1 のアミノスチリル化合物と下記構 造式( 2 1 ) — 4のアミノスチリル化合物との混合物(重量比 1 : 3 ) を発光層として用い、 ダブルへテロ構造の有機電界発光素子 を作製した例である。 層構造、 成膜法とも、 実施例 4に準拠して 有機電界発光素子を作製した。 構造式 ( 2 1 ) — 4 :
Figure imgf000035_0001
(21)-11
このよう に作製した実施例 7の有機電界発光素子に、 窒素雰囲 気下で順バイアス直流電圧を加えて、 発光特性を評価した。 発光 色は赤色であり、 分光測定を行った結果、 6 6 0 nmに発光ピー クを有するスペク トルを得た。 また、 電圧一輝度測定を行ったと ころ、 8 Vで 2 5 0 c d/m2の輝度が得られた。
この有機電界発光素子を作製後、 窒素雰囲気下に 1ヶ月間放置 したが、 素子劣化は観察されなかった。 また初期輝度 1 0 0 c d /m2 で電流値'を一定に通電して連続発光して強制劣化させた際 輝度が半減するまで 1 0 0時間であった。
実施例 8 本実施例は、 一般式 [ I ]又は [II]のアミノスチリル化合物のう ち、 下記構造式 ( 2 1 ) 一 1 3 のアミノスチリル化合物と下記構 造式( 2 1 ) — 5 のアミノスチリル化合物との混合物(重量比 1 : 3. ) を発光層として用い、 ダブルへテロ構造の有機電界発光素子 を作製した例である。 層構造、 成膜法とも、 実施例 4に準,拠して 有機電界発光素子を作製した。 構造式 ( 2 1 ) - 5
Figure imgf000036_0001
(21 5
構造式 ( 2 1 ) 1 3
Figure imgf000036_0002
(21)-13
このように作製した実施例 8 の有機電界発光素子に、 窒素雰囲 気下で順バイアス直流電圧を加えて、 発光特性を評価した。 発光 色は橙色であり、 分光測定を行った結果、 6 1 5 n mに発光ピー クを有するスペク トルを得た。 また、 電圧一輝度測定を行ったと ころ、 8 Vで 3 2 0 c d Zm2の輝度が得られた。
この有機電界発光素子を作製後、 窒素雰囲気下に 1 ヶ月間放置 したが、 素子劣化は観察されなかった。 また初期輝度 5 0 c d / m2で電流値を一定に通電して連続発光して強制劣化させた際、 輝度が半減するまで 1 5 0時間であった。
実施例 9
本実施例は、 一般式 [ I ]又は [Π]のアミノスチリル化合物のう ち、 下記構造式 ( 2 1 ) 一 1 4のアミノスチリル化合物と下記構 造式( 2 1 ) — 6のアミノスチリル化合物との混合物(重量比 1 : 3 ) を発光層として用い、 ダブルへテロ構造の有機電界発光素子 を作製した例である。 層構造、 成膜法とも、 実施例 4に準拠して 有機電界発光素子を作製した。 構造式 ( 2 1 ) - 6
Figure imgf000037_0001
(21 )-6
Figure imgf000037_0002
(21)-14
このよう に作製した実施例 9の有機電界発光素子に、 窒素雰囲 気下で順バイアス直流電圧を加えて、 発光特性を評価した。 発光 色は赤色であり、 分光測定を行った結果、 6 7 0 n mに発光ピー クを有するスペク トル.を得た。 また、 電圧一輝度測定を行ったと ころ、 8 Vで 2 3 0 c d /m2の輝度が得られた。
この有機電界発光素子を作製後、 窒素雰囲気下に 1ヶ月間放置 したが、 素子劣化は観察されなかった。 また初期輝度 1 0 0 c d / m 2 で電流値を一定に通電して連続発光して強制劣化させた際 輝度が半減するまで 1 7 0時間であった。
実施例 1 0
本実施例は、 一般式 [ I ]又は [Π]のアミ ノスチリル化合物のう ち、 下記構造式 ( 2 1 ) - 1 5.のアミノスチリル化合物と下記構 造式( 2 1 ) — 7 のアミノスチリル化合物との混合物(重量比 1 : 3 ) を発光層として用い、 ダブルへテロ構造の有機電界発光素子 を作製した例である。 層構造、 成膜法とも、 実施例 4に準拠して 有機電界発光素子を作製した。 構造式 ( 2 1 ) — 7 :
Figure imgf000038_0001
(21 )-7
構造式 ( 2 1 ) - 1 5
Figure imgf000039_0001
(21 )-15 このように作製した実施例 1 0 の有機電界発光素子に、 窒素雰 囲気下で順バイアス直流電圧を加えて、 発光特性を評価した。 発 光色は赤色であり、 分光測定を行った結果、 6 3 0 n mに発光ピ ークを有するスペク トルを得た。 また、 電圧—輝度測定を行った ところ、 8 Vで 7 0 0 c d /m2の輝度が得られた。
この有機電界発光素子を作製後、 窒素雰囲気下に 1ヶ月間放置 したが、 素子劣化は観察されなかった。 また初期輝度 5 0 c d / m2 で電流値を一定に通電して連続発光して強制劣化させた際、 輝度が半減するまで 3 0 0時間であった。
実施例 1 1
本実施例は、 一般式 [ I ]又は [Π]のアミノスチリル化合物のう ち、 下記構造式 ( 2 1 ) 一 1 8 のアミノスチリル化合物と上記構 造式( 2 1 ) — 1 のアミノスチリル化合物との混合物(重量比 3 : 1 ) を発光層として用い、 ダブルへテロ構造の有機電界発光素子 を作製した例である。 層構造、 成膜法とも、 実施例 4に準拠して 有機電界発光素子を作製した。 構造式 ( 2 1 ) - 1 8 :
Figure imgf000040_0001
(21)-18
このように作製した実施例 1 1 の有機電界発光素子に、 窒素雰 囲気下で順バイアス直流電圧を加えて、 発光特性を評価した。 発 光色は赤色であり、 分光測定を行った結果、 6 4 0 n mに発光ピ ークを有するスペク トルを得た。 また、 電圧—輝度測定を行った ところ、 8 Vで 4 5 0 c d Z m 2の輝度が得られた。
この有機電界発光素子を作製後、 窒素雰囲気下に 1 ヶ月間放 ¾ したが、 素子劣化は観察されなかった。 また初期輝度 5 0 c d / m 2 で電流値を一定に通電して連続発光して強制劣化させた際、 輝度が半減するまで 1 7 0時間であった。
実施例 1 2
本実施例は、 一般式 [ I ] のアミ ノスチリル化合物のうち、 下 記構造式 ( 2 1 ) — 2のアミノスチリル化合物と A 1 Q 3 との混 合物を電子輸送性発光層として用い、 シングルヘテロ構造の有機 電界発光素子を作製した例である。 層構造、 成膜法とも、 実施例 2 に準拠して有機電界発光素子を作製した。 構造式 ( 2 1 ) — 2 :
Figure imgf000041_0001
(21 2
このように作製した実施例 1 2の有機電界発光素子に、 窒素雰 囲気下で順バイァス直流電圧を加えて発光特性を評価した。 発光 色は赤色であり、 実施例 1 と同様に分光測定を行った結果、 7 2 O n m付近に発光ピークを有するスペク トルを得た。 また、 電圧 —輝度測定を行ったところ、 8 Vで 3 0 0 c d Z m 2 の輝度が得 られた。
この有機電界発光素子を作製後、 窒素雰囲気下に 1力月間放置 したが、 素子劣化は観察されなかった。 また、 初期輝度 5 0 c d / m 2で電流値を一定に通電して連続発光し、 強制劣化させた際、 輝度が半減するまで 2 2 0時間であった。
実施例 1 3
本実施例は、 一般式 [ I ] のアミノスチリル化合物のうち、 下 記構造式 ( 2 1 ) — 3 のアミノスチリル化合物と A 1 q 3 との混 合物を電子輸送性発光層として用い、 シングルヘテロ構造の有機 電界発光素子を乍製した例である。 層構造、 成膜法とも、 実施例 2に準拠して有機電界発光素子を作製した。 構造式 ( 2 1 ) - 3 :
(21)-3
このよう に作製した実施例 1 3の有機電界発光素子に、 窒素雰 囲気下で順バイアス直流電圧を加えて発光特性を評価した。 発光 色は赤色であり、 実施例 1 と同様に分光測定を行った結果、 6 6 O n m付近に発光ピークを有するスペク トルを得た。 また、 電圧 一輝度測定を行ったところ、 8 Vで 5 0 0 c d Z m 2 の輝度が得 られた。
この有機電界発光素子を作製後、 窒素雰囲気下に 1力月間放置 したが、 素子劣化は観察されなかった。 また、 初期輝度 1 0 0 c dZm2 で電流値を一定に通電して連続発光し、 強制劣化させた 際、 輝度が半減するまで 3 0 0時間であった。
実施例 1 4
本実施例は、 一般式 [ I ] のアミノスチリル化合物のうち、 下 記構造式 ( 2 1 ) — 4のアミ ノスチリル化合物と A 1 q 3 との混 合物を電子輸送性発光層として用い、 シングルヘテロ構造の有機 電界発光素子を作製した例である。 層構造、 成膜法とも、 実施例 2 に準拠して有機電界発光素子を作製した。 構造式 ( 2 1 ) — 4
Figure imgf000043_0001
(21)-4
このように作製した実施例 1 4の有機電界発光素子に、 窒素雰 囲気下で順バイァス直流電圧を加えて発光特性を評価した。 発光 色は赤色であり、 実施例 1 と同様に分光測定を行つた結果、 6 5 O nm付近に発光ピークを有するスペク トルを得た。 また、 電圧 一輝度測定を行ったと ころ、 8 Vで 8 5 0 c d Z m 2 の輝度が得 られた。
この有機電界発光素子を作製後、 窒素雰囲気下に 1力月間放置 したが、 素子劣化は観察されなかった。 また、 初期輝度 1 0 0 c dZm2 で電流値を一定に通電して連続発光し、 強制劣化させた 際、 輝度が半減するまで 2 0 0時間であった。
実施例 1 5
本実施例は、 一般式 [ I ] のアミノスチリル化合物のうち、 下 記構造式 ( 2 1 ) — 5のアミノスチリル化合物と A 1 q 3 との混 合物を電子輸送性発光層として用い、 シングルヘテロ構造の有機 電界発光素子を作製した例である。 層構造、 成膜法とも、 実施例 2に準拠して有機電界発光素子を作製した。 構造式 ( 2 1 ) - 5
Figure imgf000044_0001
(21 )-5 このよう に作製した実施例 1 5 の有機電界発光素子に、 窒素雰 囲気下で順バイアス直流電圧を加えて発光特性を評価した。 発光 色は赤色であり、 実施例 1 と同様に分光測定を行った結果、 6 3 O n m付近に発光ピークを有するスペク トルを得た。 また、 電圧 一輝度測定を行ったところ、 8 Vで 7 5 0 c d / m 2 の輝度が得 られた。
この有機電界発光素子を作製後、 窒素雰囲気下に 1力月間放置 したが、 素子劣化は観察されなかった。 また、 初期輝度 1 0 0 c d /m2 で電流値を一定に通電して連続発光し、 強制劣化させた 際、 輝度が半減するまで 3 0 0時間であった。
実施例 1 6
本実施例は、 一般式 [ I ] のアミノスチリル化合物のうち、 下 記構造式 ( 2 1 ) — 6のアミ ノスチリル化合物と A 1 q 3 との混 合物を電子輸送性発光層として用い、 シングルヘテロ構造の有機 電界発光素子を作製した例である。 層構造、 成膜法とも、 実施例 2 に準拠して有機電界発光素子を作製した。 構造式 ( 2 1 ) — 6
Figure imgf000045_0001
(21 )-6 このように作製した実施例 1 6の有機電界発光素子に、 窒素雰 囲気下で順バイァス直流電圧を加えて発光特性を評価した。 発光 色は赤色であり、 実施例 1 と同様に分光測定を行った結果、 7 0 O n m付近に発光ピークを有するスペク トルを得た。 また、 電圧 一輝度測定を行ったところ、 8 Vで 2 5 0 c d / l の輝度が得 られた。
この有機電界発光素子を作製後、 窒素雰囲気下に 1力月間放置 したが、 素子劣化は観察されなかつた。 また、 初期輝度 5 0 c d Z m 2で電流値を一定に通電して連続発光し、 強制劣化させた際、 輝度が半減するまで 2 0 0時間であった。
実施例 1 7
本実施例は、 一般式 [ I ] のアミノスチリル化合物のうち、 下 記構造式 ( 2 1 ) — 7 のアミノスチリル化合物と A 1 q 3 との混 合物を電子輸送性発光層として用い、 シングルヘテロ構造の有機 電界発光素子を作製した例である。 層構造、 成膜法とも、 実施例 2に準拠して有機電界発光素子を作製した。 構造式 ( 2 1 ) — 7 : VCH:CH- -CFつ
(21 >7 このように作製した実施例 1 7 の有機電界発光素子に、 窒素雰 囲気下で順バイァス直流電圧を加えて発光特性を評価した。 発光 色は赤色であり、 実施例 1 と同様に分光測定を行った結果、 6 6 5 n m付近に発光ピークを有するスペク トルを得た。 また、 電圧 —輝度測定を行ったところ、 8 Vで 8 0 0 c d Z m 2 の輝度が得 られた。
この有機電界発光素子を作製後、 窒素雰囲気下に 1力月間放置 したが、 素子劣化は観察されなかった。 また、 初期輝度 1 0 0 c dZm2 で電流値を一定に通電して連続発光し、 強制劣化させた 際、 輝度が半減するまで 4 5 0時間であった。
実施例 1 8
本実施例は、 一般式 [II] のアミノスチリル化合物のうち、 下' 記構造式 ( 2 1 ) — 8のアミノスチリル化合物と A l d 3 との混 合物を電子輸送性発光層として用い、 シングルヘテロ構造の有機 電界発光素子を作製した例である。 層構造、 成膜法とも、 実施例 2 に準拠して有機電界発光素子を作製した。 構造式 ( 2 1 ) - 8 :
Figure imgf000047_0001
(21)-8 このよう に作製した実施例 1 8 の有機電界発光素子に、 窒素雰 囲気下で順バイァス直流電圧を加えて発光特性を評価した。 発光 色は赤色であり、 実施例 1 と同様に分光測定を行った結果、 6 9 O n m付近に発光ピークを有するスペク トルを得た。 また、 電圧 —輝度測定を行ったところ、 8 Vで 7 0 0 c d / m 2 の輝度が得 られた。
この有機電界発光素子を作製後、 窒素雰囲気下に 1 力月間放置 したが、 素子劣化は観察されなかった。 また、 初期輝度 1 0 0 c d /m2 で電流値を一定に通電して連続発光し、 強制劣化させた 際、 輝度が半減するまで 5 0 0時間であった。
実施例 1 9
本実施例は、 一般式 [II] のアミノスチリル化合物のうち、 下 記構造式 ( 2 1 ) — 9のアミ ノスチリル化合物と A l d 3 との混 合物を電子輸送性発光層として用い、 シングルヘテロ構造の有機 電界発光素子を作製した例である。 層構造、 成膜法とも、 実施例 2 に準拠して有機電界発光素子を作製した。 構造式 ( 2 1 ) — 9
(21)-9
このように作製した実施例 1 9の有機電界発光素子に、 窒素雰 囲気下で順バイアス直流電圧を加えて発光特性を評価した。 発光 色は赤色であり、 実施例 1 と同様に分光測定を行った結果、 6 6 O n m付近に発光ピークを有するスペク トルを得た。 また、 電圧 一輝度測定を行ったところ、 8 Vで 5 0 0 c d Z m 2 の輝度が得 られた。
この有機電界発光素子を作製後、 窒素雰囲気下に 1 力月間放置 したが、 素子劣化は観察されなかった。 また、 初期輝度 1 0 0 c dZm2 で電流値を一定に通電して連続発光し、 強制劣化させた 際、 輝度が半減するまで 4 5 0時間であった。
実施例 2 0
本実施例は、 一般式 [II] のアミノスチリル化合物のうち、 下 記構造式 ( 2 1 ) — 1 0 のアミノスチリル化合物と A 1 Q 3 との 混合物を電子輸送性発光層として用い、 シングルヘテロ構造の有 機電界発光素子を作製した例である。 層構造、 成膜法とも、 実施 例 2に準拠して有機電界発光素子を作製した。 構造式 ( 2 1 ) 0
Figure imgf000049_0001
(21)-10
このように作製した実施例 2 0の有機電界発光素子に、 窒素雰 囲気下で順バイアス直流電圧を加えて発光特性を評価した。 発光 色は橙色であり、 実施例 1 と同様に分光測定を行った結果、 6 1 O n m付近に発光ピークを有するスペク トルを得た。 また、 電圧 一輝度測定を行ったところ、 8 Vで 7 5 0 c d Z m 2 の輝度が得 られた。
この有機電界発光素子を作製後、 窒素雰囲気下に 1力月間放置 したが、 素子劣化は観察されなかった。 また、 初期輝度 1 0 0 c dZm2 で電流値を一定に通電して連続発光し、 強制劣化させた 際、 輝度が半減するまで 5 0 0時間であった。
実施例 2 1
本実施例は、 一般式 [Π] のアミノスチリル化合物のうち、 下 記構造式 ( 2 1 ) — 1 1 のアミノスチリル化合物と A 1 Q 3 との 混合物を電子輸送性発光層として用い、 シングルヘテロ構造の有 機電界発光素子を作製した例である。 層構造、 成膜法とも、 実施 例 2 に準拠して有機電界発光素子を作製した。 構造式 ( 2 1 ) — 1
Figure imgf000050_0001
(21)-11 このように作製した実施例 2 1 の有機電界発光素子に、 窒素雰 囲気下で順バイアス直流電圧を加えて発光特性を評価した。 発光 色は橙色であり、 実施例 1 と同様に分光測定を行った結果、 6 2 O nm付近に発光ピークを有するスペク トルを得た。 また、 電圧 一輝度測定を行ったところ、 8 Vで 1 2 0 0 c d m 2 の輝度が 得られた。
この有機電界発光素子を作製後、 窒素雰囲気下に 1 力月間放置 したが、 素子劣化は観察されなかった。 また、 初期輝度 1 0 0 c dZm2 で電流値を一定に通電して連続発光し、 強制劣化させた 際、 輝度が半減するまで 6 6 0時間であった。
実施例 2 2
本実施例は、 一般式 [II] のアミノスチリル化合物のうち、 下 記構造式 ( 2 1 ) — 1 3 のアミノスチリル化合物と A l q 3 との 混合物を電子輸送性発光層として用い、 シングルヘテロ構造の有 機電界発光素子を作製した例である。 層構造、 成膜法とも、 実施 例 2に準拠して有機電界発光素子を作製した。 構造式 ( 2 1 ) - 1 3 :
Figure imgf000051_0001
(21)-13
このよう に作製した実施例 2 2の有機電界発光素子に、 窒素雰 囲気下で順バイアス直流電圧を加えて発光特性を評価した。 発光 色は橙色であり、 実施例 1 と同様に分光測定を行った結果、 5 9 O nm付近に発光ピークを有するスペク トルを得た。 また、 電圧 —輝度測定を行ったところ、 8 Vで 1 5 0 0 c d / m 2 の輝度が 得られた。
この有機電界発光素子を作製後、 窒素雰囲気下に 1力月間放置 したが、 素子劣化は観察されなかった。 また、 初期輝度 1 0 0 c dZm2 で電流値を一定に通電して達続発光し、 強制劣化させた 際、 輝度が半減するまで 5 0 0時間であった。
実施例 2 3
本実施例は、 一般式 [Π] のアミノスチリル化合物のうち、 下 記構造式 ( 2 1 ) — 1 4のアミノスチリル化合物と A 1 q 3 との 混合物を電子輸送性発光層として用い、 シングルヘテロ構造の有 機電界発光素子を作製した例である。 層構造、 成膜法とも、 実施 例 2に準拠して有機電界発光素子を作製した。 構造式 ( 2 1 ) - 1 4
Figure imgf000052_0001
(21 )-14
このよう に作製した実施例 2 3 の有機電界発光素子に、 窒素雰 囲気下で順バイアス直流電圧を加えて発光特性を評価した。 発光 色は赤色であり、 実施例 1 と同様に.分光測定を行つた結果、 6 3 O nm付近に発光ピークを有するスペク トルを得た。 また、 電圧 一輝度測定を行ったところ、 8 Vで 1 1 0 0 c d Z m 2 の輝度が 得られた。
この有機電界発光素子を作製後、 窒素雰囲気下に 1力月間放置 したが、 素子劣化は観察されなかった。 また、 初期輝度 1 0 0 c dZm2で電流値を一定に通電して連続発光し、 強制劣化させた 際、 輝度が半減するまで 5 0 0時間であった。
実施例 2 4
本実施例は、 一般式 [ II] のアミノスチリル化合物のうち、 下 記構造式 ( 2 1 ) — 1 5 のアミノスチリル化合物と A 1 Q 3 との 混合物を電子輸送性発光層として用い、 シングルヘテロ構造の有 機電界発光素子を作製した例である。 層構造、 成膜法とも、 実施 例 2に準拠して有機電界発光素子を作製した。 構造式 ( 2 1 ) - 1 5 :
Figure imgf000053_0001
(21 )-15 このように作製した実施例 2 4の有機電界発光素子に、 窒素雰 囲気下で順バイァス直流電圧を加えて発光特性を評価した。 発光 色は赤色であり、 実施例 1 と同様に分光測定を行った結果、 6 3 O n m付近に発光ピークを有するスペク トルを得た。 また、 電圧 一輝度測定を行ったところ、 8 Vで 7 0 0 c d / m 2 の輝度が得 られた。
この有機電界発光素子を作製後、 窒素雰囲気下に 1力月間放置 したが、 素子劣化は観察されなかった。 また、 初期輝度 1 0 0 c dZm2 で電流値を一定に通電して連続発光し、 強制劣化させた 際、 輝度が半減するまで 6 0 0時間であった。
実施例 2 5
本実施例は、 一般式 [Π] のアミノスチリル化合物のうち、 下 記構造式 ( 2 1 ) — 1 8のアミノスチリル化合物と A l d 3 との 混合層を電子輸送性発光層として用い、 シングルヘテロ構造の有 機電界発光素子を作製した例である。 層構造、 成膜法とも、 実施 例 2 に準拠して有機電界発光素子を作製した。 構造式 ( 2 1 ) 8
Figure imgf000054_0001
(21)-18 このよう に作製した実施例 2 5の有機電界発光素子に、 窒素雰 囲気下で順バイァス直流電圧を加えて発光特性を評価した。 発光 色は橙色であり、 実施例 1 と同様に分光測定を行った結果、 5 8 O n m付近に発光ピークを有するスペク トルを得た。 また、 電圧 —輝度測定を行ったところ、 8 Vで 9 0 0 c d / m 2 の輝度が得 られた。
この有機電界発光素子を作製後、 窒素雰囲気下に 1力月間放置 したが、 素子劣化は観察されなかった。 また、 初期輝度 1 0 0 c d Zm2で電流値を一定に通電して連続発光し、 強制劣化させた 際、 輝度が半減するまで 4 5 0時間であった。
実施例 2 6
本実施例は、 一般式 [ I ] のアミノスチリル化合物のうち、 上 記構造式 ( 2 1 ) 一 1 のアミノスチリル化合物と上記構造式のひ 一 N P D ( α—ナフチルフエ二ルジァミン) の混合物を正孔輸送 性発光層として用い、 第 7 図に示した如き有機電界発光素子を作 製した例である。
まず、 真空蒸着装置中に、 1 0 0 n mの厚さの I T Oからなる 陽極が一表面に形成された 3 0 mm X 3 O mmのガラス基板を セッティ ングした。 蒸着マスクとして複数の 2. 0 mm X 2. 0 mmの単位開口を有する金属マスクを基板に近接して配置し、 真 空蒸着法により 1 0 _4 P a以下の真空下で上記構造式 ( 2 1 ) — 1 のアミ ノスチリル化合物と正孔輸送材料である α — N P Dを 重量比 1 : 1 で、 例えば 5 0 n mの厚さに正孔輸送層 (兼発光層) として成膜した。 蒸着レートは各々 0 . l n m/秒とした。
さらに、 ホールブロッキング層材料として下記構造式のバソク プロインを正孔輸送層に接して蒸着した。 バソクプロインからな るこのホールブロッキング層の膜厚は例えば 1 5 n mとし、 蒸着 レートは 0 . I n mZ秒とした。
さ らに、 電子輸送層材料として上記構造式の A 1 q 3 ( ト リス ( 8 —キノ リ ノール) アルミニウム) をホールブロッキング層に 接して蒸着した。 A l q 3 からなるこの電子輸送層の膜厚も例え ば 5 0 n mとし、 蒸着レートは 0 . 2 n m /秒とした。 バソクプロイン :
Figure imgf000055_0001
陰極材料としては M gと A gの積層膜を採用し、 これも蒸着に より、 蒸着レート l n m/秒として例えば 5 0 n m (M g膜) お よび 1 5 0 n m (A g膜) の厚さに形成し、 実施例 2 6 による第 7図に示した如き有機電界発光素子を作製した。 ·
このよう に作製した実施例 2 6の有機電界発光素子に、 窒素雰 囲気下で順バイァス直流電圧を加えて発光特性を評価した。 発光 色は赤色であり、 分光測定を行った結果、 7 2 0 n m付近に発光 ピークを有するスペク トルを得た。 分光測定は、 大塚電子社製の フォ トダイオードアレイを検出器とした分光器を用いた。 また、 電圧一輝度測定を行ったところ、 8 Vで 2 5 0 c d /m2 の輝度 が得られた。
この有機電界発光素子を作製後、 窒素雰囲気下に 1力月間放置 したが、 素子劣化は観察されなかった。 また、 初期輝度 5 0 c d Zm2で電流値を一定に通電して連続発光し、 強制劣化させた際、 輝度が半減するまで 2 0 0時間であった。
実施例 2 7
本実施例は、 一般式 [ I ]のアミノスチリル化合物のうち、 上記 構造式 ( 2 1 ) — 1 のアミノスチリル化合物と A 1 Q 3 との混合 物を電子輸送性発光層として用い、 第 8図に示した如き有機電界 発光素子を作製した例である。
まず、 真空蒸着装置中に、 1 0 0 n mの厚さの I T〇からなる 陽極が一表面に形成された 3 0 mm X 3 0 mmのガラス基板を セッティ ングした。 蒸着マスクとして、 複数の 2. 0 mm X 2. 0 mmの単位開口を有する金属マスクを基板に近接して配置し、 真空蒸着法により 1 0— 4P a以下の真空下で、 上記構造式の α— N P Dを例えば 3 0 n mの厚さに正孔輸送層として成膜した。 蒸 着レー トは 0. 2 n m /秒とした。
さ らに、 発光材料として上記構造式 ( 2 1 ) — 1 のアミノスチ リル化合物と電子輸送性材料である A 1 q 3 を重量比 1 : 1で正 孔輸送層に接して蒸着した。 上記構造式 ( 2 1 ) — 1 のアミノス チリル化合物と A 1 q 3 との混合物からなる発光層の膜厚も例え ば 3 0 n mとし、 蒸着レートは各々 0. 2 nmZ秒とした。 さ らに、 ホールブロッキング層として上記構造式のバソクプロ イ ンを発光層に接して蒸着した。 バソクプロインからなるこのホ ールブロッキング層の膜厚は例えば 1 5 n mとし、 蒸着レ一 トは 0. 1 n m /秒とした。
さ らに、 電子輸送層材料として上記構造式の A 1 q 3 をホール ブロッキング層に接して蒸着した。 A 1 Q 3 からなるこの電子輸 送層の膜厚も例えば 3 0 n mとし、 蒸着レートは 0. 2 n mZ秒 とした。
陰極材料としては M g と A gの積層膜を採用し、 これも蒸着に より、 蒸着レー ト I n mZ秒として例えば 5 0 n m (M g膜) 及 び 1 5 0 n m (A g膜) の厚さに形成し、 実施例 2 7 による第 8 図に示したが如き有機電界発光素子を作製した。
このように作製した実施例 2 7の有機電界発光素子に、 窒素雰 囲気下で順バイァス直流電圧を加えて発光特性を評価した。 発光 色は赤色であり、 実施例 2 6 と同様に分光測定を行った結果、 7 2 O nm付近に発光ピークを有するスぺク トルを得た。 また、 電 圧—輝度測定を行ったところ、 8 Vで 2 2 0 c dZm2 の輝度が 得られた。
この有機電界発光素子を作製後、 窒素雰囲気下に 1力月間放置 したが、 素子劣化は観察されなかった。 また、 初期輝度 5 0 c d /m2で電流値を一定に通電して連続発光し、 強制劣化させた際、 輝度が半減するまで 3 5 0時間であった。
実施例 2 8
本実施例は、 一般式 [ I ]又は [II]のアミノスチリル化合物のう ち、 上記構造式 ( 2 1 ) 一 8 のアミノスチリル化合物と上記構造 式 ( 2 1 ) — 1 のアミノスチリル化合物との混合物を発光層とし て用い、 第 8図に示した如き有機電界発光素子を作製した例であ る。
まず、 真空蒸着装置中に、 1 0 0 nmの厚さの I TOからなる 陽極が一表面に形成された 3 0 mm X 3 0 mmのガラス基板を セッティ ングした。 蒸着マスクとして、 複数の 2. 0 mm X 2 . 0 mmの単位開口を有する金属マスクを基板に近接して配置し、 真空蒸着法により 1 0— 4P a以下の真空下で上記構造式の α— N P Dを例えば 3 O nmの厚さに正孔輸送層として成膜した。 蒸着 レートは 0. 2 n m Z秒とした。
さらに、 発光材料として上記構造式 ( 2 1 ) — 8のアミ ノスチ リル化合物と上記構造式 ( 2 1 ) 一 1のアミ ノスチリル化合物を 重量比 1 : 3で正孔輸送層に接して蒸着した。 上記構造式 ( 2 1 ) _ 8のアミノスチリル化合物と上記構造式 ( 2 1 ) — 1のァミ ノ スチリル化合物との混合物からなる発光層の膜厚も例えば 3 0 n mとし、 蒸着レ一 卜は上記構造式 ( 2 1 ) — 8の化合物は 0. 1 n m /秒、 上記構造式 ( 2 1 ) — 1の化合物は 0. 3 n m Z秒 とした。
さ らに、 ホ一ルブロッキング層として上記構造式のパソクプロ インを発光層に接して蒸着した。 バソクプロインからなるこのホ —ルブロッキング層の膜厚は例えば 1 5 n mとし、 蒸着レートは 0. I nmZ秒とした。
さ らに、 電子輸送性材料として上記構造式の A 1 Q 3 を発光層 に接して蒸着した。 A l q3 の膜厚を例えば 3 0 nmとし、 蒸着 レ一 トは 0. 2 n m /秒とした。
陰極材料としては M gと A gの積層膜を採用し、 これも蒸着に より、 蒸着レー ト l nm/秒として例えば 5 O nm (Mg膜) 及 び 1 5 0 n m (A g膜) の厚さに形成し、 実施例 2 8による第 8 図に示したが如き有機電界発光素子を作製した。
このように作製した実施例 2. 8の有機電界発光素子に、 窒素雰 囲気下で順バイアス直流電圧を加えて発光特性を評価した。 発光 色は赤色であり、 実施例 2 6と同様に分光測定を行った結果、 7 1 0 nm付近に発光ピークを有するスぺク トルを得た。 また、 電 圧—輝度測定を行ったところ、 8 Vで 2 5 0 c d/m2 の輝度が 得られた。
この有機電界発光素子を作製後、 窒素雰囲気下に 1力月間放置 したが、 素子劣化は観察されなかった。 また、 初期輝度 5 0 c d Zm2で電流値を一定に通電して連続発光し、 強制劣化させた際、 輝度が半減するまで 3 3 0時間であった。
実施例 2 9
本実施例は、 一般式 [I ]又は [Π] の上記アミノスチリル化合 物のうち、 上記構造式 ( 2 1 ) 一 9のアミノスチリル化合物と上 記構造式 ( 2 1 ) — 2のアミノスチリル化合物との混合物 (重量 比 1 : 3 ) を電子輸送性発光層として用いた有機電界発光素子を 作製した例である。 層構造、 成膜法とも実施例 2 8に準拠して有 機電界発光素子を作製した。
このように作製した実施例 2 9の有機電界発光素子に、 窒素雰 囲気下で順バイアス直流電圧を加えて発光特性を評価した。 発光 色は赤色であり、 実施例 2 6と同様に分光測定を行った結果、 7 5 0 nm付近に発光ピークを有するスぺク トルを得た。 また、 電 圧—輝度測定を行ったところ、 8 Vで 1 5 c d/m 2 の輝度が得 られた。
この有機電界発光素子を作製後、 窒素雰囲気下に 1力月間放置 したが、 素子劣化は観察されなかった。 また、 初期輝度 2 0 c d / m 2で電流値を一定に通電して連続発光し、 強制劣化させた際、 輝度が半減するまで 1 5 0時間であった。
実施例 3 0
本実施例は、 一般式 [ I ]又は [II] の上記アミノスチリル化合 物のうち、 上記構造式 ( 2 1 ) — 1 0のアミノスチリル化合物と 上記構造式 ( 2 1 ) _ 3 のアミノスチリル化合物との混合物 (重 量比 1 : 3 ) を電子輸送性発光層として用いた有機電界発光素子 を作製した例である。 層構造、 成膜法とも実施例 2 8 に準拠して 有機電界発光素子を作製した。
このように作製した実施例 3 0の有機電界発光素子に、 窒素雰 囲気下で順バイアス直流電圧を加えて発光特性を評価した。 発光 色は橙色であり、 実施例 2 6 と同様に分光測定を行った結果、 6 2 O n m付近に発光ピークを有するスペク トルを得た。 また、 電 圧—輝度測定を行ったところ、 8 Vで 4 5 0 c d Zm2 の輝度が 得られた。
この有機電界発光素子を作製後、 窒素雰囲気下に 1 力月間放置 したが、 素子劣化は観察されなかった。 また、 初期輝度 1 0 0 c d /m2 で電流値を一定に通電して連続発光し、 強制劣化させた 際、 輝度が半減するまで 3 5 0時間であった。
実施例 3 1
本実施例は、 一般式 [ I ]又は [II] の上記アミノスチリル化合 物のうち、 上記構造式 ( 2 1 ) - 1 1 のアミ ノスチリル化合物と 上記構造式 ( 2 1 ) — 4のアミノスチリル化合物との混合物 (重 量比 1 : 3 ) を電子輸送性発光層として用いた有機電界発光素子 を作製した例である。 層構造、 成膜法とも実施例 2 8 に準拠して 有機電界発光素子を作製した。
このよう に作製した実施例 3 1 の有機電界発光素子に、 窒素雰 囲気下で順バイアス直流電圧を加えて発光特性を評価した。 発光 色は赤色であり、 実施例 2 6 と同様に分光測定を行った結果、 6 6 O n m付近に発光ピークを有するスぺク トルを得た。 また、 電 圧一輝度測定を行ったところ、 8 Vで 2 0 0 c d Zm2 の輝度が 得られた。
この有機電界発光素子を作製後、 窒素雰囲気下に 1 力月間放置 したが、 素子劣化は観察されなかった。 また、 初期輝度 1 0 0 c d /m2 で電流値を一定に通電して連続発光し、 強制劣化させた 際、 輝度が半減するまで 1 5 0時間であった。
実施例 3 2
本実施例は、 一般式 [ I ]又は [II] の上記アミノスチリル化合 物のうち、 上記構造式 ( 2 1 ) - 1 3のアミノスチリル化合物と 上記構造式 ( 2 1 ) 一 5のアミノスチリル化合物との混合物 (重 量比 1 : 3 ) を電子輸送性発光層として用いた有機電界発光素子 を作製した例である。 層構造、 成膜法とも実施例 2 8 に準拠して 有機電界発光素子を作製した。
このように作製した実施例 3 2の有機電界発光素子に、 窒素雰 囲気下で順バイァス直流電圧を加えて発光特性を評価した。 発光 色は橙色であり、 実施例 2 6 と同様に分光測定を行った結果、 6 1 5 n m付近に発光ピークを有するスペク トルを得た。 また、 電 圧一輝度測定を行ったところ、 8 Vで 2 8 0 c d Z m 2 の輝度が 得られた。
この有機電界発光素子を作製後、 窒素雰囲気下に 1 力月間放置 したが、 素子劣化は観察されなかった。 また、 初期輝度 1 0 0 c dZm2 で電流値を一定に通電して連続発光し、 強制劣化させた 際、 輝度が半減するまで 2 5 0時間であった。
実施例 3 3
本実施例は、 一般式 [ I ]又は [II] の上記アミノスチリル化合 物のうち、 上記構造式 ( 2 1 ) — 1 4のアミノスチリル化合物と 上記構造式 ( 2 1 ) 一 6 のアミノスチリル化合物との混合物 (重 量比 1 : 3 ) を電子輸送性発光層として用いた有機電界発光素子 を作製した例である。 層構造、 成膜法とも実施例 2 8 に準拠して 有機電界発光素子を作製した。
このよう に作製した実施例 3 3の有機電界発光素子に、 窒素雰 囲気下で順バイァス直流電圧を加えて発光特性を評価した。 発光 色は赤色であり、 実施例 2 6 と同様に分光測定を行った結果、 6 7 O nm付近に発光ピークを有するスペク トルを得た。 また、 電 圧—輝度測定を行ったところ、 8 Vで 2 1 0 c d Z m 2 の輝度が 得られた。
この有機電界発光素子を作製後、 窒素雰囲気下に 1力月間放置 したが、 素子劣化は観察されなかった。 また、 初期輝度 1 0 0 c d /m2 で電流値を一定に通電して連続発光し、 強制劣化させた 際、 輝度が半減するまで 2 2 0時間であった。
本発明の有機電界発光素子によれば、 発光領域を有する有機層 が陽極と陰極との間に設けられている有機電界発光素子におい て、 前記有機層の少なく とも 1部が、 前記一般式 [ I ]又は [II]で 表されるアミ ノスチリル化合物の少なく とも 1種を含んだ混合 物からなるので、 高輝度で安定な赤色又は赤色様発光を有する有 機電界発光素子を提供することが可能となる。

Claims

請求の範囲
1 . 発光領域を有する有機層が陽極と陰極との間に設けられて いる有機電界発光素子において、 前記有機層の少なく とも 1部が 下記一般式 [ I ] 又は [ II] で表されるアミノスチリル化合物の 少なく とも 1種を含んだ混合物からなることを特徴とする、 有機 電界発光素子。
一般式 [ I ] :
Y1 - CH=CH - X1 - CH=CH - Y2
一般式 [II] :
Y3-CH=CH-X2
[但し、 前記一般式 [ I ] において、 X1は下記一般式 ( 1 ) 〜 ( 4 ) のいずれかで表される基であり、
Figure imgf000063_0001
(4)
(但し、 前記一般式 ( 1 ) 〜 ( 4 ) 中の R'〜R8、 R9〜R16、 R17〜R 24 及び R25〜 R32のそれぞれにおいて、 少なく とも一つがハロゲン原 子、 ニトロ基、 シァノ基、 トリフルォロメチル基から選ばれた基 であり、 その他は水素原子、 アルキル基、 ァリール基、 アルコキ シ基、 ハロゲン原子、 ニトロ基、 シァノ基及びト リ フルォロメチ ル基から選ばれた基である。 また、 それらが同一であっても異な つても良い。)
また、 前記一般式 [II] において、 X2は下記一般式 ( 5 ) 〜 ( 1 7 ) のいずれかで表される基であり、
Figure imgf000064_0001
Figure imgf000064_0002
Figure imgf000064_0003
(11) (12) (13)
Figure imgf000065_0001
(14)
Figure imgf000065_0002
(15) (16) (17) (但し、 前記一般式 ( 5 ) 〜 ( 1 7 ) において、 R33〜R141は水素 原子、 又はハロゲン原子、 ニトロ基、 シァノ基及びトリフルォロ メチル基から選ばれた基であり、 それらが同一であっても異なつ ても良い。)
また、 前記一般式 [ I ]及び [II]中の Y Y2及び は水素原子、 置換基を有しても良いアルキル基、 又は下記一般式( 1 8 ) 〜( 2 0 ) のいずれかで表される置換基を有しても良いァリール基から 選ばれた基であり、 それらが同一であっても異なっても良い。
Figure imgf000065_0003
(但し、 前記一般式 ( 1 8 ) 中の Z1及び Z2は水素原子、 置換基 を有しても良いアルキル基、 又は置換基を有しても良いァリール 基から選ばれた基であり、 それらが同一であっても異なっても良 い。 また、 前記一般式 ( 1 9 ) 及び ( 2 0 ) において、 R142〜R158 は水素原子、 置換基を有しても良いアルキル基、 置換基を有して も良いァリール基、 置換基を有しても良いアルコキシ基、 ハロゲ ン原子、 ニトロ基、 シァノ基及びト リ フルォロメチル基から選ば れた基であって、 それらが同一であっても異なっても良い。)]
2 . 前記有機層が、 ホール輸送層と電子輸送層とが積層された 有機積層構造を有しており、 前記有機層のうちの少なく とも電子 輸送層が、 前記一般式 [ I ] 又は [ Π] で表されるアミノスチリ ル化合物の少なく とも 1種を含んだ混合物層である、 請求の範囲 第 1項に記載の有機電界発光素子。
3 . 前記有機層が、 ホール輸送層と電子輸送層とが積層された 有機積層構造を有しており、 前記有機層のうちの少なく ともホ一 ル輸送層が、 前記一般式 [ I ] 又は [ II] で表されるアミノスチ リル化合物の少なく とも 1種を含んだ混合物層である、 請求の範 囲第 1項に記載の有機電界発光素子。
4. 前記有機層が、 ホール輸送層と電子輸送層とが積層された 有機積層構造を有しており、 前記ホール輸送層が、 前記一般式
[ I ] 又は [ II] で表されるアミノスチリル化合物の少なく とも 1種を含んだ混合物層であり、 かつ前記電子輸送層が、 前記一般 式 [ I ] 又は [II] で表されるアミ ノスチリル化合物の少なく と も 1種を含んだ混合物層である、 請求の範囲第 1項に記載の有機 電界発光素子。
5. 前記有機層が、 ホール輸送層と発光層と電子輸送層とが積 層された有機積層構造を有しており、 前記有機層のうちの少なく とも発光層が、 前記一般式 [ I ] 又は [Π] で表されるアミ ノス チリル化合物の少なく とも 1種を含んだ混合物層である、 請求の 範囲第 1項に記載の有機電界発光素子。
6 . 前記混合物における前記アミノスチリル化合物の割合が 1 0〜 1 0 0重量%である、 請求の範囲第 1項に記載の有機電界発 光素子。
7. 発光領域を有する有機層が陽極と陰極との間に設けられて いる有機電界発光素子において、 前記有機層の少なく とも 1部が 下記構造式 ( 2 1 ) — 1〜 ( 2 1 ) — 2 0で示されるアミノスチ リル化合物の少なく とも 1種を含んだ混合物からなることを特 徴とする、 有機電界発光素子。
Figure imgf000067_0001
Figure imgf000067_0002
(21 2
Figure imgf000068_0001
Figure imgf000068_0002
Figure imgf000068_0003
(21 5
Figure imgf000068_0004
(21 6
Figure imgf000069_0001
Figure imgf000069_0002
1<IZ)
Figure imgf000069_0003
9
L60tO/ZOdT/∑3d z.sf:i60/eo O
Figure imgf000070_0001
(21 )-14 (21)-15
Figure imgf000070_0002
(21) - 16 (21)-17
Figure imgf000070_0003
(21)-18 (21)-19 (21)-20
8. 前記有機層が、 ホール輸送層と電子輸送層とが積層された 有機積層構造を有しており、 前記有機層のうちの少なく とも電子 輸送層が、 前記構造式 ( 2 1 ) — 1〜 ( 2 1 ) 一 2 0で示される アミ ノスチリル化合物の少なく とも 1 種を含んだ混合物層であ る、 請求の範囲第 7項に記載の有機電界発光素子。
9. 前記有機層が、 ホ一ル輸送層と電子輸送層とが積層された 有機積層構造を有しており、 前記有機層のうちの少なく ともホー ル輸送層が、 前記構造式 ( 2 1 ) - 1 - ( 2 1 ) 一 2 0で示され るアミノスチリル化合物の少なく とも 1種を含んだ混合物層で ある、 請求の範囲第 7項に記載の有機電界発光素子。
1 0. 前記有機層が、 ホール輸送層と電子輸送層とが積層され た有機積層構造を有しており、 前記ホール輸送層が、 前記構造式
( 2 1 ) _ 1 〜 ( 2 1 ) 一 2 0で示されるアミノスチリル化合物 の少なく とも 1種を含んだ混合物層であり、 かつ前記電子輸送層 が、 前記構造式 ( 2 1 ) — 1〜 ( 2 1 ) — 2 0で示されるァミノ スチリル化合物の少なく とも 1種を含んだ混合物層である、 請求 の範囲第 7項に記載の有機電界発光素子。
1 1 . 前記有機層が、 ホール輸送層と発光層と電子輸送層とが 積層された有機積層構造を有しており、 前記有機層のうちの少な く とも発光層が、 前記構造式 ( 2 1 ) — 1〜 ( 2 1 ) - 2 0で示 されるアミ ノスチリル化合物の少なく とも 1種を含んだ混合物 層である、 請求の範囲第 7項に記載の有機電界発光素子。
1 2. 前記混合物における前記アミノスチリル化合物の割合が 1 0〜 1 0 0重量%である、 請求の範囲第 7項に記載の有機電界 発光素子。
1 3. 発光領域を有する有機層が陽極と陰極との間に設けられ ている有機電界発光素子において、 前記有機層の少なく とも 1部 が、 下記構造式 ( 2 1 ) — :!〜 ( 2 1 ) — 2 0で示されるァミノ スチリル化合物の少なく とも 1種と、 600ηπ!〜 700nmの範囲に発光 極大を有する赤色発光色素とを含んだ混合物からなることを特 徵とする、 有機電界発光素子。
Figure imgf000072_0001
(21)-1
Figure imgf000072_0002
(21 2
Figure imgf000072_0003
Figure imgf000072_0004
(21) - 4
Figure imgf000073_0001
(21)-5
Figure imgf000073_0002
(21)-6
Figure imgf000073_0003
(21 )-7
Figure imgf000073_0004
Figure imgf000074_0001
(21)41 (21)-12 (21)-13
Figure imgf000074_0002
(21)-14 (21)-15
Figure imgf000074_0003
(21 )-16 (21)-17
H3
Figure imgf000074_0004
(21)-18 (21)-19 (21)-20
1 4. 前記有機層が、 ホール輸送層と電子輸送層とが積層され た有機積層構造を有しており、 前記有機層のうちの少なく とも電 子輸送層が、 前記構造式 ( 2 1 ) — 1〜 ( 2 1 ) — 2 0で示され るアミ ノスチリル化合物の少なく とも 1種を含んだ混合物層で ある、 請求の範囲第 1 3項に記載の有機電界発光素子。
1 5 . 前記有機層が、 ホール輸送層と電子輸送層とが積層され た有機積層構造を有しており、 前記有機層のうちの少なく ともホ ール輸送層が、 前記構造式 ( 2 1 ) — 1〜 ( 2 1 ) — 2 0で示さ れるアミ ノスチリル化合物の少なく とも 1種を含んだ混合物層 である、 請求の範囲第 1 3項に記載の有機電界発光素子。
1 6. 前記有機層が、 ホール輸送層と電子輸送層とが積層され た有機積層構造を有しており、 前記ホール輸送層が、 前記構造式 ( 2 1 ) — 1〜 ( 2 1 ) 一 2 0で示されるアミノスチリル化合物 の少なく とも 1種を含んだ混合物層であり、 かつ前記電子輸送層 が、 前記構造式 ( 2 1 ) — :!〜 ( 2 1 ) — 2 0で示されるァミノ スチリル化合物の少なく とも 1種を含んだ混合物層である、 請求 の範囲第 1 3項に記載の有機電界発光素子。
1 7. 前記有機層が、 ホール輸送層と発光層と電子輸送層とが 積層された有機積層構造を有しており、 前記有機層のうちの少な く とも発光層が、 前記構造式 ( 2 1 ) — :!〜 ( 2 1 ) — 2 0で示 されるアミ ノスチリル化合物の少なく とも 1種を含んだ混合物 層である、 請求の範囲第 1 3項に記載の有機電界発光素子。
1 8. 前記混合物における前記アミノスチリル化合物の割合が 1 0〜 1 0 0重量%である、 請求の範囲第 1 3項に記載の有機電 界発光素子。
1 9. 発光領域を有する有機層が陽極と陰極との間に設けられ ている有機電界発光素子において、 前記有機層の少なく とも 1部 が、 下記一般式 [ I ]又は [ 11 ]で表されるアミノスチリル化合物の 少なく とも 1種を含んだ混合物からなり、 かつこの混合物で構成 された層の陰極側に接してホールブロッキング層が存在するこ とを特徴とする、 有機電界発光素子。
一般式 [ I ] :
Y'-CH=CH-X1-CH=CH-Y2
一般式 [II] :
Y3-CH=CH-XZ
[但し、 前記一般式 [ I ] において、 X1は下記一般式 ( 1 ) 〜 ( 4 ) のいずれかで表される基であり、
Figure imgf000076_0001
(4)
(但し、 前記一般式 ( 1 ) 〜 ( 4 ) 中の 1^〜18、 R9〜R16、 R17〜R24、 及び R25〜 R32のそれぞれにおいて、 少なく とも一つがハロゲン原 子、 ニトロ基、 シァノ基、 トリ フルォロメチル基から選ばれた基 であり、 その他は水素原子、 アルキル基、 ァリール基、 アルコキ シ基、 ハロゲン原子、 ニトロ基、 シァノ基及びト リ フルォロメチ ル基から選ばれた基である。 また、 それらが同一であっても異な つて fc良い。)
また、 前記一般式 [II] において、 X2は下記一般式 ( 5 ) 〜 ( 1 ) のい れかで表される基であり
Figure imgf000077_0001
Figure imgf000077_0002
(8) (9) (10)
Figure imgf000077_0003
Figure imgf000077_0004
(14)
Figure imgf000078_0001
(15) (16) (17) (伹し、 前記一般式 ( 5 ) 〜 ( 1 7 ) において、 R33〜R141は水素 原子、 又はハロゲン原子、 ニトロ基、 シァノ基及びトリフルォロ メチル基から選ばれた基であり、 それらが同一であっても異なつ ても良い。)
また、 前記一般式 [ I ]及び [II]中の Y1 Y2及び Y3は水素原子、 置換基を有しても良いアルキル基、 又は下記一般式( 1 8 )〜( 2 0 ) のいずれかで表される置換基を有しても良いァリ一ル基から 選ばれた基であり、 それらが同一であっても異なっても良い。
Figure imgf000078_0002
(19)
(但し、 前記一般式 ( 1 8 ) 中の Z1及び Z2は水素原子、 置換基 を有しても良いアルキル基、 又は置換基を有しても良いァリール 基から選ばれた基であり、 それらが同一であっても異なっても良 い。 また、 前記一般式 ( 1 9 ) 及び ( 2 0 ) において、 R"2〜R158 は水素原子、 置換基を有しても良いアルキル基、 置換基を有して も良いァリール基、 置換基を有しても良いアルコキシ基、 ハロゲ ン原子、 ニトロ基、 シァノ基及びト リ フルォロメチル基から選ば れた基であってそれらが同一であっても異なっても良い。)] 2 0. 前記有機層が、 ホール輸送層と電子輸送層とが積層され た有機積層構造を有しており、 前記有機層のうちの少なく とも電 子輸送層が、 前記一般式 [ I ] 又は [II] で表されるアミノスチ リル化合物の少なく とも 1種を含んだ混合物層であり、 かつ前記 混合物層の陰極側に接して前記ホールブロッキング層が存在す る、 請求の範囲第 1 9項に記載の有機電界発光素子。
2 1. 前記有機層が、 ホール輸送層と電子輸送層とが積層され た有機積層構造を有しており、 前記有機層のうちの少なく ともホ —ル輸送層が、 前記一般式 [ I ] 又は [II] で表されるアミノス チリル化合物の少なく とも 1種を含んだ混合物層であり、 かつ前 記混合物層の陰極側に接して前記ホールブロッキング層が存在 する、 請求の範囲第 1 9項に記載の有機電界発光素子。
2 2. 前記有機層が、 ホール輸送層と電子輸送層とが積層され た有機積層構造を有しており、 前記ホール輸送層が、 前記一般式 [ I ] 又は [ II] で表されるアミノスチリル化合物の少なく とも
1種を含んだ混合物層であり、 かつ前記電子輸送層が、 前記一般 式 [ I ] 又は [II] で表されるアミ ノスチリル化合物の少なく と も 1種を含んだ混合物層であり、 かっこの電子輸送性発光層の陰 極側に接して前記ホールブロッキング層が存在する、 請求の範囲 第 1 9項に記載の有機電界発光素子。
2 3. 前記有機層が、 ホール輸送層と発光層と電子輸送層とが 積層された有機積層構造を有しており、 前記有機層のうちの少な く とも前記発光層が、 前記一般式 [ I ] または [II] で表される アミ ノスチリル化合物の少なく とも 1種を含んだ混合物層であ り、 かつ前記混合物層の陰極側に接して前記ホールブロッキング 層が存在する、 請求の範囲第 1 9項に記載の有機電界発光素子。 2 4 . 前記混合物における前記アミ ノスチリル化合物の割合が 1 0 〜 1 0 0重量%である、 請求の範囲第 1 9項に記載の有機電 界発光素子。
2 5 . 発光領域を有する有機層が陽極と陰極との間に設けられ ている有機電界発光素子において、 前記有機層の少なく とも 1部 が、 下記構造式 ( 2 1 ) — 1 〜 ( 2 1 ) — 2 0で示されるァミノ スチリル化合物の少なく とも 1種を含んだ混合物からなり、 かつ この混合物で構成された層の陰極側に接してホールブロッキン グ層が存在することを特徴とする、 有機電界発光素子。
Figure imgf000080_0001
Figure imgf000080_0002
(21)-2
Figure imgf000081_0001
Figure imgf000081_0002
Figure imgf000081_0003
Figure imgf000081_0004
(21)-6
Figure imgf000082_0001
(21 7
Figure imgf000082_0002
Figure imgf000082_0003
(2D-11 (21)-12 (21)-13
Figure imgf000083_0001
(21 )-14 (21)-15
Figure imgf000083_0002
(21 )-16 (21 )-17
Figure imgf000083_0003
(21)48 (21)-19 (21)-20
2 6. 前記有機層が、 ホール輸送層と電子輸送層とが積層され た有機積層構造を有しており、 前記有機層のうちの少なく とも電 子輸送層が、 前記構造式 ( 2 1 ) — :!〜 ( 2 1 ) — 2 0で示され るアミ ノスチリル化合物の少なく とも 1 種を含んだ混合物層で あり、 かつ前記混合物層に接して陰極側に前記ホールプロッキン グ層が存在する、 請求の範囲第 2 5項に記載の有機電界発光素子
2 7. 前記有機層が、 ホール輸送層と電子輸送層とが積層され た有機積層構造を有しており、 前記有機層のうちの少なく ともホ ール輸送層が、 前記構造式 ( 2 1 ) _ 1〜 ( 2 1 ) — 2 0で示さ れるアミ ノスチリル化合物の少なく とも 1種を含んだ混合物層 であり、 かつ前記混合物層に接して陰極側に前記ホールプロツキ ング層が存在する、 請求の範囲第 2 5項に記載の有機電界発光素 子。
2 8 . 前記有機層が、 ホール輸送層と電子輸送層とが積層され た有機積層構造を有しており、 前記ホール輸送層が、 前記構造式 ( 2 1 ) — 1 〜 ( 2 1 ) 一 2 0で示されるアミノスチリル化合物 の少なく とも 1種を含んだ混合物層であり、 かつ前記電子輸送層 が、 前記構造式 ( 2 1 ) — 1 〜 ( 2 1 ) — 2 0で示されるァミノ スチリル化合物の少なく とも 1種を含んだ混合物層であり、 かつ この電子輸送性発光層の陰極側に接して前記ホールブロッキン グ層が存在する、 請求の範囲第 2 5項に記載の有機電界発光素子 2 9 . 前記有機曆が、 ホール輸送層と発光層と電子輸送層とが 積層された有機積層構造を有しており、 前記有機層のうちの少な く とも前記発光層が、 前記構造式 ( 2 1 ) — ;!〜 ( 2 1 ) - 2 0 で示されるアミ ノスチリル化合物の少なく とも 1種を含んだ混 合物層であり、 かつ前記混合物層の陰極側に接して前記ホールブ ロッキング層が存在する、 請求の範囲第 2 5項に記載の有機電界 発光素子。
3 0. 前記混合物における前記ァミノスチリル化合物の割合が 1 0〜 1 0 0重量%である、 請求の範囲第 ' 2 5項に記載の有機電 界発光素子。
3 1 . 発光領域を有する有機層が陽極と陰極との間に設けられ ている有機電界発光素子において、 前記有機層の少なく とも 1部 が、 下記構造式 ( 2 1 ) — 1 〜 ( 2 1 ) — 2 0で示されるァミノ スチリル化合物の少なく とも 1種と、 600ηπ!〜 700nmの範囲に発光 極大を有する赤色発光色素とを含んだ混合物からなり、 かっこの 混合物で構成された層の陰極側に接してホールブロッキング層 が存在することを特徴とする、 有機電界発光素子。
Figure imgf000085_0001
(21)-1
Figure imgf000085_0002
(21)-2
Figure imgf000085_0003
Figure imgf000086_0001
Figure imgf000086_0002
(21>5
Figure imgf000086_0003
( 1 6
Figure imgf000086_0004
(21 )-7
Figure imgf000087_0001
Figure imgf000088_0001
(21)-18 (21)-19 (21)-20
3 2. 前記有機層が、 ホール輸送層と電子輸送層とが積層され た有機積層構造を有しており、 前記有機層のうちの少なく とも電 子輸送層が、 前記構造式 ( 2 1 ) — 1〜 ( 2 1 ) — 2 0で示され るアミ ノスチリル化合物の少なく とも 1 種を含んだ混合物層で あり、 かつ前記混合物層に接して陰極側に前記ホールブロッキン グ層が存在する、 請求の範囲第 3 1項に記載の有機電界発光素子 3 3. 前記有機層が、 ホール輸送層と電子輸送層とが積層され た有機積層構造を有しており、 前記有機層のうちの少なく ともホ ール輸送層が、 前記構造式 ( 2 1 ) — 1〜 ( 2 1 ) — 2 0で示さ れるアミ ノスチリル化合物の少なく とも 1種を含んだ混合物層 であり、 かつ前記混合物層に接して陰極側に前記ホールブロッキ ング層が存在する、 請求の範囲第 3 1項に記載の有機電界発光素 子。
3 4. 前記有機層が、 ホール輸送層と電子輸送層とが積層され た有機積層構造を有しており、 前記ホール輸送層が、 前記構造式 ( 2 1 ) ― 1〜 ( 2 1 ) 一 2 0で示されるアミノスチリル化合物 の少なく とも 1種を含んだ混合物層であり、 かつ前記電子輸送層 が、 前記構造式 ( 2 1 ) — 1〜 ( 2 1 ) — 2 0で示されるァミノ スチリル化合物の少なく とも 1種を含んだ混合物層であり、 かつ この電子輸送性発光層の陰極側に接して前記ホ一ルブロッキン グ層が存在する、 請求の範囲第 3 1項に記載の有機電界発光素子,
3 5. 前記有機層が、 ホール輸送層と発光層と電子輸送層とが 積層された有機積層構造を有しており、 前記有機層のうちの少な く とも前記発光層が、 前記構造式 ( 2 1 ) — 1〜 ( 2 1 ) — 2 0 で示されるアミノスチリル化合物の少なく とも 1 種を含んだ混 合物層であり、 かつ前記混合物層の陰極側に接して前記ホールブ ロッキング層が存在する、 請求の範囲第 3 1項に記載の有機電界 発光素子。
3 6. 前記混合物における前記アミノスチリル化合物の割合が 1 0〜 1 0 0重量%である、 請求の範囲第 3 1項に記載の有機電 界発光素子。
PCT/JP2002/004097 2000-10-30 2002-04-24 Element organique electroluminescent WO2003091357A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2000329902A JP2002134276A (ja) 2000-10-30 2000-10-30 有機電界発光素子
US10/297,017 US20040202891A1 (en) 2000-10-30 2002-04-24 Organic electroluminescnece element
PCT/JP2002/004097 WO2003091357A1 (fr) 2000-10-30 2002-04-24 Element organique electroluminescent
EP02722757A EP1498465A1 (en) 2002-04-24 2002-04-24 Organic electroluminescent element
US11/262,019 US20060051617A1 (en) 2000-10-30 2005-10-27 Organic electroluminescence device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000329902A JP2002134276A (ja) 2000-10-30 2000-10-30 有機電界発光素子
PCT/JP2002/004097 WO2003091357A1 (fr) 2000-10-30 2002-04-24 Element organique electroluminescent

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/262,019 Continuation US20060051617A1 (en) 2000-10-30 2005-10-27 Organic electroluminescence device

Publications (1)

Publication Number Publication Date
WO2003091357A1 true WO2003091357A1 (fr) 2003-11-06

Family

ID=33463113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/004097 WO2003091357A1 (fr) 2000-10-30 2002-04-24 Element organique electroluminescent

Country Status (2)

Country Link
EP (1) EP1498465A1 (ja)
WO (1) WO2003091357A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016017187A1 (ja) * 2014-08-01 2016-02-04 ニチアス株式会社 架橋剤及びフッ素含有芳香族化合物

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03269995A (ja) * 1990-03-16 1991-12-02 Ricoh Co Ltd 電界発光素子の作製方法
JPH04334894A (ja) * 1991-05-10 1992-11-20 Ricoh Co Ltd 有機薄膜型電界発光素子
JPH0541285A (ja) * 1991-08-07 1993-02-19 Ricoh Co Ltd 電界発光素子
JP2000091073A (ja) * 1998-09-11 2000-03-31 Sony Corp 有機電界発光素子
JP2000091074A (ja) * 1998-09-11 2000-03-31 Sony Corp 有機電界発光素子
JP2000173773A (ja) * 1998-12-09 2000-06-23 Sony Corp 有機電界発光素子
EP1072668A2 (en) * 1999-07-30 2001-01-31 Sony Corporation Organic electroluminescent device
EP1072669A2 (en) * 1999-07-30 2001-01-31 Sony Corporation Organic electroluminescent device
EP1090911A2 (en) * 1999-10-06 2001-04-11 Sony Corporation Bis(aminostyryl) anthracene compound, synthesis intermediate thereof, and process for production thereof
WO2001077065A1 (fr) * 2000-04-06 2001-10-18 Sony Corporation Composes aminostyrylanthracene, produits intermediaires pour la preparation de ces composes, et procedes de preparation de ces composes et de ces produits intermediaires
WO2001077253A1 (fr) * 2000-04-07 2001-10-18 Sony Corporation Element electroluminescent organique et appareil luminescent utilisant un tel element
JP2002134276A (ja) * 2000-10-30 2002-05-10 Sony Corp 有機電界発光素子

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03269995A (ja) * 1990-03-16 1991-12-02 Ricoh Co Ltd 電界発光素子の作製方法
JPH04334894A (ja) * 1991-05-10 1992-11-20 Ricoh Co Ltd 有機薄膜型電界発光素子
JPH0541285A (ja) * 1991-08-07 1993-02-19 Ricoh Co Ltd 電界発光素子
JP2000091073A (ja) * 1998-09-11 2000-03-31 Sony Corp 有機電界発光素子
JP2000091074A (ja) * 1998-09-11 2000-03-31 Sony Corp 有機電界発光素子
JP2000173773A (ja) * 1998-12-09 2000-06-23 Sony Corp 有機電界発光素子
EP1072668A2 (en) * 1999-07-30 2001-01-31 Sony Corporation Organic electroluminescent device
EP1072669A2 (en) * 1999-07-30 2001-01-31 Sony Corporation Organic electroluminescent device
EP1090911A2 (en) * 1999-10-06 2001-04-11 Sony Corporation Bis(aminostyryl) anthracene compound, synthesis intermediate thereof, and process for production thereof
WO2001077065A1 (fr) * 2000-04-06 2001-10-18 Sony Corporation Composes aminostyrylanthracene, produits intermediaires pour la preparation de ces composes, et procedes de preparation de ces composes et de ces produits intermediaires
WO2001077253A1 (fr) * 2000-04-07 2001-10-18 Sony Corporation Element electroluminescent organique et appareil luminescent utilisant un tel element
JP2002134276A (ja) * 2000-10-30 2002-05-10 Sony Corp 有機電界発光素子

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016017187A1 (ja) * 2014-08-01 2016-02-04 ニチアス株式会社 架橋剤及びフッ素含有芳香族化合物
GB2543228A (en) * 2014-08-01 2017-04-12 Nichias Corp Crosslinking agent and fluorine-containing aromatic compound
JPWO2016017187A1 (ja) * 2014-08-01 2017-05-18 ニチアス株式会社 架橋剤及びフッ素含有芳香族化合物
EP3187527A4 (en) * 2014-08-01 2018-07-11 Nichias Corporation Crosslinking agent and fluorine-containing aromatic compound
US10344113B2 (en) 2014-08-01 2019-07-09 Nichias Corporation Crosslinking agent and fluorine-containing aromatic compound
US10584197B2 (en) 2014-08-01 2020-03-10 Nichias Corporation Crosslinking agent and fluorine-containing aromatic compound
US10711085B2 (en) 2014-08-01 2020-07-14 Nichias Corporation Crosslinking agent and fluorine-containing aromatic compound
GB2543228B (en) * 2014-08-01 2021-07-21 Nichias Corp Crosslinking agent and fluorine-containing aromatic compound
US11767389B2 (en) 2014-08-01 2023-09-26 Nichias Corporation Crosslinking agent and fluorine-containing aromatic compound

Also Published As

Publication number Publication date
EP1498465A1 (en) 2005-01-19

Similar Documents

Publication Publication Date Title
JP3852552B2 (ja) 有機電界発光素子
JP4161262B2 (ja) 有機電界発光素子、及びそれを用いた発光又は表示装置
KR100838094B1 (ko) 유기 전계 발광 소자 및 이것을 사용한 발광장치
JP2002514230A (ja) 赤色発光有機発光素子(oled)
JP2002134276A (ja) 有機電界発光素子
JP2000173774A (ja) 有機電界発光素子
KR100751464B1 (ko) 유기 전계 발광 소자
JP3852518B2 (ja) 有機電界発光素子
JP3820752B2 (ja) 有機電界発光素子
JP2000091073A (ja) 有機電界発光素子
JP3555736B2 (ja) 有機電界発光素子
KR100547055B1 (ko) 유기 전계발광 소자
KR20040044066A (ko) 유기 전계 발광 소자 및 발광 장치
KR100572654B1 (ko) 유기 전계발광 소자
JP3910010B2 (ja) 有機電界発光素子
JP2000012225A (ja) 有機電界発光素子
JP2000012228A (ja) 有機電界発光素子
WO2003091357A1 (fr) Element organique electroluminescent
JP2000012224A (ja) 有機電界発光素子
JP2000173773A (ja) 有機電界発光素子
KR100994855B1 (ko) 유기 전계 발광 소자, 및 이것을 사용한 발광 장치 또는표시 장치
JP2000091075A (ja) 有機電界発光素子
JP2000091074A (ja) 有機電界発光素子
JP2010141359A (ja) 有機電界発光素子及び発光装置
JP2000091076A (ja) 有機電界発光素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2002722757

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020027016237

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10297017

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1020027016237

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2002722757

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2002722757

Country of ref document: EP