WO2003088522A1 - Dispositif recepteur a antenne reseau adaptative et procede d'etalonnage de reseau d'antennes - Google Patents

Dispositif recepteur a antenne reseau adaptative et procede d'etalonnage de reseau d'antennes Download PDF

Info

Publication number
WO2003088522A1
WO2003088522A1 PCT/JP2003/004744 JP0304744W WO03088522A1 WO 2003088522 A1 WO2003088522 A1 WO 2003088522A1 JP 0304744 W JP0304744 W JP 0304744W WO 03088522 A1 WO03088522 A1 WO 03088522A1
Authority
WO
WIPO (PCT)
Prior art keywords
amplitude
communication traffic
traffic signal
phase
signal
Prior art date
Application number
PCT/JP2003/004744
Other languages
English (en)
French (fr)
Inventor
Yasuhiro Hasegawa
Keiji Takakusaki
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to AU2003235151A priority Critical patent/AU2003235151A1/en
Priority to EP03719109A priority patent/EP1496625A1/en
Priority to US10/480,294 priority patent/US20040166808A1/en
Publication of WO2003088522A1 publication Critical patent/WO2003088522A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/2605Array of radiating elements provided with a feedback control over the element weights, e.g. adaptive arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/267Phased-array testing or checking devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/086Weighted combining using weights depending on external parameters, e.g. direction of arrival [DOA], predetermined weights or beamforming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity

Definitions

  • the present invention is - (Akira BACKGROUND relates Na receiver and antenna array calibration method
  • An adaptive array antenna (hereinafter referred to as “A-book AA”) is composed of multiple antenna elements. Each antenna element receives the same signal (hereinafter referred to as “communication traffic signal”) transmitted from the communication partner, and the received signals are combined after amplitude adjustment and phase shift are performed. For this reason, the communication traffic signal received by each antenna element is provided with a predetermined amplitude difference and phase difference, and by combining the signals provided with the amplitude difference and phase difference, the antenna is steered without moving the antenna itself. (The direction in which radio waves can be best received) can be changed.
  • the amplitude and phase of each received signal change in the AAA receiving device until the signal received by the antenna is subjected to amplitude adjustment and phase shift to form a desired directivity.
  • Factors of this change include differences in the cable lengths that serve as paths for each received signal, differences in the characteristics of the electronic elements that make up the transmitter and receiver, and differences in paths in the variable attenuator due to automatic gain control. No.
  • the amplitude and phase of the communication traffic received by the antenna changes from when the antenna is received by the antenna until the directivity control is performed (hereinafter, the amplitude of the communication traffic signal received by the antenna is changed). And the change in phase is referred to as “amplitude-phase characteristic difference”, and the operation of compensating for the amplitude-phase characteristic difference is essential.
  • a signal for grasping this characteristic difference is referred to as a probe signal.
  • a technique for compensating for the characteristic difference in consideration of a factor that causes the above-described amplitude / phase characteristic difference is described in Japanese Patent Application Laid-Open No. 2000-151525.
  • the calibrating device of the antenna array described in the above publication generates a probe signal coded so as to be orthogonal to the communication traffic signal, and injects the probe signal from the vicinity of each antenna element into a wired path to perform communication. Combine with traffic signal. After the synthesized signal is frequency-converted, a probe signal is extracted, and amplitude / phase information indicating an amplitude and a phase is obtained from the extracted probe signal. The amplitude'phase information is obtained for each signal received by each antenna.
  • the calibration value is determined such that the amplitude / phase information of one antenna is the reference and the amplitude / phase information of the other antenna is the reference amplitude / phase information.
  • the determined calibration value is multiplied by the communication traffic signal received by each antenna, thereby compensating for differences in amplitude and phase characteristics.
  • the characteristics of the electronic device which is one of the factors that cause the amplitude-phase characteristics difference, vary depending on the input power level of the electronic device, the above-mentioned conventional example does not take this into consideration. Instead, there was room for improving the compensation accuracy of the amplitude-phase characteristic difference.
  • the input power level is the received power of the communication traffic signal, and the communication traffic signal is attenuated due to the influence of the propagation environment, so that the input power level is not constant. Disclosure of the invention
  • An object of the present invention is to provide an adaptive array antenna receiving apparatus and an antenna / array calibration method that perform accurate directivity control by improving the compensation accuracy of the amplitude / phase characteristic difference.
  • the purpose of this is to adaptively determine the calibration value used for compensation based on the input power level when compensating for the amplitude and phase characteristics difference, which is the change in the amplitude and phase of the communication traffic signal received by each antenna.
  • FIG. 1 is a block diagram showing a configuration of an AAA receiving apparatus according to Embodiment 1 of the present invention
  • Figure 2 shows a table of amplitude and phase information and calibration values.
  • FIG. 3 is a block diagram showing a configuration of the AAA receiving apparatus according to Embodiment 2 of the present invention.
  • FIG. 4 is a block diagram showing a configuration of an AA A receiving apparatus according to Embodiment 3 of the present invention.
  • FIG. 5 is a diagram showing an allocation state of TS 8 (Time Slot) received by the AA A receiving apparatus according to Embodiment 3 of the present invention.
  • Embodiment 1 of the present invention describes a case where a calibration value is appropriately determined based on the reception power of a communication traffic signal, and a difference between amplitude and phase characteristics is compensated for using the calibration value.
  • FIG. 1 is a block diagram showing a configuration of an adaptive array antenna receiving apparatus 100.
  • the probe signal generator 101 generates a probe signal having the same frequency as a communication traffic signal which is a signal transmitted from a communication partner. This probe signal is multiplied by a spreading code that is orthogonal to the communication traffic signal. In this way, even if the received communication traffic signal and the probe signal are combined, the processing of the communication traffic signal is not hindered.
  • the probe signal generation unit 101 outputs the generated probe signals to the probe signal synthesis units 103-1-1 to 103-n, respectively. Also, the spread code obtained by multiplying the probe signal is notified to the amplitude / phase information acquisition unit 105.
  • the antennas 102-1 to 102-n respectively receive communication traffic signals transmitted from communication partners. The received signals are output to probe signal synthesizing sections 103-1 to 103-n provided corresponding to antennas 102-1 to 102-n.
  • the probe signal synthesizing unit 103-1 to: L03-n synthesizes the probe signal output from the probe signal generating unit 101 and the communication traffic signal received by the antennas 102-1 to 102-n, and the frequency conversion unit. Output to 104—1 to 104—n respectively.
  • the signal obtained by combining the probe signal and the communication traffic signal is called a received signal. When no communication traffic signal is input, only the probe signal is output as a received signal.
  • the frequency converters 104-1 to 104-n convert the frequency of the received signal output from the probe signal synthesizers 103-1 to 103-n from a radio frequency to a baseband frequency to obtain a received baseband signal.
  • the received baseband signal is output to amplitude / phase information acquisition section 105, reception power measurement section 106, and compensation section 108.
  • Amplitude / phase information acquisition section 105 despreads all received baseband signals for each antenna output from frequency conversion sections 104-1 to 104_ ⁇ with the spreading code notified from probe signal generation section 101, and extracts probe signals I do.
  • the amplitude-phase information obtaining unit 105 obtains amplitude and phase information from all the extracted probe signals, and outputs the obtained amplitude and phase information to the calibration value control unit 107.
  • the reception power measuring section 106 measures the reception power of the reception baseband signal output from the frequency conversion sections 104-1 to 104- ⁇ , and notifies the measured reception power to the calibration value control section 107.
  • the calibration value control unit 107 determines a calibration value for compensating for the amplitude-phase characteristic difference based on the information output from the amplitude / phase information acquisition unit 105 and the reception power measurement unit 106.
  • the determined calibration value is output to compensation section 108. The method for determining the calibration value will be described later.
  • the compensator 108 receives the signals output from the frequency converters 104-1 to 104- ⁇ .
  • the baseband signal is multiplied by the calibration value determined by the calibration value control unit 107 '.
  • the reception directivity is determined adaptively using the result of the multiplication.
  • the probe signal generation unit 101 generates a probe signal having the same frequency and orthogonal as a communication traffic signal transmitted from a communication partner, and outputs the generated probe signal to the probe signal synthesis units 103-1 to 103_n.
  • the communication traffic signal is received by the antennas 102-1 to 102_n and output to the probe signal combining units 103-1 to: L03_n.
  • the communication traffic signal received by the antennas 102-1 to 102-n and the probe signal output from the probe signal generating unit 101 are synthesized.
  • the probe signal synthesizing units 103_1 to 103-n are preferably provided in the vicinity of each antenna in order to accurately grasp changes in the amplitude and phase of the received signal in the AAA receiving device.
  • the synthesized signal (received signal) is output to frequency converters 104-1 to 104-n.
  • the received signals output from probe signal synthesizers 103-1 to 103-n are frequency-converted from the radio frequency to the baseband frequency, and the received baseband signal is obtained.
  • Can be The received baseband signal is output to amplitude / phase information acquisition section 105, reception power measurement section 106, and compensation section 108, respectively.
  • the amplitude / phase information acquisition section 105 despreads the reception baseband signal output from the frequency conversion sections 104-1 to 104-n with the spreading code notified from the probe signal generation section 101, and The probe signal is extracted from the signal. Amplitude / phase information is obtained from the extracted probe signal for each antenna. Here, the amplitude and phase information is obtained only for the probe signal from the received baseband signal in which the communication traffic signal and the probe signal are combined, but the amplitude and phase change of the communication traffic signal in each path after each antenna are obtained. Is the same as the amplitude of the synthesized probe signal divided by the phase change, so the calibration The amplitude and phase information of the probe signal is required as an element. As a result, it is possible to detect a change in amplitude and phase caused by the characteristics of the electronic element behind each antenna.
  • the reception power measuring section 106 measures the reception power of the reception baseband signal output from the frequency conversion sections 104-1 to 104-n.
  • a measurement method there is a method of calculating a sum of squares of an I component and a Q component of a received baseband signal.
  • the measured reception power is notified to the calibration direct control unit 107.
  • the calibration value is determined based on the amplitude / phase information output from the amplitude / phase information acquisition unit 105 and the reception power notified from the reception power measurement unit 106.
  • the specific method of determining the calibration value is described below.
  • the reception power is used as a parameter, and the reception power is divided into power 1 to power m (hereinafter referred to as “power level”) for each predetermined level range.
  • the combination of antenna numbers (antenna 1 to antenna n) and power level is used as an address, and the amplitude and phase information is associated with the address as shown in Fig. 2, and a table is created. Since the calibration value control unit 107 creates this table, the acquisition of the phase and amplitude information can be continued for an arbitrary time.
  • the calibration value is calculated by using certain amplitude and phase information as a reference value and dividing the reference value by another amplitude and phase information.
  • Pawa first phase information D r ea l (1, 1 ) + j D ima g (1, 1) reference value in the antenna 1 the calibration value is divided by the other amplitude and phase information It has been calculated.
  • the calibration value control unit 107 searches the calibration values corresponding to the reception power measured by the reception power measurement unit 106 from all the calculated calibrations for all the antennas, and outputs the searched calibration values to the compensation unit 108. In the present embodiment, if the amplitude / phase information already exists in the address of the table corresponding to the amplitude / phase information acquired by the calibration value control unit 107, the amplitude / phase information is updated to the newly acquired amplitude / phase information. The calibration values shall be updated accordingly.
  • the compensator 108 receives the signals output from the frequency converters 104-1 to 104-n.
  • the baseband signal is multiplied by the calibration value output from the calibration value controller 107 for each antenna, and the difference between the amplitude and phase characteristics is compensated. This makes it possible to compensate for the difference between the amplitude and phase characteristics caused by the change in the input power level of the electronic element, and to change the amplitude and phase changed by the characteristics of the electronic element when receiving the antenna. Can be returned to.
  • amplitude adjustment and phase shift can be performed on the amplitude and phase of the communication traffic signal received by each antenna element, and desired directivity can be formed. That is, accurate directivity control can be performed.
  • the amplitude / phase information acquired by the calibration value control unit 107 already exists at the corresponding address, the amplitude / phase information is updated to the newly acquired amplitude / phase information. If a plurality of amplitude / phase information corresponds to one address, a calibration value is calculated from the plurality of amplitude / phase information, and an average value, mode value, median value, etc. is calculated from the calculated calibration values. One representative value may be calculated and used.
  • the calibration value is adaptively determined based on the amplitude / phase information and the reception power, whereby the amplitude / phase characteristic difference caused by the change in the input power level of the electronic element is obtained.
  • the accuracy of the compensation can be improved, and accurate directivity control can be performed.
  • the output power of the probe signal is randomly changed to acquire amplitude / phase information in advance during non-communication such as during the initial operation of AAA receiving apparatus 300.
  • FIG. 3 is a block diagram showing a configuration of AAA receiving apparatus 300 according to Embodiment 2 of the present invention.
  • portions common to FIG. 1 are denoted by the same reference numerals as in FIG. 1, and detailed description thereof will be omitted.
  • the difference from FIG. 1 is that the probe signal generator 101 is replaced with a probe signal generator 301 and an attenuator 302 is added.
  • the calibration value control unit 107 When the phase information corresponds to one address, a calibration value is calculated from the multiple amplitude / phase information, and one statistical value such as an average value, mode, or median value is calculated from the calculated calibration values. A representative value shall be used.
  • the probe signal generation unit 301 generates a probe signal having the same frequency as the communication traffic signal during non-communication such as during an initial operation, and outputs the generated probe signal to the attenuator 302.
  • the attenuator 302 randomly adjusts the output power of the probe signal output from the probe signal generator 301.
  • the calibration value control unit 107 can Acquired amplitude ⁇ Phase information can be prevented from being biased to a specific power level.
  • the calibration value is statistically calculated as described above, a large amount of amplitude and phase information is acquired at a specific power level, and conversely, almost no amplitude / phase information is acquired. If this happens, the reliability of the calibration value will not be constant due to the number of acquired amplitude and phase information. For this reason, variations occur in the amplitude and phase compensation accuracy.
  • the power of the probe signal is controlled at random to make the number of amplitude / phase information obtained at each power level substantially equal. That is, by preventing the amplitude / phase information from being acquired with a bias toward a specific power level, the reliability of the calibration value at each power level can be made constant.
  • the probe signal generation unit 301 generates a probe signal, and outputs the generated probe signal to the attenuator 302.
  • the output power of the probe signal is adjusted over the entire range that can be received by the AAA receiver.
  • the amplitude / phase information acquisition unit 105 calculates the amplitude and phase change of the received signal (probe signal) caused by the characteristic difference and the path difference of the electronic element at the subsequent stage of each antenna. Notify 1 0 7
  • the reception power measurement unit 106 measures the power of the reception signal (probe signal) and notifies the calibration result control unit 107 of the measurement result.
  • the calibration value control unit 107 calculates a calibration value based on the amplitude and phase change of each received signal (probe signal) and the power, and creates a table as shown in FIG. That is, a calibration value is calculated in advance during non-communication, and a table is stored. As a result, the reliability of the calibration value can be increased in advance, compared to the case where the calibration value is calculated during communication, and the compensation accuracy for the amplitude-phase characteristic difference can be improved quickly.
  • the communication traffic signal transmitted from the communication partner is received by antennas 102-1 to 102-n, respectively.
  • the communication traffic signals received by the antennas 10 2— 1 to 10 2—n are converted to the probe signal synthesis section 10 3—l to 10 3—n and the frequency conversion section 10 4—1 to 10 4 — Output to the reception power measurement unit 106 via n respectively.
  • the operation in the amplitude / phase information acquisition unit 105 need not be performed. This makes it possible to reduce the signal processing load during communication as compared with the case where a calibration value is calculated during communication.
  • the reception power measurement unit 106 measures the power of the reception signal consisting of only the communication traffic signal, and notifies the calibration result control unit 107 of the measurement result.
  • the calibration value control unit 107 searches for a calibration value corresponding to the communication traffic signal based on a table stored in advance. The found calibration value is notified to the compensation unit 108.
  • Embodiment 1 describes the use of a probe signal that is orthogonal to a communication traffic signal.However, it is actually difficult to make the signal completely orthogonal, and when combining both signals, they interfere with each other. . In contrast, this implementation In the embodiment, since it is not necessary to combine the probe signal and the communication traffic signal, interference can be avoided. Therefore, during non-communication, the calibration value can be calculated accurately using only the probe signal, and during communication, the reception power can be accurately measured using only the communication traffic signal, and the calibration can be determined. can do.
  • the output power of the probe signal is randomly changed, and the amplitude and phase information is obtained in advance, so that a specific power level can be obtained. It is possible to prevent the amplitude and phase information from being acquired unevenly, and to determine a highly reliable calibration value. This makes it possible to perform directivity control quickly and accurately by using a highly reliable calibration value as compared with the case where a calibration value is calculated during communication. Further, by calculating and storing a calibration value for each level in advance during non-communication, the signal processing load during communication can be reduced.
  • adaptive array technology is applied to the TDD (im.e Division Duplex) method, and a Time Slot (hereinafter, referred to as an “empty TS”) having no communication traffic signal input is applied.
  • TDD time Division Duplex
  • empty TS Time Slot
  • FIG. 4 is a block diagram showing a configuration of an AA A receiving apparatus 400 according to Embodiment 3 of the present invention.
  • FIG. 4 portions common to FIG. 3 are denoted by the same reference numerals as in FIG. 3, and detailed description thereof will be omitted.
  • 3 is different from FIG. 3 in that the compensation unit 401 controls the probe signal generation unit 101 and the calibration value control unit 107 when the TS is empty.
  • FIG. 5 shows an assignment state of TSs received by AAA receiving apparatus 400.
  • TS1 to TS14 are shown, and TS2, TS3, TS7, ⁇ S8, TS12, TS13 are empty TS.
  • the compensating unit 401 includes the frequency converting units 104-1 to 104-1.
  • the probe signal generation unit 101 is instructed to generate and output a probe signal, and the calibration value control unit 10 Instruct 7 to calculate the calibration value.
  • the AAA receiving apparatus 400 acquires amplitude and phase information of a received signal consisting of only a probe signal in an empty TS and performs power measurement. For this reason, it is necessary to calculate the calibration value so that the calibration value can be determined no matter what communication traffic signal is received. That is, the attenuator 301 controls the output power from the probe signal generation unit 101 over the entire area of the reception power that the AA receiver 400 can receive, and the calibration value control unit 107 It is necessary to acquire amplitude and phase information for each reception power.
  • the generation of the probe signal and the calculation of the calibration value are performed in the empty TS, it is not necessary to combine the probe signal and the communication traffic signal even during communication. Can avoid interference with each other, and in the TDD system, a more accurate calibration value can be determined.
  • a plurality of antenna elements for receiving a communication traffic signal transmitted from a communication partner, and the amplitude and the phase of each communication traffic signal received by the plurality of antenna elements are set to the antenna.
  • Amplitude and phase information obtaining means for obtaining information that has changed since the time of reception by the element; reception power measuring means for measuring the reception power of the communication traffic signal for each antenna element; and the amplitude of the communication traffic signal.
  • a calibration value control means for adaptively determining a calibration value for compensating a change in the applied phase based on the reception power; and a compensation means for compensating for the change using the calibration value. take.
  • the calibration value for compensating for the change in the amplitude and phase of the communication traffic signal is adaptively determined based on the reception power, and by using this calibration value, the input power level of the electronic element is obtained.
  • the accuracy of compensating for the change in amplitude and phase caused by the change in the position can be improved, and as a result, accurate directivity control can be performed.
  • a probe signal generating means for generating a probe signal having the same frequency as the communication traffic signal and orthogonal to the communication traffic signal, and combining the communication traffic signal and the probe signal. And a receiving means for measuring the power of the probe signal for each antenna element.
  • the calibration value control means calculates a calibration value for compensating for a change in amplitude and phase of the communication traffic signal for each reception power using the probe signal, and the calculated calibration value Is stored, and a stored calibration value corresponding to the reception power of the communication traffic signal is determined.
  • the calibration value is adaptively determined based on the reception power of the communication traffic signal.
  • the amplitude and phase caused by the change in the input power level of the electronic element are determined. Can be accurately compensated for.
  • an output power adjusting means for arbitrarily adjusting the output power of the probe signal within a predetermined range, wherein the probe signal generating means generates a probe signal only during non-communication. It adopts the configuration to do.
  • the probe signal generation unit generates the probe signal only during non-communication, and the output power adjustment unit arbitrarily adjusts the output power of the probe signal so that the probe signal generation unit does not receive the communication traffic signal. Since the calibration value is calculated in advance, the calibration value is not calculated during communication, so that the processing load during communication can be reduced.
  • a fifth aspect of the present invention is directed to a wireless communication system using a TDD system. 4.
  • the adaptive array antenna receiving device according to range 3, further comprising: an output power adjusting unit that arbitrarily adjusts an output power of the probe signal within a predetermined range, wherein the compensating unit includes a communication traffic signal.
  • a configuration is employed in which the probe signal generation means is instructed to generate a probe signal in an empty time slot where no input is made, and the calibration value control means is instructed to calculate a calibration value.
  • the probe signal is generated in a vacant time slot in which no communication traffic signal is input, so that it is not necessary to combine the communication traffic signal and the probe signal even during communication, which occurs when combining. Since interference can be avoided, a calibration value can be calculated with high accuracy, and changes in amplitude and phase can be accurately compensated.
  • the calibration value control means includes a plurality of calibration values for compensating for a change in amplitude and phase of one communication traffic signal
  • one representative value is selected from the plurality of calibration values. Take a configuration to determine.
  • a calibration value having higher reliability is determined as the calibration value increases. be able to.
  • a seventh aspect of the present invention employs a configuration in which the base station apparatus includes the above-described adaptive array antenna receiving apparatus.
  • the calibration value for compensating for the change in the amplitude and phase of the communication traffic signal is adaptively determined based on the reception power, and by using this calibration value, the input current of the electronic element is reduced. It is possible to improve the accuracy of compensating for the change in amplitude and phase caused by the change in the Veno, and as a result, it is possible to perform accurate directivity control.
  • An eighth aspect of the present invention provides a reception power measuring step of measuring a reception power of each communication traffic signal received by a plurality of antenna elements, and compensating for a change in amplitude and phase of each communication traffic signal from the time of receiving the antenna.
  • a calibration value control step of adaptively determining a calibration value to be performed based on the reception power, and determining the calibration value based on the reception power And compensating for changes in the amplitude and phase of the communication traffic signal using the calibration values obtained.
  • a calibration value for compensating for the change in the amplitude and phase of the communication traffic signal is adaptively determined based on the reception power, and by using the calibration value, the input power level of the electronic element is determined. Therefore, it is possible to improve the accuracy of compensating for the change in amplitude and phase caused by the change in the direction, and as a result, it is possible to perform accurate directivity control.
  • the calibration value is adaptively determined based on the amplitude / phase information and the reception power, and by using this calibration value, the input power level of the electronic element is reduced. Amplitude / phase characteristic differences between antennas due to the change can be compensated with high accuracy, and as a result, accurate directivity control can be performed.
  • the present invention is suitable for use in a radio base station device or the like in a mobile radio communication system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Description

-受信装置及びアンテナ■アレイ校正方法 技術分野
本発明は、 -ナ受信装置及びアンテナ ·アレイ校正 方法に関する ( 明 背景技術
ァダプティブアレイアンテナ (以下、 「A書AA」 という) は、 複数のアンテ ナ素子で構成されている。 各アンテナ素子は通信相手から送信された同一の信 号 (以下、 「通信トラフィック信号」 という) を受信し、 受信された信号は、 振幅の調整及び位相シフトが行われた後、 合成される。 このため、 各アンテナ 素子で受信された通信トラフィック信号について、 所定の振幅差及び位相差が 設けられ、 振幅差及び位相差が設けられた信号を合成することにより、 アンテ ナそのものを動かさずに指向性 (電波を最もよく受信できる方向) を変えるこ とができる。
ところが、 アンテナで受信された信号が所望の指向性を形成するため振幅調 整及び位相シフトが行われるまで、 各受信信号は A A A受信装置内で振幅及び 位相が変化する。 この変化の要因としては、 各受信信号の経路となるケーブル 長の相違、 送信機及び受信機を構成する電子素子の特性上の相違、 自動利得制 御に伴う可変ァッテネータ内での経路差などが挙げられる。
このため、 AAA受信装置は、 アンテナで受信されてから指向性制御が行わ れるまでに、 アンテナで受信した通信トラフィックの振幅及ぴ位相が変化した 場合 (以下、 ァンテナで受信した通信トラフィック信号の振幅及び位相の変化 分を 「振幅 ·位相特性差」 という) 、 振幅 '位相特性差を補償する動作が不可 欠となる。 以下、 この特性差を把握するための信号をプローブ信号と呼ぶこと にする。
上述した振幅■位相特性差が生じる要因を考慮して、 この特性差を補償する 技術には、 日本国特開 2 0 0 0 - 1 5 1 2 5 5号公報に記載のものがある。 上記公報記載のアンテナ ·アレイの校正装置は、 通信トラフィック信号と直 交するように符号ィヒされたプローブ信号を生成し、 各アンテナ素子の近傍から プローブ信号を有線路に注入することによって、 通信トラフィック信号と合成 する。 合成された信号は、 周波数変換された後、 プローブ信号が抽出され、 抽 出されたプローブ信号から振幅及び位相を示す振幅■位相情報が取得される。 振幅'位相情報は、 各アンテナで受信された信号毎に取得される。 取得された 振幅■位相情報のうち、 1つのァンテナの振幅 ·位相情報を基準とし、 他のァ ンテナの振幅 ·位相情報が、 基準とする振幅 ·位相情報となるように校正値を 決定する。 決定した校正値は各アンテナで受信した通信トラフィック信号に乗 算され、 これにより振幅 ·位相特性差を補償している。
し力 しながら、 振幅■位相特性差が生じる要因の一つである電子素子の特性 は、 電子素子の入力電力レベルに依存して変化するものの、 上記従来例では、 このことについて考慮されておらず、 振幅■位相特性差の補償精度を向上させ る余地があった。 ここで、 入力電力レベルとは、 通信トラフィック信号の受信 電力のことであり、 通信トラフィック信号は伝播環境の影響を受けて減衰した りするため、 入力電力レベルが一定であることはない。 発明の開示
本発明の目的は、 振幅 ·位相特性差の補償精度を向上させ、 正確な指向性制 御を行うァダプティブアレイアンテナ受信装置及びアンテナ ·アレイ校正方法 を提供することである。
この目的は、各ァンテナで受信した通信トラフィック信号の振幅及び位相の 変化分である振幅 ·位相特性差を補償する際に、 補償に用いる校正値を入力電 カレベルに基づいて適応的に決定することにより達成される。 図面の簡単な説明
図 1は、 本発明の実施の形態 1に係る AAA受信装置の構成を示すプロック 図、
図 2は、 振幅 ·位相情報及び校正値のテーブルを表した図、
図 3は、 本宪明の実施の形態 2に係る AAA受信装置の構成を示すプロック 図、
図 4は、 本発明の実施の形態 3に係る A A A受信装置の構成を示すプロック 図、 及び、
図 5は、本発明の実施の形態 3に係る A A A受信装置が受信する T S 8(Time Slot)の割り当て状態を示す図である。 発明を実施するための最良の形態
以下、 本発明の実施の形態について、 図面を用いて説明する。
(実施の形態 1 )
本発明の実施の形態 1では、 通信トラフィック信号の受信パヮに基づいて適 応的に校正値を決定し、 校正値を用いて振幅 ·位相特性差を補償する場合につ いて説明する。
図 1は、 本発明の実施の形態 1に係るァダプティブアレイアンテナ受信装置 1 0 0.の構成を示すブロック図である。 プローブ信号生成部 1 0 1は、 通信相 手から送信された信号である通信トラフィック信号と同一周波数のプローブ 信号を生成する。 このプローブ信号は、 通信トラフィック信号と直交するよう な拡散符号が乗算される。 これにより、 受信した通信トラフィック信号とプロ ーブ信号を合成しても、 通信トラフィック信号の処理に支障をきたさないよう にしている。 プローブ信号生成部 1 0 1は、 生成したプローブ信号をプローブ 信号合成部 1 0 3— 1〜1 0 3— nにそれぞれ出力する。 また、 プローブ信号 に乗算した拡散符号を振幅 ·位相情報取得部 1 0 5に通知する。 アンテナ 102— 1〜102— nは、 通信相手から送信された通信トラフィ ック信号をそれぞれ受信する。 受信した信号は、 アンテナ 102— 1〜102 —nに対応して設けられたプローブ信号合成部 103— 1〜103— nに出 力される。
プローブ信号合成部 103— 1〜: L 03— nは、 プローブ信号生成部 101 から出力されたプローブ信号とアンテナ 102— 1〜1 02— nで受信され た通信トラフィック信号を合成し、 周波数変換部 104— 1〜 104— nにそ れぞれ出力する。 プローブ信号と通信トラフィック信号を合成した信号を受信 信号と呼ぶことにする。 なお、 通信トラフィック信号の入力のない状態では、 プローブ信号のみが受信信号として出力される。
周波数変換部 104— 1〜104— nは、 プローブ信号合成部 103— 1〜 10 3— nから出力された受信信号を無線周波数からベースバンド周波数に 周波数変換し、受信ベースバンド信号を得る。受信ベースバンド ί言号は、振幅■ 位相情報取得部 105、 受信パヮ測定部 106及び補償部 108に出力される。 振幅■位相情報取得部 105は、 プローブ信号生成部 101から通知された 拡散符号で周波数変換部 104— 1〜104_ηから出力されたアンテナ毎 の受信ベースバンド信号を全て逆拡散し、 プローブ信号を抽出する。 振幅-位 相情報取得部 105は、 抽出した全てのプローブ信号から振幅及び位相情報を 取得し、 取得した振幅 ·位相情報を校正値制御部 107に出力する。
受信パヮ測定部 106は、 周波数変換部 104— 1〜 104— ηから出力さ れた受信ベースバンド信号の受信パヮを測定し、 測定した受信パヮを校正値制 御部 107に通知する。
校正値制御部 107は、 振幅 ·位相情報取得部 105及び受信パヮ測定部 1 06から出力された情報に基づいて、 振幅■位相特性差を補償するための校正 値を決定する。 決定した校正値は、 補償部 108に出力される。 校正値の決定 方法については後述する。
補償部 108は、 周波数変換部 104— 1〜 104— ηから出力された受信 ベースバンド信号に校正値制御部 107'で決定された校正値を乗算する。 この 乗算結果を用いて受信指向性を適応的に決定する。
次に、 上記構成を有する A A A受信装置 100の動作について説明する。 プ ロープ信号生成部 101では、 通信相手から送信される通信トラフィック信号 と同一周波数かつ直交するプローブ信号が生成され、 生成されたプローブ信号 がプローブ信号合成部 103— 1〜103 _nに出力される。 通信トラフイツ ク信号は、 アンテナ 102— 1〜102 _nで受信され、 プローブ信号合成部 103— 1〜: L 03 _nに出力される。
プローブ信号合成部 103— 1〜: L 03— nでは、 アンテナ 102— 1〜1 02-nで受信された通信トラフィック信号とプローブ信号生成部 1 01力 ら出力されたプローブ信号とが合成される。 プローブ信号合成部 103_1〜 103— nは、 A A A受信装置内における受信信号の振幅及び位相の変化を正 確に把握するため、 各アンテナの近傍に設けられるのがよい。 合成された信号 (受信信号) は周波数変換部 104— 1〜104— nに出力される。
周波数変換部 104— 1〜: L 04— nでは、 プローブ信号合成部 103— 1 〜1 03— nから出力された受信信号が無線周波数からベースバンド周波数 に周波数変換され、 受信ベースバンド信号が得られる。 受信ベースバンド信号 は、 振幅■位相情報取得部 105、 受信パヮ測定部 106、 補償部 108にそ れぞれ出力される。
振幅 ·位相情報取得部 105では、 周波数変換部 104— 1~104— nか ら出力された受信ベースバンド信号をプローブ信号生成部 10 1から通知さ れた拡散符号で逆拡散し、 受信ベースバンド信号からプローブ信号が抽出され る。 抽出されたアンテナ毎のプローブ信号から振幅■位相情報が取得される。 ここでは、 通信トラフィック信号とプローブ信号とが合成された受信ベースバ ンド信号からプローブ信号についてのみ振幅'位相情報を取得しているが、 各 アンテナ後段の各経路における通信トラフィック信号の振幅 ·位相変化分は、 合成されたプローブ信号の振幅■位相変化分と同一であるため、 校正ィ直決定の 要素としてプローブ信号の振幅.位相情報を求めている。 これにより、 各アン テナ後段の電子素子の特性等によって生じる振幅及び位相の変化分を検出す ることができる。
受信パヮ測定部 106では、 周波数変換部 104— 1〜104— nから出力 された受信ベースバンド信号の受信パヮが測定される。 測定方法には、 受信べ ースバンド信号の I成分及び Q成分の 2乗和を算出する方法などがある。 測定 された受信パヮは、 校正ィ直制御部 107に通知される。
校正値制御部 1 07では、 振幅 ·位相情報取得部 105から出力された振 幅'位相情報と受信パヮ測定部 106から通知された受信パヮとに基づいて校 正値が決定される。 以下に、 具体的な校正値の決定方法を述べる。
図 2を参照するに、 受信パヮをパラメータとし、 受信パヮを所定のレベルの 範囲ごとにパヮ 1〜パヮ m (以下、 「パヮレベル」 という) に分ける。 アンテ ナ番号 (アンテナ 1〜アンテナ n) とパヮレベルとの組み合わせをアドレスと して、 振幅 ·位相情報を図 2に示すようにァドレスに対応付け、 テーブルを作 成する。 校正値制御部 107は、 このテーブルを作成するため、 位相 '振幅情 報の取得を任意の時間続けることができる。
校正値の算出方法は、 ある振幅.位相情報を基準値として、 基準値を他の振 幅-位相情報で除算することにより算出する。 図 2では、 アンテナ 1における パヮ 1の位相情報 Dr ea l (1, 1) + j Dima g (1, 1) を基準値として、 他の振幅 ·位相情報で除算することにより校正値を算出している。
校正値制御部 107は、 算出された校正 の中から受信パヮ測定部 106で 測定された受信パヮに対応する校正値を全てのアンテナについて検索し、 検索 した校正値を補償部 108に出力する。 なお、 本実施の形態では、 校正値制御 部 107が取得した振幅 ·位相情報が該当するテーブルのァドレスに、 既に振 幅 ·位相情報がある場合には、 新たに取得した振幅 ·位相情報に更新するもの とし、 これにともない校正値の更新も行うものとする。
補償部 108では、周波数変換部 104— 1〜104— nから出力された受 信ベースバンド信号に校正値制御部 1 0 7から出力された校正値がそれぞれ アンテナ毎に乗算され、 振幅 ·位相特性差が補償される。 これにより、 電子素 子の入力電力レベルが変化することに起因する振幅 ·位相特性差を補償するこ とができ、 電子素子の特性等により変化した振幅及び位相をアンテナ受信時の 振幅及ぴ位相に戻すことができる。 この結果、 AAA受信装置 1 0 0では、 各 アンテナ素子で受信した通信トラフィック信号の振幅及び位相に対して、振幅 調整及び位相シフトを行い、所望の指向性を形成することができる。すなわち、 正確な指向性の制御を行うことができる。
なお、 本実施の形態では、 校正値制御部 1 0 7が取得した振幅'位相情報が 該当するアドレスに既に存在する場合には、 新たに取得した振幅 ·位相情報に 更新するものとしたが、 複数の振幅■位相情報が一つのァドレスに該当する場 合、 複数の振幅,位相情報からそれぞれ校正値を算出し、 算出した複数の校正 値から平均値、 または最頻値、 中央値等の 1つの代表値を算出して、 これを用 いるようにしてもよい。
このように本実施の形態によれば、 振幅■位相情報と受信パヮとに基づいて 校正値を適応的に決定することにより、 電子素子の入力電力レベルの変化に起 因する振幅 ·位相特性差の補償精度を向上させることができ、 正確な指向性制 御を行うことができる。
(実施の形態 2 )
本発明の実施の形態 2では、 AAA受信装置 3 0 0の初期動作時等の非通信 時に、 プローブ信号の出力電力をランダムに変えて、 振幅 ·位相情報を予め取 得する場合について説明する。
図 3は、 本発明の実施の形態 2に係る A A A受信装置 3 0 0の構成を示すプ ロック図である。 ただし、 図 3において、 図 1と共通する部分には図 1と同一 の符号を付し、 その詳しい説明は省略する。 この図において、 図 1と異なる点 は、 プローブ信号生成部 1 0 1をプローブ信号生成部 3 0 1に変え、 アツテネ ータ 3 0 2を加えた点である。 また、 校正値制御部 1 0 7は、 複数の振幅 -位 相情報が一つのァドレスに該当する場合に、 複数の振幅■位相情報から校正値 を算出し、 算出した複数の校正値から平均値、 または最頻値、 中央値等の 1つ の統計的な代表値を用いるものとする。
プローブ信号生成部 3 0 1は、初期動作時等の非通信時に通信トラフィック 信号と同一周波数のプローブ信号を生成し、 生成したプローブ信号をアツテネ ータ 3 0 2に出力する。
アツテネータ 3 0 2は、 プローブ信号生成部 3 0 1から出力されたプローブ 信号の出力電力の調整をランダムに行う。 特に、 アツテネータ 3 0 2がプロ一 ブ信号の出力電力を、 この AAA受信装置 3 0 0が受信可能な受信パヮの全範 囲をランダムに制御することができれば、 校正値制御部 1 0 7が取得する振 幅 ·位相情報が特定のパヮレベルに偏って取得することを防ぐことができる。 本実施の形態では、 上述したように校正値を統計的に算出することから、 特 定のパヮレベルに多くの振幅.位相情報が取得されたり、 逆に、 振幅 ·位相情 報がほとんど取得されなかったりした場合は、 その取得された振幅 ·位相情報 の数によって、 校正値の信頼度が一定にならなくなる。 このため、 振幅及び位 相の補償精度にばらつきが生じてしまう。 このようなばらつきを防ぐため、 プ ロープ信号の電力をランダムに制御することにより、 各パヮレベルで得られる 振幅■位相情報の数をほぼ均等にする。 すなわち、 振幅 ·位相情報が特定のパ ヮレベルに偏つて取得されることを防ぐことによって、 各パヮレベルの校正値 の信頼度を一定にすることができる。
次に、 上記構成を有する A A A受信装置 3 0 0の非通信時及び通信時の動作 についてそれぞれ説明する。 ただし、 実施の形態 1と同じ動作については、 そ の詳しい説明は省略する。 初めに非通信時の動作について説明する。
プローブ信号生成部 3 0 1では、 プローブ信号が生成され、 生成されたプロ ープ信号がアツテネータ 3 0 2に出力される。 アツテネータ 3 0 2では、 プロ ーブ信号の出力電力の調整が AAA受信装置で受信可能な全範囲、 に行われる。 振幅■位相情報取得部 1 0 5では、 各アンテナ後段の電子素子の特性差や経 路差によって生じる受信信号(プローブ信号)の振幅及び位相変化分を算出し、 算出結果を校正ィ直制御部 1 0 7に通知する。
受信パヮ測定部 1 0 6では、 受信信号 (プローブ信号) のパヮを測定し、 測 定結果を校正値制御部 1 0 7に通知する。
校正値制御部 1 0 7では、 各受信信号 (プローブ信号) の振幅及び位相変化 分とパヮとに基づいて、 校正値を算出し、 図 2に示したようなテーブルを作成 する。 すなわち、 非通信時に予め校正値を算出しておき、 テーブルを記憶して おくものである。 これにより、 通信時に校正値を算出する場合に比べ、 校正値 の信頼度を予め高めておくことができ、 振幅■位相特性差の補償精度を早く向 上させることができる。
次に、 通信時の動作について説明する。 通信相手から送信された通信トラフ イツク信号は、 アンテナ 1 0 2— 1〜1 0 2— nでそれぞれ受信される。 アン テナ 1 0 2— 1〜1 0 2— nで受信された通信トラフィック信号は、 プローブ 信号合成部 1 0 3— l〜1 0 3— n、 周波数変換部 1 0 4— 1〜 1 0 4— nを それぞれ介して受信パヮ測定部 1 0 6に出力される。 なお、 通信時には、 プロ ーブ信号を生成せず、通信トラフィック信号にプローブ信号を合成しなくてよ い。 また、 振幅.位相情報取得部 1 0 5での動作も行わなくてよい。 これによ り、 通信時に校正値を算出する場合に比べ、 通信中の信号処理負担を軽減する ことができる。
受信パヮ測定部 1 0 6では、 通信トラフィック信号のみからなる受信信号の パヮを測定し、 測定結果を校正値制御部 1 0 7に通知する。 校正値制御部 1 0 7では、 予め記憶されたテーブルに基づいて、 通信トラフィック信号のパヮに 対応する校正値を検索する。 検索された校正値は補償部 1 0 8に通知される。 実施の形態 1では、 通信トラフィック信号と直交するプローブ信号を用いる ことについて説明したが、 実際には完全に直交させることは困難であり、 両信 号同士を合成すると、 互いに干渉を及ぼしあってしまう。 これに対し、 本実施 の形態では、 プローブ信号と通信トラフィック信号とを合成する必要がなくな るので、 干渉を回避することができる。 このため、 非通信時には、 プローブ信 号のみを用いて精度よく校正値を算出することができ、 通信時には、 通信トラ フィック信号のみを用いて精度よく受信パヮを測定するとともに校正ィ直を決 定することができる。
このように本実施の形態によれば、 A A A受信装置の初期動作時等の非通信 時に、 プローブ信号の出力電力をランダムに変えて、 振幅 ·位相情報を予め取 得することにより、 特定のパヮレベルに振幅 ·位相情報が偏って取得されるこ とを防ぐことができ、 また、 信頼度の高い校正値を決定することができる。 こ れにより、 通信時に校正値を算出する場合に比べ、 信頼度の高い校正値を用.い て、 早く正確な指向性制御を行うことができる。 また、 非通信時に予めパヮレ ベル毎に校正値を算出して、 記憶しておくことにより、 通信時の信号処理負担 を軽減することができる。
(実施の形態 3)
本実施の形態では、 TDD ( im.e Division Duplex:時分割複信) 方式にァ ダプティブアレイ技術を適用し、 通信トラフィック信号の入力のない T i me S l o t (以下、 「空き TS」 という) で、 プローブ信号の生成及ぴ校正値の 算出を行う場合について説明する。
図 4は、 本 明の実施の形態 3に係る A A A受信装置 400の構成を示すブ ロック図である。 ただし、 図 4において、 図 3と共通する部分には図 3と同一 の符号を付し、 その詳しい説明は省略する。 この図において、 図 3と異なる点 は、 補償部 401が空き TSの際に、 プローブ信号生成部 101と校正値制御 部 107とを制御する点である。
まず、 A A A受信装置 400が受信する TSの割り当て状態を図 5に示す。 この図では T S 1〜T S 14までを示しており、 TS 2, T S 3, T S 7, Τ S 8, TS 1 2, T S 1 3が空き T Sである。
再度図 4を参照するに、 補償部 401は、 周波数変換部 104—1〜 104 一 nから受信ベースバンド信号の入力のない空き T S (例えば、図 5の T S 2 ) を検出すると、 プローブ信号生成部 1 0 1にプローブ信号の生成と出力を指示 し、 校正値制御部 1 0 7に校正値の算出を指示する。
AAA受信装置 4 0 0は、 空き T Sでプローブ信号のみからなる受信信号の 振幅'位相情報の取得とパヮ測定とを行う。 このため、 どんなパヮの通信トラ フィック信号を受信しても校正値を決定できるように、校正値を算出しておく 必要がある。 すなわち、 アツテネータ 3 0 1はプローブ信号生成部 1 0 1から の出力電力を AA A受信装置 4 0 0が受信可能な受信パヮの全領域にわたつ て制御し、 校正値制御部 1 0 7はそれぞれの受信パヮについて振幅 ·位相情報 を取得しておく必要がある。
このように本実施の形態によれば、 プローブ信号の生成及び校正値の算出を 空き T Sで行うことにより、通信中でもプローブ信号と通信トラフィック信号 を合成する必要がないので、 プローブ信号と通信トラフィック信号とが互いに 干渉を及ぼし合うことを回避することができ、 T D D方式においては、 より正 確な校正値を決定することができる。
本宪明の第 1の態様は、通信相手から送信される通信トラフィック信号を受 信する複数のアンテナ素子と、 前記複数のアンテナ素子で受信された各通信ト ラフィック信号の振幅及び位相が前記アンテナ素子で受信された時点から変 化した分の情報を取得する振幅 ·位相情報取得手段と、 前記通信トラフィック 信号の受信パヮをアンテナ素子ごとに測定する受信パヮ測定手段と、 前記通信 トラフィック信号の振幅及ぴ位相の変化分を補償する校正値を前記受信パヮ に基づいて適応的に決定する校正値制御手段と、 前記校正値を用いて前記変化 分を補償する補償手段と、 を具備する構成を採る。
この構成によれば、 通信トラフィック信号の振幅及び位相の変化分を補償す る校正値を受信パヮに基づいて適応的に決定し、 この校正値を用いることによ り、 電子素子の入力電力レベルの変化に起因する振幅及び位相の変化を補償す る精度を向上させることができ、 この結果、 正確な指向性制御を行うことがで さる。
本発明の第 2の態様は、 前記通信トラフィック信号と同一周波数であり、 前 記通信トラフィック信号と直交するプローブ信号を生成するプローブ信号生 成手段と、 前記通信トラフィック信号と前記プローブ信号とを合成する合成手 段と、 を具備し、 前記受信パヮ測定手段が、 前記プローブ信号のパヮをアンテ ナ素子ごとに測定する構成を採る。
この構成によれば、 プローブ信号を通信トラフィック信号に合成することに より、 通信トラフィック信号の振幅及び位相の変化をプローブ信号から把握す ることができ、 校正値を決定する際の受信パヮは、 プローブ信号のパヮを測定 することにより、 合成後のパヮに基づいて決定することができる。
本発明の第 3の態様は、 前記校正値制御手段が、 前記プローブ信号を用いて 受信パヮ毎に前記通信トラフィック信号の振幅及び位相の変化分を補償する 校正値を算出し、 算出した校正値を記憶し、 前記通信トラフィック信号の受信 パヮに対応する記憶された校正値を決定する構成を採る。
この構成によれば、 通信トラフィック信号の受信パヮに基づいて適応的に校 正値を決定することになり、 この校正値を用いることにより、 電子素子の入力 電力レベルの変化に起因する振幅及び位相の変化を精度よく補償することが できる。
本発明の第 4の態様は、 前記プローブ信号の出力電力を所定の範囲で任意に 調整する出力電力調整手段と、 を具備し、 前記プローブ信号生成手段は、 非通 信時のみプローブ信号を生成する構成を採る。
この構成によれば、 プローブ信号生成手段は、 非通信時のみプローブ信号を 生成し、 出力電力調整手段がプローブ信号の出力電力を任意に調整することに より、 通信トラフィック信号の入力のない状態で、 予め校正値を算出しておく ことになり、 通信中に校正値を算出することがなくなるので、 通信中の処理負 担を軽減することができる。
本発明の第 5の態様は、 T D D方式の無線通信システムに用いられる請求の 範囲 3に記載のァダプティプアレイアンテナ受信装置であって、 前記プローブ 信号の出力電力を所定の範囲で任意に調整する出力電力調整手段と、 を具備し、 前記補償手段は、 通信トラフィック信号の入力のない空きタイムスロットで前 記プローブ信号生成手段にプローブ信号の生成を指示すると共に、前記校正値 制御手段に校正値の算出を指示する構成を採る。
この構成によれば、通信トラフィック信号の入力のない空きタイムスロット でプローブ信号を生成することにより、 通信中であっても通信トラフィック信 号とプローブ信号を合成する必要がなくなり、 合成する際に生じる干渉を回避 することができるので、 精度よく校正値を算出することができ、 振幅と位相の 変化分の補償を精度よく行うことができる。
本発明の第 6の態様は、 前記校正値制御手段が、 1つの通信トラフィック信 号の振幅及び位相の変化を補償する校正値が複数ある場合、 複数の校正値の中 から 1つの代表値を決定する構成を採る。
この構成によれば、 複数の校正値の中から、 例えば、 平均値、 最頻値、 中央 値などの統計的な値を用いることにより、校正値が多いほど信頼度の高い校正 値を決定することができる。
本発明の第 7の態様は、 上記のァダプティプアレイァンテナ受信装置を備え た基地局装置とする構成を採る。
この構成によれば、通信トラフィック信号の振幅及び位相の変化分を補償す る校正値を受信パヮに基づいて適応的に決定し、 この校正値を用いることによ り、 電子素子の入力電カレべノレの変化に起因する振幅及び位相の変化を補償す る精度を向上させることができ、 この結果、 正確な指向性制御を行うことがで さる。
本発明の第 8の態様は、複数のアンテナ素子で受信した各通信トラフィック 信号の受信パヮを測定する受信パヮ測定工程と、 アンテナ受信時からの各通信 トラフィック信号の振幅及び位相の変化分を補償する校正値を、 前記受信パヮ に基づいて適応的に決定する校正値制御工程と、 前記受信パヮに基づいて決定 された校正値を用いて前記通信トラフィック信号の振幅及び位相の変化分を 捕償する補償工程と、 を具備するようにした。
この方法によれば、 通信トラフィック信号の振幅及び位相の変化分を補償す る校正値を受信パヮに基づいて適応的に決定し、 この校正値を用いることによ り、 電子素子の入力電力レベルの変化に起因する振幅及び位相の変化を補償す る精度を向上させることができ、 この結果、 正確な指向性制御を行うことがで さる。
以上説明したように、 本宪明によれば、 振幅■位相情報と受信パヮとに基づ いて校正値を適応的に決定し、 この校正値を用いることにより、 電子素子の入 力電力レベルの変化に起因するアンテナ間の振幅 ·位相特性差を精度よく補償 することができ、 この結果、 正確な指向性制御を行うことができる。
本明細書は、 2002年 4月 16 出願の特願 2002— 1 1 3760に基 づくものである。 この内容をここに含めておく。 産業上の利用可能性
本発明は、移動体無線通信システムにおける無線基地局装置等に用レヽるに好適 である。

Claims

請求の範囲
1 . 通信相手から送信される通信トラフィック信号を受信する複数のアンテナ 素子と、
前記複数のァンテナ素子で受信された各通信トラフィック信号の振幅及び 位相が前記アンテナ素子で受信された時点から変化した分の情報を取得する 振幅■位相情報取得手段と、
前記通信トラフィック信号の受信パヮをアンテナ素子ごとに測定する受信 パヮ測定手段と、
前記通信トラフィック信号の振幅及び位相の変化分を補償する校正値を前 記受信パヮに基づいて適応的に決定する校正値制御手段と、
前記校正値を用!/、て前記変化分を補償する補償手段と、
を具備するァダプティプアレイァンテナ受信装置。
2 . 前記通信トラフィック信号と同一周波数であり、 前記通信トラフィック信 号と直交するプローブ信号を生成するプロ一ブ信号生成手段と、
前記通信トラフィック信号と前記プローブ信号とを合成する合成手段と、 を具備し、
前記受信パヮ測定手段は、 前記プロ一ブ信号のパヮをアンテナ素子ごとに測 定する
請求の範囲 1に記載のァダプティプアレイアンテナ受信装置。
3 . 前記校正値制御手段は、 前記プローブ信号を用いて受信パヮ毎に前記通信 トラフィック信号の振幅及び位相の変化分を補償する校正値を算出し、 算出し た校正値を記憶し、 前記通信トラフィック信号の受信パヮに対応する記憶され た校正値を決定する請求の範囲 2に記載( 4 . 前記プローブ信号の出力電力を所定の範囲で任意に調整する出力電力調整 手段と、
を具備し、 前記プローブ信号生成手段は、 非通信時のみプローブ信号を生成する 請求の範囲 2に記載のァダプティブァレイアンテナ受信装置。
5 . T D D方式の無線通信システムに用いられる請求の範囲 3に記載のァダプ ティプアレイァンテナ受信装置であつて、
前記プローブ信号の出力電力を所定の範囲で任意に調整する出力電力調整 手段と、
を具備し、
前記補償手段は、 通信トラフィック信号の入力のない空きタイムスロットで 前記プローブ信号生成手段にプローブ信号の生成を指示すると共に、 前記校正 ィ直制御手段に校正値の算出を指示するァダプティプアレイァンテナ受信装置。
6 . 前記校正値制御手段は、 1つの通信トラフィック信号の振幅及び位相の変 化を補償する校正値が複数ある場合、複数の校正値の中から 1つの代表値を決 定する請求の範囲 3に記載のァダプティブアレイアンテナ受信装置。
7 . 請求の範囲 1に記載のァダプティプアレイァンテナ受信装置を備えた基地 局装置。
8 . 複数のアンテナ素子で受信した各通信トラフィック信号の受信パヮを測定 する受信パヮ測定工程と、
アンテナ受信時からの各通信トラフィック信号の振幅及び位相の変化分を 補償する校正ィ直を、 前記受信パヮに基づいて適応的に決定する校正値制御工程 と、
前記受信パヮに基づいて決定された校正値を用いて前記通信トラフィック 信号の振幅及び位相の変化分を補償する補償工程と、
を具備するアンテナ■アレイ校正方法。
PCT/JP2003/004744 2002-04-16 2003-04-15 Dispositif recepteur a antenne reseau adaptative et procede d'etalonnage de reseau d'antennes WO2003088522A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2003235151A AU2003235151A1 (en) 2002-04-16 2003-04-15 Adaptive array antenna receiver apparatus and antenna array calibration method
EP03719109A EP1496625A1 (en) 2002-04-16 2003-04-15 Adaptive array antenna receiver apparatus and antenna array calibration method
US10/480,294 US20040166808A1 (en) 2002-04-16 2003-04-15 Adaptive array antenna receiving apparatus and antenna array calibration method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002113760A JP2003309513A (ja) 2002-04-16 2002-04-16 アダプティブアレイアンテナ受信装置及びアンテナ・アレイ校正方法
JP2002-113760 2002-04-16

Publications (1)

Publication Number Publication Date
WO2003088522A1 true WO2003088522A1 (fr) 2003-10-23

Family

ID=29243366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/004744 WO2003088522A1 (fr) 2002-04-16 2003-04-15 Dispositif recepteur a antenne reseau adaptative et procede d'etalonnage de reseau d'antennes

Country Status (6)

Country Link
US (1) US20040166808A1 (ja)
EP (1) EP1496625A1 (ja)
JP (1) JP2003309513A (ja)
CN (1) CN1537367A (ja)
AU (1) AU2003235151A1 (ja)
WO (1) WO2003088522A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112511187A (zh) * 2020-12-04 2021-03-16 广州杰赛科技股份有限公司 一种阵列天线相位实时监测方法和系统

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060042364A1 (en) * 2004-08-31 2006-03-02 Hongtao Cui Angled tip for a scanning force microscope
DE102005011128B4 (de) * 2005-03-10 2011-12-29 Imst Gmbh Kalibrierung einer elektronischen steuerbaren Planarantenne und elektronisch steuerbare Antenne mit einer Messsonde im reaktiven Nahfeld
US20060240784A1 (en) * 2005-04-22 2006-10-26 Qualcomm Incorporated Antenna array calibration for wireless communication systems
US8498669B2 (en) 2005-06-16 2013-07-30 Qualcomm Incorporated Antenna array calibration for wireless communication systems
JP2007005974A (ja) * 2005-06-22 2007-01-11 Fujitsu Ltd 無線通信装置及び位相バラツキ補正方法
US8280430B2 (en) 2005-11-02 2012-10-02 Qualcomm Incorporated Antenna array calibration for multi-input multi-output wireless communication systems
US9118111B2 (en) 2005-11-02 2015-08-25 Qualcomm Incorporated Antenna array calibration for wireless communication systems
US8314736B2 (en) 2008-03-31 2012-11-20 Golba Llc Determining the position of a mobile device using the characteristics of received signals and a reference database
JP5170739B2 (ja) * 2007-11-05 2013-03-27 日本無線株式会社 補正手段付時分割2重送受信装置
US7800541B2 (en) 2008-03-31 2010-09-21 Golba Llc Methods and systems for determining the location of an electronic device
US9829560B2 (en) 2008-03-31 2017-11-28 Golba Llc Determining the position of a mobile device using the characteristics of received signals and a reference database
US8102785B2 (en) * 2008-05-21 2012-01-24 Alcatel Lucent Calibrating radiofrequency paths of a phased-array antenna
US8259878B2 (en) * 2008-12-09 2012-09-04 Electronics And Telecommunications Research Institute Apparatus and method for receiving signal in wireless communication system using multi antenna
US8639270B2 (en) 2010-08-06 2014-01-28 Golba Llc Method and system for device positioning utilizing distributed transceivers with array processing
US9225482B2 (en) 2011-10-17 2015-12-29 Golba Llc Method and system for MIMO transmission in a distributed transceiver network
CN102340338B (zh) * 2011-10-21 2013-11-06 西安交通大学 一种tdd模式下的基站阵列天线通道校正方法
JP2013207422A (ja) * 2012-03-27 2013-10-07 Kyocera Corp 基地局および通信方法
US9226092B2 (en) 2012-08-08 2015-12-29 Golba Llc Method and system for a distributed configurable transceiver architecture and implementation
CN103002440B (zh) * 2012-12-06 2014-12-10 西安交通大学 使用发射天线阵列随机组合旋转的无线通信安全传输方法
EP2747305A1 (en) * 2012-12-21 2014-06-25 Nxp B.V. RF repeater circuit
CN104639208B (zh) * 2013-11-11 2017-05-17 深圳市中兴微电子技术有限公司 一种实现多径搜索的任务处理方法和装置
EP3534545B1 (en) * 2016-11-15 2020-11-04 Huawei Technologies Co., Ltd. Multi-channel correction apparatus, multi-channel correction method and transceiving system
US10321332B2 (en) 2017-05-30 2019-06-11 Movandi Corporation Non-line-of-sight (NLOS) coverage for millimeter wave communication
US10484078B2 (en) 2017-07-11 2019-11-19 Movandi Corporation Reconfigurable and modular active repeater device
US10348371B2 (en) 2017-12-07 2019-07-09 Movandi Corporation Optimized multi-beam antenna array network with an extended radio frequency range
US10090887B1 (en) 2017-12-08 2018-10-02 Movandi Corporation Controlled power transmission in radio frequency (RF) device network
US10862559B2 (en) 2017-12-08 2020-12-08 Movandi Corporation Signal cancellation in radio frequency (RF) device network
US11088457B2 (en) 2018-02-26 2021-08-10 Silicon Valley Bank Waveguide antenna element based beam forming phased array antenna system for millimeter wave communication
US10637159B2 (en) 2018-02-26 2020-04-28 Movandi Corporation Waveguide antenna element-based beam forming phased array antenna system for millimeter wave communication
CN108963459B (zh) * 2018-06-30 2021-05-18 华为技术有限公司 一种测量方法及设备
CN111030745B (zh) * 2019-11-11 2022-04-12 中国空间技术研究院 一种星载波束天线自主校准方法
US11005581B1 (en) * 2020-02-07 2021-05-11 Facebook, Inc. Calibration of an antenna array that uses low-resolution phase shifters
CN117452442B (zh) * 2023-12-21 2024-04-05 中国人民解放军国防科技大学 一种基于空频自适应处理的高精度卫星导航抗干扰方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10503892A (ja) * 1994-06-03 1998-04-07 テレフオンアクチーボラゲツト エル エム エリクソン アンテナアレイの校正
JP2001053663A (ja) * 1999-05-28 2001-02-23 Japan Radio Co Ltd 多元接続通信装置
JP2001156688A (ja) * 1999-11-24 2001-06-08 Nec Corp 無線受信装置およびキャリブレーション方法
JP2002077016A (ja) * 2000-09-05 2002-03-15 Matsushita Electric Ind Co Ltd 通信装置及び通信方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6157343A (en) * 1996-09-09 2000-12-05 Telefonaktiebolaget Lm Ericsson Antenna array calibration
US5530449A (en) * 1994-11-18 1996-06-25 Hughes Electronics Phased array antenna management system and calibration method
DE19806914C2 (de) * 1998-02-19 2002-01-31 Bosch Gmbh Robert Verfahren und Vorrichtung zum Kalibrieren einer Gruppenantenne
JP4303373B2 (ja) * 1999-09-14 2009-07-29 株式会社日立コミュニケーションテクノロジー 無線基地局装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10503892A (ja) * 1994-06-03 1998-04-07 テレフオンアクチーボラゲツト エル エム エリクソン アンテナアレイの校正
JP2001053663A (ja) * 1999-05-28 2001-02-23 Japan Radio Co Ltd 多元接続通信装置
JP2001156688A (ja) * 1999-11-24 2001-06-08 Nec Corp 無線受信装置およびキャリブレーション方法
JP2002077016A (ja) * 2000-09-05 2002-03-15 Matsushita Electric Ind Co Ltd 通信装置及び通信方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112511187A (zh) * 2020-12-04 2021-03-16 广州杰赛科技股份有限公司 一种阵列天线相位实时监测方法和系统

Also Published As

Publication number Publication date
CN1537367A (zh) 2004-10-13
AU2003235151A1 (en) 2003-10-27
US20040166808A1 (en) 2004-08-26
EP1496625A1 (en) 2005-01-12
JP2003309513A (ja) 2003-10-31

Similar Documents

Publication Publication Date Title
WO2003088522A1 (fr) Dispositif recepteur a antenne reseau adaptative et procede d'etalonnage de reseau d'antennes
KR100471618B1 (ko) 어레이 안테나 수신 장치의 교정 시스템
JP4452628B2 (ja) リアル−タイムでスマート・アンテナ・アレイ・システムを較正する方法
KR100363367B1 (ko) 무선 통신 장치 및 송신 전력 제어 방법
US8140020B2 (en) Radio frequency calibration apparatus and method for multi-antenna mobile communication system
EP1235361B1 (en) Wireless receiver and method of calibration thereof
WO2002095983A1 (fr) Emetteur/recepteur a antenne reseau et procede pour l'etalonner
JP2006005525A (ja) 送信装置
JP2010034937A (ja) 無線通信装置及び無線通信方法、並びにコンピューター・プログラム
JP2000013247A (ja) 送信電力制御回路
JP2000013454A (ja) キャリブレーション装置
JP2006019991A (ja) 通信装置、キャリブレーション方法及びプログラム
JP2000059278A (ja) 無線通信装置
WO2001052446A1 (fr) Appareil de communication radio a antenne reseau et procede d'etalonnage
JP3559030B2 (ja) 無線受信装置及びsir算出方法
US20020034216A1 (en) CDMA receiving apparatus with transmission power control using previous SIR value
JP2002353724A (ja) アレーアンテナ送信パターン校正方法
JP2003264492A (ja) 無線通信装置およびアレイアンテナの特性調整方法
KR100679435B1 (ko) 초기단계부터 지향성 빔의 우수한 수신품질을 갖는 적응형안테나 수신 장치
WO2000060698A1 (fr) Radioemetteur et procede de reglage de la directivite d'emission
JP4578725B2 (ja) 通信装置およびその送信アレーアンテナ校正方法
JP2003032168A (ja) 無線受信装置及び無線受信方法
JP2002344383A (ja) 希望波電力対干渉波電力比測定装置、希望波電力対干渉波電力比測定方法、及び希望波電力対干渉波電力比測定プログラム
KR100540575B1 (ko) 배열 안테나 시스템의 캘리브레이션 장치 및 방법
JP2003092549A (ja) 無線基地装置、送信指向性キャリブレーション方法、および送信指向性キャリブレーションプログラム

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2003719109

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10480294

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20038007193

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2003719109

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2003719109

Country of ref document: EP