WO2003084894A1 - Conducteur mixte complexe et son procede de preparation - Google Patents

Conducteur mixte complexe et son procede de preparation Download PDF

Info

Publication number
WO2003084894A1
WO2003084894A1 PCT/JP2003/004435 JP0304435W WO03084894A1 WO 2003084894 A1 WO2003084894 A1 WO 2003084894A1 JP 0304435 W JP0304435 W JP 0304435W WO 03084894 A1 WO03084894 A1 WO 03084894A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite
phase
oxide
oxygen
type
Prior art date
Application number
PCT/JP2003/004435
Other languages
English (en)
French (fr)
Inventor
Hitoshi Takamura
Masuo Okada
Original Assignee
Japan Science And Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Agency filed Critical Japan Science And Technology Agency
Priority to JP2003582095A priority Critical patent/JP4277200B2/ja
Priority to US10/510,343 priority patent/US7223358B2/en
Publication of WO2003084894A1 publication Critical patent/WO2003084894A1/ja
Priority to US11/783,946 priority patent/US7479242B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0041Inorganic membrane manufacture by agglomeration of particles in the dry state
    • B01D67/00411Inorganic membrane manufacture by agglomeration of particles in the dry state by sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/1411Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes containing dispersed material in a continuous matrix
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • B01D71/0271Perovskites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0229Purification or separation processes
    • C01B13/0248Physical processing only
    • C01B13/0251Physical processing only by making use of membranes
    • C01B13/0255Physical processing only by making use of membranes characterised by the type of membrane
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2666Other ferrites containing nickel, copper or cobalt
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6267Pyrolysis, carbonisation or auto-combustion reactions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/10Catalysts being present on the surface of the membrane or in the pores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/20Specific permeability or cut-off range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/26Electrical properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0043Impurity removed
    • C01B2210/0046Nitrogen
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • C04B2235/3274Ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/449Organic acids, e.g. EDTA, citrate, acetate, oxalate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a composite-type mixed conductor having functions of oxygen ion / electron mixed conductivity and oxygen permeation, and a method for producing the same. More specifically, the present invention relates to a composite-type mixed conductor that can be suitably used as an electrode material for a fuel cell, an oxygen-permeable membrane used for oxygen separation from air or partial oxidation of methane, and a method for producing the same.
  • Background art
  • An oxygen ion-electron mixed conductor has high oxygen ion conductivity and high electron conductivity at the same time.
  • high mixed conductivity is maintained in a wide range from high oxygen partial pressure such as air to extremely low oxygen partial pressure such as hydrogen gas and main gas, and it is usually used. It is required to be chemically and mechanically stable at a temperature of about 500 to 1 000 ° C.
  • 'Oxygen-electron mixed conductors can be broadly classified into the following types.
  • La—Sr_Co—Fe and La—Sr—Ga—Fe-based perovskite oxides are known. (Literature: Chem. Lett., (19985) 1743, Am. Ceram. Soc. Bull., 74 (1995) 71, Cata 1. Today. , 36 (1 997) 26 5. S olid State I on ics,
  • the complex conductivity of a substance is expressed by forming a composite, such as a mixture of yttrium-stabilized zirconia (YSZ), an ionic conductor, and metal Pd, an electron conductor.
  • YSZ yttrium-stabilized zirconia
  • metal Pd an electron conductor
  • gadolinium-doped cell oxide and La—Sr—Mn-based perovskite oxide.
  • the material systems that can provide high mixed conductivity are very limited, whereas in the case of composite types, a wide range of materials can be applied.
  • the composite-type mixed conductor contains several kinds of substances, it is possible to provide a secondary function, for example, a catalytic function.
  • the composite type mixed conductor has its own problems.
  • one is a ceramic and the other is a metal phase, making it difficult to produce a dense sintered body.
  • the thermal expansion coefficients of both phases are significantly different, destruction may occur due to thermal cycling or the like.
  • percollation refers to the case where metal powder exceeds a certain volume fraction (critical volume fraction), for example, when metal powder is mixed with an insulating matrix to obtain electrical conductivity. This is a phenomenon in which a network of metal powder is formed in the insulator and the electrical conductivity sharply increases.
  • the present invention provides an oxygen ion conductive phase and an electronic conductive phase that are uniformly mixed with each other, do not break due to a difference in thermal expansion coefficient, and each of the oxygen ion conductive phase and the electronic conductive phase form a conductive network.
  • a composite type mixed conductor that has high oxygen permeability and is unlikely to deteriorate with time is provided. And the first purpose. It is a second object of the present invention to provide a method for producing the composite-type mixed conductor. Disclosure of the invention
  • the oxygen ion conductive phase contains a catalyst that promotes oxygen ionization of oxygen gas and oxygen ion, or oxygen gas on the surface of the oxygen ion conductive phase. It is characterized by being coated with a catalyst for promoting oxygen ionization and oxygenation of oxygen ion.
  • the oxygen ion conductive phase and the electronic conductive phase each preferably have a fine particle size of 1 ⁇ m or less, each phase is uniformly mixed with each other, and each phase is Forming a conductive network. Also preferably, the volume composition of the electron conductive phase with respect to the oxygen ion conductive phase is 5% to 40%.
  • the oxygen ion conductive phase and the electronic conductive phase have low solid solubility to each other, so that a chemical reaction between the two phases is unlikely to occur, and even if a chemical reaction occurs between the two phases, the mixed conductivity is hindered. Does not occur.
  • the particle size is extremely fine and uniformly mixed, the oxygen ion conductive phase and the electronic conductive phase do not break due to the difference in thermal expansion coefficient, and the volume of the electronic conductive phase relative to the oxygen ion conductive phase is small. Since the composition is 5% to 40%, the electronic conductive phase and the oxygen ion conductive phase each form a conductive network.
  • the method for producing a composite-type mixed conductor of the present invention includes: a metal salt constituting gadolinium-added cerium oxide; a metal salt constituting spinel-type Fe composite oxide; oxygen ionization of oxygen gas; A catalyst that promotes oxygenation of ions, a chelate complex, and a chelate polymerizing agent are mixed to form a polymer, and the polymerized mixed phase is carbonized. It is characterized in that a metal oxide is produced, this oxide is crushed, and the crushed oxide is baked under pressure.
  • the catalyst may be applied after firing under pressure.
  • the acid and the chelating polymerizing agent is ethylene glycol.
  • an oxygen ion conductive phase composed of gadolinium-doped cerium oxide having a fine particle diameter of 1 m or less and an electron conductive phase composed of a spinel-type Fe composite oxide are formed, and oxygen ionization of oxygen gas is performed.
  • a catalyst that promotes oxygenation of oxygen ions, and these phases are finely mixed with each other to produce a composite-type mixed conductor in which each phase forms a conductive network.
  • the method for producing a composite-type mixed conductor of the present invention includes: a metal salt constituting a praseodymium-doped cerium oxide; a metal salt constituting a spinel-type Fe composite oxide; oxygen ionization of oxygen gas; A catalyst that promotes oxygenation of ions, a chelate complex, and a chelate polymerizing agent are mixed to form a polymer, and the polymerized mixed phase is carbonized. It is characterized in that a metal oxide is produced, this oxide is crushed, and the crushed oxide is fired under pressure. The catalyst may be applied after firing under pressure.
  • Carosellium oxide with praseodymium Metal salts constituting the preferably, Ce (N0 3) 3 ⁇ 6H 2 0 and Pr (N 0 3) 3 ⁇ 5H 2 ⁇ , or Ce (NOs) 3 ⁇ 6H 2 ⁇ and P r (OH) 3, and salts of metals constituting the spinel type F e composite oxide phase, Fe (N0 3) 3 ⁇ 9H 2 ⁇ , Co (N0 3) 2 ⁇ 6H 2 ⁇ , N i (NO3) 2 ⁇ 6 H 2 ⁇ , or any one of Mn (N0 3) 2 ⁇ 6H 2 0, or Ri these Kumiawasedea, the catalyst is Ru or N i, or a combination thereof, chelate complexes anhydride Kuen acid And the chelating polymerizing agent is ethylene glycol.
  • an oxygen ion conductive phase composed of praseodymium-doped cerium oxide having a fine particle diameter of 1 ⁇ m or less and an electron conductive phase composed of a spinel-type Fe composite oxide are formed, and oxygen ions of oxygen gas are formed.
  • a composite-type mixed conductor having a catalyst that promotes the formation of oxygen and oxygenation of oxygen ions can be prepared by finely mixing these phases with each other to form a conductive network.
  • FIG. 1 is a view showing a transmission electron microscope image of the GDC-CF0 composite-type mixed conductor of the present invention.
  • FIG. 2 is a view showing a transmission electron microscope image of the GDC—CF ⁇ complex type mixed conductor of the present invention (high magnification).
  • FIG. 3 is a view showing a powder X-ray diffraction image of GDC-xCFO.
  • FIG. 4 is a diagram showing a measurement system used for measuring oxygen permeation characteristics.
  • FIG. 5 is a diagram showing the oxygen transmission characteristics of the composite-type mixed conductor of the present invention.
  • FIG. 6 is a diagram showing the oxygen transmission coefficient of the composite-type mixed conductor of the present invention.
  • FIG. 7 shows the oxygen permeability of the electronically conductive phase of the composite mixed conductor of the present invention.
  • FIG. 4 is a diagram showing the dependence of the volume composition on the conductive phase.
  • FIG. 8 is a diagram schematically illustrating the methane partial oxidation method.
  • FIG. 9 is a view showing the partial oxidation characteristics of the main body by the composite-type mixed conductor of the present invention.
  • the production method of the present invention is characterized by using a liquid phase mixing method, another name, a Pechini method, or a complex polymerization method.
  • a mixed state at the atomic level is obtained by confining various metal elements in a polymer, rather than merely mixing in a liquid state, and a sample with a uniform composition is produced in subsequent firing be able to.
  • Simply dissolving nitrates and chlorides in water mixes at the atomic level in the liquid state, but each salt precipitates out as particles evaporate.
  • the metal element is confined in the complex (polymer), so that a uniform mixed state is maintained even when the liquid phase changes to the solid phase.
  • a liquid-phase mixing method is used because it is necessary to uniformly and finely mix the ion conductor and the electron conductor.
  • the solution raw materials include citrate anhydride (A1 drich, purity 99.5%) as a chelate complex ligand, and ethylene glycol (Al drich, purity 99%) as a chelate polymerizing agent. )
  • citrate anhydride A1 drich, purity 99.5%
  • ethylene glycol Al drich, purity 99%
  • each solution was weighed so as to have a predetermined composition ratio, and mixed with a stirrer.
  • the mixture was stirred for about 4 to 5 hours while gradually raising the temperature to about 200 ° C. to polymerize. When it became sufficiently viscous, it was completely carbonized at 400 ° C in an electric furnace. That is, the C-C chain or the C-H chain was cut. Then, this was lightly ground in an agate mortar and calcined again at 700 ° C in an electric furnace to obtain an oxide phase.
  • the resulting powder was formed into a ⁇ 20 mm ⁇ about lmm pellet by a hydraulic hand press, and then cold isostatically pressed at 300 MPa. The firing conditions were set at 1300 ° C. for 2 hours in the air. Samples containing Ru and Ni and those coated with Ni catalyst on the surface were also fabricated.
  • the production method in the case where the oxygen ion conductive phase is composed of gadolinium-added cerium oxide phase is described.However, the production method in the case where the oxygen ion conductive phase is composed of praseodymium-added carocerium oxide is as described above. Instead of Gd nitrate, Pr nitrate or the like may be used.
  • FIGS. 1 and 2 show transmission electron microscopy images of GDC-17 CF ⁇ fired at 130 ° C.
  • the composition of the GDC is (C e 0. 8 Gdo. 2) is Oi. 9.
  • the white part is the GDC of the oxygen ion conductive phase
  • the black part is the CFO of the electronic conductive phase (confirmed by the microregion composition analyzer). It can be seen that both GDC and CFO have a crystal grain size of 0.1 to 0.5 ⁇ m. Also, as can be seen in FIG. 2, the existence of a grain boundary phase having a width of about 5 O nm is confirmed in the grain boundary region of the particles.
  • FIG. 3 is a view showing a powder X-ray diffraction image of GDC_xCF ⁇ .
  • the electrical characteristics were measured by a four-terminal method by fixing the sample at a constant oxygen partial pressure and a constant temperature, extracting the electrode from the sample, and measuring the electrical characteristics. Electrical characteristics of the sample, p-type hole conduction in the range of oxygen partial pressure 1 to 1 0- 6 atm predominates, also, n-type electronic conductivity in the range of oxygen partial pressure is below 1 0- 6 atm was a predominant mixed conductor.
  • FIG. 4 is a diagram showing a measurement system used for measuring oxygen permeation characteristics.
  • a permeated oxygen measurement section 4 with a hole sealed at the bottom of a transparent quartz tube 1 via a soda glass ring 2 and a ceramic plate 3 with a hole at the bottom of the transparent quartz tube 1
  • An atmospheric pressure applying section 5 is prepared, and a sample 7 is fixed between the two ceramic plates 3 via a gold ring 6.
  • High-temperature air is blown in through the alumina tube 8 from the side of the atmospheric pressure caro part 5.
  • the temperature at the outlet of the alumina tube 8 was measured with a thermocouple 9 to obtain the sample temperature.
  • He gas or a mixed gas of H 2 and Ar is introduced through an alumina tube 10.
  • the amount of oxygen permeating the sample into the He gas flow from the air side is mixed and analyzed by a gas chromatograph and a quadrupole gas mass spectrometer, and the permeation per unit time per unit area is analyzed.
  • the number of oxygen molecules, that is, the oxygen transmission rate j ⁇ 2 is obtained.
  • the case of introducing a mixed gas of H 2 and Ar the permeated oxygen can react with since the water, and half of the amount of decrease between H 2 oxygen transmission rate J_ ⁇ 2 Was.
  • FIG. 5 shows GDC-CF of the present invention.
  • FIG. 4 is a diagram showing a comparison of oxygen transmission characteristics between a composite-type mixed conductor and a conventional composite-type mixed conductor.
  • the type of composite-type mixed conductor is indicated by the volume composition of CFO with respect to GDC and the type of catalyst added, and the measurement temperature is 100 ° C.
  • the lower part of the figure shows the oxygen permeation characteristics of the conventional composite-type mixed conductor.
  • the GDC-CFO composite-type mixed conductor of the present invention has oxygen permeability that is equal to or higher than that of the conventional one.
  • the catalysts containing Ni and Ru and coated with Ni catalyst on the surface showed even higher oxygen permeation characteristics.
  • the 24 CFO- Ru sample when the carrier gas and Ar- H 2, oxygen transmission rate of 1. 2 6 iimo 1 - cm - and "2 s" 1, single-phase This is a point showing oxygen permeation characteristics comparable to the mold mixed conductor.
  • the 24 CF 0—Ru sample was chemically and mechanically stable during the oxygen permeation experiment under Ar—H 2 . From the above, it is understood that the GDC-CFO composite of the present invention is a novel high-performance mixed conductor / oxygen permeable membrane.
  • the GCC was used for comparison, the oxygen ion conductive phase G DC, by a composition formula (Gch- x C a x) C O_ ⁇ volume electronic conductive phase GCC represented by 3 It is a composite mixed conductor mixed with 25%. Also, 25 L SM is a composite type mixture of the oxygen ion conductive phase GDC and the electronic conductive phase LSM represented by the composition formula (L a,-S r) Mn ⁇ 3 mixed in a volume ratio of 25%. It is a conductor.
  • FIG. 6 is a diagram showing the oxygen transmission coefficient of the composite-type mixed conductor of the present invention.
  • the oxygen permeation coefficient used here is a value obtained by multiplying the oxygen permeation flow velocity density by the thickness L of the sample, and is one of the indexes of the permeation characteristics independent of the film thickness.
  • the vertical axis indicates the oxygen permeability coefficient
  • the horizontal axis indicates the temperature.
  • FIG. 7 is a diagram showing the dependence of the oxygen permeability coefficient of the composite mixed conductor of the present invention on the volume composition of the electron conductive phase with respect to the oxygen ion conductive phase.
  • Samples used for measurement of oxygen I turned conductive phase is GDC
  • electron conductive phase is MnF e 2 ⁇ 4.
  • the horizontal axis shows the volume fraction X of the MnF e 2 ⁇ 4 phase with respect to the GDC phase
  • the vertical axis shows the oxygen permeability coefficient.
  • Measurement temperatures are 800T: 900 ° C and 1 000 ° C.
  • the preferred volume composition of the electron conductive phase with respect to the oxygen ion conductive phase is in the range of 5% to 40%.
  • This system supplies pure oxygen to methane by supplying air and air to both sides of an oxygen-permeable ceramic (mixed conductor that can conduct only oxygen ions and electrons; oxygen ion 'electron mixed conductor). Is supplied to the methane side, causing a partial oxidation reaction.
  • the features are: 1) In addition to the exothermic reaction, 2) The oxygen-permeable ceramic membrane does not require electrode materials and interconnects, and the system is simple.3) From air to reforming The required amount of pure oxygen is automatically separated and supplied to the methane side, and 4) the oxygen-permeable ceramic membrane becomes a partition wall for methane and air.
  • the composite-type mixed conductor of the present invention was used for the oxygen-permeable film. It has been methane partial oxidation by supplying Ar one 10% CH 4 gas.
  • Complex type mixing conductor of the present invention used was GDC- 15MnFe 2 0 4.
  • Figure 9 shows the methane partial oxidation characteristics of the composite type mixed conductors of the present invention
  • (a) is a graph showing the change in concentration of CH 4, H 2 and CO in methane partial oxidation, the horizontal axis represents the partial oxidation of methane Time is shown, the left vertical axis shows the concentrations of CH 4 , H 2 and CO, and the right vertical axis shows the oxygen permeation rate j 0 2 .
  • the partial oxidation of methane was performed by gradually increasing the temperature from 800 ° C to 1000 ° C as shown in the figure.
  • FIG. 9 (b) is a diagram showing the H 2 / CO concentration ratio and the selectivity of H 2 and CO during the partial oxidation of methane.
  • the left vertical axis shows the H 2 / C ⁇ concentration ratio
  • the right vertical axis shows the selectivity.
  • the flux density of oxygen permeation at 1,000 ° C reaches 2.7 A / cm 2 when converted to current density.
  • this embodiment was operated continuously for about 1 hour at 800 to 1 000 ° C. However, during and after operation, the characteristics deteriorated. No phase decomposition or cracking occurred. From this, the composite-type mixed conductor of the present invention has sufficient stability both chemically and thermally, and is a composite-type mixed conductor that does not deteriorate.
  • the composite-type mixed conductor of the present invention has high oxygen permeation characteristics and is unlikely to deteriorate with time, so that in addition to hydrogen production by methane reforming, the solid-state electrolyte fuel cell It can also be applied to electrodes and materials. Further, if an oxygen partial pressure gradient is imparted by pressurizing the air side, oxygen can be separated from air, so that it can be applied to a pure oxygen or oxygen-enriched gas generator.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • Electrochemistry (AREA)
  • Thermal Sciences (AREA)
  • Conductive Materials (AREA)
  • Inert Electrodes (AREA)
  • Catalysts (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

明 細 書 複合体型混合導電体及びその作製方法 技術分野
本発明は、 酸素イオン ·電子混合導電性および酸素透過という機能を有する複 合体型混合導電体およびその作製方法に関するものである。 さらに詳しくは、本 発明は、 燃料電池の電極材料や、空気からの酸素分離またはメタンの部分酸化に 供される酸素透過膜として好適に使用され得る複合体型混合導電体と、 その作製 方法に関する。 背景技術
酸素イオン '電子混合導電体は、 高い酸素イオン導電率と電子導電率を同時に 有するものである。 この物質を上述の分野に応用するためには、 高い混合導電性 が空気等の高酸素分圧から水素ガスゃメ夕ンといった極低酸素分圧に至る幅広い 領域で維持され、 かつ、通常使用される 500〜1 000°C程度の温度で化学的 、 機械的に安定であることが要求される。 ' 酸素ィ "ン ·電子混合導電体 (混合導電体) には大きく分類して以下の 1つの 型がある。
( 1 ) 単相型混合導電体
これは、 その物質自体が混合導電性を有するものであり、 例としては、 La— S r_C o— F e、 および L a— S r—Ga— F e系べロブスカイト型酸化物が 知られている (文献: Che m. Le t t. , ( 1 9 85) 1 743、 Am. C e r am. S o c. Bu l l . , 74 ( 1 99 5 ) 7 1、 C a t a 1. To d ay, 36 (1 997) 26 5. S o l i d S t a t e I on i c s,
1 29 (2000) 285. S o l i d S t a t e I on i c s, 1 3 5
( 2000 ) 63 1参照) 。
( 2 ) 複合体型混合導電体
これは、 単体としては、 酸素イオン導電性または電子導電性のいずれか一方し か示さなレ、物質を複合体とすることにより混合導電性を発現させるものであり、 例としてはイオン導電体であるイットリウム安定化ジルコニァ (Y S Z ) と電子 伝導体である金属 P dの混合体ゃガドリニゥム添加セリゥム酸化物と L a— S r 一 M n系べロブスカイト型酸化物の混合体等がある。
単相型混合導電体の場合は高い混合導電性が得られる物質系が非常に限られて いるのに対し、 複合体型では幅広い材料が適用対象となりうる。 また、複合体型 混合導電体では数種類の物質を含有することから、 副次的な機能、 例えば触媒機 能等を付与することも可能となる。
し力、し、 複合体型混合導電体にも特有の問題がある。 例えば、 Y S Z— P d複 合体では一方がセラミックスであるのに対し他方は金属相であるため、緻密な焼 結体を作製するのが困難であること、 また、 緻密な焼結体が得られても両相の熱 膨張係数が大きく異なる場合、 熱サイクル等により破壊が生じることが挙げられ る。
さらに、 混合導電性を発現させるためには酸素イオン導電相と電子導電相が、 各々導電ネットワークを形成する必要があるため、 各相の体積分率に起因するパ —コレーシヨンの問題を考慮する必要がある。 パ一コレーシヨンとは、例えば金 属の粉体を絶縁体のマトリックスに混合して電気伝導性を得ようとするとき、 金 属粉体がある体積分率 (臨界体積分率) を越えたときに絶縁体中に金属粉体のネ ットワークができて電気伝導性が急激に増加する現象である。
また、 高い混合導電性が得られる場合でも、 高温での使用時に雨相が化学反応 を引き起こし、 界面に混合導電性を阻害する異相が形成されることによる経時劣 化が起こりやすいことが、 ガドリニウム添加セリウム酸化物と L a— S r _ M n 系べロブスカイト型酸化物の混合体において指摘されている (文献: S 0 1 i d
S t a t e I o n i c s 1 4 6 ( 2 0 0 2 ) 1 6 3、 及び J . E u r . C e r am. S o c . 2 1 ( 2 0 0 1 ) 1 7 6 3参照) 。
上記課題に鑑み、 本発明は、 酸素イオン導電相と電子導電相とが均一に混合す ると共に熱膨張係数の違いによつて破壊せず、 酸素ィォン導電相と電子導電相が 各々導電ネットワークを形成し、 両相が反応しても異相が形成されない、 従って 、酸素透過性が高く、経時劣化も起こりにくい複合体型混合導電体を提供するこ とを第 1の目的とする。 さらに、 この複合体型混合導電体の作製方法を提供する ことを第 2の目的とする。 発明の開示
上記目的を達成するために、本発明の複合体型混合導電体は、 酸素イオン導電 相がガドリニウム添カ卩セリウム酸化物 (組成式: Ce,- X Gdx 02-x/2 、 ただ し、 0<x< 0. 5)からなり、電子導電相がスピネル型 F e複合酸化物 (組成 式: MF e2 04 、 ただし、 M = Mn, F e, Co, N i ) からなることを特徴 とする。
また、 本発明の複合体型混合導電体は、酸素イオン導電相がプラセオジム添カロ セリウム酸化物 (組成式: Ce,-X Prx2χ/2 ) からなり、 電子導電相がス ピネル型 Fe複合酸化物 (組成式: MFe24 、 ただし、 M = Mn, F e, C 0, N i ) からなることを特徴とする。
本発明の複合体型混合導電体において、酸素イオン導電相は、酸素ガスの酸素 イオン化及び酸素イオンの酸素化を促進する触媒を含有しているか、 または、 酸 素ィォン導電相の表面に酸素ガスの酸素ィォン化及び酸素ィォンの酸素化を促進 する触媒が塗布されていることを特徴とする。
本発明の複合体型混合導電体において、 酸素ィォン導電相及び電子導電相は、 好ましくは、 それぞれ 1〃m以下の微細粒径を有し、 各々の相が互いに均一に混 合し、 各相が導電ネットワークを形成している。 また好ましくは、電子導電相の 酸素イオン導電相に対する体積組成は、 5%から 40%である。
この構成によれば、酸素ィォン導電相と電子導電相が互いに低い固溶度を有し ており両相間の化学反応が起こりにくく、 また両相間で化学反応が起こつても混 合導電性を阻害する異相が生じない。 また、粒径が極めて微細で均一に混合して いるから、酸素ィォン導電相と電子導電相とが熱膨張係数の違いによつて破壊せ ず、 また、 電子導電相の酸素イオン導電相に対する体積組成が 5%から 40%で あるので、電子導電相と酸素イオン導電相が各々導電ネットワークを形成する。 また、酸素ガスの酸素ィォン化及び酸素ィォンの酸素化を促進する触媒を含有、 または表面に塗布されているので、 酸素イオン及び酸素の生成速度が大きい。 従 つて、 .酸素透過性が高く、 経時劣化も起こりにくい複合体型混合導電体を提供す ることができる。
また、本発明の複合体型混合導電体の作製方法は、 ガドリニゥム添加セリウム 酸化物を構成する金属の塩と、 スピネル型 F e複合酸化物を構成する金属の塩と 、酸素ガスの酸素イオン化及び酸素イオンの酸素化を促進する触媒と、 キレート 錯体と、 キレート重合剤とを混合して高分子化し、 この高分子化した混合相を炭 化し、 この炭化した混合相の炭素を酸化脱離して上記金属の酸化物を作製し、 こ の酸化物を粉砕し、 この粉碎した酸化物を加圧焼成して作製することを特徴とす る。
前記触媒は、 加圧焼成後に塗布しても良い。 ガドリニゥム添加セリゥム酸化物 を構成する金属の塩は、 好ましくは、 Ce (NOs ) 3 · 6H2 〇及び Gd (N Oa ) 3 · 5H2 〇、 または Ce (NOa ) 3 · 6H2 0及び Gd (OH) 3 で あり、 スピネル型 F e複合酸化物相を構成する金属の塩は、 Fe (N03 ) 3 - 9H2 ◦、 Co (N03 ) 2 · 6H2 0、 N i (N03 ) 2 · 6 H2 〇、 または 、 Mn (NO3 ) 2 · 6H2 〇のいずれか 1つ、 またはこれらの組み合わせであ り、触媒は Ruまたは Ni、 またはこれらの組み合わせであり、 キレート錯体は 無水クェン酸であり、 キレート重合剤はェチレングリコ一ルである。
この方法によれば、 1 m以下の微細粒径を有するガドリユウム添加セリウム 酸化物からなる酸素イオン導電相、 及びスピネル型 F e複合酸化物からなる電子 導電相が形成され、酸素ガスの酸素ィォン化及び酸素ィォンの酸素化を促進する 触媒を有し、 これらの相が互いに微細に混合して各々の相が導電ネットワークを 形成した複合体型混合導電体を作製することができる。
また、本発明の複合体型混合導電体の作製方法は、 プラセオジム添加セリウム 酸化物を構成する金属の塩と、 スピネル型 F e複合酸化物を構成する金属の塩と 、酸素ガスの酸素イオン化及び酸素イオンの酸素化を促進する触媒と、 キレート 錯体と、 キレート重合剤とを混合して高分子化し、 この高分子化した混合相を炭 化し、 この炭化した混合相の炭素を酸化脱離して上記金属の酸化物を作製し、 こ の酸化物を粉砕し、 粉砕した酸化物を加圧焼成して作製することを特徴とする。 前記触媒は、 加圧焼成後に塗布しても良い。 プラセオジム添カロセリウム酸化物 を構成する金属の塩は、 好ましくは、 Ce (N03 ) 3 · 6H2 0及び Pr (N 03 ) 3 ■ 5H2 ◦、 または Ce (NOs ) 3 · 6H2 〇及び P r (OH) 3 で あり、 スピネル型 F e複合酸化物相を構成する金属の塩は、 Fe (N03 ) 3 · 9H2 〇、 Co (N03 ) 2 · 6H2 〇、 N i (NO3 ) 2 · 6 H2 〇、 または 、 Mn (N03 ) 2 · 6H2 0のいずれか 1つ、 またはこれらの組み合わせであ り、 触媒は Ruまたは N i、 またはこれらの組み合わせであり、 キレート錯体は 無水クェン酸であり、 キレート重合剤はェチレングリコールである。
この方法によれば、 1; um以下の微細粒径を有するプラセオジム添加セリゥム 酸化物からなる酸素イオン導電相、 及びスピネル型 F e複合酸化物からなる電子 導電相が形成され、酸素ガスの酸素ィォン化及び酸素ィォンの酸素化を促進する 触媒を有し、 これらの相が互いに微細に混合して各々の相が導電ネッ卜ワークを 形成した複合体型混合導電体を作製することができる。
本発明によれば、酸素透過性が高く、 経時劣化も起こりにくい複合体型混合導 電体を提供することができる。 図面の簡単な説明
本発明は以下の詳細な説明及び本発明の実施例を示す添付図面によって、 より よく理解されるものとなろう。 なお、 添付図面に示す実施例は本発明を限定する ことを意図するものではなく、 単に本発明の説明及び理解を容易とするためのも のである。
図 1は、本発明の G DC-CF 0複合体型混合導電体の透過電子顕微鏡像を示 す図である。
.図 2は、本発明の G D C— C F〇複合体型混合導電体の透過電子顕微鏡像を示 す図である (高倍率) 。
図 3は、 GDC— xCFOの粉末 X線回折像を示す図である。
図 4は、酸素透過特性の測定に用いた測定系を示す図である。
図 5は、本発明の複合体型混合導電体の酸素透過特性を示す図である。
図 6は、 本発明の複合体型混合導電体の酸素透過係数を示す図である。
図 7は、本発明の複合体型混合導電体の酸素透過係数の、 電子導電相の酸素ィ ォン導電相に対する体積組成依存性を示す図である。
図 8は、 メタン部分酸化法の概略を示す図である。
図 9は、本発明の複合体型混合導電体によるメ夕ン部分酸化特性を示す図であ る。 発明を実施するための最良の形態
以下、 本発明の実施の形態を図面を参照しつつ、 具体的な実施例に基づいて詳 細に説明する。
初めに、 本発明の作製方法を説明する。 本発明の作製方法は、 液相混合法、 別 名、 Pe ch i n i法、 あるいは錯体重合法を使用することを特徴としている。 この方法によれば、 単なる液体状態の混合ではなく、 種々の金属元素を重合体の 中に閉じ込めることによる原子レベルでの混合状態を得て、 引き続く焼成におい て均一な組成を有する試料を作製することができる。 単に硝酸塩や塩化物を水に 溶かしただけでは、 液体の状態では原子レベルで混合されるが、蒸発に伴い各塩 が粒として析出してしまう。 液相混合法では錯体 (ポリマー) の中に金属元素が 閉じ込められるので、液相から固相になっても均一な混合状態が保たれる。 本発 明では、 ィォン導電体と電子伝導体を均一にかつ微細に混合する必要があるため 、 液相混合法を使用する。 また、 その均一混合性が良いために、一般に、 両相が 予期しない副次的な反応を引き起こすものであるが、 本発明の、 ガドリニウム添 加セリウム酸化物 (組成式: Ce i-X Gdx 02-x/2 ) 相とスピネル型 Fe複合 酸化物 (組成式: MF e24 、 ただし、 M = Mn, F e, C o又は N i )相、 または、 プラセオジム添加セリウム酸化物 (組成式: C e i— Ρ Γ χ 〇2 /2 ) 相とスピネル型 F e複合酸化物相では、 このような好ましくない副次的な反応が 極めて少ない。
次に、本発明の作製方法を、 M = Coの場合を例にとって詳細に説明する。 液 相混合法における溶液原料には、 キレート錯体配位子として無水クェン酸 (A1 d r i ch社製, 純度 99. 5%) 、 キレート重合剤としてエチレングリコール (Al dr i ch社製, 純度 99%) を用いた。 また、金属元素としては、 Ce (N〇3 ) a · 6H2 0 (高純度化学社製, 純度 99. 9%) 、 Gd (N〇3)3 • 5H2 〇 (高純度化学社製, 純度 9 9. 9%) 、 F e (N〇3 ) 3 · 9 H2 0 (高純度化学社製, 純度 9 9. 9%) 、 C o (N〇3 ) 2 · 6 H2 0 (高純度化 学社製, 純度 9 9. 9 %) を使用した。
まず、 所定の組成比となるようにそれぞれの溶液を秤量し、 スターラーで混合 した。 徐々に温度を 2 0 0°C程度まで上げながら 4〜 5時間程度攪拌し、 高分子 化させた。 十分に粘性が高くなつた段階で、 電気炉にて 40 0 °Cで完全に炭化さ せた。 すなわち、 C一 C鎖または C一 H鎖を切った。 その後、 メノウ乳鉢でこれ を軽く粉砕し、 再び電気炉で 700°Cにて仮焼し、酸化物相を得た。 得られた粉 末は油圧式ハンドプレスにて ø 20 mm X約 lmmのペレツト状に成型し、 その 後 3 0 0 MP aにて冷間静水圧プレスした。 焼成条件は 1 3 0 0°C、 2時間、 大 気中とした。 また、 試料として Ru, N iを含有するもの、 および表面に N i触 媒を塗布したものも作製した。
なお、 上記説明では、酸素イオン導電相がガドリニウム添カ卩セリウム酸化物相 からなる場合の製造方法を説明したが、酸素ィォン導電相がプラセオジム添カロセ リウム酸化物からなる場合の製造方法は、上記の Gd硝酸塩にかえて、 P r硝酸 塩等を用いればよい。
次に、 上記製造方法で製造した本発明の複合体型混合導電体の構造について説 明する。 なお、 以後の説明を簡潔にするために、 (C ex Gd,- ) 〇2-。.5xを GDCと呼び、 C oF e2 04 を CFOと呼び、 GD Cに対する C F〇の体積組 成 (体積分率) を Xで表す。 また、 X · vo 1 %のスピネル型酸化物 (CFO) を含有する試料を GDC— xCFOと呼ぶ。
図 1および図 2は、 1 3 0 0 °Cで焼成された GD C— 1 7 C F〇の透過電子顕 微鏡像を示す図である。 GDCの組成は (C e0.8 Gdo.2 ) Oi.9 である。 図 1において、 白い部分が酸素イオン導電相の GDC、 黒い部分が電子導電相 の CFOである (微少領域組成解析装置により確認した) 。 GDC、 CFOとも に 0. 1 〜0. 5〃mの結晶粒径となっていることがわかる。 また、 図 2にお いて顕著にみられるように、 粒子の粒界領域に、 約 5 O nmの幅をもつ粒界相の 存在が確認される。 通常の複合体型混合導電体ではこのような粒界相の生成が混 合導電性を阻害するが、 本試料においては、 この部分は各々 1 O nm程度の超微 細な GDCと CFOの混合状態となっていることが確認された。
図 3は GDC_xCF〇の粉末 X線回折像を示す図である。
x= 1 6. 7, 3 1. 4, 64. 6 vo 1 %の三種類の試料の粉末 X線回折像 を示している。 図において、 〇は Cex Gdi-X 02 固溶体に起因する回折ピ一 クであり、 ▼は CoF e24 (F eスピネル酸化物) に起因する回折ピ一クで ある。 粉末 X線回折の結果から、 GDCは Cex Gd,-x 〇2 固溶体であり、 C F〇は C oF e24 (F eスピネル酸化物) であることが確認された。
なお、 1 000°Cで長時間、 空気からの酸素分離またはメタンの部分酸化に使 用した後に、 GdF e〇3 ベロブスカイト型酸化物の微弱な回折ピークが観測さ れたが、 酸素分離またはメタンの部分酸化能力に変化がないことから、 この酸化 物は混合導電性を阻害しない。
次に、 試料の電気的特性、及び酸素透過特性を説明する。
電気的特性は、一定酸素分圧中、 一定温度中に試料を固定し、 試料から電極を 引き出して 4端子法で測定した。 試料の電気特性は、 酸素分圧が 1〜1 0— 6a t mの範囲においては p型ホール伝導が優勢であり、 また、酸素分圧が 1 0— 6 a t m以下の範囲においては n型電子伝導が優勢である混合導電体であることが確認 された。
図 4は、酸素透過特性の測定に用いた測定系を示す図である。 透明石英管 1の 底部にソーダガラスのリング 2を介して、 穴を有するセラミツクス板 3を密封し て固定した透過酸素測定部 4と、 透明石英管 1の底部に穴を有するセラミックス 板 3を固定した大気圧印加部 5とを用意し、 この両方のセラミックス板 3の間に 金リング 6を介して試料 7を固定する。 大気圧印カロ部 5側から、 アルミナ管 8を 介して高温の空気を送り込む。 アルミナ管 8の出口の温度を熱電対 9で測定して 試料温度とした。 Heガス、 または H2 と Arの混合ガスをアルミナ管 1 0を介 して導入する。 Heを導入した場合は、 Heガス流に空気側から試料を透過し混 合された酸素量をガスクロマト装置、 及び 4重極型ガス質量分析装置により分析 し、単位時間当たり単位面積当たりの透過酸素分子数、 すなわち、酸素透過速度 j〇2 を求める。 また、 H2 と Arの混合ガスを導入した場合は、透過した酸素 が と反応して水になるので、 H2 の減少量の半分を酸素透過速度 j〇2 とし た。
図 5は、本発明の G D C— C F。複合体型混合導電体と従来の複合体型混合導 電体との酸素透過特性の比較を示す図である。 図において、 複合体型混合導電体 の種類を、 GDCに対する CFOの体積組成と添加触媒の種類で示しており、 測 定温度は 1 0 0 0°Cである。 また、 図の下段には、従来の複合体型混合導電体の 酸素透過特性を示す。
図から明らかなように、 本発明の GDC— CFO複合体型混合導電体の酸素透 過特性は、 従来のものと同等もしくはそれ以上の酸素透過特性を示している。 また、 触媒として N iおよび Ruを含有させ、 表面に N i触媒を塗布したもの ( 2 4 CFO-N iおよび 24 CFO-Ru) はさらに高い酸素透過特性を示し た。 これに加えて特筆すべきことは、 24 CFO— Ru試料において、 キャリア ガスを Ar— H2 とした場合、酸素透過速度が 1. 2 6 iimo 1 - cm"2 - s"1 と、単相型混合導電体に匹敵する酸素透過特性を示した点である。 この 24 CF 0— Ru試料は、 Ar— H2 下での酸素透過実験中も化学的 '機械的に安定であ つた。 以上のことから、本発明の GDC— CFO複合体は新規な高性能混合導電 体 ·酸素透過膜であることがわかる。
なお、 図 5において、 比較に用いた 2 5 GCCとは、酸素イオン導電相 G DC に、 組成式 (Gch— x C ax ) C o〇3 で表される電子導電相 GCCを体積比で 2 5%混合した複合型混合導電体である。 また、 2 5 L SMとは、酸素イオン導 電相 GDCに、 組成式 (L a,- S r ) Mn〇3 で表される電子導電相 L S M を体積比で 2 5%混合した複合型混合導電体である。
図 6は本発明の複合体型混合導電体の酸素透過係数を示す図である。 ここで用' いる酸素透過係数とは、酸素透過流速密度に試料の厚さ Lを乗算した値であり、 膜厚に依存しない透過特性の指標の一つである。 用いた試料は、 (Ce。.8 Gd o. ) 〇2 - 1 5 V 0 1 MnF e 24 と、 (C e0.8 P r 0.2 ) 〇2 - 1 5 vo 1 %MnF e 2 04 である。 図において、 縦軸は酸素透過係数を示し、横軸 は温度を示す。 △は (C e0.8 G do. ) 02 一 1 5MnF e 2 04 の酸素透過 係数を示し、 〇は (C e。.8 P r 2 ) 02 — 1 5 Mの酸素透過係数を示す。 この図から、 プラセオジム添加セリゥム酸化物をイオン導電相とする複合体型 混合導電体は、 ガドリニゥム添加セリゥム酸化物をィォン導電相とする複合体型 混合導電体よりも酸素透過係数が大きいことがわかる。 なお、 ΡΓは Gdよりも コストが低いのでプラセオジム添カ卩セリウム酸化物をイオン導電相とする複合体 型混合導電体は実用化上極めて有用である。
次に、 電子導電相の酸素ィォン導電相に対する体積組成について説明する。 図 7は本発明の複合体型混合導電体の酸素透過係数の、電子導電相の酸素ィォ ン導電相に対する体積組成依存性を示す図である。 測定に用いた試料は、酸素ィ オン導電相が GDC、電子導電相が MnF e24 である。 横軸は、 MnF e24 相の GDC相に対する体積分率 Xを示し、縦軸は酸素透過係数を示す。 測定 温度は 800T:、 900°C及び 1 000°Cである。
図からわかるように、 x= 5%から実用可能な酸素透過係数を有しており、 1 000°Cのグラフに見られるように x==40%を越えると酸素透過係数が倉、激に 小さくなる。 従って、電子導電相の酸素イオン導電相に対する好ましい体積組成 は 5 %〜 40 %の範囲である。
次に、 本発明の複合体型混合導電体をメタンの部分酸化改質に応用した実施例 を示す。 初めに、複合体型混合導電体によるメタンの部分酸化改質の有用性につ いて説明する。 メタンからの水素製造方法としては、従来技術として水蒸気改質 法がある。 この反応は次式で与えられる。
Figure imgf000011_0001
CO + HaO ^ C02 + H2 厶 H298 =— 41 · 6 k J /m o I ( 2 ) この水蒸気改質では式 ( ) で表されるシフト反応を利用することにより 1モ ルのメ夕ンから 4モルの水素を製造することが可能であり、現在開発が進められ ている家庭用固体高分子型燃料電池はこの方式を用いている。 しかし、 この水蒸 気改質法は 20 O k J/mo 1程度の大きな吸熱反応であるため、 起動性が悪く 、 反応を維持するために大量の熱を供給する必要がある。 これに対し次式 (3) で示される部分酸化法は発熱反応であるため、 エネルギーミニマムの観点から現 在注目されているメタン改質方法である。
CH4+ 1/202> CO+2 H2 Δ H298 = - 35. 7 k J/mo I (3) この方法では、 水蒸気改質と同様にシフト反応を用いることにより 1モルのメ タンから 3モルの水素を製造することが可能である。 この反応は 36 k J /m 0 1程度の発熱反応であり、 エネルギー効率、 起動性の観点から好ましい改質方法 である。 しかし、 この方法がこれまで水蒸気改質に比べて注目されていなかった 理由としては、 1)酸化剤として空気を用いると、 生成した水素は窒素との混合 ガスとなるので水素濃度が低くなること、 2 ) 純酸素を酸化剤に利用すると上記 1) の問題は改善されるが、 純酸素を深冷法などで生成するコストは極めて高い こと、 3 ) メタンと酸化剤を同時に供給するのでその制御が難しく、安全性の観 点からも問題があることが挙げられる。 これらの従来の部分酸化法の欠点を克服 する方法が、酸素透過性膜を用いたメタン部分酸化法である。
この方法の概略を図 8に示す。 このシステムでは空気とメ夕ンを酸素透過性セ ラミックス (酸素ィォンと電子のみが伝導できる混合導電体;酸素ィオン '電子 混合導電体) を挟んで両側に供給することにより、 純酸素がメタン側に供給され 、 メタン側で部分酸化反応が引き起こされる。 特徴としては、 1)発熱反応であ ることに加えて、 2)酸素透過性セラミックス膜には電極材料やインタ一コネク 夕を必要とせずシステムが単純であること、 3 ) 空気から改質に必要な量だけの 純酸素が自動的に分離されメタン側に供給されること、 さらに、 4)酸素透過性 セラミツクス膜がメタンと空気の隔壁となることが挙げられる。
本実施例では、 この酸素透過膜に本発明の複合体型混合導電体を用いた。 Ar 一 10%CH4 ガスを供給してメタン部分酸化を行った。 用いた本発明の複合体 型混合導電体は GDC— 15MnFe 2 04 である。
図 9は本発明の複合体型混合導電体によるメタン部分酸化特性を示し、 (a) はメタン部分酸化中の CH4 、 H2 及び COの濃度変化を示す図であり、 横軸は メタン部分酸化時間を示しており、 左の縦軸は CH4 、 H2 及び COの濃度を示 し、 右の縦軸は酸素透過速度 j 02 を示す。 なお、 メタン部分酸化は図中に示し ているように、 温度を 800°Cから 1000 °Cまで段階的に上昇させて行った。 図 9 (b) は上記のメタン部分酸化中における H2 /CO濃度比及び H2 、 CO の選択率 (Se l e c t i v i ty) を示す図である。 左の縦軸は H2 /C〇濃 度比を示し、右の縦軸は選択率を示す。 図 9 (a) より、 本発明の GDC— l 5MnF e2 04 複合体型混合導電体は 、 1 000 °Cにおいて既存材料中で最高の酸素透過速度を示す L a-S r-Ga 一 F e系べロブスカイト型酸化物に匹敵する 7〃mo 1 · cm— 2 s—1の高い酸素 透過量を示し、 800°Cにおいても 2 πιο 1 · cm— 2 s—1と良好な特性を示し ていることがわかる。 この 1 000°Cにおける酸素透過量流束密度は電流密度に 換算すると 2. 7 A/cm2 に達する。 また、 図 9 (b) の H2 /CO比、 及び H2 と C〇の選択率がいずれも 90%を越えることから上 ΐ己式 (3) で示したメ タン部分酸化反応が主に生じていることがわかる。 また、 H2 /CO比が理論値 の 2より高く 2. 3〜2. 4を示すこと力、ら、 式 ( 3 ) に示した部分酸化反応に 加えて、 上記式 (2) で示したシフト反応も生じていると考えられる。
また、本実施例は上図から明らかなように、 800〜1 000°Cにおいて約 1 時間連続して動作させたが、 動作中及び動作後におレ、て特性の劣化;^見られず、 また、 相の分解やクラックも発生しなかった。 このことから、本発明の複合体型 混合導電体は、化学的 ·熱的にも十分な安定性を有しており、 劣化が生じない複 合体型混合導電体である。
以上、 本発明の例示的な実施例について説明したが、 本発明の要旨及び範囲を 逸脱することなく、 実施例での種々の変更、 省略、 追加が可能である。 従って、 本発明は上記した実施例に限定されるものではなく、 請求の範囲に記載された要 素によつて規定される範囲及びその均等範囲を包含するものとして理解されなけ ればならない。 産業上の利用可能性
上記説明から理解されるように、本発明の複合体型混合導電体は高い酸素透過 特性を有し、 また経時劣化も起こりにくいので、 メタン改質による水素製造に加 えて、 固体電解質型燃料電池の電極.材料にも応用することができる。 また、 空気 側を加圧することにより酸素分圧勾配を付与すれば、 空気からの酸素分離が可能 であることから純酸素や酸素富化ガスの生成装置に適用することも可能である。

Claims

; 請求 の 範 囲
1. 酸素ィォン導電相がガドリユウム添カ卩セリゥム酸化物 (組成式: C e i -x G d x O 2-X/2 、 ただし、 0<x< 0 . 5 ) からなり、電子導電相がスピネ ル型 Fe複合酸化物 (組成式: MFe24 、 ただし、 M = Mn, Fe, Co又 は N i ) からなることを特徴とする、 複合体型混合導電体。
2 . 酸素イオン導電相がプラセオジム添加セリウム酸化物 (組成式: C e i-x Prx 02-x/2 ) からなり、電子導電相がスピネル型 F e複合酸化物 (組成 式: MF e 2 04 、 ただし、 M = Mn, F e, C 0又は N i ) からなることを特 徴とする、 複合体型混合導電体。
3 . 前記酸素イオン導電相は、 酸素ガスの酸素イオン化及び酸素イオンの 酸素化を促進する触媒を含有しているか、 上記触媒が塗布されているか、 または 上記触媒を含有しかつ上記触媒が表面に塗布されていることを特徴とする、請求 の範囲 1または 2に記載の複合体型混合導電体。
4 . 前記触媒は、 Ruまたは Ni、 またはこれらの組み合わせであること を特徴とする、請求の範囲 3に記載の複合体型混合導電体。
5 . 前記酸素イオン導電相及び電子導電相は、 それぞれ l〃m以下の微細 粒径を有し、 上記各々の相が互いに均一に混合し、上記各相がそれぞれ導電ネッ トワークを形成していることを特徴とする、請求の範囲 1〜4のいずれかに記載 の複合体型混合導電体。
6. 前記電子導電相の酸素ィォン導電相に対する体積組成は、 5 %から 4 0 %であることを特徴とする、 請求の範囲 1〜 5のいずれかに記載の複合体型混
7. ガドリニウム添加セリウム酸化物を構成する金属の塩と、 スピネル型 F e複合酸化物を構成する金属の塩と、酸素ガスの酸素イオン化及び酸素イオン の酸素化を促進する触媒と、 キレート錯体と、 キレート重合剤とを混合して高分 子化し、 この高分子化した混合相を炭化し、 この炭化した混合相の炭素を酸化脱 離して上記金属の酸化物相を作製し、 この酸化物相を粉砕し、 この粉砕した酸化 物相を加圧焼成して複合体型導電体を作製することを特徴とする、 複合体型混合 導電体の作製方法。
8. ガドリニゥム添加セリゥム酸化物を構成する金属の塩と、 スピネル型 F e複合酸化物を構成する金属の塩と、 キレート錯体と、 キレート重合剤とを混 合して高分子化し、 この高分子化した混合相を炭化し、 この炭化した混合相の炭 素を酸ィ匕脱離して上記金属の酸化物相を作製し、 この酸化物相を粉砕し、 この粉 砕した酸化物相を加圧焼成し、酸素ガスの酸素ィォン化及び酸素ィォンの酸素化 を促進する触媒を塗布して作製することを特徴とする、 複合体型混合導電体の作 製方法。
9. 前記ガドリ二ゥム添カ卩セリゥム酸化物を構成する金属の塩は、
C e (N03 ) 3 · 6H2 0及び Gd (N〇3 ) 3 · 5H2 〇、 または
Ce (N03 ) 3 · 6H2 〇及び Gd (OH) 3 であり、
前記スピネル型 F e複合酸化物相を構成する金属の塩は、
F e (NO3 ) 3 · 9H2 〇、
Co (N03 ) 2 · 6H2 0、
N i (N03 ) 2 · 6H2 〇、
Mn (N03 ) 2 . 6H2 〇、
のいずれか 1つまたはこれらの組み合わせであり、
前記触媒は Ruまたは N i、 またはこれらの組み合わせであり、
前記キレート錯体は無水クェン酸であり、
前記キレート重合剤はェチレングリコールであることを特徴とする、 請求の範 囲 7または 8に記載の複合体型混合導電体の作製方法。
10. プラセオジム添カ卩セリウム酸化物を構成する金属の塩と、 スピネル 型 F e複合酸化物を構成する金属の塩と、 酸素ガスの酸素イオン化及び酸素ィォ ンの酸素化を促進する触媒と、 キレ一ト錯体と、 キレ一ト重合剤とを混合して高 分子化し、 この高分子化した混合相を炭化し、 この炭化した混合相の炭素を酸化 脱離して上記金属の酸化物相を作製し、 この酸化物相を粉砕し、 この粉砕した酸 化物相を加圧焼成して複合体型導電体を作製することを特徴とする、複合体型混 合導電体の作製方法。
1 1. プラセオジム添加セリウム酸化物を構成する金属の塩と、 スピネル 型 Fe複合酸化物を構成する金属の塩と、 キレート錯体と、 キレート重合剤とを 混合して高分子化し、 この高分子化した混合相を炭化し、 この炭化した混合相の 炭素を酸化脱離して上記金属の酸化物相を作製し、 この酸化物相を粉砕し、 この 粉砕した酸化物相を加圧焼成し、酸素ガスの酸素ィォン化及び酸素ィォンの酸素 化を促進する触媒を塗布して作製することを特徴とする、 複合体型混合導電体の 作製方法。
12. 前記プラセオジム添加セリウム酸化物を構成する金属の塩は、 Ce (N〇3 ) a · 6 H2 〇及び Fr (N〇3 ) 3 · 6H2 〇、 または Ce (N03
) a · 6 H2 0及び Pr (OH) a · 6H2 0であり、
前記スピネル型 F e複合酸化物相を構成する金属の塩は、 F e (N03 ) 3 · 9H2 〇、 Co (N〇3 ) 2 · 6H2 〇、 N i (N03 ) 2 · 6H2 〇および M n (N03 ) 2 · 6H2 0のいずれか 1つまたはこれらの組み合わせであり、 前記触媒は Ruまたは N i、 またはこれらの組み合わせであり、
前記キレート錯体は無水クェン酸であり、
前記キレート重合剤はェチレングリコールであることを特徴とする、請求の範 囲 10または 1 1に記載の複合体型混合導電体の作製方法。
PCT/JP2003/004435 2002-04-10 2003-04-08 Conducteur mixte complexe et son procede de preparation WO2003084894A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003582095A JP4277200B2 (ja) 2002-04-10 2003-04-08 複合体型混合導電体の作製方法
US10/510,343 US7223358B2 (en) 2002-04-10 2003-04-08 Complex mixed conductor and its preparing method
US11/783,946 US7479242B2 (en) 2002-04-10 2007-04-13 Complex mixed conductor containing Pr-doped cerium oxide and spinel-type ferrite and its preparation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002108504 2002-04-10
JP2002-108504 2002-04-10

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10510343 A-371-Of-International 2003-04-08
US11/783,946 Division US7479242B2 (en) 2002-04-10 2007-04-13 Complex mixed conductor containing Pr-doped cerium oxide and spinel-type ferrite and its preparation method

Publications (1)

Publication Number Publication Date
WO2003084894A1 true WO2003084894A1 (fr) 2003-10-16

Family

ID=28786519

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/004435 WO2003084894A1 (fr) 2002-04-10 2003-04-08 Conducteur mixte complexe et son procede de preparation

Country Status (3)

Country Link
US (2) US7223358B2 (ja)
JP (2) JP4277200B2 (ja)
WO (1) WO2003084894A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005281086A (ja) * 2004-03-30 2005-10-13 Tdk Corp 複合体型混合導電体及びその製造方法
JP2005310607A (ja) * 2004-04-23 2005-11-04 Toyota Motor Corp 燃料電池用カソードおよびその製造方法
JP2006188372A (ja) * 2004-12-28 2006-07-20 Japan Fine Ceramics Center セラミックス粉末の製造方法
JP2006278090A (ja) * 2005-03-29 2006-10-12 Kyocera Corp 燃料電池セル及び燃料電池
JP2006294273A (ja) * 2005-04-06 2006-10-26 Nissan Motor Co Ltd 固体酸化物形燃料電池用燃料極材料及び固体酸化物形燃料電池セル
JP2007051032A (ja) * 2005-08-18 2007-03-01 Noritake Co Ltd 酸化物イオン伝導体および酸素分離膜エレメント
JP2007088215A (ja) * 2005-09-22 2007-04-05 Doshisha 磁性体材料及びその製造方法
WO2007046314A1 (ja) 2005-10-19 2007-04-26 Japan Science & Technology Agency 酸素透過膜を用いた炭化水素改質方法及び炭化水素改質装置
JP2010146727A (ja) * 2008-12-16 2010-07-01 Japan Fine Ceramics Center 固体酸化物形燃料電池の製造方法
JP2012524956A (ja) * 2009-04-24 2012-10-18 テクニカル・ユニヴァーシティ・オブ・デンマーク 複合酸素電極及びそれの製造方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7119041B2 (en) * 2002-03-08 2006-10-10 Anan Kasei Co., Ltd. Cerium based composite oxide, sintered product thereof and method for preparation thereof
US7094383B2 (en) * 2004-12-14 2006-08-22 Ctci Foundation Method for preparing pure, thermally stable and high surface area ceria
US20100231182A1 (en) * 2005-09-29 2010-09-16 Abb Research Ltd. Induction regulator for power flow control in an ac transmission network and a method of controlling such network
WO2007148057A1 (en) * 2006-06-21 2007-12-27 Dalian Institute Of Chemical Physics, Chinese Academy Of Sciences Oxygen separation membrane
EP2030673A1 (en) * 2007-08-31 2009-03-04 The Technical University of Denmark (DTU) Cheap thin film oxygen membranes
JP5290870B2 (ja) * 2009-05-29 2013-09-18 日本電信電話株式会社 固体酸化物形燃料電池
CN102180508B (zh) * 2011-02-21 2012-11-07 武汉理工大学 高结晶的有序介孔氧化钆掺杂氧化铈固溶体的制备方法
JP5975104B2 (ja) * 2012-08-10 2016-08-23 トヨタ自動車株式会社 排ガス浄化用触媒およびその製造方法
EP3142179B1 (en) * 2014-07-30 2019-02-27 LG Chem, Ltd. Method for manufacturing inorganic electrolyte membrane having improved compactness, composition for manufacturing inorganic electrolyte membrane, and inorganic electrolyte membrane manufactured using same
US11476522B2 (en) 2017-11-15 2022-10-18 Samsung Electronics Co., Ltd. Metal-air battery
CN111302381A (zh) * 2020-03-04 2020-06-19 巢湖学院 一种磁性氧化铈及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1026123A2 (en) * 1999-02-02 2000-08-09 Praxair Technology, Inc. Multi-phase solid ion and electron conducting membrane with low volume percentage electron conducting phase and methods for fabricating same
JP2000260436A (ja) * 1999-03-10 2000-09-22 Tokyo Gas Co Ltd 低温活性電極を有する支持膜式固体電解質型燃料電池および該燃料電池に使用する空気極の作製方法
JP2002333424A (ja) * 2001-05-08 2002-11-22 Ibiden Co Ltd 酸素センサー

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5580497A (en) * 1993-04-16 1996-12-03 Amoco Corporation Oxygen ion-conducting dense ceramic
US6471921B1 (en) * 1999-05-19 2002-10-29 Eltron Research, Inc. Mixed ionic and electronic conducting ceramic membranes for hydrocarbon processing
WO2004013882A2 (en) * 2001-06-29 2004-02-12 Nextech Materials, Ltd. Nano-composite electrodes and method of making the same
JP3975184B2 (ja) * 2003-08-07 2007-09-12 Tdk株式会社 複合体型混合導電体の製造方法
JP4712310B2 (ja) * 2004-03-30 2011-06-29 Tdk株式会社 複合体型混合導電体の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1026123A2 (en) * 1999-02-02 2000-08-09 Praxair Technology, Inc. Multi-phase solid ion and electron conducting membrane with low volume percentage electron conducting phase and methods for fabricating same
JP2000260436A (ja) * 1999-03-10 2000-09-22 Tokyo Gas Co Ltd 低温活性電極を有する支持膜式固体電解質型燃料電池および該燃料電池に使用する空気極の作製方法
JP2002333424A (ja) * 2001-05-08 2002-11-22 Ibiden Co Ltd 酸素センサー

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005281086A (ja) * 2004-03-30 2005-10-13 Tdk Corp 複合体型混合導電体及びその製造方法
JP4712310B2 (ja) * 2004-03-30 2011-06-29 Tdk株式会社 複合体型混合導電体の製造方法
JP2005310607A (ja) * 2004-04-23 2005-11-04 Toyota Motor Corp 燃料電池用カソードおよびその製造方法
US8257882B2 (en) 2004-04-23 2012-09-04 Toyota Jidosha Kabushiki Kaisha Cathode for fuel cell and process of the same
JP2006188372A (ja) * 2004-12-28 2006-07-20 Japan Fine Ceramics Center セラミックス粉末の製造方法
JP2006278090A (ja) * 2005-03-29 2006-10-12 Kyocera Corp 燃料電池セル及び燃料電池
JP4706997B2 (ja) * 2005-04-06 2011-06-22 日産自動車株式会社 固体酸化物形燃料電池用燃料極材料及び固体酸化物形燃料電池セル
JP2006294273A (ja) * 2005-04-06 2006-10-26 Nissan Motor Co Ltd 固体酸化物形燃料電池用燃料極材料及び固体酸化物形燃料電池セル
JP2007051032A (ja) * 2005-08-18 2007-03-01 Noritake Co Ltd 酸化物イオン伝導体および酸素分離膜エレメント
JP2007088215A (ja) * 2005-09-22 2007-04-05 Doshisha 磁性体材料及びその製造方法
WO2007046314A1 (ja) 2005-10-19 2007-04-26 Japan Science & Technology Agency 酸素透過膜を用いた炭化水素改質方法及び炭化水素改質装置
JP2010146727A (ja) * 2008-12-16 2010-07-01 Japan Fine Ceramics Center 固体酸化物形燃料電池の製造方法
JP2012524956A (ja) * 2009-04-24 2012-10-18 テクニカル・ユニヴァーシティ・オブ・デンマーク 複合酸素電極及びそれの製造方法

Also Published As

Publication number Publication date
JP4277200B2 (ja) 2009-06-10
US7479242B2 (en) 2009-01-20
JPWO2003084894A1 (ja) 2005-08-11
JP2009087944A (ja) 2009-04-23
JP5126535B2 (ja) 2013-01-23
US20070252114A1 (en) 2007-11-01
US20050142053A1 (en) 2005-06-30
US7223358B2 (en) 2007-05-29

Similar Documents

Publication Publication Date Title
JP5126535B2 (ja) 複合体型混合導電体
US7588626B2 (en) Composite mixed oxide ionic and electronic conductors for hydrogen separation
EP0399833B1 (en) Novel solid multi-component membranes, electrochemical reactor and use of membranes and reactor for oxidation reactions
CA2307005C (en) Hydrogen permeation through mixed protonic-electronic conducting materials
US20070245897A1 (en) Electron, hydrogen and oxygen conveying membranes
Martynczuk et al. Aluminum-doped perovskites as high-performance oxygen permeation materials
US7393384B2 (en) Hydrogen separation using oxygen ion-electron mixed conduction membranes
WO1997041060A1 (en) Solid state oxygen anion and electron mediating membrane and catalytic membrane reactors containing them
Mulmi et al. A perovskite-type Nd 0.75 Sr 0.25 Co 0.8 Fe 0.2 O 3− δ cathode for advanced solid oxide fuel cells
Yang et al. New perovskite membrane with improved sintering and self-reconstructed surface for efficient hydrogen permeation
EP1027916A1 (en) Mixed conducting cubic perovskite for ceramic ion transport membrane
EP2893972A1 (en) Oxygen-permeable film
US20240222649A1 (en) Electrode catalyst, membrane-electrode assembly, electrochemical cell, and fuel cell system
CN103052433B (zh) Co2-耐受性混合导电氧化物及其用于氢气分离的用途
KR101689737B1 (ko) 이중층 페로브스카이트 구조를 가지는 부분 산화제, 이를 포함하는 수소 발생장치
Raj et al. Cogeneration of HCN in a solid oxide fuel cell
WO2008074181A1 (en) Oxygen separation membrane
US20230006235A1 (en) Electrode material, membrane electrode assembly, electrochemical cell and fuel cell system
Schwartz et al. Solid state oxygen anion and electron mediating membrane and catalytic membrane reactors containing them
Hu et al. Improving the POM performance of YBa2Cu3O7− δ membrane reactor by Co doping
MacKay et al. Materials and methods for the separation of oxygen from air
Martynczuk Mixed conducting perovskites and their solid state chemistry
Petrov et al. Properties of lanthanum strontium cobaltites La/sub 1-x/Sr/sub x/CoO/sub 3-delta/as materials for cathodes of gas-discharge instruments

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10510343

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003582095

Country of ref document: JP