WO2003082769A1 - Silicon monoxide sintered product and sputtering target comprising the same - Google Patents

Silicon monoxide sintered product and sputtering target comprising the same Download PDF

Info

Publication number
WO2003082769A1
WO2003082769A1 PCT/JP2003/003894 JP0303894W WO03082769A1 WO 2003082769 A1 WO2003082769 A1 WO 2003082769A1 JP 0303894 W JP0303894 W JP 0303894W WO 03082769 A1 WO03082769 A1 WO 03082769A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon monoxide
sintered body
silicon
powder
film
Prior art date
Application number
PCT/JP2003/003894
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshitake Natsume
Tadashi Ogasawara
Munetoshi Watanabe
Kazuomi Azuma
Toshiharu Iwase
Original Assignee
Sumitomo Titanium Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Titanium Corporation filed Critical Sumitomo Titanium Corporation
Priority to JP2003580242A priority Critical patent/JP4235114B2/en
Priority to AU2003220872A priority patent/AU2003220872A1/en
Publication of WO2003082769A1 publication Critical patent/WO2003082769A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/421Boron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/79Non-stoichiometric products, e.g. perovskites (ABO3) with an A/B-ratio other than 1
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Definitions

  • Sintered silicon monoxide and sputtering target comprising the same
  • the present invention relates to a silicon monoxide sintered body and a sputtering target comprising the same, and more particularly, to an optical protective film for preventing gas permeation of transparent plastic, preventing Na elution of glass, or protecting a lens surface.
  • the present invention relates to a silicon monoxide sintered body to be used and a sputtering target comprising the same. Background art
  • Silicon oxide-based thin films such as SiO 2 film or SiO 2 (1 ⁇ X ⁇ 2) film have excellent electrical insulation and high mechanical strength, so they are used as barrier films for various optical components. It is also used as a protective film to prevent gas permeation of transparent plastic because it is transparent and has excellent gas barrier properties.
  • S i O 2 film or S i O x film when forming a film on the substrate material, silicon and (S i), silicon monoxide (S io) and silicon dioxide (S io 2) a sputtering target Reactive sputtering is performed.
  • the reactive sputtering method a bipolar direct current reactive sputtering method and a high frequency reactive sputtering method are used as typical methods.
  • N 2 and O 2 are mixed and introduced into an inert gas such as Ar under reduced pressure, and a DC high voltage is applied between the electrodes.
  • an inert gas such as Ar under reduced pressure
  • the inert gas Due to such discharge, the inert gas is ionized and collides with the cathode side at a high speed, causing the substance (target) disposed on the cathode to fly out.
  • the protruding substance becomes nitride or oxide and deposits on the surface of the substrate. To form a thin film.
  • the high-frequency reactive sputtering method generates a high-frequency glow discharge by applying a high-frequency voltage of 50 kHz or more instead of the DC high voltage applied in the two-pole DC reactive sputtering method, This is a method of forming a thin film on the surface of the substrate in the same manner as described above.
  • the above-described bipolar direct-current reactive sputtering method has the advantages of simple equipment and operation and a high film formation rate.
  • a high-resistance substance or an insulator is used as a target, the target is exposed to positive ions. Charging makes sputtering impossible.
  • the above-described high-frequency reactive sputtering method uses high-frequency discharge, so that even when an insulator or the like is used as a target, the glow discharge is maintained, so that a thin film can be formed.
  • the high-frequency reactive sputtering method has a lower deposition rate than the two-pole DC reactive sputtering method, and has a complicated power supply configuration, which results in high equipment production costs. I am concerned about the reliability and maintainability of the For this reason, this method has a problem that it is difficult to stably obtain a high-frequency current.
  • a heterogeneous material is mixed at the time of sputtering because the sintered body is made of a mixture of different materials. Films are formed at the same time, and the film characteristics change. Furthermore, since it is a mixed sintered body, the specific resistance of the sputtering target is not uniform, and problems such as unstable film formation occur. Disclosure of the invention
  • Si can be easily reduced in resistance by doping boron (B), phosphorus (P), or antimony (Sb) at the stage of growing a single crystal.
  • the doped Si powder can be formed into a film by a DC reactive sputtering method while introducing oxygen using a DC sputtering apparatus.
  • the sintered body S i O 2 in the sputtering target because there is no conductive material is deposited by RF reactive sputtering method.
  • the present invention has been made in view of the problem when a conventional silicon oxide-based thin film is formed by a reactive sputtering method. It can be applied to equipment, secures the deposition rate, stabilizes the characteristics of the deposited film, and enables the deposition of a thin film of a single composition without using different materials. It is an object of the present invention to provide a silicon monoxide sintered body and a sputtering target comprising the same.
  • the present inventors have conducted various studies on a method of forming a silicon oxide-based thin film in order to solve the above-mentioned problem.
  • a conductive silicon monoxide sintered body can be manufactured.
  • a silicon oxide-based thin film could be formed by applying a sputtering device using a DC power supply.
  • the stability of the characteristics of the film to be formed can be ensured, and at the same time, the film forming speed can be increased to improve the productivity, and a good sputtering rate (film forming efficiency) can be obtained.
  • the present invention has been completed based on the above findings, and includes the following (1) to
  • the gist of the present invention is a sputtering target comprising a silicon monoxide sintered body of (4) and a silicon monoxide sintered body of (5).
  • a silicon monoxide sintered body characterized in that a raw material powder is formed by combining a silicon powder doped with boron, phosphorus or antimony and a silicon monoxide powder.
  • Mass 0 /. Containing 20 to 80% of silicon powder (S i) doped with boron (B), phosphorus (P) or antimony (S b), with the balance being silicon monoxide (S i O) or silicon monoxide.
  • a material powder comprising a mixture of silicon dioxide (S i O and S i O 2 ) having a content of silicon monoxide (S i O) of 20% or more in the mixture is formed. It is a silicon sintered body.
  • the silicon monoxide sintered body of the above (1) to (3) has a bulk density of 95% or more after sintering.
  • the silicon monoxide sintered body of the present invention is characterized by containing 20 to 80% by mass of Si powder doped with B, P or Sb. More preferably, the content is 30 to 60%.
  • the sintered body has conductivity, and thus can be used as a target of a DC power source sputtering apparatus.
  • the characteristics of the formed film are less scattered, and a good sputter rate can be obtained.
  • Sio powder By including doped Si powder, some parts of the Sio powder come into contact with each other and exhibit conductivity, but during mixed sintering, part of the Sio is thermally decomposed inside or on the surface of the Sio powder. I do.
  • the thermal conductivity of P or Sb further improves the electrical conductivity. This point can be confirmed from the results of experiments conducted by the inventors, in which the specific resistance of the sintered body rapidly decreases as the sintering temperature is increased.
  • the lower limit of the content of the doped Si powder is set to 20%, preferably 30%.
  • doped S i The upper limit of the powder content was set to 80%, and preferably 60%.
  • the sintered body of the present invention it is essential to mix the Si powder and the SiO powder doped as the raw material powder.
  • the mixed material of S i powder and S i O powder doped it is effective for mixing the S i 0 2 powder. Even in this case, in order to make the film characteristics of the target uniform without losing the characteristics of SiO,
  • the content of Sio powder must be 20% or more. Desirably, it is 30% or more.
  • the average particle diameter of the raw material powder of the silicon monoxide sintered body be reduced from the viewpoint of improving the sinterability, making the conductive properties uniform, and making the film composition uniform.
  • the average particle size of the raw material powder is in the range of 0.1 to 20 ⁇ .
  • the specific gravity of the doped Si powder contained in the silicon monoxide sintered body of the present invention is 0.01 ⁇ ⁇ cm (high resistivity) to 0,000 lQ'cm (low resistance). Rate) is desirable. If the resistance is too high, sufficient conductive properties cannot be secured, and if the resistance is too low, the material cost becomes too expensive.
  • the doping method using B, P, or Sb is not particularly limited, and may be any method that is usually employed in the stage of growing a silicon single crystal. The doping amount of B, P or Sb is added so that the grown Si single crystal satisfies the above specific resistance.
  • the silicon monoxide sintered body of the present invention is a powder mainly composed of SiO 2, that is,
  • the resulting powder was 100 kg Zc m 2 or more
  • it is manufactured by firing under pressure at a temperature of 1250 to 1400 ° C while pressurizing at a pressure of 1250 ° C.
  • the sintering temperature is preferably set to 1250 to 1400 ° C, more preferably 1300 to 1400 ° C.
  • Si powder whose specific resistance was adjusted to 0.0004 ⁇ ⁇ cm by doping with B was used. Both the Si powder and the Sio powder were pulverized until the average particle diameter became 10 ⁇ m or less.
  • This S i powder is contained in a range of 10 to 90% in the S i O Powder, while applying a pressure of the resulting powder 9. 8 MP a (1 00 kgf / cm 2), 1400 ° C After sintering under pressure for 2 hours, it was machined to ⁇ ) 6 inches X t 5 mm to obtain a sputtering target.
  • the surface resistivity and the density ratio of each sintered body obtained under the above conditions were measured, and further, using this sintered body as a target, performing reactive sputtering using a DC power supply to perform monoxide oxidation Form a silicon film (SiO film) and hit for unit time
  • the sputter rate of the film thickness was measured, and variations in film characteristics were observed.
  • the surface resistivity was measured by a four-terminal method, and the density ratio was indicated by (bulk density theoretical density) X I 00%. Variations in the film characteristics are observed from the measurement results of the transmittance and the refractive index. The above measurement results and observation results are shown in Table 1.
  • the resistivity of the sintered body can be reduced to be applied to a DC reactive sputtering apparatus, and a stable film characteristic can be secured while securing a film forming rate. be able to.
  • the resistivity of the sintered body can be reduced to directly Because it can be applied to flow reactive sputtering equipment, it secures the deposition rate and stabilizes the characteristics of the deposited film.Furthermore, it does not use different materials and forms a thin film with a single composition. be able to. Therefore, if a sputtering target made of this silicon monoxide sintered body is used, a good sputtering rate and a sputtering reaction with little variation in film characteristics are guaranteed. As a result, it can be widely applied as an optical protective film for preventing gas permeation of transparent plastic, preventing Na elution of glass, or for forming a silicon oxide-based thin film used as a protective film on a lens surface.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

A silicon monoxide sintered product prepared through forming a raw material powder which consists of 20 to 80 mass % of a silicon powder doped with boron, phosphorus or antimony and the balanced amount of silicon monoxide or a mixture of silicon monoxide and silicon dioxide, wherein the content of silicon monoxide in the mixture is 20 % or more; and a sputtering target using the silicon monoxide sintered product. The sputtering target can be used for securing a satisfactorily high rate of film formation while providing a film reduced in variations of film characteristics, and thus can be widely and advantageously used for forming a silicon oxide thin film as a protective film for optical use, for example, for use in the prevention of gas permeation in a transparent plastic and the prevention of dissolution of Na from a glass and the protection of the surface of a lens.

Description

明 細 書  Specification
一酸化珪素焼結体及びこれからなるスパッタリングターゲット 技術分野 Sintered silicon monoxide and sputtering target comprising the same
本発明は、 一酸化珪素焼結体及びこれからなるスパッタリングターグ ッ トに関し、 さらに詳しくは、 光学用保護膜として透明プラスチックの ガス透過防止、 ガラスの N a溶出防止、 またはレンズ表面の保護膜など に用いられる一酸化珪素焼結体及びこれからなるスパッタリングターゲ ットに関するものである。 背景技術  The present invention relates to a silicon monoxide sintered body and a sputtering target comprising the same, and more particularly, to an optical protective film for preventing gas permeation of transparent plastic, preventing Na elution of glass, or protecting a lens surface. The present invention relates to a silicon monoxide sintered body to be used and a sputtering target comprising the same. Background art
S i 02膜または S i Ox ( 1 < X < 2 ) 膜などの酸化珪素系の薄膜は、 電気絶縁性に優れ、 機械的強度も高いので、 各種の光学用部品のバリア 膜として使用されるとともに、 透明であり、 またガスに対する遮断性に も優れることから、 透明プラスチックのガス透過防止の保護膜としても 利用されている。 このような S i O 2膜または S i O x膜を基体材料に成 膜する場合には、 珪素 (S i )、 一酸化珪素 (S i o ) 及び二酸化珪素 ( S i o 2) をスパッタリングターゲットとして反応性スパッタリング法 が行われる。 ' この反応性スパッタリング法には、 2極直流反応性スパッタリング法 及び高周波反応性スパッタリング法が代表的な方法として用いられて.い る。 まず、 2極直流反応性スパッタリ ング法によって薄膜を形成するに は、 減圧条件下、 A r等の不活性ガスに N 2や 02等を混合して導入し、 電極間に直流高圧を印加して放電 (グロ一放電) させる。 Silicon oxide-based thin films such as SiO 2 film or SiO 2 (1 <X <2) film have excellent electrical insulation and high mechanical strength, so they are used as barrier films for various optical components. It is also used as a protective film to prevent gas permeation of transparent plastic because it is transparent and has excellent gas barrier properties. Such S i O 2 film or S i O x film when forming a film on the substrate material, silicon and (S i), silicon monoxide (S io) and silicon dioxide (S io 2) a sputtering target Reactive sputtering is performed. 'As the reactive sputtering method, a bipolar direct current reactive sputtering method and a high frequency reactive sputtering method are used as typical methods. First, in order to form a thin film by the bipolar DC reactive sputtering method, N 2 and O 2 are mixed and introduced into an inert gas such as Ar under reduced pressure, and a DC high voltage is applied between the electrodes. To discharge (global discharge).
このような放電により不活性ガスはイオン化して、 陰極側へ高速で衝 突し、 陰極上へ配置された物質 (ターゲット) を飛び出させる。 そして、 その飛び出した物質が窒化物あるいは酸化物となって基体の表面上へ堆 積して薄膜が形成される。 Due to such discharge, the inert gas is ionized and collides with the cathode side at a high speed, causing the substance (target) disposed on the cathode to fly out. The protruding substance becomes nitride or oxide and deposits on the surface of the substrate. To form a thin film.
これに対し、 高周波反応性スパッタリング法は、 上記 2極直流反応性 スパッタリング法において印加される直流高圧に替えて、 5 0 k H z以 上の高周波電圧を印加して高周波グロ一放電を起こし、 上記と同様に基 体の表面上に薄膜を形成する方法である。  On the other hand, the high-frequency reactive sputtering method generates a high-frequency glow discharge by applying a high-frequency voltage of 50 kHz or more instead of the DC high voltage applied in the two-pole DC reactive sputtering method, This is a method of forming a thin film on the surface of the substrate in the same manner as described above.
上述の 2極直流反応性スパッタリング法は、 装置及び操作が簡便であ り、 成膜速度が速いという利点を有しているが、 高抵抗物質や絶縁体を ターゲットとすると、 ターゲットが正イオンによって帯電してスパッタ リングが不可能になる。  The above-described bipolar direct-current reactive sputtering method has the advantages of simple equipment and operation and a high film formation rate. However, when a high-resistance substance or an insulator is used as a target, the target is exposed to positive ions. Charging makes sputtering impossible.
一方、 上述の高周波反応性スパッタリング法は、 高周波放電を利用し ているので、 絶縁体等をターゲッ トとした場合でもグロ一放電が維持さ れることから、 薄膜形成が可能である。 しかし、 高周波反応性スパッタ リング法では、 成膜速度が 2極直流反応性スパッタリング法に比べて遅 く、 さらに、 その電源構成が複雑であることから、 装置制作費が高価と なり、 また、 電源の信頼性やメンテナンス性に不安がある。 このため、 この方法では、 安定して高周波電流を得るのが困難であるという問題が 存在する。  On the other hand, the above-described high-frequency reactive sputtering method uses high-frequency discharge, so that even when an insulator or the like is used as a target, the glow discharge is maintained, so that a thin film can be formed. However, the high-frequency reactive sputtering method has a lower deposition rate than the two-pole DC reactive sputtering method, and has a complicated power supply configuration, which results in high equipment production costs. I am worried about the reliability and maintainability of the For this reason, this method has a problem that it is difficult to stably obtain a high-frequency current.
このような問題に対応するため、 従来では高周波反応性スパッタリン グ法で成膜されていた絶縁性の基体材料に対し、 直流反応性スパッタリ ング法によって成膜する試みがなされるようになる。 例えば、 主となる 材料 (P L Z T · P Z T系) の一部 (酸素成分) を欠損させて、 低抵抗 化することにより、 直流反応性スパッタリングを行う方法が知られてい る。  In order to cope with such a problem, an attempt has been made to form a film by a DC reactive sputtering method on an insulating base material which has been conventionally formed by a high frequency reactive sputtering method. For example, there is known a method of performing DC reactive sputtering by removing a part (oxygen component) of a main material (PLZT / PZT system) to lower the resistance.
さらに、 焼結体の低抵抗化を図るため、 絶縁性物質に導電性物質を混 合して、 焼結させ導電性の高い焼結体を得て、 直流反応性スパッタリン グを施す方法が提案されている (特開 2 0 0 0— 2 6 4 7 3 1号公報、 特開 2 0 0 1 _ 5 8 7 1号公報等)。 しかしながら、 上述の方法のうち、 酸素欠損により焼結体に導電性を 具備させる方法では、 この方法が適用できる物質が限られており、 本発 明が対象とする酸化珪素系の材料には適用できない。 また、 提案された 絶縁物質と導電性物質とを混合焼結して導電性の高い焼結体を得る方法 では、 異種材料を混合した焼結体とするため、 スパッタリングの際に異 種材料が同時に成膜され、 膜特性が変化する。 さらに、 混合焼結体であ るため、 スパッタリングターゲッ トの比抵抗が均一にならず、 成膜が不 安定になる等の問題も発生する。 発明の開示 Furthermore, in order to reduce the resistance of the sintered body, a method of mixing a conductive substance with an insulating substance, sintering to obtain a highly conductive sintered body, and performing DC reactive sputtering is used. It has been proposed (Japanese Patent Application Laid-Open No. 2000-246731, Japanese Patent Application Laid-Open No. 2000-58771). However, among the above-mentioned methods, in the method of providing conductivity to the sintered body by oxygen deficiency, substances to which this method can be applied are limited, and the present invention is applicable to silicon oxide-based materials. Can not. In addition, in the proposed method of obtaining a sintered body having high conductivity by mixing and sintering an insulating material and a conductive material, a heterogeneous material is mixed at the time of sputtering because the sintered body is made of a mixture of different materials. Films are formed at the same time, and the film characteristics change. Furthermore, since it is a mixed sintered body, the specific resistance of the sputtering target is not uniform, and problems such as unstable film formation occur. Disclosure of the invention
前述の通り、 酸化珪素系の薄膜を成膜するには、 S i、 S i O及び S i 0 2をスパッタリングターゲットとして反応性スパッタリング法が行 われる。 ところが、 S iは単結晶の育成段階において、 ボロン (B )、 リン (P ) またはアンチモン (S b ) をドープすることによって、 容易 に低抵抗化を図ることが可能である。 As described above, in forming a thin film of silicon oxide is, S i, S i O and S i 0 2 reactive sputtering a sputtering target to crack line. However, Si can be easily reduced in resistance by doping boron (B), phosphorus (P), or antimony (Sb) at the stage of growing a single crystal.
このため、 通常、 ドープされた S i粉末体を直流スパッタリング装置 を用いて、 酸素を導入しながら直流反応性スパッタリング法で成膜する ことができる。 これに対し、 S i o、 S i O 2の焼結体をスパッタリング ターゲットに用いる場合には、 材料に導電性が無いため、 高周波反応性 スパッタリング法によって成膜される。 For this reason, usually, the doped Si powder can be formed into a film by a DC reactive sputtering method while introducing oxygen using a DC sputtering apparatus. In contrast, in the case of using S io, the sintered body S i O 2 in the sputtering target, because there is no conductive material is deposited by RF reactive sputtering method.
ドープされた S i を用いて直流反応性スパッタリング法で成膜する場 合には、 成膜速度が高くなるが、 反応性スパッタリングの条件が変化し 易く、 その結果成膜された酸化珪素の膜特性がばらつくことになる。 さ らに、 高出力投入時に、 ドープされた S iが割れ易いなどの問題も発生 する。  When a film is formed by a DC reactive sputtering method using doped Si, the film forming rate is increased, but the conditions of the reactive sputtering are easily changed, and as a result, the silicon oxide film formed is formed. The characteristics will vary. In addition, at the time of high power input, there is a problem that the doped Si is easily broken.
一方、 S i O x ( 1 < X < 2 ) 膜または S i O 膜を形成する場合には、 膜組成に近い S i o、 S i O 2をターゲッ トとして用いれば、 雰囲気への 酸素導入量が少なくできるため、 膜特性の均質化が可能になる。 前述の 通り、 S i o、 S i o 2は導電性が低く絶縁性物質であるため、 高周波反 応性スパッタリ ング装置を用いる必要がある。 このため、 直流反応性ス パッタリング法に比べ、 成膜速度が遅く、 焼結体の大型化が困難である との問題がある。 On the other hand, when forming a SiO x (1 <X <2) film or a SiO film, if Sio and SiO 2 close to the film composition are used as targets, Since the amount of oxygen introduced can be reduced, the film characteristics can be homogenized. As described above, S io, S io 2 because conductivity is lowered insulating material, it is necessary to use a high-frequency reactivity Supattari ing device. For this reason, there is a problem that the film formation rate is slower than the DC reactive sputtering method, and it is difficult to increase the size of the sintered body.
本発明は、 従来の酸化珪素系の薄膜を反応性スパッタリング法によつ て成膜する際の問題点に鑑みてなされたものであり、 焼結体の抵抗率を 下げて、 直流反応性スパッタリング装置に適用できるようにし、 成膜速 度を確保するとともに、 成膜される膜特性の安定化を図り、 さらに異種 材料の使用にはならず、 単一組成の薄膜を成膜することが可能となる、 一酸化珪素焼結体及びこれからなるスパッタリングターゲッ トを提供す ることを目的としている。  The present invention has been made in view of the problem when a conventional silicon oxide-based thin film is formed by a reactive sputtering method. It can be applied to equipment, secures the deposition rate, stabilizes the characteristics of the deposited film, and enables the deposition of a thin film of a single composition without using different materials. It is an object of the present invention to provide a silicon monoxide sintered body and a sputtering target comprising the same.
本発明者らは、 上述の課題を解決するため、 酸化珪素系薄膜の成膜方 法について、 種々の検討を加えた結果、 導電性のある一酸化珪素の焼結 体を製作できれば、 これをスパッタリングターゲッ トとして利用するこ とによって、 直流電源を用いたスパッタリング装置を適用して、 酸化珪 素系薄膜を成膜することができることに着目した。  The present inventors have conducted various studies on a method of forming a silicon oxide-based thin film in order to solve the above-mentioned problem. As a result, if a conductive silicon monoxide sintered body can be manufactured, We focused on the fact that by using it as a sputtering target, a silicon oxide-based thin film could be formed by applying a sputtering device using a DC power supply.
これにより、 成膜される膜特性の安定性を確保できると同時に、 成膜 速度を高めて生産性の向上を図れ、 良好なスパッタレート (成膜効率) が得られることになる。  As a result, the stability of the characteristics of the film to be formed can be ensured, and at the same time, the film forming speed can be increased to improve the productivity, and a good sputtering rate (film forming efficiency) can be obtained.
上記の検討において、 ドープした S i粉末と S i O粉末、 または S i Oと S i o 2との混合粉末とを混合して焼結する際に、 S i o粉末の内部 または表面において 「S i O」 の一部が 「S i + S i〇2」 に熱分解する ことを知見した。 In consideration of the above, S i powder and S i O powder doped or during sintering by mixing a mixed powder of S i O and S io 2,, "S i in the interior or on the surface of the S io powder It was found that part of “O” thermally decomposed into “S i + S i〇 2 ”.
すなわち、 絶縁体である S i Oにへビードープした S iを導電体とし て混合、 焼結することにより、 熱分解した S i と混合した S iの相互作 用によって良好な導電性が得られることになる。 さらに、 これらを混合焼結した場合であっても、 反応スパッタリ ング によって S i、 S i O及び S i O2粉末のいずれであっても、 同一組成の 酸化珪素膜を成膜するので、 成膜される膜特性に影響を及ぼすことがな い。 これにより、 従来の混合焼結で問題となっていた、 膜特性の変化、 さらにスパッタリングターゲットの比抵抗が不均一になることを解消す ることができる。 In other words, by mixing and sintering Si doped with heavily doped SiO as a conductor, good conductivity can be obtained by the interaction of the mixed Si with the thermally decomposed Si. Will be. Furthermore, a silicon oxide film having the same composition can be formed regardless of whether it is a mixture of sintering, or any of Si, SiO, and SiO 2 powders by reactive sputtering. It does not affect the properties of the film. As a result, it is possible to solve the problem of the conventional mixed sintering, that is, the change in the film characteristics and the non-uniformity of the specific resistance of the sputtering target.
本発明は、 上記の知見に基づいて完成したものであり、 下記 ( 1) 〜 The present invention has been completed based on the above findings, and includes the following (1) to
(4) の一酸化珪素焼結体及び (5) の一酸化珪素焼結体からなるスパ ッタリングターゲットを要旨としている。 The gist of the present invention is a sputtering target comprising a silicon monoxide sintered body of (4) and a silicon monoxide sintered body of (5).
( 1) ボロン、 リンまたはアンチモンをドープした珪素粉末と一酸化珪 素粉末を^合して原料粉末を成形したことを特徴とする一酸化珪素焼結 体である。  (1) A silicon monoxide sintered body characterized in that a raw material powder is formed by combining a silicon powder doped with boron, phosphorus or antimony and a silicon monoxide powder.
(2) 質量0 /0で、 ボロン (B)、 リ ン (P) またはアンチモン (S b) をドープした珪素粉末 (S i ) を 20〜 80%含有させ、 残部は一酸化 珪素 (S i O) からなる原料粉末を成形したことを特徴とする一酸化珪 素焼結体である。 (2) the mass 0/0, boron (B), Li down (P) or antimony (S b). 20 to 80% is contained doped silicon powder (S i), and the balance being silicon monoxide (S i This is a silicon monoxide sintered body obtained by molding a raw material powder of O).
(3) 質量0 /。で、 ボロン (B)、 リ ン (P) またはアンチモン (S b) をドープした珪素粉末 (S i ) を 20〜80%含有させ、 残部は一酸化 珪素 (S i O) または一酸化珪素と二酸化珪素の混合物 (S i Oと S i 02) からなり、 この混合物中の一酸化珪素 (S i O) の含有量が 20% 以上である原料粉末を成形したことを特徴とする一酸化珪素焼結体であ る。 (3) Mass 0 /. Containing 20 to 80% of silicon powder (S i) doped with boron (B), phosphorus (P) or antimony (S b), with the balance being silicon monoxide (S i O) or silicon monoxide. A material powder comprising a mixture of silicon dioxide (S i O and S i O 2 ) having a content of silicon monoxide (S i O) of 20% or more in the mixture is formed. It is a silicon sintered body.
上記 (1) 〜 (3) の一酸化珪素焼結体は、 焼結後の嵩密度 9 5%以 上にするのが望ましい。  It is desirable that the silicon monoxide sintered body of the above (1) to (3) has a bulk density of 95% or more after sintering.
(4) 比抵抗が 8 Ω · c π!〜 4 X 10一3 Ω · c mであることを特徴とす る一酸化珪素焼結体である。 (4) The specific resistance is 8 Ω · c π! A silicon monoxide sintered body you characterized in that - a 4 X 10 one 3 Ω · cm.
(5) 上記 (1) 〜 (4) の一酸化珪素焼結体からなることを特徴とす るスパッタリングターゲットである。 発明を実施するための最良の形態 (5) It is characterized by comprising the silicon monoxide sintered body of (1) to (4). Sputtering target. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の一酸化珪素焼結体は、 質量%で、 B、 Pまたは S bをドープ した S i粉末を 2 0〜 8 0 %含有させることを特徴としている。 さらに 望ましくは、 その含有量を 3 0〜 6 0 %にする。 ドープした S i粉末を 含有させることにより、 この焼結体は導電性を有することから、 直流電 源のスパッタリング装置のターゲットとすることができる。  The silicon monoxide sintered body of the present invention is characterized by containing 20 to 80% by mass of Si powder doped with B, P or Sb. More preferably, the content is 30 to 60%. By containing the doped Si powder, the sintered body has conductivity, and thus can be used as a target of a DC power source sputtering apparatus.
反応スパッタリングに際し、 スパッタリング装置の陰極 (ターゲット) として用いると、 成膜された膜特性にバラツキが少なくなり、 良好なス パッタレートを得ることができる。  When used as a cathode (target) of a sputtering apparatus during reactive sputtering, the characteristics of the formed film are less scattered, and a good sputter rate can be obtained.
ドープした S i粉末を含有させることにより、 S i粉末同士が接触し て導電性を示す部分もあるが、 混合焼結時に S i o粉末内部か表面にお いて、 S i oの一部が熱分解する。  By including doped Si powder, some parts of the Sio powder come into contact with each other and exhibit conductivity, but during mixed sintering, part of the Sio is thermally decomposed inside or on the surface of the Sio powder. I do.
このとき、 熱分解した S iに導電性の S i粉末中のドープ元素、 B、 At this time, the doped element B, B,
Pまたは S bが熱拡散することによって、 さらに電気伝導性を向上させ ている。 この点は、 発明者らが行った実験によって、 焼結温度を上げる につれて焼結体の比抵抗が急激に低下する実験結果から確認することが できる。 The thermal conductivity of P or Sb further improves the electrical conductivity. This point can be confirmed from the results of experiments conducted by the inventors, in which the specific resistance of the sintered body rapidly decreases as the sintering temperature is increased.
本発明の焼結体では、 ドープした S i粉末の含有が 2 0 %未満である と、 高温で焼結しても焼結体の比抵抗が十分に下がらない。 これはド一 プされた S i粉末の粒子分布が 「粗」 になりすぎるためである。 このた め、 ドープした S i粉末の含有の下限を 2 0 %とし、 望ましくは 3 0 % とした。  In the sintered body of the present invention, when the content of the doped Si powder is less than 20%, the specific resistance of the sintered body does not sufficiently decrease even when sintered at a high temperature. This is because the particle distribution of the doped Si powder becomes too "coarse". For this reason, the lower limit of the content of the doped Si powder is set to 20%, preferably 30%.
一方、 ドープした S i粉末の含有が 8 0 %を超えると、 S i Oの特性 が消失し、 S i ターゲットと同様に、 成膜された膜の特性がバラツキ、 高出力投入時に割れ易い等の欠点が発生する。 このため、 ドープした S i粉末の含有の上限を 80 %とし、 望ましくは 60 %とした。 On the other hand, if the content of the doped Si powder exceeds 80%, the characteristics of SiO 2 will be lost, and the characteristics of the deposited film will vary, as in the case of the Si target. Disadvantages occur. Therefore, doped S i The upper limit of the powder content was set to 80%, and preferably 60%.
混合焼結に際し、 S i Oを混合させることなく、 ドープした S i粉末 と S i O 2粉末とを混合して焼結しても、 ターゲット用として要求される 嵩密度 95%を達成することができない。 Achieving the bulk density of 95% required for the target even when mixing and sintering doped Si powder and Sio 2 powder without mixing Sio during mixed sintering Can not.
しかしながら、 ホットプレス時に S i O粉末を存在させれば、 充分に 嵩密度 95%以上を達成することができる。 S i Oは昇華温度が 1 20 0°C程度と低いため、 ホットプレスにともなってガラス状になることか ら、 原料粉末に S i Oが混合していると、 S i粉末や S i O 2粉末の隙間 に S i Oが浸透して、 ガラス状焼結体が形成されるためであると推察さ れる。 However, if the SiO 2 powder is present during hot pressing, a bulk density of 95% or more can be sufficiently achieved. Since S i O has a low sublimation temperature of about 1200 ° C., it becomes glassy with hot pressing. Therefore, if S i O is mixed with the raw material powder, S i O powder or S i O It is presumed that this is because SiO 2 penetrates into the gaps between the powders and forms a glassy sintered body.
上述のことから、 本発明の焼結体では、 原料粉末としてドープした S i粉末と S i O粉末の混合が必須である。 しかし、 ターゲッ トの酸素濃 度を調節するために、 ドープした S i粉末と S i O粉末の混合原料に S i 02粉末を混合させるのも有効である。 この場合であっても、 S i Oの 特性を消失させることなく、 ターゲッ トの膜特性の均一化を図るため、From the above, in the sintered body of the present invention, it is essential to mix the Si powder and the SiO powder doped as the raw material powder. However, in order to adjust the oxygen concentration of the target, the mixed material of S i powder and S i O powder doped it is effective for mixing the S i 0 2 powder. Even in this case, in order to make the film characteristics of the target uniform without losing the characteristics of SiO,
S i O粉末の含有量は 20 %以上にする必要がある。 望ましくは、 30 %以上である。 The content of Sio powder must be 20% or more. Desirably, it is 30% or more.
また、 この一酸化珪素焼結体は、 焼結性の向上、 導電特性の均一化及 び膜組成の均一化の観点から、 原料粉末の平均粒径を細かくするのが望 ましい。 一方、 原料粉末が微細になりすぎると、 混合不良の問題が発生 する。 したがって、 原料粉末の平均粒径は、 .1〜20 μπιの範囲にする のが望ましい。  In addition, it is desirable that the average particle diameter of the raw material powder of the silicon monoxide sintered body be reduced from the viewpoint of improving the sinterability, making the conductive properties uniform, and making the film composition uniform. On the other hand, if the raw material powder becomes too fine, a problem of poor mixing occurs. Therefore, it is desirable that the average particle size of the raw material powder is in the range of 0.1 to 20 μπι.
本発明の一酸化珪素焼結体に含有される、 ドープされた S i粉末の比 抵坑は、 0. 0 1 Ω · c m (高抵抗率) 〜0. O O O l Q ' cm (低抵 抗率) を目標にするのが望ましい。 高抵抗になりすぎると、 十分な導電 特性が確保できず、 低抵抗になりすぎると、 材料費が高価になりすぎる からである。 B、 Pまたは S bによる ドープ方法は、 特に限定するものではなく、 通常、 シリコン単結晶の育成段階で採用されている方法であればよい。 B、 Pまたは S bのドープ量は、 育成された S i単結晶が上記の比抵抗 を満足するように添加される。 The specific gravity of the doped Si powder contained in the silicon monoxide sintered body of the present invention is 0.01 Ω · cm (high resistivity) to 0,000 lQ'cm (low resistance). Rate) is desirable. If the resistance is too high, sufficient conductive properties cannot be secured, and if the resistance is too low, the material cost becomes too expensive. The doping method using B, P, or Sb is not particularly limited, and may be any method that is usually employed in the stage of growing a silicon single crystal. The doping amount of B, P or Sb is added so that the grown Si single crystal satisfies the above specific resistance.
本発明の一酸化珪素焼結体は、 S i Oを主成分とした粉末、 すなわち、 The silicon monoxide sintered body of the present invention is a powder mainly composed of SiO 2, that is,
S i O粉末、 または S i Oと S i 02との混合粉末にドープした S i粉末 を 20〜80%含有させて、 充分に混合し、 得られた粉体を 100 k g Zc m2以上の圧力で加圧しながら、 望ましくは 1 250〜 1400°Cの 温度で加圧焼成して製造する。 S i O powder or S i O and S i 0 2 mixed powder S i powder doped by containing 20-80% in the, sufficiently mixed, the resulting powder was 100 kg Zc m 2 or more Preferably, it is manufactured by firing under pressure at a temperature of 1250 to 1400 ° C while pressurizing at a pressure of 1250 ° C.
焼結温度が高すぎると、 S 〖粉末の溶解が発生し良好な焼結体が得ら れず、 一方、 焼結温度が低すぎると、 焼結が不十分であり、 B、 Pのド ープ元素の熱拡散が充分に行われなくなる。 このため、 本発明の一酸化 珪素焼結体の製造では、 焼結温度は 1 2 50〜 1400°Cにするのが望 ましく、 1300〜 1400°Cにするのがさらに望ましい。  If the sintering temperature is too high, the S の powder dissolves and a good sintered body cannot be obtained. On the other hand, if the sintering temperature is too low, the sintering is insufficient and the dose of B and P Insufficient thermal diffusion of the dopant element occurs. For this reason, in the production of the silicon monoxide sintered body of the present invention, the sintering temperature is preferably set to 1250 to 1400 ° C, more preferably 1300 to 1400 ° C.
(実施例)  (Example)
本発明の一酸化珪素焼結体を用いることによる効果を、 具体的な実施 例に基づいて説明する。  The effect of using the silicon monoxide sintered body of the present invention will be described based on specific examples.
実施例では、 Bでドープすることにより、 比抵抗を 0. 0004 Ω · c mに調整した S i粉末を用いた。 S i粉末及び S i O粉末ともに、 平 均粒径が 1 0 μ m以下になるまで微粉砕した。 この S i粉末を S i O粉 末中に 10〜 90%の範囲で含有させ、得られた粉体を 9. 8 MP a ( 1 00 k g f /cm2) の圧力をかけながら、 1400°Cで 2時間加圧焼結 させた後、 <) 6インチ X t 5 mmに機械加工して、 スパッタリングタ一 ゲットとした。 In the example, Si powder whose specific resistance was adjusted to 0.0004 Ω · cm by doping with B was used. Both the Si powder and the Sio powder were pulverized until the average particle diameter became 10 µm or less. This S i powder is contained in a range of 10 to 90% in the S i O Powder, while applying a pressure of the resulting powder 9. 8 MP a (1 00 kgf / cm 2), 1400 ° C After sintering under pressure for 2 hours, it was machined to <) 6 inches X t 5 mm to obtain a sputtering target.
上記条件で得られた各焼結体の表面抵抗率及び密度比を測定し、 さら に、 この焼結体をターゲッ トに利用して、 直流電源を用いた反応性スパ ッタリングを行って一酸化珪素膜 (S i O膜) を形成し、 単位時間当た りの成膜厚みのスパッタレ一トを測定するとともに、 膜特性のバラツキ を観察した。 The surface resistivity and the density ratio of each sintered body obtained under the above conditions were measured, and further, using this sintered body as a target, performing reactive sputtering using a DC power supply to perform monoxide oxidation Form a silicon film (SiO film) and hit for unit time The sputter rate of the film thickness was measured, and variations in film characteristics were observed.
表面抵抗率の測定は 4端子法にて行い、 また、 密度比は (嵩密度 理 論密度) X I 0 0 %で示している。 膜特性のバラツキは、 透過率及び屈 折率等の測定結果より観察している。 上記の測定結果及び観察結果は、 表 1に示す。  The surface resistivity was measured by a four-terminal method, and the density ratio was indicated by (bulk density theoretical density) X I 00%. Variations in the film characteristics are observed from the measurement results of the transmittance and the refractive index. The above measurement results and observation results are shown in Table 1.
Figure imgf000010_0001
Figure imgf000010_0001
表 1の結果より、 本発明で規定するように、 ドープした S i粉末を S i O粉末中に 2 0〜8 0 %の範囲で含有させることによって、 スパッタ レートとともに、 膜特性のバラツキ状況も良好であることが分かる。 さらに、 参考試験として、 上記と同一条件で S i〇2粉末を用いて焼結 体を製作し、 得られた焼結体を機械加工して、 スパッタリ ングターゲッ トとし、 S i 02薄膜を形成させた。 このとき、 同様の測定及び観察を行 つたが、 焼結体の表面抵抗率は 1 0 7 Ω · c m以上で、 スパッタレートは 不良であり、 表 1中の試験 N o . 1の場合と同様であることを確認して いる。 From the results in Table 1, as specified in the present invention, by including the doped Si powder in the Sio powder in the range of 20 to 80%, the variation in the film characteristics as well as the sputter rate is reduced. It turns out that it is good. Further, as a reference test, with the S I_〇 2 powder above the same conditions to prepare a sintered body, and machining the sintered body obtained, and Supattari Ngutage' bets, the S i 0 2 thin film formed I let it. At this time, although one line the same measurements and observations, the surface resistivity of the sintered body is 1 0 7 Ω · cm or more, the sputtering rate is poor, as in the case of Table 1 Test N o. 1 It is confirmed that it is.
上述の通り、 本発明の一酸化珪素焼結体によれば、 焼結体の抵抗率を 下げて直流反応性スパッタリング装置に適用でき、 成膜速度を確保する とともに、 安定した膜特性を確保することができる。 産業上の利用の可能性  As described above, according to the silicon monoxide sintered body of the present invention, the resistivity of the sintered body can be reduced to be applied to a DC reactive sputtering apparatus, and a stable film characteristic can be secured while securing a film forming rate. be able to. Industrial applicability
本発明の一酸化ケィ素の焼結体を用いれば、 焼結体の抵抗率を下げて直 流反応性スパッタリング装置にも適用できるので、 成膜速度を確保する とともに、 成膜される膜特性の安定化を図り、 さらに異種材料の使用に はならず、 単一組成の薄膜を成膜することができる。 このため、 この一 酸化珪素焼結体からなるスパッタリングターゲットを用いれば、 良好な スパッタレ一トと膜特性のバラツキが少ないスパッタリング反応が保証 される。 これにより、 光学用保護膜として透明プラスチックのガス透過 防止、 ガラスの N a溶出防止、 またはレンズ表面の保護膜として用いら れる酸化珪素系薄膜の成膜用として、 広く適用することができる。 When the silicon monoxide sintered body of the present invention is used, the resistivity of the sintered body can be reduced to directly Because it can be applied to flow reactive sputtering equipment, it secures the deposition rate and stabilizes the characteristics of the deposited film.Furthermore, it does not use different materials and forms a thin film with a single composition. be able to. Therefore, if a sputtering target made of this silicon monoxide sintered body is used, a good sputtering rate and a sputtering reaction with little variation in film characteristics are guaranteed. As a result, it can be widely applied as an optical protective film for preventing gas permeation of transparent plastic, preventing Na elution of glass, or for forming a silicon oxide-based thin film used as a protective film on a lens surface.

Claims

請 求 の 範 囲 The scope of the claims
1. ボロン、 リンまたはアンチモンをドープした珪素粉末と一酸化珪素 粉末を混合して原料粉末を成形したことを特徴とする一酸化珪素焼結体。 1. A silicon monoxide sintered body obtained by mixing a silicon powder doped with boron, phosphorus or antimony and a silicon monoxide powder to form a raw material powder.
2. 焼結後の嵩密度 95%以上であることを特徴とする請求項 1に記載 の一酸化珪素焼結体。 2. The silicon monoxide sintered body according to claim 1, wherein the sintered body has a bulk density of 95% or more.
3. 上記原料粉末の平均粒径が 1〜20 / mであることを特徴とする請 求項 1に記載の一酸化珪素焼結体。  3. The silicon monoxide sintered body according to claim 1, wherein the raw material powder has an average particle diameter of 1 to 20 / m.
4. 質量%で、 ボロン、 リンまたはアンチモンをドープした珪素粉末を 20〜80%含有させ、 残部は一酸化珪素からなる原料粉末を成形した ことを特徴とする一酸化珪素焼結体。  4. A silicon monoxide sintered body containing 20 to 80% by mass of a silicon powder doped with boron, phosphorus or antimony, and the remainder being formed from a raw material powder of silicon monoxide.
5. 焼結後の嵩密度 95%以上であることを特徴とする請求項 4に記載 の一酸化珪素焼結体。  5. The silicon monoxide sintered body according to claim 4, wherein the sintered body has a bulk density of 95% or more.
6. 質量%で、 ボロン、 リンまたはアンチモンをドープした珪素粉末を 20〜80%含有させ、 残部は一酸化珪素または一酸化珪素と二酸化珪 素の混合物からなり、 この混合物中の一酸化珪素の含有量が 20 %以上 である原料粉末を成形したことを特徴とする一酸化珪素焼結体。  6. Contain 20 to 80% by weight of silicon powder doped with boron, phosphorus or antimony, and the balance consists of silicon monoxide or a mixture of silicon monoxide and silicon dioxide. A silicon monoxide sintered body obtained by molding a raw material powder having a content of 20% or more.
7. 焼結後の嵩密度 95%以上であることを特徴とする請求項 6に記載 の一酸化珪素焼結体。  7. The silicon monoxide sintered body according to claim 6, wherein the sintered body has a bulk density of 95% or more.
8. 比抵抗が 8 Ω · 。π!〜 4 X 1 0— 3Ω · c mであることを特徴とする 一酸化珪素焼結体。 8. The specific resistance is 8 Ω ·. π! Silicon monoxide sintered body, which is a ~ 4 X 1 0- 3 Ω · cm.
9. 請求項 1〜 8のいずれかに記載の一酸化珪素焼結体からなることを 特徴とするスパッタリングターゲット。  9. A sputtering target comprising the silicon monoxide sintered body according to any one of claims 1 to 8.
10. 直流電源を用いた反応性スパッタリングに用いられることを特徴 とする請求項 9に記載のスパッタリングターゲット。  10. The sputtering target according to claim 9, which is used for reactive sputtering using a DC power supply.
PCT/JP2003/003894 2002-04-02 2003-03-27 Silicon monoxide sintered product and sputtering target comprising the same WO2003082769A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003580242A JP4235114B2 (en) 2002-04-02 2003-03-27 Sintered body and sputtering target comprising the same
AU2003220872A AU2003220872A1 (en) 2002-04-02 2003-03-27 Silicon monoxide sintered product and sputtering target comprising the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002099515 2002-04-02
JP2002-99515 2002-04-02

Publications (1)

Publication Number Publication Date
WO2003082769A1 true WO2003082769A1 (en) 2003-10-09

Family

ID=28672018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/003894 WO2003082769A1 (en) 2002-04-02 2003-03-27 Silicon monoxide sintered product and sputtering target comprising the same

Country Status (4)

Country Link
JP (1) JP4235114B2 (en)
AU (1) AU2003220872A1 (en)
TW (1) TWI276696B (en)
WO (1) WO2003082769A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007022275A2 (en) 2005-08-11 2007-02-22 Wintek Electro-Optics Corporation Siox:si sputtering targets and method of making and using such targets
JP2007053084A (en) * 2005-07-21 2007-03-01 Sumitomo Titanium Corp Method of manufacturing negative electrode for lithium secondary battery
EP1925003A2 (en) * 2005-08-11 2008-05-28 Wintek Electro-Optics Corporation Siox:si composite material compositions and methods of making same
JP2009215125A (en) * 2008-03-12 2009-09-24 Shin Etsu Chem Co Ltd Silicon oxide sintered compact for film vapor deposition, method for producing the same, and method for producing silicon oxide vapor deposition film
US7658822B2 (en) 2005-08-11 2010-02-09 Wintek Electro-Optics Corporation SiOx:Si composite articles and methods of making same
JP2011063826A (en) * 2009-09-15 2011-03-31 Toppan Printing Co Ltd Vapor deposition material

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011027656A1 (en) 2009-09-04 2011-03-10 Semiconductor Energy Laboratory Co., Ltd. Transistor and display device
JP5606264B2 (en) * 2010-10-22 2014-10-15 信越化学工業株式会社 Photomask blank

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63166965A (en) * 1986-12-27 1988-07-11 Koujiyundo Kagaku Kenkyusho:Kk Target for vapor deposition
US4978437A (en) * 1984-05-12 1990-12-18 Leybold Aktiengesellschaft Method of applying optical coatings of silicon compounds by cathode sputtering, and a sputtering cathode for the practice of the method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4978437A (en) * 1984-05-12 1990-12-18 Leybold Aktiengesellschaft Method of applying optical coatings of silicon compounds by cathode sputtering, and a sputtering cathode for the practice of the method
JPS63166965A (en) * 1986-12-27 1988-07-11 Koujiyundo Kagaku Kenkyusho:Kk Target for vapor deposition

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4648879B2 (en) * 2005-07-21 2011-03-09 株式会社大阪チタニウムテクノロジーズ Method for producing negative electrode for lithium secondary battery
JP2007053084A (en) * 2005-07-21 2007-03-01 Sumitomo Titanium Corp Method of manufacturing negative electrode for lithium secondary battery
US7658822B2 (en) 2005-08-11 2010-02-09 Wintek Electro-Optics Corporation SiOx:Si composite articles and methods of making same
US7749406B2 (en) * 2005-08-11 2010-07-06 Stevenson David E SiOx:Si sputtering targets and method of making and using such targets
EP1929063A4 (en) * 2005-08-11 2008-12-03 Wintek Electro Optics Corp Siox:si sputtering targets and method of making and using such targets
JP2009504915A (en) * 2005-08-11 2009-02-05 ウィンテック エレクトロ−オプティックス・コーポレイション SiO2: Si sputtering target and method for making and using such a target
EP1925003A4 (en) * 2005-08-11 2009-04-29 Wintek Electro Optics Corp Siox:si composite material compositions and methods of making same
TWI386496B (en) * 2005-08-11 2013-02-21 Wintek Electro Optics Corp Siox:si sputtering targets and method of making and using such targets
WO2007022275A2 (en) 2005-08-11 2007-02-22 Wintek Electro-Optics Corporation Siox:si sputtering targets and method of making and using such targets
EP1929063A2 (en) * 2005-08-11 2008-06-11 Wintek Electro-Optics Corporation Siox:si sputtering targets and method of making and using such targets
US7790060B2 (en) * 2005-08-11 2010-09-07 Wintek Electro Optics Corporation SiOx:Si composite material compositions and methods of making same
EP1925003A2 (en) * 2005-08-11 2008-05-28 Wintek Electro-Optics Corporation Siox:si composite material compositions and methods of making same
JP4666184B2 (en) * 2008-03-12 2011-04-06 信越化学工業株式会社 Method for producing silicon oxide sintered body for film deposition, and method for producing silicon oxide deposited film
US7998263B2 (en) * 2008-03-12 2011-08-16 Shin-Etsu Chemical Co., Ltd. Sintered silicon oxide for film vapor deposition, its production method, and method for producing silicon oxide vapor deposition film
US8066806B2 (en) 2008-03-12 2011-11-29 Shin-Etsu Chemical Co., Ltd. Sintered silicon oxide for film vapor deposition, its production method, and method for producing silicon oxide vapor deposition film
JP2009215125A (en) * 2008-03-12 2009-09-24 Shin Etsu Chem Co Ltd Silicon oxide sintered compact for film vapor deposition, method for producing the same, and method for producing silicon oxide vapor deposition film
JP2011063826A (en) * 2009-09-15 2011-03-31 Toppan Printing Co Ltd Vapor deposition material

Also Published As

Publication number Publication date
JP4235114B2 (en) 2009-03-11
AU2003220872A1 (en) 2003-10-13
TWI276696B (en) 2007-03-21
JPWO2003082769A1 (en) 2005-08-04
TW200304954A (en) 2003-10-16

Similar Documents

Publication Publication Date Title
KR101421474B1 (en) Siox:si sputtering targets and method of making and using such targets
TWI476159B (en) Composite oxide sintered body, amorphous composite oxide film manufacturing method, amorphous composite oxide film, crystal composite oxide film manufacturing method and crystalline composite oxide film
TW200403189A (en) Oxide sintered body
KR20090008299A (en) Zno deposition material and zno film formed of same
KR20100012040A (en) Amorphous composite oxide film,crystalline composite oxide film,process for producing amorphous composite oxide film,process for producing crystalline composite oxide film,and composite oxide sinter
JP2009144238A (en) Indium tin oxide target, method for manufacturing the same, transparent conductive film of indium tin oxide, and method for manufacturing the same
TW201020225A (en) Oxide sintered compact for producing transparent conductive film
JP2014055348A (en) Sputtering target for forming transparent oxide film and method for producing the same
WO2003082769A1 (en) Silicon monoxide sintered product and sputtering target comprising the same
US7790060B2 (en) SiOx:Si composite material compositions and methods of making same
JP2009504557A (en) SiOx: Si composite object and manufacturing method thereof
JP4904934B2 (en) Zinc oxide-based transparent conductive film, liquid crystal display using the same, and zinc oxide-based sputtering target
JP3930452B2 (en) Sintered silicon monoxide and sputtering target
JP2007056362A (en) Sputtering target, method for producing same, sputtering thin film formed by using the sputtering target, and organic el device using the thin film
KR20110053388A (en) Oxide sintered compact for producing transparent conductive film
JP2008280545A (en) Oxygen-containing copper target
JP2019039070A (en) SiC sputtering target
JP3154735B2 (en) Sputtering target and method for manufacturing the same
JP4724330B2 (en) Tin-antimony oxide sintered compact target and method for producing the same
JPWO2019187269A1 (en) Oxide sintered body, sputtering target and transparent conductive film
JP2019148007A (en) Sputtering target and method for manufacturing the same
EP2604587A1 (en) Electrically conductive SiNx ceramic composite, its sputtering targets and manufacturing methods thereof
JP3428432B2 (en) Sputtering target material for forming a Bi-Sr-Ta-O-based ferroelectric thin film and a film forming method using the same
JP2003342068A (en) Oxide sintered compact
JP4218230B2 (en) Sintered body target for transparent conductive film production

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003580242

Country of ref document: JP

122 Ep: pct application non-entry in european phase