JP2011063826A - Vapor deposition material - Google Patents
Vapor deposition material Download PDFInfo
- Publication number
- JP2011063826A JP2011063826A JP2009213310A JP2009213310A JP2011063826A JP 2011063826 A JP2011063826 A JP 2011063826A JP 2009213310 A JP2009213310 A JP 2009213310A JP 2009213310 A JP2009213310 A JP 2009213310A JP 2011063826 A JP2011063826 A JP 2011063826A
- Authority
- JP
- Japan
- Prior art keywords
- silicon
- vapor deposition
- deposition material
- film
- silicon dioxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
本発明は、ケイ素、一酸化ケイ素、二酸化ケイ素からなる蒸着材料に係り、より詳しくは、プラスチックフィルムシートの面上に真空蒸着するのに好適な真空蒸着材料、特に生鮮食品、加工食品、医療品、医療機器、電子部品等の包装用フィルムの少なくとも片面にセラミック薄膜を形成し、バリアフィルムを製造するために使用するのが好適な蒸着材料に関する。 The present invention relates to a vapor deposition material comprising silicon, silicon monoxide, and silicon dioxide. More specifically, the present invention relates to a vacuum vapor deposition material suitable for vacuum vapor deposition on the surface of a plastic film sheet, particularly fresh food, processed food, and medical products. The present invention relates to a vapor deposition material suitable for use in manufacturing a barrier film by forming a ceramic thin film on at least one surface of a packaging film for medical equipment, electronic parts and the like.
食品、医療・医薬品などの包装材料分野や液晶、有機ELなどのフラットパネルディスプレイ用樹脂基板等のエレクトロニクス分野においては、高度のガスバリア性をもつことが求められている。この観点からアルミニウムなどの金属、あるいは酸化ケイ素、酸化アルミニウム、酸化マグネシウムなどの金属酸化物を高分子フィルム基材上に蒸着させたガスバリア性フィルムが使用されている。中でも酸化ケイ素系の蒸着膜は、透明であり、ガスバリア性が高く、電気絶縁性および機械的強度にも優れている。
ケイ素系の物質のうち、金属ケイ素、一酸化ケイ素、二酸化ケイ素、炭化ケイ素等が蒸着材料として頻繁に用いられるが、中でも金属ケイ素、二酸化ケイ素がコストの安い点で望ましく、金属ケイ素と二酸化ケイ素を混合した材料を蒸着材料として用いる既存の技術も多い(例えば特許文献1〜3を参照)。
In the field of packaging materials such as food, medicine and pharmaceuticals, and electronics such as resin substrates for flat panel displays such as liquid crystal and organic EL, it is required to have a high gas barrier property. From this viewpoint, a gas barrier film in which a metal such as aluminum or a metal oxide such as silicon oxide, aluminum oxide, or magnesium oxide is deposited on a polymer film substrate is used. Among these, a silicon oxide-based deposited film is transparent, has a high gas barrier property, and is excellent in electrical insulation and mechanical strength.
Among silicon-based substances, metal silicon, silicon monoxide, silicon dioxide, silicon carbide, etc. are frequently used as vapor deposition materials. There are many existing techniques that use mixed materials as vapor deposition materials (see, for example, Patent Documents 1 to 3).
一方、ケイ素系材料の中で、一酸化ケイ素は比較的蒸発速度が速い点で優れている。これは、一酸化ケイ素が昇華性の物質のためである。一酸化ケイ素膜の形成に使用される蒸着材料は、一般的に、原料室内でSiとSiO2 とを混合して加熱し、原料室の上に連結された管状の凝集室の内面にSiOを気相析出させることにより、作られる。蒸着材料として使用される場合、析出されたSiOを所定のタブレット形状に切り出して使用する場合もあれば、析出体を一旦破砕して粉末にし、これをタブレット、キュービック等の形状に成形して使用する場合もある。
但し、一酸化ケイ素を直接蒸着材料として用いる場合でも、他の物質と混ぜる場合でも、スプラッシュの発生を抑えること、蒸発速度を出すことが課題となっている。昇華性の物質であるために、材料からの蒸発を制御することが難しいためである。ここでスプラッシュとは、蒸着材料が高温の微細な粒のまま飛散する現象を言う。また必要に応じて、Zr、Mg、Cなどの金属、あるいは添加物を混ぜることもできる。
これらの解決を図るため、例えば特許文献4〜8に開示されたような技術が提案されている。
On the other hand, among silicon materials, silicon monoxide is excellent in that it has a relatively high evaporation rate. This is because silicon monoxide is a sublimable substance. The vapor deposition material used to form the silicon monoxide film is generally mixed with Si and SiO 2 in the raw material chamber and heated, and SiO is deposited on the inner surface of a tubular agglomeration chamber connected on the raw material chamber. Made by vapor deposition. When used as a vapor deposition material, the deposited SiO may be cut into a predetermined tablet shape, or it may be used by crushing the precipitate once into a powder, which is then shaped into a tablet, cubic, etc. There is also a case.
However, whether silicon monoxide is directly used as a vapor deposition material or mixed with other substances, it is a problem to suppress the occurrence of splash and increase the evaporation rate. This is because it is a sublimable substance and it is difficult to control evaporation from the material. Here, the splash refers to a phenomenon in which the vapor deposition material is scattered in high-temperature fine particles. If necessary, metals such as Zr, Mg, C, or additives can be mixed.
In order to solve these problems, for example, techniques as disclosed in Patent Documents 4 to 8 have been proposed.
本発明は、昇華性ではない、すなわち溶融した後に蒸発する金属ケイ素と二酸化ケイ素と一酸化ケイ素とを添加した蒸着材料であって、蒸発速度が上昇し、スプラッシュが抑制され、バリア性の良好なバリアフィルムを製造できる蒸着材料を提供することを目的とする。 The present invention is a deposition material that is not sublimable, that is, a deposition material to which metal silicon, silicon dioxide, and silicon monoxide that evaporates after being melted is added. It aims at providing the vapor deposition material which can manufacture a barrier film.
請求項1に記載の発明は、金属ケイ素と一酸化ケイ素と二酸化ケイ素とを含有し、ケイ素と酸素との原子比(O/Si)が1.05〜1.6であり、かさ密度が1.2〜1.5 g/cm3であることを特徴とするEB加熱方式用の蒸着材料である。
請求項2に記載の発明は、前記蒸着材料をフィルム上に蒸着した膜の成分のケイ素と酸素との原子比(O/Si)が1.9以下であることを特徴とする請求項1記載の蒸着材料である。
請求項3に記載の発明は、前記蒸着材料の二酸化ケイ素がX線的に石英型の結晶構造を有していることを特徴とする請求項1記載の蒸着材料である。
The invention according to claim 1 contains metallic silicon, silicon monoxide, and silicon dioxide, has an atomic ratio (O / Si) of silicon to oxygen of 1.05 to 1.6, and a bulk density of 1.2 to 1.5 g / It is a vapor deposition material for EB heating method characterized by being cm 3 .
The invention according to claim 2 is characterized in that the atomic ratio (O / Si) between silicon and oxygen of the component of the film obtained by depositing the vapor deposition material on the film is 1.9 or less. Material.
The invention according to claim 3 is the vapor deposition material according to claim 1, wherein the silicon dioxide of the vapor deposition material has a quartz-type crystal structure in X-rays.
本発明によれば、金属ケイ素と一酸化ケイ素と二酸化ケイ素とを添加した蒸着材料において、ケイ素と酸素との原子比(O/Si)を特定範囲とし、かつかさ密度も特定範囲に設定したので、昇華性ではない、すなわち溶融した後に蒸発する材料であるとともに、蒸発速度が上昇し、スプラッシュが抑制され、バリア性の良好なバリアフィルムを製造できる蒸着材料が提供される。 According to the present invention, in the vapor deposition material in which metallic silicon, silicon monoxide, and silicon dioxide are added, the atomic ratio of silicon to oxygen (O / Si) is set to a specific range, and the bulk density is also set to a specific range. There is provided a vapor deposition material that is not sublimable, that is, a material that evaporates after being melted, has an increased evaporation rate, suppresses splash, and can produce a barrier film with good barrier properties.
以下、本発明を詳細に説明する。
本発明の蒸着材料は、金属ケイ素と一酸化ケイ素と二酸化ケイ素とを含有し、ケイ素と酸素との原子比(O/Si)が1.05〜1.6であり、かさ密度が1.2〜1.5g/cm3である。
従って本発明の蒸着材料は真空蒸着において、蒸着材料からのスプラッシュを抑え、かつ蒸発速度を上げることができる。すなわち、金属ケイ素と一酸化ケイ素と二酸化ケイ素とを含有する蒸着材料のケイ素と酸素との原子比(O/Si)を1.05〜1.6とし、かさ密度を1.2〜1.5 g/cm3としたためEBの照射に対して安定して溶解、昇華するため、スプラッシュが出にくく、かつ蒸着速度が調整されて蒸発速度を出し、バリアフィルムを製造することができる。
Hereinafter, the present invention will be described in detail.
The vapor deposition material of the present invention contains metallic silicon, silicon monoxide, and silicon dioxide, has an atomic ratio (O / Si) of silicon to oxygen of 1.05 to 1.6, and a bulk density of 1.2 to 1.5 g / cm 3. It is.
Therefore, the vapor deposition material of the present invention can suppress splash from the vapor deposition material and increase the evaporation rate in vacuum vapor deposition. That is, since the atomic ratio (O / Si) of silicon to oxygen of the vapor deposition material containing metallic silicon, silicon monoxide, and silicon dioxide is 1.05 to 1.6 and the bulk density is 1.2 to 1.5 g / cm 3 , Since it dissolves and sublimates stably with respect to irradiation, it is difficult to produce splash, and the deposition rate is adjusted to increase the evaporation rate, thereby producing a barrier film.
ここでスプラッシュとは、蒸着の際の加熱による熱衝撃や内部から発生するガスの圧力などにより、気化していない蒸着材料が、高温の微細な粒のまま飛散する現象である。スプラッシュの発生により、形成された蒸着膜にピンホールが生じてバリアフィルムとしての性能が出なかったり、微細な粒が異物として蒸着原反に混入することも有り得る。
また、蒸着方式には抵抗加熱方式、誘導過熱方式、電子ビーム方式などある。特に電子ビーム(EB)方式では蒸着材料を局部的に急速に加熱でき、しかも蒸着材料の堆積速度をはやめ、そのため巻取蒸着加工速度を向上させて包装材料の生産性を高めることができる特徴があり、頻繁に用いられている。しかし電子ビームを直接材料に当てるため、材料が受ける熱衝撃が大きく、スプラッシュが一層発生しやすくなる問題がある。
本発明では、金属ケイ素と一酸化ケイ素と二酸化ケイ素とを含有し、ケイ素と酸素との原子比(O/Si)を1.05〜1.6とし、かさ密度を1.2〜1.5g/cm3とすることでスプラッシュの発生を抑えることができる。
Here, the splash is a phenomenon in which a vapor deposition material that is not vaporized is scattered as high-temperature fine particles due to a thermal shock caused by heating during vapor deposition or a pressure of a gas generated from the inside. Due to the occurrence of splash, pinholes may be generated in the formed deposited film, and the performance as a barrier film may not be obtained, or fine particles may be mixed into the deposited film as foreign matter.
The vapor deposition method includes a resistance heating method, an induction heating method, an electron beam method, and the like. In particular, the electron beam (EB) method has the feature that the vapor deposition material can be heated locally and rapidly, and the deposition rate of the vapor deposition material can be stopped, so that the winding vapor deposition processing rate can be improved and the packaging material productivity can be increased. Yes, it is used frequently. However, since the electron beam is directly applied to the material, there is a problem that the material is subjected to a large thermal shock, and splash is more likely to occur.
In the present invention, it contains metallic silicon, silicon monoxide, and silicon dioxide, the atomic ratio (O / Si) of silicon to oxygen is 1.05 to 1.6, and the bulk density is 1.2 to 1.5 g / cm 3. Splash generation can be suppressed.
ケイ素系材料を3種類混合するのは、各々単独で蒸着材料の成形体とするとスプラッシュ、蒸発速度等を制御する点で使用が困難のためである。
金属ケイ素単体では、EBの熱によって溶融した層ができ、蒸発しないまま温度が高くなり、層がはじけてスプラッシュが多発する。一酸化ケイ素単体では、昇華性物質であるため蒸発速度は速いが、均一に昇華しにくいため、コントロールが難しい。二酸化ケイ素単体では、金属ケイ素と同じく溶融し、ガラス層ができる。また、成膜した膜がSiO2に非常に近く、ガスバリア性に乏しい。そこで、特徴の異なる3種を合わせることで、スプラッシュが出ず、蒸着速度を出せる蒸着材料とした。
The reason why three types of silicon-based materials are mixed is that it is difficult to use in terms of controlling splash, evaporation rate, etc., if each is a single body of vapor deposition material.
In the case of metallic silicon alone, a layer melted by the heat of EB is formed, the temperature rises without evaporating, the layer pops and splash occurs frequently. Since silicon monoxide alone is a sublimable substance, the evaporation rate is fast, but it is difficult to control because it is difficult to sublimate uniformly. Silicon dioxide alone is melted in the same manner as metallic silicon to form a glass layer. In addition, the deposited film is very close to SiO 2 and has poor gas barrier properties. Therefore, by combining the three types with different characteristics, a vapor deposition material capable of producing a vapor deposition rate without splashing was obtained.
ケイ素と酸素との原子比(O/Si)は混合する粉末の配合量、添加剤等によって調整が可能である。蒸着中においては、比が高いほど溶融してガラス化して蒸発量が減る傾向があり、比が低いほど不安定に昇華し、スプラッシュが出やすい傾向がある。そこで、蒸着材料のO/Si比は1.05〜1.6の範囲であることが望ましい。 The atomic ratio (O / Si) of silicon and oxygen can be adjusted by the blending amount of powder to be mixed and additives. During vapor deposition, the higher the ratio, the more it tends to melt and vitrify, and the amount of evaporation tends to decrease. Therefore, the O / Si ratio of the vapor deposition material is desirably in the range of 1.05 to 1.6.
蒸着材料のかさ密度は、選択する粉末の粒径のほか、粉末を成形体とする際の製造方法によって調整することができる。水等と混合してスラリー状とする場合は、水分との混合比により調整される。また、プレス法などで押し固める場合は、その圧力により調整される。また、バインダーとして添加剤を用いる場合には、添加剤が空隙に充填される分、密度が高くなる可能性が高い。しかし密度が高すぎると、電子ビームの熱衝撃に対して砕けやすく、また熱伝導性が高い為に材料が暖まりやすく、蒸発の制御がしにくい。逆に密度が低いと、電子ビームの熱衝撃に対して細かく飛び散りやすく、特に脆い場合は、それに加えて壊れやすい為に扱いが難しい。そのため、蒸着材料のかさ密度は1.2〜1.5g/cm3であることが望ましい。
かさ密度とは、材料寸法および重量を測定し、g/cm3へ単位換算することにより測定された値を意味する。
The bulk density of the vapor deposition material can be adjusted by the manufacturing method when the powder is formed into a molded body, in addition to the particle size of the powder to be selected. When mixed with water or the like to form a slurry, it is adjusted by the mixing ratio with water. Moreover, when pressing and hardening by the press method etc., it adjusts with the pressure. Moreover, when using an additive as a binder, there is a high possibility that the density will increase as the additive is filled in the voids. However, if the density is too high, the material is easily broken by the thermal shock of the electron beam, and the material is likely to be warmed due to its high thermal conductivity, making it difficult to control evaporation. On the other hand, if the density is low, it is easy to scatter finely with respect to the thermal shock of the electron beam. Therefore, the bulk density of the vapor deposition material is desirably 1.2 to 1.5 g / cm 3 .
The bulk density means a value measured by measuring material dimensions and weight and converting the unit to g / cm 3 .
また、蒸着材料をフィルム上に蒸着した膜の成分のケイ素と酸素との原子比(O/Si)は1.9以下が望ましい。O/Si比が2.0に近いほど、組成比が二酸化ケイ素と近くなり、水蒸気バリア性に乏しい膜となる。
上記原子比(O/Si)を1.9以下にするには、材料作成において粉末を混合する際、O/Si比の理論値をできるだけ小さくする、焼成による材料の酸化を抑える、蒸着機の成膜室における酸素ガス発生を抑える等の手段がある。
The atomic ratio (O / Si) between silicon and oxygen, which is a component of a film obtained by depositing a deposition material on a film, is preferably 1.9 or less. The closer the O / Si ratio is to 2.0, the closer the composition ratio is to that of silicon dioxide, resulting in a film with poor water vapor barrier properties.
In order to reduce the atomic ratio (O / Si) to 1.9 or less, when mixing powders in material preparation, the theoretical value of O / Si ratio should be as small as possible. There are means such as suppressing the generation of oxygen gas in the chamber.
一方、二酸化ケイ素には天然品、合成品、結晶質、非晶質などの区分がある。金属ケイ素、一酸化ケイ素、二酸化ケイ素を混合した材料を作成する場合、金属ケイ素、一酸化ケイ素は一般的に結晶質であるため、二酸化ケイ素も出来るだけ近い形状にして、蒸発に際する溶融の仕方を似たものとするべく、結晶質を用いるのが望ましい。 On the other hand, silicon dioxide is classified into natural products, synthetic products, crystalline materials, and amorphous materials. When creating a mixed material of silicon metal, silicon monoxide, and silicon dioxide, metal silicon and silicon monoxide are generally crystalline, so silicon dioxide should be shaped as close as possible and melted during evaporation. It is desirable to use a crystalline material to make the way similar.
以下、本発明を実施例および比較例によりさらに説明するが、本発明は下記例に制限されない。 EXAMPLES Hereinafter, although an Example and a comparative example further demonstrate this invention, this invention is not restrict | limited to the following example.
金属ケイ素粉末(平均粒径10μm)、一酸化ケイ素粉末(平均粒径8μm)、X線的に石英型の結晶構造をした二酸化ケイ素粉末(平均粒径10μm)をO/Si比が理論値で1.2となるように混合し、更に水、シリカゾルを混合し、スラリーを調整し、このスラリーを型に流し込み、成形した。なお、XRD(X-ray Diffraction Spectroscopy)にて結晶構造を分析し結晶化を示すピークが検出されれば石英型とみなすことができる。この成形物を乾燥した後、大気環境800℃で1時間焼成することにより実施例1の成形体を作成した。
なお、金属ケイ素のSi原子1個に対し、一酸化ケイ素におけるSi原子が1.8個、二酸化ケイ素におけるSi原子が3.2個となるように上記材料を混合した。
Metallic silicon powder (average particle size 10 μm), silicon monoxide powder (average particle size 8 μm), and X-ray quartz-type silicon dioxide powder (average particle size 10 μm) with a theoretical O / Si ratio The mixture was mixed to 1.2, water and silica sol were further mixed to prepare a slurry, and this slurry was poured into a mold and molded. If the crystal structure is analyzed by XRD (X-ray Diffraction Spectroscopy) and a peak indicating crystallization is detected, it can be regarded as a quartz type. After drying this molded product, the molded product of Example 1 was prepared by firing at 800 ° C. for 1 hour in an atmospheric environment.
In addition, the said material was mixed so that it might become 1.8 Si atoms in silicon monoxide and 3.2 Si atoms in silicon dioxide with respect to 1 Si atom of metallic silicon.
一酸化ケイ素粉末の平均粒径を10μmに、二酸化ケイ素の平均粒径を6μmに変更し、アルゴン雰囲気下1200℃で焼成したこと以外は実施例1と同じ方法で成形体を作成することにより実施例2の成形体を作成した。 Implemented by preparing a molded body in the same manner as in Example 1 except that the average particle size of silicon monoxide powder was changed to 10 μm and the average particle size of silicon dioxide was changed to 6 μm and fired at 1200 ° C. in an argon atmosphere. The molded body of Example 2 was prepared.
金属ケイ素粉末の平均粒径を8μmに、二酸化ケイ素の平均粒径を16μmに変更し、O/Si比の理論値を1.1としたこと、プレス成形したこと、大気環境800℃で焼成したこと以外は実施例1と同じ方法で成形体を作成することにより実施例3の成形体を作成した。
なお、金属ケイ素のSi原子1個に対し、一酸化ケイ素におけるSi原子が0.4個、二酸化ケイ素におけるSi原子が3.9個となるように上記材料を混合した。
Other than changing the average particle size of the metal silicon powder to 8 μm, changing the average particle size of silicon dioxide to 16 μm, setting the theoretical value of the O / Si ratio to 1.1, pressing, and firing at 800 ° C. in the atmospheric environment Produced the molded body of Example 3 by creating a molded body in the same manner as in Example 1.
In addition, the said material was mixed so that the Si atom in silicon monoxide might become 0.4 Si atom and 3.9 Si atoms in silicon dioxide with respect to 1 Si atom of metallic silicon.
シリカゾルを用いなかったこと、O/Si比の理論値を1.5としたこと、アルゴン雰囲気下1200℃で焼成したこと以外は、実施例1と同じ方法で成形体を作成することにより実施例4の成形体を作成した。
なお、金属ケイ素のSi原子1個に対し、一酸化ケイ素におけるSi原子が1.1個、二酸化ケイ素におけるSi原子が8.5個となるように上記材料を混合した。
Except that no silica sol was used, that the theoretical value of the O / Si ratio was 1.5, and that it was fired at 1200 ° C. in an argon atmosphere, a molded body was prepared in the same manner as in Example 1 to produce the molded body of Example 4. A molded body was prepared.
In addition, the said material was mixed so that it might be 1.1 Si atoms in silicon monoxide, and 8.5 Si atoms in silicon dioxide with respect to 1 Si atom of metallic silicon.
(比較例1)
シリカゾルを用いなかったこと、O/Si比の理論値を0.90としたこと、大気環境800℃で焼成したこと以外は実施例1と同じ方法で材料の作成することにより比較例1の成形体を作成した。
(Comparative Example 1)
The molded article of Comparative Example 1 was prepared by preparing the material in the same manner as in Example 1 except that no silica sol was used, the theoretical value of the O / Si ratio was 0.90, and that the material was fired at 800 ° C. Created.
(比較例2)
0/Si比の理論値を1.6としたこと、アルゴン雰囲気下1200℃で焼成したこと以外は、実施例1と同じ方法で材料の作成することにより比較例2の成形体を作成した。
(Comparative Example 2)
A molded article of Comparative Example 2 was prepared by preparing the material in the same manner as in Example 1 except that the theoretical value of 0 / Si ratio was 1.6, and firing was performed at 1200 ° C. in an argon atmosphere.
(比較例3)
0/Si比の理論値を1.45としたこと、プレス成形を行ったこと以外は、実施例2と同じ方法で材料の作成することにより比較例3の成形体を作成した。
(Comparative Example 3)
A molded body of Comparative Example 3 was prepared by preparing a material in the same manner as in Example 2 except that the theoretical value of 0 / Si ratio was 1.45 and press molding was performed.
(比較例4)
O/Si比の理論値を1.0としたこと、大気環境1000℃で焼成したこと以外は、実施例1と同じ方法で材料の作成を行うことにより、比較例4の成形体を作成した。
(Comparative Example 4)
A molded article of Comparative Example 4 was prepared by preparing the material by the same method as in Example 1 except that the theoretical value of the O / Si ratio was set to 1.0, and firing was performed at 1000 ° C. in the atmospheric environment.
(比較例5)
プレス成形を行ったこと以外は、実施例1と同じ方法で材料の作成を行うことにより、比較例5の成形体を作成した。
(Comparative Example 5)
A molded body of Comparative Example 5 was created by creating materials in the same manner as in Example 1 except that press molding was performed.
(比較例6)
二酸化ケイ素粉末が非晶質であったこと以外は、実施例1と同じ方法で材料の作成を行うことにより比較例6の成形体を作成した。
(Comparative Example 6)
Except that the silicon dioxide powder was amorphous, a material of Comparative Example 6 was prepared by preparing the material by the same method as in Example 1.
(比較例7)
混合した粉末が金属ケイ素粉末(平均粒径10μm)及び二酸化ケイ素粉末(平均粒径10μm)であったこと、O/Si比の理論値が1.3であったこと以外は、実施例1と同じ方法で材料の作成を行うことにより比較例7の成形体を作成した。
(Comparative Example 7)
The same method as in Example 1 except that the mixed powder was metal silicon powder (average particle size 10 μm) and silicon dioxide powder (average particle size 10 μm), and the theoretical value of the O / Si ratio was 1.3. A molded body of Comparative Example 7 was prepared by preparing a material.
(比較例8)
混合した粉末が一酸化ケイ素粉末(平均粒径8μm)及び二酸化ケイ素粉末(平均粒径10μm)であったこと、O/Si比の理論値が1.3であったこと以外は、実施例1と同じ方法で材料の作成を行うことにより比較例8の成形体を作成した。
(Comparative Example 8)
Same as Example 1 except that the mixed powder was silicon monoxide powder (average particle size 8 μm) and silicon dioxide powder (average particle size 10 μm), and the theoretical value of O / Si ratio was 1.3. A molded body of Comparative Example 8 was prepared by preparing the material by the method.
(比較例9)
粉末が一酸化ケイ素粉末(平均粒径8μm)のみであったこと、O/Si比の理論値が1.0であったこと以外は、実施例1と同じ方法で材料の作成を行うことにより比較例9の成形体を作成した。
(Comparative Example 9)
A comparative example was prepared by preparing the material in the same manner as in Example 1 except that the powder was only silicon monoxide powder (average particle size 8 μm) and the theoretical value of the O / Si ratio was 1.0. Nine compacts were made.
(評価)
実施例1〜4及び比較例1〜7で作成した成形体について、O/Si比をエネルギー分散型X線分光分析装置(JDE-2300 JEOL社製)を用いて求めた。測定した結果を表1に示す。また、かさ密度を求めた結果を表1に示す。
作成した各成形体について、電子ビーム加熱方式の巻き取り式蒸着装置を用いて、実施例及び比較例の蒸着材料を、12μm厚のポリエステルフィルムに、巻き取り速度60m/minで真空蒸着させ、ガスバリアフィルムを得た。これらの蒸着の際におけるスプラッシュ発生の有無を目視で確認し、スプラッシュの出ない最大の電子ビームパワーで加工した。各実施例、比較例のスプラッシュの発生したレート及び電子ビームパワーを表1に示す。レートとは、得られた膜厚から算出され、蒸発の速度を表す。
次に、得られたガスバリアフィルムの水蒸気透過度(g/m2・day)を水蒸気透過度測定装置(PERMATRAN 3/30、mocon社製)にて40℃90%RHの雰囲気下で測定した。得られた結果を表1に示す。また、得られたガスバリアフィルムの膜組成をXPS(日本電子製 JPS-90SXV)にて計測し、O/Si比を求めた。得られた結果を表1に示す。
(Evaluation)
About the molded object produced in Examples 1-4 and Comparative Examples 1-7, O / Si ratio was calculated | required using the energy dispersive X-ray-spectral-analysis apparatus (made by JDE-2300 JEOL). Table 1 shows the measurement results. Table 1 shows the results of the bulk density.
About each created compact, the vapor deposition material of an Example and a comparative example was vacuum-deposited with a winding speed of 60 m / min on a 12-micrometer-thick polyester film using the winding type vapor deposition apparatus of an electron beam heating system, and gas barrier A film was obtained. The presence or absence of splash during the vapor deposition was visually confirmed, and processing was performed with the maximum electron beam power at which no splash occurred. Table 1 shows the rate of occurrence of splash and electron beam power in each example and comparative example. The rate is calculated from the obtained film thickness and represents the rate of evaporation.
Next, the water vapor permeability (g / m 2 · day) of the obtained gas barrier film was measured with a water vapor permeability measuring device (PERMATRAN 3/30, manufactured by mocon) in an atmosphere of 40 ° C. and 90% RH. The obtained results are shown in Table 1. In addition, the film composition of the obtained gas barrier film was measured with XPS (JPS-90SXV, manufactured by JEOL Ltd.) to determine the O / Si ratio. The obtained results are shown in Table 1.
表1及び製造方法からわかるように、実施例1〜4の蒸着材料はいずれも、金属ケイ素と一酸化ケイ素と二酸化ケイ素とを含有し、ケイ素と酸素との原子比(O/Si)が1.05〜1.6であり、かさ密度が1.2〜1.5g/cm3であり、フィルム上に蒸着した膜の成分のケイ素と酸素との原子比(O/Si)が1.9以下であり、二酸化ケイ素がX線的に石英型の結晶構造をしていた。これにより、実施例1〜4の蒸着材料はいずれも、昇華性ではない、すなわち溶融した後に蒸発する材料であり、蒸発速度が上昇し、スプラッシュが抑制され、バリア性の良好なバリアフィルムを製造できる蒸着材料であることが証明された。 As can be seen from Table 1 and the production method, the vapor deposition materials of Examples 1 to 4 all contain metallic silicon, silicon monoxide, and silicon dioxide, and the atomic ratio (O / Si) of silicon to oxygen is 1.05. -1.6, bulk density is 1.2-1.5 g / cm 3 , the atomic ratio (O / Si) between silicon and oxygen of the components of the film deposited on the film is 1.9 or less, and silicon dioxide is X-ray In particular, it had a quartz-type crystal structure. Thereby, all the vapor deposition materials of Examples 1 to 4 are not sublimable, that is, are materials that evaporate after being melted, increase the evaporation rate, suppress splash, and produce a barrier film with good barrier properties. It proved to be a vapor deposition material that can be used.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009213310A JP5353592B2 (en) | 2009-09-15 | 2009-09-15 | Vapor deposition material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009213310A JP5353592B2 (en) | 2009-09-15 | 2009-09-15 | Vapor deposition material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011063826A true JP2011063826A (en) | 2011-03-31 |
JP5353592B2 JP5353592B2 (en) | 2013-11-27 |
Family
ID=43950373
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009213310A Active JP5353592B2 (en) | 2009-09-15 | 2009-09-15 | Vapor deposition material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5353592B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013023718A (en) * | 2011-07-19 | 2013-02-04 | Toppan Printing Co Ltd | Vapor deposition material, vapor-deposited gas-barrier film, and method for producing the vapor-deposited gas-barrier film |
JP2014218705A (en) * | 2013-05-09 | 2014-11-20 | 日本放送協会 | Vacuum suction method, vacuum treatment unit, and sublimation pump |
US20160327719A1 (en) * | 2014-10-16 | 2016-11-10 | Toppan Printing Co., Ltd. | Quantum dot protective film, quantum dot film using same, and backlight unit |
JPWO2015037462A1 (en) * | 2013-09-12 | 2017-03-02 | コニカミノルタ株式会社 | Method for producing sintered silicon oxide and sintered silicon oxide |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0734224A (en) * | 1993-07-20 | 1995-02-03 | Shin Etsu Chem Co Ltd | Material for vapor-depositing silicon oxide and vapor deposited film |
JPH07331419A (en) * | 1994-06-10 | 1995-12-19 | Toyo Ink Mfg Co Ltd | Vapor-deposition compact and vacuum deposition method using the compact |
JPH09143689A (en) * | 1995-11-27 | 1997-06-03 | Toppan Printing Co Ltd | Porous vapor depositing material and its production |
WO2003082769A1 (en) * | 2002-04-02 | 2003-10-09 | Sumitomo Titanium Corporation | Silicon monoxide sintered product and sputtering target comprising the same |
JP2009179819A (en) * | 2008-01-29 | 2009-08-13 | Toppan Printing Co Ltd | Manufacturing method of transparent film with gas barrier property |
-
2009
- 2009-09-15 JP JP2009213310A patent/JP5353592B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0734224A (en) * | 1993-07-20 | 1995-02-03 | Shin Etsu Chem Co Ltd | Material for vapor-depositing silicon oxide and vapor deposited film |
JPH07331419A (en) * | 1994-06-10 | 1995-12-19 | Toyo Ink Mfg Co Ltd | Vapor-deposition compact and vacuum deposition method using the compact |
JPH09143689A (en) * | 1995-11-27 | 1997-06-03 | Toppan Printing Co Ltd | Porous vapor depositing material and its production |
WO2003082769A1 (en) * | 2002-04-02 | 2003-10-09 | Sumitomo Titanium Corporation | Silicon monoxide sintered product and sputtering target comprising the same |
JP2009179819A (en) * | 2008-01-29 | 2009-08-13 | Toppan Printing Co Ltd | Manufacturing method of transparent film with gas barrier property |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013023718A (en) * | 2011-07-19 | 2013-02-04 | Toppan Printing Co Ltd | Vapor deposition material, vapor-deposited gas-barrier film, and method for producing the vapor-deposited gas-barrier film |
JP2014218705A (en) * | 2013-05-09 | 2014-11-20 | 日本放送協会 | Vacuum suction method, vacuum treatment unit, and sublimation pump |
JPWO2015037462A1 (en) * | 2013-09-12 | 2017-03-02 | コニカミノルタ株式会社 | Method for producing sintered silicon oxide and sintered silicon oxide |
US20160327719A1 (en) * | 2014-10-16 | 2016-11-10 | Toppan Printing Co., Ltd. | Quantum dot protective film, quantum dot film using same, and backlight unit |
US10571619B2 (en) * | 2014-10-16 | 2020-02-25 | Toppan Printing Co., Ltd. | Quantum dot protective film, quantum dot film using same, and backlight unit |
Also Published As
Publication number | Publication date |
---|---|
JP5353592B2 (en) | 2013-11-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI476159B (en) | Composite oxide sintered body, amorphous composite oxide film manufacturing method, amorphous composite oxide film, crystal composite oxide film manufacturing method and crystalline composite oxide film | |
JP2010037161A (en) | Oxide sintered compact, method for producing the same, sputtering target and semiconductor thin film | |
JP5353592B2 (en) | Vapor deposition material | |
KR20140041950A (en) | Amorphous composite oxide film,crystalline composite oxide film,process for producing amorphous composite oxide film,process for producing crystalline composite oxide film,and composite oxide sinter | |
TWI627292B (en) | Cu-ga-in-na target | |
JPWO2012105323A1 (en) | Oxide sintered body and tablet processed the same | |
JPWO2012042959A1 (en) | Cu-In-Ga-Se quaternary alloy sputtering target | |
TWI472500B (en) | Dopant host | |
JP5334246B2 (en) | Ion plating target for zinc oxide thin film production | |
CN105209405B (en) | Oxidate sintered body and the sputtering target comprising the oxidate sintered body | |
JP3632524B2 (en) | Mg-containing ITO sputtering target and method for producing Mg-containing ITO vapor deposition material | |
JP2011074479A (en) | Target for ion plating for producing zinc oxide-based transparent conductive thin film, and zinc oxide-based transparent conductive thin film | |
JP5510248B2 (en) | Vapor deposition material | |
JP2010106307A (en) | Vapor deposition raw material and method of preparing the same | |
US20070037404A1 (en) | SiOx:Si composite articles and methods of making same | |
JP5381724B2 (en) | Method for producing ZnO vapor deposition material | |
JP2010235966A (en) | SiOx MOLDED BODY AND GAS BARRIER FILM | |
JP2009256762A (en) | Sputtering target and method for producing the same | |
JP2012193073A (en) | Oxide molded product, oxide sintered compact, and transparent conductive film-forming material | |
JP5549483B2 (en) | Vapor deposition material, gas barrier vapor deposition film manufacturing method, and gas barrier vapor deposition film | |
JPH0316954A (en) | Oxide sintered product and preparation and use thereof | |
JP4904645B2 (en) | Method for producing Mg-containing ITO sputtering target | |
JP2015052152A (en) | Vapor deposition material and method for producing the same | |
JP5993700B2 (en) | Method for producing zinc oxide-based sintered body | |
JP2015086423A (en) | Vapor deposition material and method of producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120823 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130730 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130731 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130812 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 5353592 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |