JP4904934B2 - Zinc oxide-based transparent conductive film, liquid crystal display using the same, and zinc oxide-based sputtering target - Google Patents

Zinc oxide-based transparent conductive film, liquid crystal display using the same, and zinc oxide-based sputtering target Download PDF

Info

Publication number
JP4904934B2
JP4904934B2 JP2006160287A JP2006160287A JP4904934B2 JP 4904934 B2 JP4904934 B2 JP 4904934B2 JP 2006160287 A JP2006160287 A JP 2006160287A JP 2006160287 A JP2006160287 A JP 2006160287A JP 4904934 B2 JP4904934 B2 JP 4904934B2
Authority
JP
Japan
Prior art keywords
zinc oxide
less
transparent conductive
indium
atomic ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006160287A
Other languages
Japanese (ja)
Other versions
JP2007329051A (en
Inventor
健太郎 内海
仁志 飯草
俊宏 満
祐一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2006160287A priority Critical patent/JP4904934B2/en
Publication of JP2007329051A publication Critical patent/JP2007329051A/en
Application granted granted Critical
Publication of JP4904934B2 publication Critical patent/JP4904934B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a transparent conductive film with low resistivity, as well as excellent in heat-resistance/moisture-resistance, and with zinc oxide as a base material excellent in chemical resistance. <P>SOLUTION: The transparent conductive film with low resistivity, as well as excellent in heat-resistance/moisture-resistance, and excellent in chemical resistance can be obtained by using a transparent conductive film with aluminum-added zinc oxide (ZAO) adding indium, having an aluminum content in an atomic ratio of Al/(Zn+Al+In+Ga) of more than 2% and less than 6%, having an indium content in an atomic ratio of In/(Zn+Al+In+Ga) of more than 0.1% and less than 1.0%, and a gallium content in an atomic ratio of Ga/(Zn+Al+In+Ga) of more than 0.1% and less than 1.0%. <P>COPYRIGHT: (C)2008,JPO&amp;INPIT

Description

本発明は、フラットパネルディスプレイや太陽電池などに使用される透明導電膜に関する。   The present invention relates to a transparent conductive film used for flat panel displays, solar cells and the like.

ITO(Indium Tin Oxide)薄膜は、低抵抗率で可視光に対して高い透過率を示すことから、液晶ディスプレイを中心としたフラットパネルディスプレイや太陽電池などの透明電極として幅広く用いられている。しかし、近年、原材料であるインジウム価格の高騰、資源問題によりインジウムを使用しない透明導電膜(ITO代替材料)への関心が高まっている。ITO代替材料としては、酸化亜鉛、酸化スズを母材とした材料が知られている。中でも、酸化亜鉛に酸化アルミニウムを添加した膜では、190μΩcmというITOに匹敵する値が報告されている(例えば非特許文献1参照)。   An ITO (Indium Tin Oxide) thin film is widely used as a transparent electrode for flat panel displays centering on liquid crystal displays and solar cells because it has a low resistivity and a high transmittance for visible light. However, in recent years, interest in a transparent conductive film (ITO substitute material) that does not use indium is increasing due to a rise in the price of indium as a raw material and resource problems. As ITO substitute materials, materials based on zinc oxide and tin oxide are known. In particular, in a film in which aluminum oxide is added to zinc oxide, a value comparable to that of ITO of 190 μΩcm has been reported (for example, see Non-Patent Document 1).

酸化亜鉛を母材とする膜の形成方法としては、rfマグネトロンスパッタリング法、dcマグネトロンスパッタリング法、パルスレーザーデポジション法、イオンプレーティング法、蒸着法などをあげることができる。上記、190μΩcmという値は、rfマグネトロンスパッタリング法により得られている。しかし、フラットパネルディスプレイの製造工程では、大面積均一成膜および高速成膜が必要とされ、dcマグネトロンスパッタリング法が採用されている。そのため既存の製造工程への対応を考えた場合には、このdcマグネトロンスパッタリング法で実用的特性を示す膜を形成する必要がある。   Examples of a method for forming a film using zinc oxide as a base material include an rf magnetron sputtering method, a dc magnetron sputtering method, a pulse laser deposition method, an ion plating method, and an evaporation method. The value of 190 μΩcm is obtained by the rf magnetron sputtering method. However, the flat panel display manufacturing process requires large-area uniform film formation and high-speed film formation, and the dc magnetron sputtering method is employed. Therefore, when considering the correspondence to the existing manufacturing process, it is necessary to form a film showing practical characteristics by this dc magnetron sputtering method.

スパッタリングターゲットとしては金属亜鉛を主原料とする合金ターゲット(例えば特許文献1参照)、あるいは酸化亜鉛を主原料とする酸化物ターゲット(例えば特許文献2参照)が用いられている。このうち、酸化物ターゲットを用いる方法は、合金ターゲットを用いる方法と比較して成膜条件のコントロールが容易であるため、酸化亜鉛系薄膜製造法の主流となっている。   As the sputtering target, an alloy target (for example, refer to Patent Document 1) using zinc metal as a main material or an oxide target (for example, refer to Patent Document 2) using zinc oxide as a main material is used. Among these, the method using an oxide target is the mainstream of the zinc oxide-based thin film manufacturing method because the film formation conditions are easier to control than the method using an alloy target.

酸化物ターゲットを用いてdcスパッタリング法により成膜する場合、スパッタリング中に異常放電が多発するという問題があった。この問題を解決するため、酸化亜鉛にアルミニウムおよびB,Ga,In,Ge,Si,Sn,Tiからなる1種以上の元素を添加する方法が提案されている(例えば、特許文献3参照)。該発明によれば、5000Åという厚い膜に於いて低抵抗な膜(560μΩcm)が得られている。   When a film is formed by a dc sputtering method using an oxide target, there is a problem that abnormal discharge frequently occurs during sputtering. In order to solve this problem, a method of adding one or more elements composed of aluminum and B, Ga, In, Ge, Si, Sn, and Ti to zinc oxide has been proposed (see, for example, Patent Document 3). According to the invention, a low resistance film (560 μΩcm) is obtained in a film having a thickness of 5000 mm.

また、酸化亜鉛を母材とする薄膜は耐熱性に劣ることが知られていた。この耐熱性を改善するため、酸化亜鉛を主成分とし、InとIn以外の3族元素を添加する方法が提案された(例えば、特許文献4参照)。本発明により100℃、3日間という条件において耐熱性が改善されることが報告されている。このときの抵抗率は膜厚200nmでシート抵抗68Ω/□(抵抗率に換算すると1360μΩcm)であった。   Further, it has been known that a thin film containing zinc oxide as a base material is inferior in heat resistance. In order to improve this heat resistance, a method has been proposed in which zinc oxide is the main component and a group 3 element other than In and In is added (for example, see Patent Document 4). It has been reported that heat resistance is improved under the conditions of 100 ° C. and 3 days according to the present invention. The resistivity at this time was a film resistance of 200 Ω / □ with a film thickness of 200 nm (1360 μΩcm in terms of resistivity).

特開昭62−157618号公報Japanese Patent Laid-Open No. 62-157618 特開平02−149459号公報Japanese Patent Laid-Open No. 02-149459 特開平11−236219号公報Japanese Patent Laid-Open No. 11-236219 特開平11−297640号公報Japanese Patent Laid-Open No. 11-297640 T.Minami、H.Nanto and S.Takata、JpnJ.Appl.Phys.、23,280−282(1984).T.A. Minami, H .; Nanto and S.M. Takata, JpnJ. Appl. Phys. 23, 280-282 (1984).

上記のように各種問題は解決され、酸化亜鉛を母材とする材料が、ITOの代替材料として採用可能と思われた。しかし、実際に液晶ディスプレイに用いる場合には、膜厚200nm以下という薄い膜厚で使用しなければならない。このような薄い膜厚で、各種薄膜特性を調べたところ、
1)薄膜の抵抗率が、膜厚が薄くなるのにともない急激に増加する、
2)大気中での高温(例えば250℃)処理により抵抗率が増加する、
3)多湿(例えば60℃、90%)処理により抵抗率が増加する、
4)アルカリ溶液(フォトリソグラフィー工程で使用される現像液、剥離液)により溶解する、
といった問題点が明らかとなった。
As described above, various problems were solved, and it was considered that a material using zinc oxide as a base material could be used as an alternative material for ITO. However, when it is actually used in a liquid crystal display, it must be used with a thin film thickness of 200 nm or less. We investigated various thin film characteristics with such a thin film thickness.
1) The resistivity of the thin film increases rapidly as the film thickness decreases.
2) Resistivity increases by high temperature (eg 250 ° C.) treatment in the atmosphere,
3) Resistivity increases with high humidity (eg 60 ° C., 90%) treatment,
4) Dissolve in an alkaline solution (developer and stripper used in the photolithography process)
Such problems became clear.

上述のように、200nmより薄い膜厚領域において、低抵抗率で、耐熱、耐湿性に優れ、耐薬品性が良好な酸化亜鉛を母材とする薄膜は未だ報告されていない。   As described above, a thin film based on zinc oxide having a low resistivity, excellent heat resistance and moisture resistance, and good chemical resistance in a film thickness region thinner than 200 nm has not yet been reported.

本発明の課題は、上記問題を全て解決する酸化亜鉛を母材とする薄膜を提供することにある。   The subject of this invention is providing the thin film which uses zinc oxide as a base material which solves all the said problems.

本発明者らは、上記問題を解決するため、低抵抗率を示すことでよく知られるアルミニウム添加酸化亜鉛(以下ZAOと記載)に添加する添加剤について鋭意検討を行った。   In order to solve the above-mentioned problems, the present inventors have intensively studied an additive added to aluminum-added zinc oxide (hereinafter referred to as ZAO), which is well known for exhibiting a low resistivity.

その結果、ZAOにインジウムとガリウムを共添加し、その添加量をアルミニウムがAl/(Zn+Al+In+Ga)の原子比で2%を超え6%未満、インジウムがIn/(Zn+Al+In+Ga)の原子比で0.1%を超え1.0%未満、かつガリウムがGa/(Zn+Al+In+Ga)の原子比で0.1%を超え1.0%未満とすることで、上記課題を解決できることを見いだした。   As a result, indium and gallium were co-added to ZAO, and the addition amount of aluminum was more than 2% and less than 6% in terms of Al / (Zn + Al + In + Ga), and indium was 0.1% in terms of In / (Zn + Al + In + Ga). It has been found that the above problem can be solved by exceeding 0.1% and less than 1.0%, and making gallium more than 0.1% and less than 1.0% by atomic ratio of Ga / (Zn + Al + In + Ga).

すなわち本発明は、亜鉛、アルミニウム、インジウム、ガリウムおよび酸素からなり、アルミニウムがAl/(Zn+Al+In+Ga)の原子比で2%を超え6%未満の割合で含有され、かつインジウムがIn/(Zn+Al+In+Ga)の原子比で0.1%を超え1.0%未満の割合で含有され、ガリウムがGa/(Zn+Al+In+Ga)の原子比で0.1%を超え1.0%未満の割合で含有されていることを特徴とする透明導電膜に関するものである。   That is, the present invention is composed of zinc, aluminum, indium, gallium and oxygen, aluminum is contained in an atomic ratio of Al / (Zn + Al + In + Ga) exceeding 2% and less than 6%, and indium is In / (Zn + Al + In + Ga). It is contained in an atomic ratio exceeding 0.1% and less than 1.0%, and gallium is contained in an atomic ratio of Ga / (Zn + Al + In + Ga) exceeding 0.1% and less than 1.0%. It is related with the transparent conductive film characterized by these.

アルミニウムの含有量は、上記の原子比で2%を超え6%未満である。これは、この範囲外では、薄膜の抵抗率が高くなるためである。このアルミニウムの含有量は上記の原子比で2.4%以上5.3%以下であることが更に好ましい。   The aluminum content is more than 2% and less than 6% in the above atomic ratio. This is because the resistivity of the thin film increases outside this range. The aluminum content is more preferably 2.4% or more and 5.3% or less in the above atomic ratio.

インジウムの添加量は、上記の原子比で0.1%を超え1.0%未満である。0.1%以下の場合は、本発明による優れた低抵抗率、耐熱性、耐湿性、耐薬品性が得難く、1.0%以上では、得られる薄膜の抵抗率が高くなるためである。このインジウムの添加量は上記の原子比で0.2%以上0.8%以下であることが更に好ましい。   The addition amount of indium is more than 0.1% and less than 1.0% in the above atomic ratio. If it is 0.1% or less, it is difficult to obtain excellent low resistivity, heat resistance, moisture resistance, and chemical resistance according to the present invention, and if it is 1.0% or more, the resistivity of the obtained thin film is increased. . The addition amount of indium is more preferably 0.2% or more and 0.8% or less in the above atomic ratio.

ガリウムの添加量は、上記の原子比で0.1%を超え1.0%未満である。0.1%以下の場合は、本発明による優れた低抵抗率が得難く、1.0%以上では、耐湿性が劣るためである。このガリウムの添加量は上記の原子比で0.2%以上0.8%以下であることが更に好ましい。   The addition amount of gallium is more than 0.1% and less than 1.0% in the above atomic ratio. If it is 0.1% or less, it is difficult to obtain an excellent low resistivity according to the present invention, and if it is 1.0% or more, the moisture resistance is poor. The addition amount of gallium is more preferably 0.2% or more and 0.8% or less in the above atomic ratio.

なお、本発明の透明導電膜は、亜鉛、アルミニウム、インジウム、ガリウムおよび酸素からなる透明導電膜であるが、本発明の効果を損なわない範囲で、成膜に用いる原材料に含まれる不可避不純物や、成膜過程で混入する不可避不純物を含むものであっても良い。低抵抗率、高耐熱性、高耐湿性、高耐薬品性といった本発明の優れた効果を十分に得るためには、亜鉛、アルミニウム、インジウム、ガリウムおよび酸素の合計が透明導電膜全体の99.9at%以上であることが好ましい。   The transparent conductive film of the present invention is a transparent conductive film composed of zinc, aluminum, indium, gallium and oxygen, but within the range not impairing the effects of the present invention, inevitable impurities contained in the raw materials used for film formation, It may contain inevitable impurities mixed in during the film formation process. In order to sufficiently obtain the excellent effects of the present invention such as low resistivity, high heat resistance, high moisture resistance, and high chemical resistance, the total of zinc, aluminum, indium, gallium and oxygen is 99.99% of the entire transparent conductive film. It is preferable that it is 9 at% or more.

次にインジウムの添加効果について説明する。本発明者らは、ZAO膜の耐熱、耐湿性悪化要因について調べた。その結果、ZAO膜表面には膜の粒界付近に大きな窪みが存在し、この部分に酸素あるいは水分が吸着することによりZAO膜の抵抗率が増加するとの知見を得た。そして、ZAO膜にインジウムを微量添加するとこの窪みの数および深さが減少し、それにより酸素あるいは水分の吸着が防止され、耐熱、耐湿性を向上させることができることを見いだした。薄膜の表面粗さ(中心線平均粗さ:Ra)を測定したところ従来のZAO薄膜の場合2.4nmであったが、本発明による薄膜では1.0nmであった。また、薬液による膜の溶解も粒界から発生することが知られており、上記窪みを減少させることにより耐薬品性も向上できることを見いだした。上記効果は、インジウムの添加量を1%以上に増加させても得ることができるが、薄膜の抵抗率が増加し、液晶ディスプレイなどでの使用に適さなくなる。   Next, the effect of adding indium will be described. The present inventors investigated the heat and moisture resistance deterioration factors of the ZAO film. As a result, it was found that a large depression exists in the vicinity of the grain boundary of the ZAO film surface, and that the resistivity of the ZAO film is increased by adsorbing oxygen or moisture to this portion. It was also found that when a small amount of indium is added to the ZAO film, the number and depth of the depressions are reduced, thereby preventing adsorption of oxygen or moisture and improving heat resistance and moisture resistance. When the surface roughness (centerline average roughness: Ra) of the thin film was measured, it was 2.4 nm for the conventional ZAO thin film, but 1.0 nm for the thin film according to the present invention. Further, it is known that the dissolution of the film by the chemical solution also occurs from the grain boundary, and it has been found that the chemical resistance can be improved by reducing the depression. The above effect can be obtained even if the amount of indium added is increased to 1% or more, but the resistivity of the thin film increases, making it unsuitable for use in a liquid crystal display or the like.

次にガリウムの添加効果について説明する。ガリウムの主な役割は抵抗率の低減である。0.1%を超える量を添加することにより、抵抗率を著しく低減できる。しかし、ガリウムの添加量が前記の原子比で1%以上になると耐湿性が急激に悪化するため好ましくない。ガリウム添加の際のこれら現象のメカニズムは未だ明らかではない。   Next, the effect of adding gallium will be described. The main role of gallium is to reduce resistivity. By adding an amount exceeding 0.1%, the resistivity can be significantly reduced. However, it is not preferable that the amount of gallium added is 1% or more in terms of the above-mentioned atomic ratio because moisture resistance deteriorates rapidly. The mechanism of these phenomena when adding gallium is not yet clear.

本発明の透明導電膜は、亜鉛、アルミニウム、インジウム、ガリウムおよび酸素を含む焼結体からなるターゲットを用い、スパッタリング法により作製することができる。また、亜鉛、アルミニウム、インジウムおよびガリウムを含む金属ターゲットを用い、酸素を含有する雰囲気中で反応性スパッタリング法により作製することもできるが、この方法では、前述のように成膜条件のコントロールが難しくなるため好ましくない。   The transparent conductive film of the present invention can be produced by a sputtering method using a target made of a sintered body containing zinc, aluminum, indium, gallium and oxygen. In addition, it can be produced by a reactive sputtering method in an oxygen-containing atmosphere using a metal target containing zinc, aluminum, indium and gallium. However, as described above, it is difficult to control the film formation conditions. Therefore, it is not preferable.

本発明の酸化亜鉛系スパッタリングターゲットは、例えば、酸化亜鉛粉末、酸化アルミニウム粉末、酸化インジウム粉末および酸化ガリウム粉末を目的とする組成となるように混合し、プレス等により成形した後、焼成することで得られた焼結体をターゲット材とし、このターゲット材を必要に応じて、整形・研磨した後、バッキングプレートにボンディングして得られる。具体的には、ターゲット材中のアルミニウムの含有量をAl/(Zn+Al+In+Ga)の原子比で2%を超え6%未満とし、かつ、インジウムの量をIn/(Zn+Al+In+Ga)の原子比で0.1%を超え1.0%未満、ガリウムの量をGa/(Zn+Al+In+Ga)の原子比で0.1%を超え1.0%未満とするのが好ましい。   The zinc oxide-based sputtering target of the present invention is prepared by, for example, mixing zinc oxide powder, aluminum oxide powder, indium oxide powder, and gallium oxide powder so as to have a target composition, molding by a press or the like, and then firing. The obtained sintered body is used as a target material, and this target material is shaped and polished as necessary, and then bonded to a backing plate. Specifically, the aluminum content in the target material is more than 2% and less than 6% by atomic ratio of Al / (Zn + Al + In + Ga), and the amount of indium is 0.1 / in atomic ratio of In / (Zn + Al + In + Ga). % And less than 1.0%, and the amount of gallium is preferably more than 0.1% and less than 1.0% in terms of atomic ratio of Ga / (Zn + Al + In + Ga).

なお、本発明の酸化亜鉛系スパッタリングターゲットは、亜鉛、アルミニウム、インジウム、ガリウムおよび酸素からなる焼結体をターゲット材とするものであるが、本発明の効果を損なわない範囲で、原材料に含まれる不可避不純物や、ターゲット製造過程で混入する不可避不純物を含むものであっても良い。低抵抗率、高耐熱性、高耐湿性、高耐薬品性等が十分に優れた透明導電膜を得るためには、ターゲット材中の亜鉛、アルミニウム、インジウム、ガリウムおよび酸素の合計がターゲット材全体の99.9at%以上であることが好ましい。   The zinc oxide-based sputtering target of the present invention uses a sintered body made of zinc, aluminum, indium, gallium and oxygen as a target material, but is included in the raw material as long as the effects of the present invention are not impaired. It may include inevitable impurities or inevitable impurities mixed in during the target manufacturing process. In order to obtain a transparent conductive film with sufficiently low resistance, high heat resistance, high moisture resistance, high chemical resistance, etc., the total of zinc, aluminum, indium, gallium and oxygen in the target material It is preferable that it is 99.9 at% or more.

本発明の透明導電膜の作製は、例えば以下のようにして行う。上記の酸化亜鉛系スパッタリングターゲットをスパッタリング装置内に設置し、真空排気する。良好な結晶からなる透明導電膜を得るため、基板温度は100℃以上とすることが好ましい。より好ましくは、100℃〜240℃である。基板温度が低いと、得られる膜の結晶性が向上せず、本発明の効果が得がたくなる。また、基板温度が高いと装置に対する負荷が大きくなり好ましくない。   The transparent conductive film of the present invention is produced, for example, as follows. The zinc oxide-based sputtering target is placed in a sputtering apparatus and evacuated. In order to obtain a transparent conductive film composed of good crystals, the substrate temperature is preferably 100 ° C. or higher. More preferably, it is 100 to 240 ° C. When the substrate temperature is low, the crystallinity of the resulting film is not improved, and the effects of the present invention are difficult to obtain. Moreover, when the substrate temperature is high, the load on the apparatus increases, which is not preferable.

スパッタリングガスとしては、不活性ガスの例えばArを使用する。必要に応じて、酸化性ガスや還元性ガスを導入しても良い。   As the sputtering gas, an inert gas such as Ar is used. If necessary, an oxidizing gas or a reducing gas may be introduced.

スパッタリング方式は、DCスパッタリング法、RFスパッタリング法、ACスパッタリング法またはこれらを組みあわせた方法が使用可能である。   As the sputtering method, a DC sputtering method, an RF sputtering method, an AC sputtering method, or a method combining these can be used.

本発明により、特に液晶ディスプレイに好適な200nmより薄い領域において、低抵抗率で、耐熱、耐湿性に優れ、耐薬品性が良好な酸化亜鉛を母材とする透明導電膜が提供可能となる。   According to the present invention, it is possible to provide a transparent conductive film using zinc oxide as a base material having a low resistivity, excellent heat resistance and moisture resistance, and good chemical resistance, particularly in a region thinner than 200 nm suitable for a liquid crystal display.

以下に本発明を実施例により更に詳細に説明するが、本発明はこれに限定されるものではない。   The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.

(実施例1〜9および比較例1〜5)
平均粒径が1μmの酸化亜鉛粉末と、平均粒径が0.2μmの酸化アルミニウム粉末と、平均粒径が0.5μmの酸化インジウム粉末と、平均粒径0.5μmの酸化ガリウム粉末を所定量ポットに入れ、乾式ボールミルにより48時間混合し、混合粉末を作製した。この混合粉末を金型に入れ、300kg/cmの圧力でプレスを行い成形体とした。この成形体を3ton/cmの圧力でCIPによる緻密化処理を行った。次に該成形体を以下の条件で焼結した。なお、アルミニウム、インジウム、ガリウムの含有量が、前記の原子比で、表1に示す値の焼結体を作製した。
(Examples 1-9 and Comparative Examples 1-5)
A predetermined amount of zinc oxide powder having an average particle diameter of 1 μm, aluminum oxide powder having an average particle diameter of 0.2 μm, indium oxide powder having an average particle diameter of 0.5 μm, and gallium oxide powder having an average particle diameter of 0.5 μm It put into the pot and mixed for 48 hours with the dry-type ball mill, and produced mixed powder. This mixed powder was put into a mold and pressed at a pressure of 300 kg / cm 2 to obtain a molded body. This compact was subjected to densification treatment with CIP at a pressure of 3 ton / cm 2 . Next, the compact was sintered under the following conditions. In addition, the sintered compact whose content of aluminum, indium, and gallium is the value shown in Table 1 with the said atomic ratio was produced.

(焼結条件)
焼結温度:1500℃
昇温速度:50℃/hr
保持時間:5時間
焼結雰囲気:窒素雰囲気中
得られた焼結体を4インチφ×6mmtに加工し、インジウム半田を用いて無酸素銅製のバッキングプレートにボンディングした。
(Sintering conditions)
Sintering temperature: 1500 ° C
Temperature increase rate: 50 ° C / hr
Holding time: 5 hours Sintering atmosphere: In nitrogen atmosphere The obtained sintered body was processed into 4 inches φ × 6 mmt and bonded to an oxygen-free copper backing plate using indium solder.

これらのターゲットを用いて、DCマグネトロンスパッタリング法により以下に示す条件で、Al、InおよびGa含有量の異なる透明導電膜を作製した。   Using these targets, transparent conductive films having different contents of Al, In and Ga were produced by the DC magnetron sputtering method under the following conditions.

(スパッタリング成膜条件)
装置:dcマグネトロンスパッタ装置
磁界強度:1000Gauss(ターゲット直上、水平成分)
基板温度:200℃
到達真空度:5×10−5Pa
スパッタリングガス:Ar
スパッタリングガス圧:0.5Pa
DCパワー:300W
膜厚:100nm
使用基板:無アルカリガラス(コーニング社製#1737ガラス)
得られた薄膜の抵抗率をホール効果測定装置を用いて測定した。結果を表1に示す。アルミニウムがAl/(Zn+Al+In+Ga)の原子比で2%を超え6%未満かつインジウムがIn/(Zn+Al+In+Ga)の原子比で0.1%を超え1.0%未満の範囲で900μΩcm以下の低抵抗率の膜を得ることができた。
(Sputtering film formation conditions)
Apparatus: dc magnetron sputtering apparatus Magnetic field strength: 1000 Gauss (horizontal component directly above the target)
Substrate temperature: 200 ° C
Ultimate vacuum: 5 × 10 −5 Pa
Sputtering gas: Ar
Sputtering gas pressure: 0.5 Pa
DC power: 300W
Film thickness: 100nm
Substrate used: alkali-free glass (Corning # 1737 glass)
The resistivity of the obtained thin film was measured using a Hall effect measuring device. The results are shown in Table 1. Low resistivity of 900 μΩcm or less in a range where aluminum is in an Al / (Zn + Al + In + Ga) atomic ratio of more than 2% and less than 6% and indium is In / (Zn + Al + In + Ga) in an atomic ratio of more than 0.1% and less than 1.0% The film was able to be obtained.

得られた薄膜の耐熱試験(大気中、250℃の環境下に30分間保持)および耐湿試験(60℃、90%RHの環境下に1000時間保持)後の抵抗率を表1に纏めた。   Table 1 summarizes the resistivity of the obtained thin film after heat resistance test (held in air at 250 ° C. for 30 minutes) and moisture resistance test (held at 60 ° C., 90% RH for 1000 hours).

本発明の透明導電膜は、成膜後の抵抗率、耐熱性、耐湿性全てにおいて優れた特性を発揮し、耐熱、耐湿試験後の抵抗率がいずれも700μΩcm以下となった。   The transparent conductive film of the present invention exhibited excellent properties in all of the resistivity, heat resistance, and moisture resistance after film formation, and the resistivity after the heat resistance and moisture resistance test was 700 μΩcm or less.

これに対し、Inのみを含まない膜では、耐湿試験により抵抗率が著しく上昇し(比較例4)、Gaのみを含まない膜では耐熱、耐湿性は良好であるが、抵抗率が700μΩcm以上と高くなった(比較例3)。また、InおよびGaの双方を多量に添加すると、耐熱、耐湿性は良好であるが、抵抗率が著しく高い結果となった(比較例5)。   On the other hand, in the film not containing only In, the resistivity is remarkably increased by the moisture resistance test (Comparative Example 4), and in the film not containing only Ga, the heat resistance and moisture resistance are good, but the resistivity is 700 μΩcm or more. (Comparative example 3). Moreover, when both In and Ga were added in a large amount, heat resistance and moisture resistance were good, but the resistivity was extremely high (Comparative Example 5).

さらに、得られた薄膜のアルカリ溶解性(25℃の2%KOH水溶液に4分間浸漬した際の膜厚の減少量)を調べた。この処理により溶解した膜厚を表1に纏めた。本発明の組成を有する膜においては、アルカリ処理による溶解膜厚が20nm以下であり、耐アルカリ性も著しく向上している。   Further, the alkali solubility of the obtained thin film (the amount of decrease in film thickness when immersed in a 2% KOH aqueous solution at 25 ° C. for 4 minutes) was examined. The film thickness dissolved by this treatment is summarized in Table 1. In the film | membrane which has a composition of this invention, the melt | dissolution film thickness by an alkali process is 20 nm or less, and alkali resistance is also improving remarkably.

Figure 0004904934
Figure 0004904934

Claims (2)

亜鉛、アルミニウム、インジウム、ガリウムおよび酸素からなり、アルミニウムがAl/(Zn+Al+In+Ga)の原子比で2%を超え6%未満の割合で含有され、インジウムがIn/(Zn+Al+In+Ga)の原子比で0.1%を超え1.0%未満の割合で含有され、かつガリウムがGa/(Zn+Al+In+Ga)の原子比で0.1%を超え1.0%未満の割合で含有されていることを特徴とする透明導電膜。 It is composed of zinc, aluminum, indium, gallium and oxygen, and aluminum is contained in an Al / (Zn + Al + In + Ga) atomic ratio of more than 2% and less than 6%, and indium is 0.1 / in atomic ratio of In / (Zn + Al + In + Ga). Transparent, characterized in that it is contained in a proportion exceeding 1.0% and less than 1.0%, and gallium is contained in an atomic ratio of Ga / (Zn + Al + In + Ga) exceeding 0.1% and less than 1.0%. Conductive film. 亜鉛、アルミニウム、インジウム、ガリウムおよび酸素からなり、アルミニウムがAl/(Zn+Al+In+Ga)の原子比で2%を超え6%未満の割合で含有され、インジウムがIn/(Zn+Al+In+Ga)の原子比で0.1%を超え1.0%未満の割合で含有され、かつガリウムがGa/(Zn+Al+In+Ga)の原子比で0.1%を超え1.0%未満の割合で含有されている酸化亜鉛系焼結体をターゲット材として用いたことを特徴とする透明導電膜製造用酸化亜鉛系スパッタリングターゲット。 It is composed of zinc, aluminum, indium, gallium and oxygen, and aluminum is contained in an Al / (Zn + Al + In + Ga) atomic ratio of more than 2% and less than 6%, and indium is 0.1 / in atomic ratio of In / (Zn + Al + In + Ga). Zinc oxide-based sintered body containing more than 0.1% and less than 1.0% and containing gallium in an atomic ratio of Ga / (Zn + Al + In + Ga) exceeding 0.1% and less than 1.0% A zinc oxide-based sputtering target for producing a transparent conductive film , characterized in that is used as a target material.
JP2006160287A 2006-06-08 2006-06-08 Zinc oxide-based transparent conductive film, liquid crystal display using the same, and zinc oxide-based sputtering target Active JP4904934B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006160287A JP4904934B2 (en) 2006-06-08 2006-06-08 Zinc oxide-based transparent conductive film, liquid crystal display using the same, and zinc oxide-based sputtering target

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006160287A JP4904934B2 (en) 2006-06-08 2006-06-08 Zinc oxide-based transparent conductive film, liquid crystal display using the same, and zinc oxide-based sputtering target

Publications (2)

Publication Number Publication Date
JP2007329051A JP2007329051A (en) 2007-12-20
JP4904934B2 true JP4904934B2 (en) 2012-03-28

Family

ID=38929366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006160287A Active JP4904934B2 (en) 2006-06-08 2006-06-08 Zinc oxide-based transparent conductive film, liquid crystal display using the same, and zinc oxide-based sputtering target

Country Status (1)

Country Link
JP (1) JP4904934B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013147727A (en) * 2012-01-23 2013-08-01 Kochi Univ Of Technology Zinc oxide-based transparent conductive thin film and method of manufacturing the same
KR101900820B1 (en) * 2012-09-18 2018-09-20 재단법인 포항산업과학연구원 Compound for transparent electroconductive thin film, method for forming thin film using the same and transparent electroconductive thin film manufacutred thereby
WO2015118724A1 (en) * 2014-02-07 2015-08-13 リンテック株式会社 Transparent conductive laminate, method for producing transparent conductive laminate, and electronic device formed using transparent conductive laminate
WO2015118725A1 (en) * 2014-02-07 2015-08-13 リンテック株式会社 Transparent conductive film, method for producing transparent conductive film, and electronic device formed using transparent conductive film
WO2015118726A1 (en) * 2014-02-07 2015-08-13 リンテック株式会社 Transparent conductive laminate, method for producing transparent conductive laminate, and electronic device formed using transparent conductive laminate

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11236219A (en) * 1998-02-20 1999-08-31 Sumitomo Metal Mining Co Ltd Zinc oxide-base sintered compact and its production
JP3837903B2 (en) * 1998-04-09 2006-10-25 旭硝子株式会社 Transparent conductive film and manufacturing method thereof
JP2000268638A (en) * 1999-03-18 2000-09-29 Futaba Corp Transparent conductive film and field emission display element

Also Published As

Publication number Publication date
JP2007329051A (en) 2007-12-20

Similar Documents

Publication Publication Date Title
JP5716768B2 (en) Oxide sintered body, target, transparent conductive film obtained using the same, and transparent conductive substrate
JP4488184B2 (en) Indium oxide-zinc oxide-magnesium oxide sputtering target and transparent conductive film
JP4098345B2 (en) Gallium oxide-zinc oxide sputtering target, method for forming transparent conductive film, and transparent conductive film
JP4926977B2 (en) Gallium oxide-zinc oxide sintered sputtering target
JP5339100B2 (en) Zn-Si-O-based oxide sintered body, method for producing the same, sputtering target, and tablet for vapor deposition
US8252206B2 (en) Amorphous film of composite oxide, crystalline film of composite oxide, method of producing said films and sintered compact of composite oxide
JP2007277075A (en) Oxide sintered compact, method for producing the same, method for producing transparent electroconductive film using the same, and resultant transparent electroconductive film
KR101243403B1 (en) Oxide sintered compact for producing transparent conductive film
TW201504188A (en) Sintered Compact, Amorphous Film and Crystalline Film of Composite Oxide, and Process for Producing the Films
JP4904934B2 (en) Zinc oxide-based transparent conductive film, liquid crystal display using the same, and zinc oxide-based sputtering target
JP4779798B2 (en) Oxide sintered body, target, and transparent conductive film obtained using the same
KR20160103933A (en) Laminated wiring film for electronic components and sputtering target material for forming coating layer
TWI504772B (en) Copper-manganese alloy film and copper-manganese alloy sputtering target and film formation method of copper-manganese alloy film
JP4702126B2 (en) Zinc oxide-based transparent conductive film, liquid crystal display using the same, and zinc oxide-based sputtering target
JP4175071B2 (en) Oxide sintered body and sputtering target
JP2007280756A (en) Zinc oxide based transparent conductive film and liquid crystal display as well as zinc oxide based sputtering target using same
JP2009161389A (en) Zinc oxide-based transparent conductive film
JP6390142B2 (en) Oxide sputtering target and manufacturing method thereof
JP5087605B2 (en) Indium oxide-zinc oxide-magnesium oxide sputtering target and transparent conductive film
JP5363742B2 (en) Zinc oxide transparent conductive film
WO2015020029A1 (en) Sputtering target and method for producing same
JP2005113190A (en) Sputtering target material, its production method, and method of producing transparent electrically conductive film using the same
JP5613805B2 (en) Zinc oxide-based transparent conductive film, sintered compact target for magnetron sputtering, liquid crystal display and touch panel, and equipment comprising zinc oxide-based transparent conductive film
JP5761253B2 (en) Zn-Si-O-based oxide sintered body, method for producing the same, sputtering target, and tablet for vapor deposition
JP2008053118A (en) Heat treatment method for zinc oxide-based transparent conductive film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111226

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4904934

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3