JP2007280756A - Zinc oxide based transparent conductive film and liquid crystal display as well as zinc oxide based sputtering target using same - Google Patents

Zinc oxide based transparent conductive film and liquid crystal display as well as zinc oxide based sputtering target using same Download PDF

Info

Publication number
JP2007280756A
JP2007280756A JP2006105220A JP2006105220A JP2007280756A JP 2007280756 A JP2007280756 A JP 2007280756A JP 2006105220 A JP2006105220 A JP 2006105220A JP 2006105220 A JP2006105220 A JP 2006105220A JP 2007280756 A JP2007280756 A JP 2007280756A
Authority
JP
Japan
Prior art keywords
zinc oxide
transparent conductive
conductive film
less
gallium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006105220A
Other languages
Japanese (ja)
Inventor
Kentaro Uchiumi
健太郎 内海
Hitoshi Iigusa
仁志 飯草
Toshihiro Man
俊宏 満
Yuichi Suzuki
祐一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2006105220A priority Critical patent/JP2007280756A/en
Publication of JP2007280756A publication Critical patent/JP2007280756A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a transparent conductive film which is low in resistivity, which is superior in heat resistance, and which has zinc oxide superior in chemical resistance as the base material. <P>SOLUTION: This is the transparent conductive film in which gallium is added to aluminum added zinc oxide (ZAO), and which is low in resistivity, superior in heat resistance and superior in chemical resistance, and this can be obtained by making aluminum content more than 2% and less than 6% by an atomic ratio of Al/(Zn+Al+Ga), and by making gallium content more than 0.1% and less than 1.0% by the atomic ratio of Ga/(Zn+Al+Ga). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、フラットパネルディスプレイや太陽電池などに使用される透明導電膜に関する。   The present invention relates to a transparent conductive film used for flat panel displays, solar cells and the like.

ITO(Indium Tin Oxide)薄膜は、低抵抗率で可視光に対して高い透過率を示すことから、液晶ディスプレイを中心としたフラットパネルディスプレイや太陽電池など透明電極として幅広く用いられている。しかし、近年、原材料であるインジウム価格の高騰、資源問題によりインジウムを使用しない透明導電膜(ITO代替材料)への関心が高まっている。ITO代替材料としては、酸化亜鉛、酸化スズを母材とした材料が知られている。中でも、酸化亜鉛に酸化アルミニウムを添加した膜(以下ZAOと略記する)では、190μΩcmというITOに匹敵する値が報告され(例えば非特許文献1参照)ている。   An ITO (Indium Tin Oxide) thin film is widely used as a transparent electrode such as a flat panel display centering on a liquid crystal display and a solar cell because it has a low resistivity and a high transmittance for visible light. However, in recent years, interest in a transparent conductive film (ITO substitute material) that does not use indium is increasing due to a rise in the price of indium as a raw material and resource problems. As ITO substitute materials, materials based on zinc oxide and tin oxide are known. In particular, a film in which aluminum oxide is added to zinc oxide (hereinafter abbreviated as ZAO) has been reported to be 190 μΩcm, which is comparable to ITO (see Non-Patent Document 1, for example).

酸化亜鉛を母材とする膜の形成方法としては、rfマグネトロンスパッタリング法、dcマグネトロンスパッタリング法、パルスレーザーデポジション法、イオンプレーティング法、蒸着法などをあげることができる。上記、190μΩcmという値は、rfマグネトロンスパッタリング法により得られている。しかし、フラットパネルディスプレイの製造工程では、大面積均一成膜および高速成膜が必要とされ、dcマグネトロンスパッタリング法が採用されている。そのため既存の製造工程への対応を考えた場合には、このdcマグネトロンスパッタリング法で実用的特性を示す膜を形成する必要がある。   Examples of a method for forming a film using zinc oxide as a base material include an rf magnetron sputtering method, a dc magnetron sputtering method, a pulse laser deposition method, an ion plating method, and an evaporation method. The value of 190 μΩcm is obtained by the rf magnetron sputtering method. However, the flat panel display manufacturing process requires large-area uniform film formation and high-speed film formation, and the dc magnetron sputtering method is employed. Therefore, when considering the correspondence to the existing manufacturing process, it is necessary to form a film showing practical characteristics by this dc magnetron sputtering method.

dcマグネトロンスパッタリング法で酸化亜鉛を母材とする膜を形成する際、ITOと比べて放電安定性に劣るという問題点があった。このような問題を解決する手段として、酸化亜鉛を母材とする焼結体の密度を高めるとともにバルクの抵抗率を低減させる方法(例えば特許文献1参照)や、複数の異なる元素を添加する方法(例えば特許文献2〜3参照)が考案された。   When forming a film using zinc oxide as a base material by the dc magnetron sputtering method, there is a problem that the discharge stability is inferior to that of ITO. As means for solving such problems, a method of increasing the density of a sintered body using zinc oxide as a base material and reducing the bulk resistivity (for example, see Patent Document 1), or a method of adding a plurality of different elements (See, for example, Patent Documents 2 to 3).

特開H02−149459号公報Japanese Patent Laid-Open No. H02-149459 特開H11−236219号公報JP H11-236219 特開H11−256320号公報JP H11-256320 A T.Minami、H.Nanto and S.Takata、JpnJ.Appl.Phys.、23,280−282(1984).T. T. et al. Minami, H .; Nanto and S.M. Takata, JpnJ. Appl. Phys. 23, 280-282 (1984).

上記のように各種問題は解決され、酸化亜鉛を母材とする材料が、ITOの代替材料として採用可能と思われた。しかし、実際に液晶ディスプレイに適用する際には、膜厚200nm以下という薄い膜厚で使用しなければならない。このような薄い膜厚で、各種薄膜特性を調べたところ、以下の問題点が明らかとなった。
1)薄膜の抵抗率が、膜厚が薄くなるのにともない急激に増加する。
2)大気中での高温(例えば250℃)処理により抵抗率が増加する。
3)アルカリ溶液(フォトリソグラフィー工程で使用される現像液、剥離液)により溶解する。
As described above, various problems were solved, and it was considered that a material using zinc oxide as a base material could be used as an alternative material for ITO. However, when it is actually applied to a liquid crystal display, it must be used with a thin film thickness of 200 nm or less. When various thin film characteristics were examined with such a thin film thickness, the following problems were clarified.
1) The resistivity of the thin film increases rapidly as the film thickness decreases.
2) Resistivity increases due to high temperature (eg, 250 ° C.) treatment in the atmosphere.
3) Dissolve in an alkaline solution (developer, stripper used in the photolithography process)

上述のように、200nmより薄い膜厚領域において、低抵抗率で、耐熱性に優れ、耐薬品性が良好な酸化亜鉛を母材とする薄膜は未だ報告されていない。   As described above, a thin film based on zinc oxide having a low resistivity, excellent heat resistance, and good chemical resistance in a film thickness region thinner than 200 nm has not yet been reported.

本発明の課題は、上記問題を全て解決する酸化亜鉛を母材とする薄膜を提供することにある。   The subject of this invention is providing the thin film which uses zinc oxide as a base material which solves all the said problems.

本発明者らは、上記問題を解決するため、低抵抗率を示すことでよく知られるアルミニウム添加酸化亜鉛(以下ZAOと記載)に添加する添加剤について鋭意検討を行った。   In order to solve the above-mentioned problems, the present inventors have intensively studied an additive added to aluminum-added zinc oxide (hereinafter referred to as ZAO), which is well known for exhibiting a low resistivity.

その結果、ZAOにガリウムを添加し、その添加量をアルミニウムがAl/(Zn+Al+Ga)の原子比で2%を超え6%未満かつガリウムがGa/(Zn+Al+Ga)の原子比で0.1%を超え1.0%未満とすることで、上記課題を解決できることを見いだした。   As a result, gallium is added to ZAO, and the addition amount of aluminum is more than 2% by atomic ratio of Al / (Zn + Al + Ga) and less than 6%, and gallium is more than 0.1% by atomic ratio of Ga / (Zn + Al + Ga). It has been found that the above problem can be solved by setting the content to less than 1.0%.

すなわち本発明は、亜鉛、アルミニウム、ガリウムおよび酸素からなり、アルミニウムがAl/(Zn+Al+Ga)の原子比で2%を超え6%未満の割合で含有され、かつガリウムがGa/(Zn+Al+Ga)の原子比で0.1%を超え1.0%未満の割合で含有されていることを特徴とする透明導電膜を提供するものである。   That is, the present invention is composed of zinc, aluminum, gallium, and oxygen, aluminum is contained in an Al / (Zn + Al + Ga) atomic ratio of more than 2% and less than 6%, and gallium is Ga / (Zn + Al + Ga) atomic ratio. Thus, a transparent conductive film characterized in that it is contained in a proportion of more than 0.1% and less than 1.0% is provided.

アルミニウムの含有量は、上記の原子比で2%を超え6%未満である。これは、この範囲外では、薄膜の抵抗率が高くなるためであるが、このアルミニウムの含有量は上記の原子比で2.4%以上5.3%以下であることが更に好ましい。   The aluminum content is more than 2% and less than 6% in the above atomic ratio. This is because the resistivity of the thin film is increased outside this range, but the aluminum content is more preferably 2.4% or more and 5.3% or less in the above atomic ratio.

ガリウムの添加量は、上記の原子比で0.1%を超え1.0%未満である。0.1%以下の場合は、本発明による優れた低抵抗率、耐熱性、耐薬品性が得難く、1.0%以上では、得られる薄膜の抵抗率が高くなるためである。このガリウムの添加量は上記の原子比で0.2%以上0.8%以下であることが更に好ましい。   The addition amount of gallium is more than 0.1% and less than 1.0% in the above atomic ratio. If it is 0.1% or less, it is difficult to obtain excellent low resistivity, heat resistance, and chemical resistance according to the present invention, and if it is 1.0% or more, the resistivity of the obtained thin film becomes high. The addition amount of gallium is more preferably 0.2% or more and 0.8% or less in the above atomic ratio.

なお、本発明の透明導電膜は、亜鉛、アルミニウム、ガリウムおよび酸素からなる透明導電膜であるが、本発明の効果を損なわない範囲で、成膜に用いる原材料に含まれていたり、成膜過程で混入する不可避不純物を含むものであっても良い。低抵抗率、高耐熱性、高耐薬品性といった本発明の優れた効果を十分に得るためには、亜鉛、アルミニウム、ガリウムおよび酸素が全体の99.9at%以上であることが好ましい。   The transparent conductive film of the present invention is a transparent conductive film made of zinc, aluminum, gallium, and oxygen, but is contained in the raw materials used for film formation or the film formation process as long as the effects of the present invention are not impaired. It may contain inevitable impurities mixed in. In order to sufficiently obtain the excellent effects of the present invention such as low resistivity, high heat resistance, and high chemical resistance, it is preferable that zinc, aluminum, gallium, and oxygen are 99.9 at% or more of the whole.

次にガリウムの添加効果について説明する。本発明者は、ZAO膜の耐熱性悪化要因について調べた。その結果、ZAO膜表面には膜の粒界付近に大きな窪みが存在し、この部分に酸素あるいは水分が吸着することによりZAO膜の抵抗率が増加するとの知見を得た。そして、ZAO膜にガリウムを微量添加することによりこの窪みの数および深さが減少し、酸素あるいは水分の吸着を防ぐことで、耐熱、耐湿性を向上できることを見いだした。   Next, the effect of adding gallium will be described. The present inventor examined the heat resistance deterioration factor of the ZAO film. As a result, it was found that a large depression exists in the vicinity of the grain boundary of the ZAO film surface, and that the resistivity of the ZAO film is increased by adsorbing oxygen or moisture to this portion. The inventors have found that the addition of a small amount of gallium to the ZAO film reduces the number and depth of the depressions, and prevents heat or moisture from being absorbed by preventing adsorption of oxygen or moisture.

また、薬液による膜の溶解も粒界から発生することが知られており、上記窪みを減少させることにより耐薬品性も向上できることを見いだした。   Further, it is known that the dissolution of the film by the chemical solution also occurs from the grain boundary, and it has been found that the chemical resistance can be improved by reducing the depression.

上記効果は、ガリウムの添加量を1%以上に増加させても得ることができるが、薄膜の抵抗率が増加し、液晶ディスプレイなどに適応できなくなる。   The above effect can be obtained even if the amount of gallium added is increased to 1% or more, but the resistivity of the thin film increases, making it impossible to adapt to a liquid crystal display or the like.

本発明の透明導電膜は、酸化亜鉛、酸化アルミニウムおよび酸化ガリウムを含む焼結体からなるターゲットを用い、スパッタ法により作製することができる。また、亜鉛、アルミニウム、ガリウムを含む金属ターゲットを用い、酸素を含有する雰囲気中で反応性スパッタリング法により作製することも可能である。   The transparent conductive film of the present invention can be produced by sputtering using a target made of a sintered body containing zinc oxide, aluminum oxide and gallium oxide. Alternatively, a metal target including zinc, aluminum, and gallium can be used and a reactive sputtering method can be used in an atmosphere containing oxygen.

本発明の酸化亜鉛系スパッタリングターゲットは、例えば、酸化亜鉛粉末、酸化アルミニウム粉末及び酸化ガリウム粉末を目的とする組成となるように混合し、プレス等により成形した後、焼成することで焼結体を得、必要に応じて、整形・研磨した後、バッキングプレートにボンディングして得られる。具体的には、ターゲット中のアルミニウムの含有量をAl/(Zn+Al+Ga)の原子比で2%を超え6%未満とし、かつ、ターゲット中のガリウムの量をGa/(Zn+Al+Ga)の原子比で0.1%を超え1.0%未満とする。このターゲット中のアルミニウムの含有量は上記の原子比で2.4%以上5.3%以下であることが更に好ましく、また、ガリウムの含有量は上記の原子比で0.2%以上0.8%以下であることが更に好ましい。   In the zinc oxide sputtering target of the present invention, for example, a zinc oxide powder, an aluminum oxide powder and a gallium oxide powder are mixed so as to have a target composition, molded by a press or the like, and then fired to obtain a sintered body. It is obtained by shaping and polishing, if necessary, and then bonding to a backing plate. Specifically, the content of aluminum in the target is more than 2% and less than 6% by atomic ratio of Al / (Zn + Al + Ga), and the amount of gallium in the target is 0 by atomic ratio of Ga / (Zn + Al + Ga). More than 1% and less than 1.0%. The aluminum content in the target is more preferably 2.4% or more and 5.3% or less in the above atomic ratio, and the gallium content is 0.2% or more and 0.00% in the above atomic ratio. More preferably, it is 8% or less.

本発明の透明導電膜の作製は、例えば以下のようにして行う。上記の酸化亜鉛系スパッタリングターゲットをスパッタリング装置内に設置し、真空排気する。良好な結晶を得るため、基板温度は180℃以上とすることが好ましい。より好ましくは、180℃〜240℃である。基板温度が低いと、得られる膜の結晶性が向上せず、本発明の効果が得がたくなる。また、基板温度が高いと装置に対する負荷が大きくなり好ましくない。   The transparent conductive film of the present invention is produced, for example, as follows. The zinc oxide-based sputtering target is placed in a sputtering apparatus and evacuated. In order to obtain good crystals, the substrate temperature is preferably 180 ° C. or higher. More preferably, it is 180 degreeC-240 degreeC. When the substrate temperature is low, the crystallinity of the resulting film is not improved, and the effects of the present invention are difficult to obtain. Moreover, when the substrate temperature is high, the load on the apparatus increases, which is not preferable.

スパッタリングガスとしては、不活性ガスの例えばArを使用する。必要に応じて、酸化性ガスや還元性ガスを導入しても良い。   As the sputtering gas, an inert gas such as Ar is used. If necessary, an oxidizing gas or a reducing gas may be introduced.

スパッタリング方式は、DCスパッタリング法、RFスパッタリング法、ACスパッタリング法またはこれらを組みあわせた方法が使用可能である。   As the sputtering method, a DC sputtering method, an RF sputtering method, an AC sputtering method, or a method combining these can be used.

本発明により、特に液晶ディスプレイに好適な、200nmより薄い領域においても、低抵抗率で、耐熱性に優れ、耐薬品性が良好な酸化亜鉛を母材とする透明導電膜が提供可能となる。特に、液晶ディスプレイの製造工程など透明電極を形成後、加熱する工程がある場合においては、透明電極の抵抗率が薄膜形成後の工程で増大することを防止できるという優れた特徴を有するものである。   According to the present invention, it is possible to provide a transparent conductive film based on zinc oxide, which is suitable for liquid crystal displays, and has a low resistivity, excellent heat resistance, and good chemical resistance. In particular, when there is a step of heating after forming a transparent electrode such as a liquid crystal display manufacturing step, it has an excellent feature that the resistivity of the transparent electrode can be prevented from increasing in the step after the thin film formation. .

以下に本発明を実施例により更に詳細に説明するが、本発明はこれに限定されるものではない。   The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.

(実施例1〜7および比較例1〜8)
平均粒径が1μmの酸化亜鉛粉末と、平均粒径が0.2μmの酸化アルミニウム粉末と、平均粒径が0.5μmの酸化ガリウム粉末とを所定量ポットに入れ、乾式ボールミルにより48時間混合し、混合粉末を作製した。この混合粉末を金型に入れ、300kg/cmの圧力でプレスを行い成形体とした。この成形体を3ton/cmの圧力でCIPによる緻密化処理を行った。次に該成形体を以下の条件で焼結した。
(Examples 1-7 and Comparative Examples 1-8)
A predetermined amount of zinc oxide powder having an average particle diameter of 1 μm, aluminum oxide powder having an average particle diameter of 0.2 μm, and gallium oxide powder having an average particle diameter of 0.5 μm are placed in a pot and mixed by a dry ball mill for 48 hours. A mixed powder was prepared. This mixed powder was put into a mold and pressed at a pressure of 300 kg / cm 2 to obtain a molded body. This compact was subjected to densification treatment with CIP at a pressure of 3 ton / cm 2 . Next, the compact was sintered under the following conditions.

(焼結条件)
焼結温度:1500℃
昇温速度:50℃/hr
保持時間:5時間
焼結雰囲気:窒素雰囲気中
得られた焼結体を4インチφ×6mmtに加工し、インジウム半田を用いて無酸素銅製のバッキングプレートにボンディングした。
(Sintering conditions)
Sintering temperature: 1500 ° C
Temperature increase rate: 50 ° C / hr
Holding time: 5 hours Sintering atmosphere: In nitrogen atmosphere The obtained sintered body was processed into 4 inches φ × 6 mmt and bonded to an oxygen-free copper backing plate using indium solder.

このターゲットを用いて、DCマグネトロンスパッタリング法により以下に示す条件で、AlおよびGa含有量の異なる透明導電膜を作製した。   Using this target, transparent conductive films having different contents of Al and Ga were produced by the DC magnetron sputtering method under the following conditions.

(スパッタリング成膜条件)
装置:dcマグネトロンスパッタ装置
磁界強度:1000Gauss(ターゲット直上、水平成分)
基板温度:200℃
到達真空度:5×10−5Pa
スパッタリングガス:Ar
スパッタリングガス圧:0.5Pa
DCパワー:300W
膜厚:100nm
使用基板:無アルカリガラス(コーニング社製#1737ガラス)
得られた薄膜の抵抗率をホール効果測定装置を用いて測定した。結果を表1に示す。アルミニウムが原子比で2%を超え6%未満かつガリウムがGa/(Zn+Al+Ga)の原子比で0.1%を超え1.0%未満の範囲で1000μΩcm以下の低抵抗率の膜を得ることができた。
(Sputtering film formation conditions)
Apparatus: dc magnetron sputtering apparatus Magnetic field intensity: 1000 Gauss (directly above the target, horizontal component)
Substrate temperature: 200 ° C
Ultimate vacuum: 5 × 10 −5 Pa
Sputtering gas: Ar
Sputtering gas pressure: 0.5 Pa
DC power: 300W
Film thickness: 100nm
Substrate used: alkali-free glass (Corning # 1737 glass)
The resistivity of the obtained thin film was measured using a Hall effect measuring device. The results are shown in Table 1. It is possible to obtain a film having a low resistivity of 1000 μΩcm or less in a range of aluminum exceeding 2% and less than 6% and gallium being Ga / (Zn + Al + Ga) exceeding 0.1% and less than 1.0%. did it.

得られた薄膜の高温処理(大気中、250℃の環境下に30分間保持)後の抵抗率を表1に纏めた。本発明の組成を有する膜においては、処理後においても1000μΩcm以下の低抵抗率を示した。一方、処理前に低抵抗率を示していた比較例2,4,6のサンプルはこの高温処理により抵抗率が増加し、1000μΩcm以上となった。   Table 1 summarizes the resistivity of the obtained thin film after high-temperature treatment (maintained in the atmosphere at 250 ° C. for 30 minutes). The film having the composition of the present invention showed a low resistivity of 1000 μΩcm or less even after the treatment. On the other hand, the samples of Comparative Examples 2, 4, and 6 that exhibited a low resistivity before the treatment increased the resistivity to 1000 μΩcm or more by this high temperature treatment.

さらに、得られた薄膜のアルカリ溶解性(25℃の2%KOH水溶液に4分間浸漬した際の膜厚の減少量)を調べた。この処理により溶解した膜厚を表1に纏めた。本発明の組成を有する膜においては、アルカリ処理による溶解膜厚が20nm以下であり、ガリウムを含まない比較例2、4、6(溶解膜厚38〜40nm)との比較から明らかなように、耐アルカリ性も著しく向上している。   Further, the alkali solubility of the obtained thin film (the amount of decrease in film thickness when immersed in a 2% KOH aqueous solution at 25 ° C. for 4 minutes) was examined. The film thickness dissolved by this treatment is summarized in Table 1. In the film having the composition of the present invention, the dissolution film thickness by alkali treatment is 20 nm or less, and as is clear from comparison with Comparative Examples 2, 4, and 6 (dissolution film thickness 38 to 40 nm) not containing gallium, Alkali resistance is also significantly improved.

Figure 2007280756
Figure 2007280756

Claims (5)

亜鉛、アルミニウム、ガリウムおよび酸素からなり、アルミニウムがAl/(Zn+Al+Ga)の原子比で2%を超え6%未満の割合で含有され、かつガリウムがGa/(Zn+Al+Ga)の原子比で0.1%を超え1.0%未満の割合で含有されていることを特徴とする透明導電膜。 It is composed of zinc, aluminum, gallium, and oxygen, and aluminum is contained in an Al / (Zn + Al + Ga) atomic ratio of more than 2% and less than 6%, and gallium is Ga / (Zn + Al + Ga) atomic ratio of 0.1%. And a transparent conductive film characterized by being contained in a proportion of less than 1.0%. 膜の厚さが200nm未満であることを特徴とする請求項1に記載の透明導電膜。 The transparent conductive film according to claim 1, wherein the thickness of the film is less than 200 nm. 請求項1または請求項2に記載の透明導電膜を含んでなる液晶ディスプレイ。 A liquid crystal display comprising the transparent conductive film according to claim 1. 請求項1または請求項2に記載の透明導電膜を含んでなる機器。 A device comprising the transparent conductive film according to claim 1. 亜鉛、アルミニウム、ガリウムおよび酸素からなり、アルミニウムがAl/(Zn+Al+Ga)の原子比で2%を超え6%未満の割合で含有され、かつガリウムがGa/(Zn+Al+Ga)の原子比で0.1%を超え1.0%未満の割合で含有されている酸化亜鉛系焼結体をターゲット材として用いたことを特徴とする請求項1に記載の薄膜形成用酸化亜鉛系スパッタリングターゲット。
It is composed of zinc, aluminum, gallium, and oxygen, and aluminum is contained in an Al / (Zn + Al + Ga) atomic ratio of more than 2% and less than 6%, and gallium is Ga / (Zn + Al + Ga) atomic ratio of 0.1%. 2. The zinc oxide-based sputtering target for forming a thin film according to claim 1, wherein a zinc oxide-based sintered body contained in a proportion of more than 1.0% and less than 1.0% is used as a target material.
JP2006105220A 2006-04-06 2006-04-06 Zinc oxide based transparent conductive film and liquid crystal display as well as zinc oxide based sputtering target using same Pending JP2007280756A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006105220A JP2007280756A (en) 2006-04-06 2006-04-06 Zinc oxide based transparent conductive film and liquid crystal display as well as zinc oxide based sputtering target using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006105220A JP2007280756A (en) 2006-04-06 2006-04-06 Zinc oxide based transparent conductive film and liquid crystal display as well as zinc oxide based sputtering target using same

Publications (1)

Publication Number Publication Date
JP2007280756A true JP2007280756A (en) 2007-10-25

Family

ID=38681992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006105220A Pending JP2007280756A (en) 2006-04-06 2006-04-06 Zinc oxide based transparent conductive film and liquid crystal display as well as zinc oxide based sputtering target using same

Country Status (1)

Country Link
JP (1) JP2007280756A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009161389A (en) * 2007-12-29 2009-07-23 Kanazawa Inst Of Technology Zinc oxide-based transparent conductive film
JP2009298649A (en) * 2008-06-13 2009-12-24 Sumitomo Metal Mining Co Ltd Oxide sintered compact, target, transparent conductive film obtained by using the same, and conductive laminate
WO2013022057A1 (en) * 2011-08-11 2013-02-14 日本電気硝子株式会社 Transparent conductive material, substrate having transparent conductive layer, and method for producing substrate having transparent conductive layer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62157618A (en) * 1985-09-18 1987-07-13 セイコーエプソン株式会社 Manufacture of transparent conductive film
JPH11236219A (en) * 1998-02-20 1999-08-31 Sumitomo Metal Mining Co Ltd Zinc oxide-base sintered compact and its production
JP2001135149A (en) * 1999-11-01 2001-05-18 Tokuyama Corp Zinc oxide-based transparent electrode

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62157618A (en) * 1985-09-18 1987-07-13 セイコーエプソン株式会社 Manufacture of transparent conductive film
JPH11236219A (en) * 1998-02-20 1999-08-31 Sumitomo Metal Mining Co Ltd Zinc oxide-base sintered compact and its production
JP2001135149A (en) * 1999-11-01 2001-05-18 Tokuyama Corp Zinc oxide-based transparent electrode

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009161389A (en) * 2007-12-29 2009-07-23 Kanazawa Inst Of Technology Zinc oxide-based transparent conductive film
JP2009298649A (en) * 2008-06-13 2009-12-24 Sumitomo Metal Mining Co Ltd Oxide sintered compact, target, transparent conductive film obtained by using the same, and conductive laminate
WO2013022057A1 (en) * 2011-08-11 2013-02-14 日本電気硝子株式会社 Transparent conductive material, substrate having transparent conductive layer, and method for producing substrate having transparent conductive layer

Similar Documents

Publication Publication Date Title
TWI573773B (en) Composite oxide sintered body, amorphous composite oxide film manufacturing method, amorphous composite oxide film, crystal composite oxide film manufacturing method and crystalline composite oxide film
JP3906766B2 (en) Oxide sintered body
JP4926977B2 (en) Gallium oxide-zinc oxide sintered sputtering target
JP5339100B2 (en) Zn-Si-O-based oxide sintered body, method for producing the same, sputtering target, and tablet for vapor deposition
JP4760154B2 (en) Oxide sintered body, oxide transparent conductive film, and production method thereof
JP4098345B2 (en) Gallium oxide-zinc oxide sputtering target, method for forming transparent conductive film, and transparent conductive film
JP4488184B2 (en) Indium oxide-zinc oxide-magnesium oxide sputtering target and transparent conductive film
US20100189636A1 (en) Amorphous Film of Composite Oxide, Crystalline Film of Composite Oxide, Method of Producing said Films and Sintered Compact of Composite Oxide
KR20120052255A (en) Tablet for ion plating, method for producing same, and transparent conductive film
KR101243403B1 (en) Oxide sintered compact for producing transparent conductive film
JP2007238375A (en) ZnO-Al2O3-BASED SINTERED COMPACT, SPUTTERING TARGET AND METHOD OF FORMING TRANSPARENT CONDUCTIVE FILM
JP4904934B2 (en) Zinc oxide-based transparent conductive film, liquid crystal display using the same, and zinc oxide-based sputtering target
JP2006200016A (en) ZnO:Al TARGET, THIN FILM THEREOF, AND METHOD FOR MANUFACTURING THIN FILM
JP4702126B2 (en) Zinc oxide-based transparent conductive film, liquid crystal display using the same, and zinc oxide-based sputtering target
JP2007246318A (en) Oxide sintered compact, method for manufacturing the same, method for manufacturing oxide transparent conductive film, and oxide transparent conductive film
JP2004123479A (en) Oxide sintered compact and sputtering target
JP2007280756A (en) Zinc oxide based transparent conductive film and liquid crystal display as well as zinc oxide based sputtering target using same
JP2009161389A (en) Zinc oxide-based transparent conductive film
JP5952031B2 (en) Oxide sintered body manufacturing method and target manufacturing method
JP5363742B2 (en) Zinc oxide transparent conductive film
WO2015020029A1 (en) Sputtering target and method for producing same
JP2010053454A (en) Indium oxide-zinc oxide-magnesium oxide-based sputtering target, and transparent electroconductive film
JP5613805B2 (en) Zinc oxide-based transparent conductive film, sintered compact target for magnetron sputtering, liquid crystal display and touch panel, and equipment comprising zinc oxide-based transparent conductive film
JP5761253B2 (en) Zn-Si-O-based oxide sintered body, method for producing the same, sputtering target, and tablet for vapor deposition
JP2008053118A (en) Heat treatment method for zinc oxide-based transparent conductive film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110712