JP2008053118A - Heat treatment method for zinc oxide-based transparent conductive film - Google Patents

Heat treatment method for zinc oxide-based transparent conductive film Download PDF

Info

Publication number
JP2008053118A
JP2008053118A JP2006229602A JP2006229602A JP2008053118A JP 2008053118 A JP2008053118 A JP 2008053118A JP 2006229602 A JP2006229602 A JP 2006229602A JP 2006229602 A JP2006229602 A JP 2006229602A JP 2008053118 A JP2008053118 A JP 2008053118A
Authority
JP
Japan
Prior art keywords
heat treatment
zinc oxide
transparent conductive
conductive film
based transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006229602A
Other languages
Japanese (ja)
Inventor
Kentaro Uchiumi
健太郎 内海
Hitoshi Iigusa
仁志 飯草
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2006229602A priority Critical patent/JP2008053118A/en
Publication of JP2008053118A publication Critical patent/JP2008053118A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Electric Cables (AREA)
  • Physical Vapour Deposition (AREA)
  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat treatment method, which dispenses with special formation of a thin film having satisfactory crystallinity, and never causes increase in resistivity even in a heat treatment process at a temperature exceeding 150°C after thin film formation. <P>SOLUTION: In the heat treatment method for zinc oxide-based transparent conductive film for heat treating a zinc oxide-based transparent conductive film including zinc oxide and an additive at a temperature of 150°C or higher, the heat treatment is performed in a non-oxidizing atmosphere, and the resulting oxide zinc-based transparent conductive film is taken out to the atmosphere after the temperature thereof becomes 150°C or lower. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、フラットパネルディスプレイや太陽電池などに使用される透明導電膜に関する。   The present invention relates to a transparent conductive film used for flat panel displays, solar cells and the like.

ITO(Indium Tin Oxide)薄膜は、低抵抗率で可視光に対して高い透過率を示すことから、液晶ディスプレイを中心としたフラットパネルディスプレイや太陽電池など透明電極として幅広く用いられている。しかし、近年、原材料であるインジウム価格の高騰、資源問題によりインジウムを使用しない透明導電膜(ITO代替材料)への関心が高まっている。ITO代替材料としては、酸化亜鉛、酸化スズを母材とした材料が知られている。中でも酸化亜鉛からなる透明導電膜は、資源に富む材料を使用し安価であることから、次世代透明導電膜として期待されている。   An ITO (Indium Tin Oxide) thin film is widely used as a transparent electrode such as a flat panel display centering on a liquid crystal display and a solar cell because it has a low resistivity and a high transmittance for visible light. However, in recent years, interest in a transparent conductive film (ITO substitute material) that does not use indium is increasing due to a rise in price of indium as a raw material and resource problems. As ITO substitute materials, materials based on zinc oxide and tin oxide are known. Among them, a transparent conductive film made of zinc oxide is expected as a next-generation transparent conductive film because it uses a resource-rich material and is inexpensive.

このような酸化亜鉛からなる透明導電膜は、スパッタリング法、真空蒸着法、イオンプレーティング法、CVD法、スプレー法等の成膜方法により硝子などからなる基板上に形成することが可能である。   Such a transparent conductive film made of zinc oxide can be formed on a substrate made of glass or the like by a film forming method such as a sputtering method, a vacuum deposition method, an ion plating method, a CVD method, or a spray method.

基板上に形成された酸化亜鉛系透明導電膜は、膜の特性改善を目的としてあるいは他の目的のために熱処理されることがある。この熱処理を大気中で実施した場合、熱処理後に酸化亜鉛系透明導電膜の抵抗率が急激に増加するという問題が指摘されていた。   The zinc oxide-based transparent conductive film formed on the substrate may be heat-treated for the purpose of improving film characteristics or for other purposes. When this heat treatment is performed in the air, there has been a problem that the resistivity of the zinc oxide-based transparent conductive film increases rapidly after the heat treatment.

上記問題を解決するため、ガリウムを0.1原子%以上、15原子%以下含有する酸化亜鉛薄膜であって、そのX線回折パターンにおいて(002)面による回折ピークを有し、該(002)面による回折線の半値幅が1.2度以下である酸化亜鉛系透明導電膜を用いることが提案されている(特許文献1参照)。しかし、本方法では添加物がガリウムに限定されるため、アルミニウムを添加する場合に比べ高価となる他、薄膜のX線パターンにおいて(002)面の半値幅を1.2度以下に制御する必要があった。   In order to solve the above problem, a zinc oxide thin film containing 0.1 atomic% or more and 15 atomic% or less of gallium has a diffraction peak due to the (002) plane in the X-ray diffraction pattern, and the (002) It has been proposed to use a zinc oxide-based transparent conductive film in which the half width of the diffraction line by the surface is 1.2 degrees or less (see Patent Document 1). However, in this method, since the additive is limited to gallium, it is more expensive than the case where aluminum is added, and it is necessary to control the half width of the (002) plane to 1.2 degrees or less in the X-ray pattern of the thin film. was there.

特開平6−187833号報JP-A-6-187833

本発明は上記の問題点を解決するために提案されたもので、特別に良好な結晶性を有する薄膜を必要とすることなく、薄膜形成後の熱処理工程においても抵抗率が増加しない熱処理方法を提供するものである。   The present invention has been proposed in order to solve the above-mentioned problems. A heat treatment method that does not increase the resistivity even in the heat treatment step after the thin film formation without requiring a thin film having particularly good crystallinity. It is to provide.

本発明者らは上記問題を解決するため、スパッタリング法で作製された酸化亜鉛からなる薄膜の抵抗率と熱処理条件の相関について調べた。その結果、熱処理による抵抗率の上昇は、添加物の移動による偏析ではなく、薄膜への酸素の吸着が主要因であることを見いだした。   In order to solve the above problems, the present inventors investigated the correlation between the resistivity of a thin film made of zinc oxide produced by sputtering and the heat treatment conditions. As a result, we found that the increase in resistivity due to heat treatment was not due to segregation due to the movement of additives, but mainly due to the adsorption of oxygen to the thin film.

本知見を元にさらに検討を重ねた結果、酸化亜鉛系薄膜を熱処理する際の雰囲気を非酸化性とし、さらに熱処理槽内から取り出す際の温度を150℃以下とすることで、酸素の薄膜への吸着を防ぎ、抵抗率の増加を抑制できることを見いだし、本発明を完成した。   As a result of further studies based on this knowledge, the atmosphere during heat treatment of the zinc oxide thin film is made non-oxidizing, and the temperature at the time of taking out from the heat treatment tank is set to 150 ° C. or less, so that the oxygen thin film can be obtained. As a result, it was found that the increase in resistivity can be suppressed, and the present invention has been completed.

すなわち本発明は、酸化亜鉛と添加物からなる酸化亜鉛系透明導電膜を150℃以上の温度で熱処理する酸化亜鉛系透明導電膜の熱処理方法において、非酸化性雰囲気で熱処理を行うとともに、大気中への取り出しを酸化亜鉛系透明導電膜の温度が150℃以下になった後に行うことを特徴とする酸化亜鉛系透明導電膜の熱処理方法である。なお、熱処理槽内からの取り出しは、熱処理対象の酸化亜鉛系透明導電膜が形成されている基板の温度が150℃以下になった後に行うことが好ましい。本発明は酸化亜鉛に種々の不純物を添加した酸化亜鉛系透明導電膜に適用可能である。酸化亜鉛に添加する不純物としては、Al、Ga、In、B等を例示することができる。不純物としての各元素の添加量は10%以下が好ましい。この範囲を超えると低抵抗の膜を得難くなるからである。   That is, the present invention relates to a heat treatment method for a zinc oxide-based transparent conductive film comprising a zinc oxide-based additive and a zinc oxide-based transparent conductive film that is heat-treated at a temperature of 150 ° C. or higher. This is a heat treatment method for a zinc oxide-based transparent conductive film, characterized in that the extraction is performed after the temperature of the zinc oxide-based transparent conductive film becomes 150 ° C. or lower. The removal from the heat treatment tank is preferably performed after the temperature of the substrate on which the zinc oxide-based transparent conductive film to be heat treated is 150 ° C. or lower. The present invention is applicable to a zinc oxide-based transparent conductive film obtained by adding various impurities to zinc oxide. Examples of impurities added to zinc oxide include Al, Ga, In, and B. The amount of each element added as an impurity is preferably 10% or less. This is because it is difficult to obtain a low-resistance film if the thickness exceeds this range.

本発明は、いかなる成膜方法で作製された酸化亜鉛系薄膜にも適用可能である。成膜方法としては、スパッタリング法、真空蒸着法、イオンプレーティング法等を例示することができる。   The present invention is applicable to a zinc oxide-based thin film produced by any film forming method. Examples of the film forming method include a sputtering method, a vacuum deposition method, and an ion plating method.

本発明の透明導電膜の作製方法をスパッタリング法を例に挙げ、詳細に説明する。酸化亜鉛からなるターゲットをスパッタリング装置内に設置し、真空排気する。良好な結晶を得るため、基板温度は150℃以上とすることが好ましい。より好ましくは、180℃〜240℃である。基板温度が低いと、得られる膜の結晶性が向上せず、本発明の効果が得がたくなる。また、基板温度が高いと装置に対する負荷が大きくなり好ましくない。   The method for producing a transparent conductive film of the present invention will be described in detail by taking a sputtering method as an example. A target made of zinc oxide is placed in a sputtering apparatus and evacuated. In order to obtain good crystals, the substrate temperature is preferably 150 ° C. or higher. More preferably, it is 180 degreeC-240 degreeC. When the substrate temperature is low, the crystallinity of the resulting film is not improved, and the effects of the present invention are difficult to obtain. Moreover, when the substrate temperature is high, the load on the apparatus increases, which is not preferable.

スパッタリングガスとしては、不活性ガスの例えばArを使用する。必要に応じて、酸素等の他のガスを同時に導入しても良い。スパッタリング方式は、DCスパッタリング法、RFスパッタリング法、ACスパッタリング法またはこれらを組みあわせた方法が使用可能である。   As the sputtering gas, an inert gas such as Ar is used. If necessary, another gas such as oxygen may be introduced at the same time. As the sputtering method, a DC sputtering method, an RF sputtering method, an AC sputtering method, or a method combining these can be used.

この後、熱処理する際の雰囲気を非酸化性雰囲気とする。具体的には、窒素雰囲気、アルゴン雰囲気、真空中を例示することができる。熱処理温度は、作製するデバイスに適した温度に適宜設定すればよい。また、熱処理後大気中に取り出す場合には、熱処理の対象である酸化亜鉛系透明導電膜が形成されている基板の温度を150℃以下まで低下させてから取り出す必要がある。基板温度が例えば、200℃以上の状態で取り出した場合、取り出した瞬間に大気中で熱処理したことと同じ影響が薄膜に与えられ、酸素が薄膜に吸着し薄膜の抵抗率が増加するからである。   Thereafter, the atmosphere during the heat treatment is set to a non-oxidizing atmosphere. Specific examples include a nitrogen atmosphere, an argon atmosphere, and a vacuum. The heat treatment temperature may be set as appropriate to a temperature suitable for a device to be manufactured. Moreover, when taking out in air | atmosphere after heat processing, it is necessary to take out, after reducing the temperature of the board | substrate with which the zinc oxide type transparent conductive film which is the object of heat processing to 150 degrees C or less. For example, when the substrate temperature is taken out at a temperature of 200 ° C. or higher, for example, the same effect as that of heat treatment in the atmosphere is given to the thin film at the moment of removal, and oxygen is adsorbed on the thin film and the resistivity of the thin film increases. .

このように熱処理する際の雰囲気を非酸化性雰囲気とし、さらに熱処理槽内から取り出す際の基板温度を150℃以下とすることにより、150℃を超える温度の酸化亜鉛系透明導電膜が大気に触れることを防止して、抵抗率を上昇させることなく、熱処理することが可能となる。   In this way, the atmosphere during the heat treatment is a non-oxidizing atmosphere, and the substrate temperature at the time of taking out from the heat treatment tank is 150 ° C. or less, so that the zinc oxide-based transparent conductive film having a temperature exceeding 150 ° C. is exposed to the atmosphere. This can be prevented and heat treatment can be performed without increasing the resistivity.

本発明により、抵抗率の大幅な上昇無く、酸化亜鉛系薄膜を熱処理することが可能となる。   According to the present invention, it is possible to heat-treat a zinc oxide-based thin film without a significant increase in resistivity.

以下に本発明を実施例により更に詳細に説明するが、本発明はこれに限定されるものではない。   The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.

(実施例1)
市販の2重量%の酸化アルミニウムを含んだ酸化亜鉛ターゲットを用いてスパッタリング法によりAl添加酸化亜鉛薄膜を作製した。スパッタ条件を以下に示す。
(スパッタリング成膜条件)
装置:dcマグネトロンスパッタ装置
磁界強度:1000Gauss(ターゲット直上、水平成分)
基板温度:200℃
到達真空度:5×10−5Pa
スパッタリングガス:Ar
スパッタリングガス圧:0.5Pa
DCパワー:300W
膜厚:100nm
使用基板:無アルカリガラス(コーニング社製#1737ガラス)
得られた薄膜の抵抗率を四探針法により測定した結果を表1に示す。その後、下記条件で熱処理を実施した。
熱処理温度:200℃
熱処理時間:30分
雰囲気:窒素
取り出し時の基板温度:100℃
熱処理後の抵抗率を四探針法により測定した。結果を表1にまとめた。抵抗率に変化は認められなかった。
(Example 1)
An Al-doped zinc oxide thin film was produced by sputtering using a commercially available zinc oxide target containing 2% by weight of aluminum oxide. The sputtering conditions are shown below.
(Sputtering film formation conditions)
Apparatus: dc magnetron sputtering apparatus Magnetic field strength: 1000 Gauss (horizontal component directly above the target)
Substrate temperature: 200 ° C
Ultimate vacuum: 5 × 10 −5 Pa
Sputtering gas: Ar
Sputtering gas pressure: 0.5 Pa
DC power: 300W
Film thickness: 100nm
Substrate used: alkali-free glass (Corning # 1737 glass)
Table 1 shows the results of measuring the resistivity of the thin film obtained by the four-probe method. Thereafter, heat treatment was performed under the following conditions.
Heat treatment temperature: 200 ° C
Heat treatment time: 30 minutes Atmosphere: substrate temperature when nitrogen is removed: 100 ° C
The resistivity after the heat treatment was measured by the four probe method. The results are summarized in Table 1. There was no change in resistivity.

(実施例2)
熱処理時の雰囲気をアルゴンとした以外は、実施例1と同じ方法で作製した薄膜を、実施例1と同じ方法で熱処理し、熱処理前後での抵抗率を測定した。結果を表1にまとめる。抵抗率に変化は認められなかった。
(Example 2)
A thin film produced by the same method as in Example 1 was heat-treated by the same method as in Example 1 except that the atmosphere during the heat treatment was changed to argon, and the resistivity before and after the heat treatment was measured. The results are summarized in Table 1. There was no change in resistivity.

(実施例3)
熱処理時の雰囲気を真空中(3×10−4Pa)とした以外は、実施例1と同じ方法で作製した薄膜を、実施例1と同じ方法で熱処理し、熱処理前後での抵抗率を測定した。結果を表1にまとめる。抵抗率に変化は認められなかった。
(Example 3)
A thin film produced by the same method as in Example 1 was heat-treated in the same manner as in Example 1 except that the atmosphere during the heat treatment was in vacuum (3 × 10 −4 Pa), and the resistivity before and after the heat treatment was measured. did. The results are summarized in Table 1. There was no change in resistivity.

(実施例4)
熱処理後の取り出し時の基板温度を150℃とした以外は、実施例1と同じ方法で作製した薄膜を、実施例1と同じ方法で熱処理し、熱処理前後での抵抗率を測定した。結果を表1にまとめる。抵抗率には、大幅な変化は認められなかった。
Example 4
A thin film produced by the same method as in Example 1 was heat-treated by the same method as in Example 1 except that the substrate temperature at the time of taking out after the heat treatment was 150 ° C., and the resistivity before and after the heat treatment was measured. The results are summarized in Table 1. There was no significant change in resistivity.

(実施例5)
成膜温度を室温とした以外は、実施例1と同じ方法で作製した薄膜を、実施例1と同じ方法で熱処理し、処理前後での抵抗率を測定した。結果を表1にまとめる。抵抗率は、大幅に減少した。
(Example 5)
A thin film produced by the same method as in Example 1 was heat-treated by the same method as in Example 1 except that the film formation temperature was room temperature, and the resistivity before and after the treatment was measured. The results are summarized in Table 1. The resistivity decreased significantly.

(比較例1)
熱処理時の雰囲気を大気中とした以外は、実施例1と同じ方法で作製した薄膜を、実施例1と同じ方法で熱処理し、熱処理前後での抵抗率を測定した。結果を表1にまとめる。抵抗率は、大幅に増加した。
(Comparative Example 1)
A thin film produced by the same method as in Example 1 was heat-treated by the same method as in Example 1 except that the atmosphere at the time of heat treatment was in the air, and the resistivity before and after the heat treatment was measured. The results are summarized in Table 1. The resistivity increased significantly.

(比較例2)
取り出し温度を200℃とした以外は、実施例1と同じ方法で作製した薄膜を、実施例1と同じ方法で熱処理し、熱処理前後での抵抗率を測定した。結果を表1にまとめる。抵抗率は、大幅に増加した。
(Comparative Example 2)
A thin film produced by the same method as in Example 1 was heat-treated by the same method as in Example 1 except that the extraction temperature was 200 ° C., and the resistivity before and after the heat treatment was measured. The results are summarized in Table 1. The resistivity increased significantly.

Figure 2008053118
Figure 2008053118


Claims (2)

酸化亜鉛と添加物からなる酸化亜鉛系透明導電膜を150℃以上の温度で熱処理する酸化亜鉛系透明導電膜の熱処理方法において、非酸化性雰囲気で熱処理を行うとともに、大気中への取り出しを酸化亜鉛系透明導電膜の温度が150℃以下になった後に行うことを特徴とする酸化亜鉛系透明導電膜の熱処理方法。 In a heat treatment method for a zinc oxide-based transparent conductive film comprising a zinc oxide-based additive and a zinc oxide-based transparent conductive film that is heat-treated at a temperature of 150 ° C. or higher, the heat treatment is performed in a non-oxidizing atmosphere and the removal to the atmosphere is oxidized. A heat treatment method for a zinc oxide-based transparent conductive film, which is performed after the temperature of the zinc-based transparent conductive film reaches 150 ° C. or lower. 熱処理雰囲気が、窒素雰囲気であることを特徴とする請求項1に記載の熱処理方法。

The heat treatment method according to claim 1, wherein the heat treatment atmosphere is a nitrogen atmosphere.

JP2006229602A 2006-08-25 2006-08-25 Heat treatment method for zinc oxide-based transparent conductive film Pending JP2008053118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006229602A JP2008053118A (en) 2006-08-25 2006-08-25 Heat treatment method for zinc oxide-based transparent conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006229602A JP2008053118A (en) 2006-08-25 2006-08-25 Heat treatment method for zinc oxide-based transparent conductive film

Publications (1)

Publication Number Publication Date
JP2008053118A true JP2008053118A (en) 2008-03-06

Family

ID=39236952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006229602A Pending JP2008053118A (en) 2006-08-25 2006-08-25 Heat treatment method for zinc oxide-based transparent conductive film

Country Status (1)

Country Link
JP (1) JP2008053118A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010121183A (en) * 2008-11-20 2010-06-03 Sony Corp Zinc oxide based sputtering target and method of manufacturing the same, zinc oxide-based transparent conductive film and method of manufacturing the same and electronic apparatus
US9260779B2 (en) 2009-05-21 2016-02-16 Semiconductor Energy Laboratory Co., Ltd. Light-transmitting conductive film, display device, electronic device, and manufacturing method of light-transmitting conductive film

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0384816A (en) * 1989-08-28 1991-04-10 Tosoh Corp Treatment of transparent conductive film
JP2001135149A (en) * 1999-11-01 2001-05-18 Tokuyama Corp Zinc oxide-based transparent electrode
JP2002025350A (en) * 2000-07-11 2002-01-25 Sanyo Electric Co Ltd Substrate with transparent conductive film and manufacturing method of the same, etching method using the same, and light electromotive force device
JP2003016857A (en) * 2001-06-28 2003-01-17 Fuji Xerox Co Ltd Method for reducing resistance of transparent conductive film formed on base material
JP2004115848A (en) * 2002-09-25 2004-04-15 Konica Minolta Holdings Inc Method for forming transparent conductive coating, and transparent conductive film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0384816A (en) * 1989-08-28 1991-04-10 Tosoh Corp Treatment of transparent conductive film
JP2001135149A (en) * 1999-11-01 2001-05-18 Tokuyama Corp Zinc oxide-based transparent electrode
JP2002025350A (en) * 2000-07-11 2002-01-25 Sanyo Electric Co Ltd Substrate with transparent conductive film and manufacturing method of the same, etching method using the same, and light electromotive force device
JP2003016857A (en) * 2001-06-28 2003-01-17 Fuji Xerox Co Ltd Method for reducing resistance of transparent conductive film formed on base material
JP2004115848A (en) * 2002-09-25 2004-04-15 Konica Minolta Holdings Inc Method for forming transparent conductive coating, and transparent conductive film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010121183A (en) * 2008-11-20 2010-06-03 Sony Corp Zinc oxide based sputtering target and method of manufacturing the same, zinc oxide-based transparent conductive film and method of manufacturing the same and electronic apparatus
JP4661948B2 (en) * 2008-11-20 2011-03-30 ソニー株式会社 Zinc oxide-based sputtering target and method for producing the same, zinc oxide-based transparent conductive film, method for producing the same and electronic equipment
US9260779B2 (en) 2009-05-21 2016-02-16 Semiconductor Energy Laboratory Co., Ltd. Light-transmitting conductive film, display device, electronic device, and manufacturing method of light-transmitting conductive film

Similar Documents

Publication Publication Date Title
Castro et al. Dependence of Ga-doped ZnO thin film properties on different sputtering process parameters: substrate temperature, sputtering pressure and bias voltage
KR100649838B1 (en) Transparent conductive laminate and process of producing the same
Zhu et al. Sputtering deposition of transparent conductive F-doped SnO2 (FTO) thin films in hydrogen-containing atmosphere
JP6060202B2 (en) Transparent conductive film manufacturing method, sputtering apparatus, and sputtering target
JP5005772B2 (en) Conductive laminate and manufacturing method thereof
KR20130029365A (en) Transparent conductive films
Kim et al. Nitrogen doped p-type SnO thin films deposited via sputtering
Gürbüz et al. Influence of Al concentration and annealing temperature on structural, optical, and electrical properties of Al co-doped ZnO thin films
Chen et al. Fabrication of transparent conducting ATO films using the ATO sintered targets by pulsed laser deposition
JP3366046B2 (en) Amorphous transparent conductive film
Salari et al. Sol-Gel processed GZO thin film from low concentration solution and investigating GZO/Cs 2 CO 3 bilayer
Yamamoto et al. Ga‐doped zinc oxide: An attractive potential substitute for ITO, large‐area coating, and control of electrical and optical properties on glass and polymer substrates
Ohtsuka et al. Iron-doped indium saving indium-tin oxide (ITO) thin films sputtered on preheated substrates
KR20050021882A (en) Process for producing transparent conductive laminate
Huang et al. Influence of discharge power and annealing temperature on the properties of indium tin oxide thin films prepared by pulsed-DC magnetron sputtering
Lin et al. The structural and optoelectronic properties of Ti-doped ZnO thin films prepared by introducing a Cr buffer layer and post-annealing
JP4904934B2 (en) Zinc oxide-based transparent conductive film, liquid crystal display using the same, and zinc oxide-based sputtering target
Liang et al. Structural and optical properties of electrodeposited ZnO thin films on conductive RuO2 oxides
JP2008053118A (en) Heat treatment method for zinc oxide-based transparent conductive film
Aliyu et al. High quality indium tin oxide (ITO) film growth by controlling pressure in RF magnetron sputtering
Huang et al. The optical and electrical properties of gallium-doped ZnO thin film with post-annealing processes of various atmospheres
JP2017193755A (en) Method of manufacturing transparent conductive film, and transparent conductive film
Duygulu Effect of rf power variation on gallium doped zinc oxide thin films
JP4702126B2 (en) Zinc oxide-based transparent conductive film, liquid crystal display using the same, and zinc oxide-based sputtering target
Ma et al. Transparent conductive indium zinc tin oxide thin films for solar cell applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120629

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121114