WO2003081681A1 - Semiconductor element and method for fabricating the same - Google Patents

Semiconductor element and method for fabricating the same Download PDF

Info

Publication number
WO2003081681A1
WO2003081681A1 PCT/JP2003/003181 JP0303181W WO03081681A1 WO 2003081681 A1 WO2003081681 A1 WO 2003081681A1 JP 0303181 W JP0303181 W JP 0303181W WO 03081681 A1 WO03081681 A1 WO 03081681A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor region
region
semiconductor
type region
junction
Prior art date
Application number
PCT/JP2003/003181
Other languages
French (fr)
Japanese (ja)
Inventor
Jun Tateya
Original Assignee
Sanken Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co., Ltd. filed Critical Sanken Electric Co., Ltd.
Priority to JP2003579289A priority Critical patent/JP4247674B2/en
Publication of WO2003081681A1 publication Critical patent/WO2003081681A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/6609Diodes
    • H01L29/66136PN junction diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes

Definitions

  • the present invention belongs to a semiconductor device, in particular, a semiconductor device having a stable withstand voltage and a method of manufacturing the same.
  • the P type impurity source is diffused into the N 1 type region after forming the protective film, so the lateral diffusion causes the end of the PN junction region between the protective film and the N-type region. Since the part enters and the end part is not exposed, it is hardly affected by deposits, and the withstand voltage fluctuation of the diode hardly occurs.
  • the diode with a planar structure has a lower breakdown voltage and a higher breakdown voltage than the diode. The value can not be achieved.
  • there is also a problem that element design is difficult because it is difficult to obtain the withstand voltage theoretically calculated.
  • an object of the present invention is to provide a semiconductor device having a stable breakdown voltage without fluctuation in breakdown voltage and a method of manufacturing the same.
  • Another object of the present invention is to provide a semiconductor device and a method of manufacturing the same, which are close to a theoretical breakdown voltage value, can stably obtain a desired breakdown voltage, and can be easily designed. Disclosure of the invention
  • a semiconductor device comprises a first semiconductor region (1) and a first semiconductor region (1) having different conductivity types and disposed opposite to the first semiconductor region (1). Between the two semiconductor regions (2), the first semiconductor region (1) and the second semiconductor region (2), and the first semiconductor region (1) and the second semiconductor region (2) And a third semiconductor region (3) containing a lower concentration of impurities.
  • the first semiconductor region (1) and the second semiconductor region (2) having higher impurity concentration than any of the third semiconductor region (3) are directly bonded to each other and
  • An inner junction region (8) is formed to be an electric field concentration point (breakdown point).
  • the third semiconductor region (3) is annularly formed to surround the inner junction region (8) and is joined to the first semiconductor region (1) or the second semiconductor region (2).
  • FIG. 1 is a cross sectional view showing a diode according to a first embodiment of the present invention.
  • Figure 2 is a plan view of the diode shown in Figure 1
  • FIG. 3 is a process sectional view showing a method of manufacturing the diode shown in FIG.
  • FIG. 4 is a cross-sectional view showing a diode according to a second embodiment of the present invention.
  • FIG. 5 is a process sectional view showing a method of manufacturing the diode shown in FIG.
  • FIG. 6 is a cross-sectional view showing the diodes of the third, fourth and fifth embodiments according to the present invention.
  • FIG. 7 is a cross-sectional view of a diode showing the sixth and seventh embodiments according to the present invention
  • FIG. 8 is a cross-sectional view showing a diode of a conventional mesa structure.
  • FIG. 9 is a cross sectional view showing a conventional planar structure diode. BEST MODE FOR CARRYING OUT THE INVENTION
  • the diode 40 of the conventional mesa structure shown in FIG. 8 is a P + -type of the anode region formed on the N + -type region 21 and the N ⁇ -type region 23 of the force sort region and the N ⁇ -type region 23.
  • a semiconductor substrate 24 is formed of a region 22.
  • a pair of electrodes 25 and 26 are formed on the lower and upper surfaces of the semiconductor substrate 24.
  • the N-type region 23 contains impurities at a lower concentration than the N + -type region 21 and the P + -type region 22.
  • the PN junction region 28 between the P + -type region 22 and the N-type region 23 is formed in a planar shape, and diverges upward from the lower surface of the semiconductor substrate 24.
  • N-type region 1 and 2 showing the first embodiment of the present invention is formed opposite to the N + -type region 1 of the first semiconductor region and the N + -type region 1 and N + And P + -type region 2 of the second semiconductor region different in conductivity type, and disposed between N + -type region 1 and P + -type region 2 and N + -type and P + -type region 1, N-type region 3 of the third semiconductor region containing impurities lower than 2 is provided on semiconductor substrate 4, and a pair of electrodes 5 and 6 are provided on the outer surfaces of N + -type region 1 and P + -type region 2.
  • the zener diode is shown having a depression 6 a substantially in the center of the electrode 6.
  • the diode 50 of the conventional planar structure shown in FIG. 9 is a semiconductor having the N + -type region 2 1, the N ⁇ -type region 23 and the P + -type region 22 formed.
  • a PN junction region 38 between the P + -type and N-type regions 22 and 23 is formed on the upper surface of the semiconductor substrate 34 and covered with the protective film 37, and the PN junction Has a curved portion (suriferral portion) 3 8 b that is curved.
  • the entire top surface of the N-type region 23 is oxidized to form a protective film 37 of silicon dioxide (S i 0 2 ), and the protective film 37 is partially formed.
  • the end portion 38a is covered with the protective film 37 at all times during and after manufacture. It is possible to obtain a highly reliable diode without fluctuation in the withstand voltage due to a deposit.
  • the end 2 8 a of the PN junction region 8 is exposed, so the semiconductor substrate 2 4
  • the breakdown voltage is likely to fluctuate due to harmful substances such as sodium adhering to the side of the.
  • the end portion 2 8 a is covered with a protective film 27.
  • the impurity adheres to the end 2 8 a at the time of manufacturing before the formation of the protective film 27 to deteriorate the withstand voltage performance, and a highly reliable diode can not be obtained.
  • the diode 50 of the planar structure shown in FIG. 9 diffuses the P-type impurity source into the N-type region 23 after forming the protective film 37, the protective film 3 is formed by lateral diffusion. Since the end 3 8 a of the PN junction region 3 8 enters between the 7 and the N-type region 2 3 and the end 3 8 a is not exposed, it is hardly affected by the deposit, and the breakdown voltage of the diode is reduced. Is less likely to occur. However, since the local electric field concentration occurs and the critical electric field is easily reached as the curvature portion 3 8 b of the PN junction region 3 8 having a small curvature radius, the diode 50 of the planar structure of FIG. The breakdown voltage is lower than 8 diodes 40, and high breakdown voltage can not be achieved. In addition, there is also a problem that element design becomes difficult because it is difficult to obtain the theoretically calculated withstand voltage.
  • phosphorus is used as an impurity in the N + -type region 1 and the N-type region 3
  • boron is used as an impurity in the P + -type region 2.
  • a P + -type region 2 is formed on the N + -type region 1 with a substantially uniform thickness along the recess 7 formed on the upper surface of the diode 10. It has an inner bonding area 8 in which the flat bottom 2a and the curved inclined surface 2 of the area 2 and the dish-like recess 1a formed inside the N + type area 1 are directly PN-bonded.
  • the inner junction region 8 is formed by direct junction of the N + -type region 1 and the P + -type region 2 containing impurities higher in concentration than the N ⁇ -type region 3 to form a planar PN junction. A desired breakdown voltage calculated from the impurity concentration of P + -type region 2 is obtained.
  • the N-type region 3 forms, together with the P + -type region 2, an outer joint region 9 which is annularly formed surrounding the inner junction region 8 and is directly joined to the P + -type region 2.
  • the N-type region 3 has an annular inclined surface 3 a shown by a dotted line in FIG. 2 which is tapered toward the dished recess 1 a of the N + -type region 1 and a horizontal flat surface surrounding the inclined surface 3 a.
  • the flat surface 3 a and the flat surface 3 b have a PN junction with the P + -type region 2.
  • the outer bonding region 9 includes an outer end 9 a exposed from the side surface of the semiconductor substrate 4.
  • the depletion layer extending from the outer junction region 9 formed between the P + -type region 2 containing a high concentration of impurities and the N ⁇ -type region 3 containing a low concentration of impurities is formed widely. It is widely formed on the N-type region 3 side including. Therefore, when reverse bias is applied, Even if harmful substances adhere to the outer end 9a of the joint area 9, no breakdown voltage occurs.
  • the inclined surface 3a of the N-type region 3 and the inclined surface 2b of the P + -type region 2 are provided to increase the distance from the outer end portion 9a to the inner bonding region 8. Suppress pressure fluctuation due to attached material.
  • the semiconductor substrate 4 on which the N + -type region 1 containing high concentration of phosphorus is formed is prepared.
  • N-type region 3 is provided on N + -type region 1 by growing type region 3 or diffusing an impurity at the bottom of N-type region 3 to form N + -type region 1.
  • an epitaxial growth method is used to thinly stack an N-type region 3 containing low concentration impurities on the N + type region 1 containing high concentration impurities.
  • impurities can be doped in the growth process.
  • the semiconductor substrate 4 having the N + -type region 1 is disposed in a reaction container (not shown), and monosilane is applied at a high temperature of 1 100 to 1 200 0 C.
  • the inner surface of the N-type region 3 formed on the upper surface of the semiconductor substrate 4 is removed by etching to form a recess 7 reaching the N + -type region 1 as shown in FIG. 3 (b). As shown, it is formed in a circular shape inside the N-type region 3.
  • the lowermost part 7 a of the recess 7 may be provided either above or below the bonding surface between the N + -type region 1 and the N ⁇ -type region 3, but in the present embodiment, the P + -type region 2 is N + A lowermost portion 7 a is provided in the N + -type region 1 so as to be in contact with the mold region 1.
  • the side surface of the recess 7 is formed into a gently curved surface with a large radius of curvature, and the side surface of the recess 7 is surrounded by an N-type region 3 having a circular inner edge c.
  • the n + -type region 3 surrounding the recess 7 is diffused with a high concentration impurity such as boron different in conductivity type from the n + -type region 1 to form a p + -type region 2 containing high concentration boron as shown in FIG.
  • the second semiconductor region 2 and the N + -type region 1 are directly joined to form the inner junction region 8, and the P + -type region 2 and the N ⁇ -type region 3 are formed.
  • Direct bond to surround inner bond area 8 Forming an outer joint area 9.
  • the diffusion of boron is performed, for example, by a solid diffusion method or the like in which a solid thin film containing boron as an impurity source is formed in the N-type region 3 and the recess 7 and heat-treated.
  • a P + -type region 2 is formed along the N ⁇ -type region 3 and the recess 7, and the flat bottom surface 2 a of the P + -type region 2 along the bottom 7 a of the recess 7 is directly bonded to the N + -type region 1
  • N _ -type region 3 is disposed between N + -type region 1 and P + -type region 2 so as to surround inner junction region 8.
  • the inclined surface 3a and the flat surface 3b and the P + -type region 2 form a PN junction.
  • the thickness of the P + -type region 2 formed by diffusion is relatively deep in the N ⁇ -type region 3 because the impurity concentrations of the N + -type region 1 and the N ⁇ -type region 3 are different.
  • a slight step is generated between the inclined surface 2 b of the + type region 2 and the inclined surface 3 a of the N ⁇ type region 3.
  • the flat electrode 5 is connected to the lower surface of the N + -type region 1 and the electrode 6 having the recess 6 a is connected to the upper surface of the P + -type region 2 to form the diode 10 shown in FIG. .
  • a lead is connected to the pair of electrodes 5 and 6 and sealed with a resin or the like to provide a product.
  • the depletion layer is formed narrow in the inner junction region 8, and the depletion layer is formed wide in the outer junction region 9. Therefore, when a voltage in the reverse direction is applied to the diode 10 and the voltage exceeds the theoretical breakdown voltage determined by the impurity concentration of the N + -type and P + -type regions 1 and 2, etc. Current flow in the direction causes breakdown (breakdown).
  • the electric field is locally concentrated on the curvature portion 38 b and breakdown occurs in this portion, whereas in the present embodiment, N + having a high impurity concentration is used.
  • the semiconductor substrate is different from the mesa 40 of FIG. 8 in order to provide an inner junction region 8 which causes breakdown at a substantial center of the diode 10 apart from the exposed outer end 9a of the PN junction.
  • the breakdown voltage does not change because it is not affected by deposits on the side.
  • the present invention is not limited to the above embodiment, and various modifications can be made as shown in FIG. 4 to FIG. In the second to seventh embodiments shown in FIGS. 4 to 7, substantially the same effects as those of the first embodiment shown in FIG. 1 can be obtained.
  • the second embodiment shown in FIG. 4 is a diode in which the third semiconductor region 3 is formed thicker than in FIG. 1 and the cross section of the inclined surface 3 a of the third semiconductor region 3 is formed flat.
  • Indicates In the method of manufacturing the diode 20 shown in FIG. 4, first, phosphorus is diffused to the lower surface of the semiconductor substrate containing a low concentration of phosphorus, and as shown in FIG. 5 (a), N in the third semiconductor region is formed. The N + -type region 1 of the first semiconductor region containing a high concentration of phosphorus is partially formed at the bottom of the -type region 3. Next, as shown in FIG. 5 (b), the inside of the N-type region 3 is removed by etching to form a recess 7.
  • the lowermost portion 7 a of the recess 7 is formed above the bonding surface of the N + -type region 1 and the N ⁇ -type region 3.
  • boron of an impurity having a conductivity type different from that of the N + -type region 1 is diffused into the N 1 -type region 3 and the recess 7 to form the P + -type region 2 of the second semiconductor region containing a high concentration of impurities.
  • FIG. 5 (c) a flat inner junction region 8 where the N + region 1 and the P + region 2 are directly joined in the approximate center of the semiconductor substrate 14 and an inner junction region 8 are surrounded.
  • An outer junction region 9 is formed which joins between the P + and N ⁇ regions 2, 3. After the formation of the P + -type region 2, by forming the electrodes 5 and 6 in the same manner as the diode 10, the diode 20 shown in FIG. 4 is obtained.
  • the respective diodes 20a, 20b and 20c are shown in which the arrangement of the conductivity type of the semiconductor region is changed.
  • N + type, P + type and P type semiconductor regions are respectively formed in the first, second and third semiconductor regions 1, 2 and 3 of the diode 20a, and the first, second and third semiconductor regions of the diode 2O b are formed.
  • P + -type, N + -type and P ⁇ -type semiconductor regions are respectively formed, and the first, second and third semiconductor regions of the diode 20 c are formed.
  • the semiconductor regions of P + type, N + type and N- type are respectively formed in 1, 2 and 3.
  • the inner junction region 8 and the outer junction region 9 are formed in a substantially continuous planar shape, it is easy to increase the breakdown voltage. You can earn
  • the sixth embodiment shown in FIG. 7 (a) is different from the diode 20 of FIG. And a diode 3 0 a in which the shape of the outer junction region 9 between the third semiconductor regions 2 and 3 is modified. Further, in the seventh embodiment shown in FIG. 7 (b), the shape of the junction surface between the first and third semiconductor regions 1 and 3 is changed with respect to the diode 2 O b of FIG. 6 (b). Indicates the diode 3 0 b. Industrial applicability
  • the present invention it is possible to obtain an ideal breakdown voltage in which the breakdown voltage is close to the theoretical value, and to prevent breakdown due to the influence of deposits and the like, thereby suppressing fluctuation in breakdown voltage and providing a highly reliable semiconductor device. It can be formed.

Abstract

A semiconductor element comprising a first semiconductor region (1), a second semiconductor region (2) having a conductivity type different from that of the first semiconductor region (1), and a third semiconductor region (3) arranged between the first semiconductor region (1) and the second semiconductor region (2) while containing impurities at a low concentration. An inner junction region (8) is formed through direct junction of the first semiconductor region (1) and the second semiconductor region (2) and an outer junction region (9) is formed through junction of the third semiconductor region (3) surrounding the inner junction region (8) and the first semiconductor region (1) or the second semiconductor region (2). Since breakdown due to impurities adhering to the outer junction region (9) is eliminated, withstand voltage of the semiconductor element increases and the breakdown voltage is stabilized.

Description

明 細 書 半導体素子及びその製法  Semiconductor device and manufacturing method thereof
技術分野 Technical field
本発明は、 半導体素子、 特に耐圧値が安定した半導体素子及びその製法に属す る。 背景技術  The present invention belongs to a semiconductor device, in particular, a semiconductor device having a stable withstand voltage and a method of manufacturing the same. Background art
従来のプレーナ構造のダイオードは、 保護膜を形成後に、 P型の不純物源を N 一型領域に拡散するため、 横方向の拡散により保護膜と N—型領域との間に P N 接合領域の端部が入り込み、 端部が露出しないため、 付着物の影響を殆ど受けず、 ダイオードの耐圧変動が生じ難い。 しかしながら、 曲率半径が小さい P N接合領 域の曲率部ほど、 局所的な電界集中が発生して容易に臨界電界に達するため、 プ レーナ構造のダイオードは、 ダイオードに比べて降伏電圧が低く、 高耐圧値を達 成できない。 また、 理論的に算定される耐圧が得られ難いため、 素子の設計が難 しい問題もある。  In the conventional planar structure diode, the P type impurity source is diffused into the N 1 type region after forming the protective film, so the lateral diffusion causes the end of the PN junction region between the protective film and the N-type region. Since the part enters and the end part is not exposed, it is hardly affected by deposits, and the withstand voltage fluctuation of the diode hardly occurs. However, since the local electric field concentration occurs and the critical electric field is easily reached as the curvature portion of the PN junction region having a smaller curvature radius, the diode with a planar structure has a lower breakdown voltage and a higher breakdown voltage than the diode. The value can not be achieved. In addition, there is also a problem that element design is difficult because it is difficult to obtain the withstand voltage theoretically calculated.
そこで、 本発明は、 降伏電圧が変動せず安定した耐圧値を有する半導体素子及 びその製法を提供することを目的とする。 また、 本発明は、 理論的な降伏電圧値 に近似し、 所望する耐圧が安定して得られ且つ素子設計も容易な半導体素子及び その製法を提供することを目的とする。 発明の開示  Therefore, an object of the present invention is to provide a semiconductor device having a stable breakdown voltage without fluctuation in breakdown voltage and a method of manufacturing the same. Another object of the present invention is to provide a semiconductor device and a method of manufacturing the same, which are close to a theoretical breakdown voltage value, can stably obtain a desired breakdown voltage, and can be easily designed. Disclosure of the invention
本発明による半導体素子は、 第 1の半導体領域(1 )と、 第 1の半導体領域(1 )と は異なる導電型を有し且つ第 1の半導体領域(1 )に対向して配置された第 2の半 導体領域(2)と、 第 1の半導体領域(1 )と第 2の半導体領域(2)との間に配置され 且つ第 1の半導体領域(1 )及び第 2の半導体領域(2)より低濃度の不純物を含む第 3の半導体領域(3)とを備えている。 第 3の半導体領域(3)より何れも不純物濃度 の高い第 1の半導体領域(1)と第 2の半導体領域(2)は、 互いに直接接合され且つ 電界集中点 (ブレークダウンポイント) となる内側接合領域(8)を形成する。 ま た、 第 3の半導体領域(3)は、 内側接合領域(8)を包囲して環状に形成され且つ第 1の半導体領域(1)又は第 2の半導体領域(2)に対して接合される外側接合領域 (9)を形成し、 外側接合領域(9)には幅広の空乏層が形成されるため、 逆方向のバ ィァスが印加されたとき電界集中が生じ難く、 外側接合領域(9)に不純物が付着 しても降伏 (ブレークダウン) 電圧の変動を生じない。 図面の簡単な説明 A semiconductor device according to the present invention comprises a first semiconductor region (1) and a first semiconductor region (1) having different conductivity types and disposed opposite to the first semiconductor region (1). Between the two semiconductor regions (2), the first semiconductor region (1) and the second semiconductor region (2), and the first semiconductor region (1) and the second semiconductor region (2) And a third semiconductor region (3) containing a lower concentration of impurities. The first semiconductor region (1) and the second semiconductor region (2) having higher impurity concentration than any of the third semiconductor region (3) are directly bonded to each other and An inner junction region (8) is formed to be an electric field concentration point (breakdown point). The third semiconductor region (3) is annularly formed to surround the inner junction region (8) and is joined to the first semiconductor region (1) or the second semiconductor region (2). (9), and a wide depletion layer is formed in the outer junction region (9), so electric field concentration is less likely to occur when a reverse bias is applied, and the outer junction region (9) is formed. Impurities attached to) do not cause fluctuation of breakdown voltage. Brief description of the drawings
半導体素子をダイォードに適用した本発明による実施の形態を下記図面につい て以下説明する。  An embodiment of the present invention in which a semiconductor element is applied to a diode will be described below with reference to the following drawings.
図 1は、 本発明による第 1の実施の形態のダイォ一ドを示す断面図  FIG. 1 is a cross sectional view showing a diode according to a first embodiment of the present invention.
図 2は、 図 1に示すダイオードの平面図  Figure 2 is a plan view of the diode shown in Figure 1
図 3は、 図 1に示すダイオードの製法を示す工程断面図  FIG. 3 is a process sectional view showing a method of manufacturing the diode shown in FIG.
図 4は、 本発明による第 2の実施の形態のダイォードを示す断面図  FIG. 4 is a cross-sectional view showing a diode according to a second embodiment of the present invention.
図 5は、 図 4に示すダイオードの製法を示す工程断面図  FIG. 5 is a process sectional view showing a method of manufacturing the diode shown in FIG.
図 6は、 本発明による第 3、 第 4及び第 5の実施の形態のダイオードを示す断 面図  FIG. 6 is a cross-sectional view showing the diodes of the third, fourth and fifth embodiments according to the present invention.
図 7は、 本発明による第 6及び第 7の実施の形態を示すダイォードの断面図 図 8は、 従来のメサ構造のダイオードを示す断面図  FIG. 7 is a cross-sectional view of a diode showing the sixth and seventh embodiments according to the present invention, and FIG. 8 is a cross-sectional view showing a diode of a conventional mesa structure.
図 9は、 従来のプレーナ構造のダイオードを示す断面図 発明の実施するための最良の形態  FIG. 9 is a cross sectional view showing a conventional planar structure diode. BEST MODE FOR CARRYING OUT THE INVENTION
図 8に示す従来のメサ構造のダイオード 4 0は、 力ソード領域の N +型領域 2 1及び N—型領域 2 3と、 N—型領域 2 3上に形成されたアノード領域の P +型 領域 2 2とから成る半導体基板 2 4を備え、 半導体基板 2 4の下面及び上面に一 対の電極 2 5 、 2 6が形成される。 N—型領域 2 3は、 N +型領域 2 1及び P + 型領域 2 2に比べて低濃度の不純物を含有する。 図 8のダイオード 4 0では、 P +型領域 2 2と N—型領域 2 3との間の P N接合領域 2 8が平面状に形成され、 半導体基板 2 4の下面から上方に向けて末広がりとなる傾斜側面に P N接合領域 2 8の端部 2 8 aが形成される。 半導体基板 2 4が傾斜側面を有するメサ構造の ダイォ一ド 4 0では、 図示しないが N型半導体領域と P型半導体領域との間に形 成される空乏層が、 P +型領域 2 2と N—型領域 2 3との P N接合領域 2 8から 半導体基板 2 4の端部 2 8 a付近で幅広く広がる。 このため、 図 8のダイオード 4 0では、 平面 P N接合を構成する P +型領域 2 2及び N—型領域 2 3の不純物 濃度から理論的に算定される値と同等の耐圧値が得られ、 高耐圧化が達成される。 本発明の第 1の実施の形態を示す図 1及び図 2のダイオード 1 0は、 第 1の半 導体領域の N +型領域 1と、 N +型領域 1に対向して形成され且つ N +型領域 1 と導電型の異なる第 2の半導体領域の P +型領域 2と、 N +型領域 1と P +型領 域 2との間に配置され且つ N +型及び P +型領域 1 、 2より低濃度の不純物を含 む第 3の半導体領域の N—型領域 3とを半導体基板 4に備え、 N +型領域 1及び P +型領域 2の各外面に一対の電極 5、 6が形成され電極 6の略中央に窪み 6 a を有するツエナダイォ一ドを示す。 The diode 40 of the conventional mesa structure shown in FIG. 8 is a P + -type of the anode region formed on the N + -type region 21 and the N − -type region 23 of the force sort region and the N − -type region 23. A semiconductor substrate 24 is formed of a region 22. A pair of electrodes 25 and 26 are formed on the lower and upper surfaces of the semiconductor substrate 24. The N-type region 23 contains impurities at a lower concentration than the N + -type region 21 and the P + -type region 22. In the diode 40 of FIG. 8, the PN junction region 28 between the P + -type region 22 and the N-type region 23 is formed in a planar shape, and diverges upward from the lower surface of the semiconductor substrate 24. PN junction area on the inclined side An end 2 8 a of 2 8 is formed. Although not shown, in the case of the mesa 40 with the semiconductor substrate 24 having inclined side surfaces, the depletion layer formed between the N-type semiconductor region and the P-type semiconductor region is not shown, and the P + -type region 22 and It spreads widely near the end 2 8 a of the semiconductor substrate 2 4 from the PN junction region 2 8 with the N-type region 2 3. For this reason, in the diode 40 of FIG. 8, a withstand voltage value equivalent to the value theoretically calculated from the impurity concentration of the P + -type region 22 and the N-type region 23 constituting the planar PN junction can be obtained. High withstand voltage is achieved. The diode 10 in FIGS. 1 and 2 showing the first embodiment of the present invention is formed opposite to the N + -type region 1 of the first semiconductor region and the N + -type region 1 and N + And P + -type region 2 of the second semiconductor region different in conductivity type, and disposed between N + -type region 1 and P + -type region 2 and N + -type and P + -type region 1, N-type region 3 of the third semiconductor region containing impurities lower than 2 is provided on semiconductor substrate 4, and a pair of electrodes 5 and 6 are provided on the outer surfaces of N + -type region 1 and P + -type region 2. The zener diode is shown having a depression 6 a substantially in the center of the electrode 6.
図 9に示す従来のプレーナ構造のダイオード 5 0は、 図 8のダイオード 4 0と 同様に、 N +型領域 2 1 、 N—型領域 2 3及び P +型領域 2 2が形成された半導 体基板 3 4と、 N +型領域 2 1及び P +型領域 2 2の外面にそれぞれ形成された 一対の電極 2 5、 2 6とを備え、 上面を除き N—型領域 2 3によって P +型領域 2 2を包囲する。 P +型及び N—型領域 2 2、 2 3間の P N接合領域 3 8は、 半 導体基板 3 4の上面に形成され且つ保護膜 3 7により被覆された端部 3 8 aと、 P N接合が湾曲する曲率部 (スリフェリカル部) 3 8 bとを備える。 図 9のダイ オード 5 0を製造する際に、 N—型領域 2 3の上面全体を酸化して二酸化ケイ素 (S i02) の保護膜 3 7を形成し、 保護膜 3 7を部分的にエッチング除去して N _ 型領域 2 3の露出した部分に拡散により P +型領域 2 2を形成するため、 製造中 及び製造後も常に保護膜 3 7によって端部 3 8 aが被覆され、 付着物による耐圧 変動が無く信頼性の高いダイオードを得ることができる。 Similar to the diode 40 of FIG. 8, the diode 50 of the conventional planar structure shown in FIG. 9 is a semiconductor having the N + -type region 2 1, the N − -type region 23 and the P + -type region 22 formed. Body substrate 34, and a pair of electrodes 25 and 26 respectively formed on the outer surfaces of N + -type region 21 and P + -type region 22; Surround the mold area 2 2. A PN junction region 38 between the P + -type and N-type regions 22 and 23 is formed on the upper surface of the semiconductor substrate 34 and covered with the protective film 37, and the PN junction Has a curved portion (suriferral portion) 3 8 b that is curved. When manufacturing the diode 50 shown in FIG. 9, the entire top surface of the N-type region 23 is oxidized to form a protective film 37 of silicon dioxide (S i 0 2 ), and the protective film 37 is partially formed. In order to form the P + -type region 22 by diffusion in the exposed portion of the N _ -type region 23 by etching, the end portion 38a is covered with the protective film 37 at all times during and after manufacture. It is possible to obtain a highly reliable diode without fluctuation in the withstand voltage due to a deposit.
図 8に示すメサ構造のダイオード 4 0では、 前記のように理論的に算出される 高耐圧値が得られるが、 P N接合領域 2 8の端部 2 8 aが露出するため、 半導体 基板 2 4の側面に付着したナトリウム等の有害物質によって降伏 (ブレークダウ ン) 電圧が変動し易い。 図 8に示すように、 保護膜 2 7により端部 2 8 aを被覆 しても、 保護膜 2 7の形成前の製造時に不純物が端部 2 8 aに付着して耐圧性能 が劣化し、 信頼性の高いダイオードを得ることができない。 In the diode 40 of the mesa structure shown in FIG. 8, although the high breakdown voltage value theoretically calculated as described above is obtained, the end 2 8 a of the PN junction region 8 is exposed, so the semiconductor substrate 2 4 The breakdown voltage is likely to fluctuate due to harmful substances such as sodium adhering to the side of the. As shown in FIG. 8, the end portion 2 8 a is covered with a protective film 27. However, the impurity adheres to the end 2 8 a at the time of manufacturing before the formation of the protective film 27 to deteriorate the withstand voltage performance, and a highly reliable diode can not be obtained.
これに対し、 図 9に示すプレーナ構造のダイオード 5 0は、 保護膜 3 7を形成 後に、 P型の不純物源を N—型領域 2 3に拡散するため、 横方向の拡散により保 護膜 3 7と N—型領域 2 3との間に P N接合領域 3 8の端部 3 8 aが入り込み、 端部 3 8 aが露出しないため、 付着物の影響を殆ど受けず、 ダイオードの耐圧変 動が生じ難い。 しかしながら、 曲率半径が小さい P N接合領域 3 8の曲率部 3 8 bほど、 局所的な電界集中が発生して容易に臨界電界に達するため、 図 9のプレ ーナ構造のダイオード 5 0は、 図 8のダイオード 4 0に比べて降伏電圧が低く、 高耐圧値を達成できない。 また、 理論的に算定される耐圧が得られ難いため、 素 子の設計が難しくなる問題もある。  On the other hand, since the diode 50 of the planar structure shown in FIG. 9 diffuses the P-type impurity source into the N-type region 23 after forming the protective film 37, the protective film 3 is formed by lateral diffusion. Since the end 3 8 a of the PN junction region 3 8 enters between the 7 and the N-type region 2 3 and the end 3 8 a is not exposed, it is hardly affected by the deposit, and the breakdown voltage of the diode is reduced. Is less likely to occur. However, since the local electric field concentration occurs and the critical electric field is easily reached as the curvature portion 3 8 b of the PN junction region 3 8 having a small curvature radius, the diode 50 of the planar structure of FIG. The breakdown voltage is lower than 8 diodes 40, and high breakdown voltage can not be achieved. In addition, there is also a problem that element design becomes difficult because it is difficult to obtain the theoretically calculated withstand voltage.
本実施の形態では、 N +型領域 1及び N—型領域 3の不純物にリンを用い、 P +型領域 2の不純物にホウ素を用いる。 ダイオード 1 0の上面に形成された凹部 7に沿って、 P +型領域 2が N +型領域 1上に略均一な厚さで形成され、 半導体 基板 4の内部略中央には、 P +型領域 2の平坦な底面 2 a及び湾曲状の傾斜面 2 と、 N +型領域 1の内側に形成された皿状凹部 1 aとが直接 P N接合する内側 接合領域 8を備える。 内側接合領域 8は、 N—型領域 3より高濃度の不純物を含 む N +型領域 1と P +型領域 2とが直接接合されて平面 P N接合を形成するため、 N +型領域 1及び P +型領域 2の不純物濃度から算定される所望の耐圧が得られ る。  In this embodiment, phosphorus is used as an impurity in the N + -type region 1 and the N-type region 3, and boron is used as an impurity in the P + -type region 2. A P + -type region 2 is formed on the N + -type region 1 with a substantially uniform thickness along the recess 7 formed on the upper surface of the diode 10. It has an inner bonding area 8 in which the flat bottom 2a and the curved inclined surface 2 of the area 2 and the dish-like recess 1a formed inside the N + type area 1 are directly PN-bonded. The inner junction region 8 is formed by direct junction of the N + -type region 1 and the P + -type region 2 containing impurities higher in concentration than the N − -type region 3 to form a planar PN junction. A desired breakdown voltage calculated from the impurity concentration of P + -type region 2 is obtained.
N—型領域 3は、 内側接合領域 8を包囲して環状に形成され且つ P +型領域 2 に対して直接接合される外側接合領域 9を P +型領域 2と共に形成する。 また、 N—型領域 3は、 N +型領域 1の皿状凹部 1 aに向かって先細となる図 2の点線 で示す環状の傾斜面 3 aと、 傾斜面 3 aを包囲する水平な平坦面 3 bとを備え、 傾斜面 3 a及び平坦面 3 bが P +型領域 2に P N接合する。 外側接合領域 9は、 半導体基板 4の側面から露出した外端部 9 aを備える。 高濃度の不純物を含む P +型領域 2と低濃度の不純物を含む N—型領域 3との間に形成された外側接合領 域 9から広がる空乏層は幅広く形成され、 特に低濃度の不純物を含む N—型領域 3側に広く形成される。 このため、 逆方向のバイアスが印加されたとき、 外側接 合領域 9の外端部 9 aに有害物が付着しても降伏 (ブレークダウン) 電圧が発生 しない。 また、 本実施の形態では、 N—型領域 3の傾斜面 3 a及び P +型領域 2 の傾斜面 2 bを設けて、 外端部 9 aから内側接合領域 8までの距離を長くし、 付 着物による耐圧変動を抑制する。 The N-type region 3 forms, together with the P + -type region 2, an outer joint region 9 which is annularly formed surrounding the inner junction region 8 and is directly joined to the P + -type region 2. In addition, the N-type region 3 has an annular inclined surface 3 a shown by a dotted line in FIG. 2 which is tapered toward the dished recess 1 a of the N + -type region 1 and a horizontal flat surface surrounding the inclined surface 3 a. The flat surface 3 a and the flat surface 3 b have a PN junction with the P + -type region 2. The outer bonding region 9 includes an outer end 9 a exposed from the side surface of the semiconductor substrate 4. The depletion layer extending from the outer junction region 9 formed between the P + -type region 2 containing a high concentration of impurities and the N − -type region 3 containing a low concentration of impurities is formed widely. It is widely formed on the N-type region 3 side including. Therefore, when reverse bias is applied, Even if harmful substances adhere to the outer end 9a of the joint area 9, no breakdown voltage occurs. In the present embodiment, the inclined surface 3a of the N-type region 3 and the inclined surface 2b of the P + -type region 2 are provided to increase the distance from the outer end portion 9a to the inner bonding region 8. Suppress pressure fluctuation due to attached material.
図 3に示すように、 ダイオード 1 0を製造する際に、 最初に、 高濃度のリンを 含む N +型領域 1が形成された半導体基板 4を準備し、 N +型領域 1上に N—型 領域 3を成長させるか又は N—型領域 3の底部に不純物を拡散して N +型領域 1 を形成することによって、 N +型領域 1上に N—型領域 3を設ける。 図 3 ( a ) では、 ェピタキシャル成長法によって、 高濃度の不純物を含む N +型領域 1上に 低濃度の不純物を含む N—型領域 3を薄く積層させる。 半導体基板上に結晶性を 維持して別の結晶層を成長させるェピタキシャル成長法では、 成長過程に不純物 をドーピングできる。 本実施の形態では、 図示しない反応容器内に N +型領域 1 を有する半導体基板 4を配置し、 1 1 0 0〜 1 2 0 0 °Cの高温下でモノシラン As shown in FIG. 3, when manufacturing the diode 10, first, the semiconductor substrate 4 on which the N + -type region 1 containing high concentration of phosphorus is formed is prepared. N-type region 3 is provided on N + -type region 1 by growing type region 3 or diffusing an impurity at the bottom of N-type region 3 to form N + -type region 1. In Fig. 3 (a), an epitaxial growth method is used to thinly stack an N-type region 3 containing low concentration impurities on the N + type region 1 containing high concentration impurities. In the epitaxial growth method in which another crystalline layer is grown while maintaining crystallinity on a semiconductor substrate, impurities can be doped in the growth process. In the present embodiment, the semiconductor substrate 4 having the N + -type region 1 is disposed in a reaction container (not shown), and monosilane is applied at a high temperature of 1 100 to 1 200 0 C.
(S iH4) ガス及び水素ガスを流入して、 半導体基板 4の下地シリコンの結晶格子 に倣いシリコン原子を連続的に積層する。 同時に、 フォスフィン (PH3) 等の不 純物のリンを含むドーパンドガスを混合し、 N +型領域 1上に N—型領域 3を積 層する。 (SiH 4 ) Gas and hydrogen gas are introduced to continuously stack silicon atoms following the crystal lattice of underlying silicon of the semiconductor substrate 4. At the same time, mixed dopant gases containing impurities such as phosphine (PH 3 ) are mixed, and N-type region 3 is deposited on N + -type region 1.
次に、 半導体基板 4の上面に形成された N—型領域 3の内側表面をエッチング により除去して、 図 3 ( b ) に示すように、 N +型領域 1に達する凹部 7を図 2 の示すように N—型領域 3の内側に円形状に形成する。 凹部 7の最下部 7 aを N +型領域 1と N—型領域 3との接合面より上方及び下方の何れに設けてもよいが、 本実施の形態では、 P +型領域 2が N +型領域 1に確実に接するように、 N +型 領域 1内に最下部 7 aを設ける。 凹部 7の側面を曲率半径の大きい緩やかな曲面 状に形成し、 凹部 7の側面を円形の内縁を有する N—型領域 3によって包囲する c 続いて、 N +型領域 1が露出する凹部 7上及び凹部 7を包囲する N—型領域 3 上に N +型領域 1とは導電型の異なる高濃度の不純物、 例えばホウ素を拡散させ て、 高濃度のホウ素を含む P +型領域 2を図 3 ( c ) に示すように形成し、 第 2 の半導体領域 2と N +型領域 1とを直接接合させて内側接合領域 8を形成すると 共に、 P +型領域 2と N—型領域 3とを直接接合させて内側接合領域 8を包囲す る外側接合領域 9を形成する。 ホウ素の拡散は、 例えば不純物源のホウ素を含む 固体薄膜を N—型領域 3及び凹部 7に形成して加熱処理する固体拡散法等によつ て行われる。 N—型領域 3及び凹部 7に沿って P +型領域 2が形成され、 凹部 7 の最下部 7 aに沿った P +型領域 2の平坦な底面 2 aを N +型領域 1に直接接合 させる。 P +型領域 2を形成することによって、 N +型領域 1と P +型領域 2と の間に、 内側接合領域 8を包囲して N _型領域 3が配置され、 N _型領域 3の傾 斜面 3 a及び平坦面 3 bと P +型領域 2とが P N接合する。 拡散によって形成さ れた P +型領域 2の厚さは、 N +型領域 1と N—型領域 3との不純物濃度が相違 するため、 N—型領域 3で相対的に深く形成され、 P +型領域 2の傾斜面 2 bと N—型領域 3の傾斜面 3 aとの間に若干の段差が生じる。 Next, the inner surface of the N-type region 3 formed on the upper surface of the semiconductor substrate 4 is removed by etching to form a recess 7 reaching the N + -type region 1 as shown in FIG. 3 (b). As shown, it is formed in a circular shape inside the N-type region 3. The lowermost part 7 a of the recess 7 may be provided either above or below the bonding surface between the N + -type region 1 and the N − -type region 3, but in the present embodiment, the P + -type region 2 is N + A lowermost portion 7 a is provided in the N + -type region 1 so as to be in contact with the mold region 1. The side surface of the recess 7 is formed into a gently curved surface with a large radius of curvature, and the side surface of the recess 7 is surrounded by an N-type region 3 having a circular inner edge c. And, the n + -type region 3 surrounding the recess 7 is diffused with a high concentration impurity such as boron different in conductivity type from the n + -type region 1 to form a p + -type region 2 containing high concentration boron as shown in FIG. As shown in (c), the second semiconductor region 2 and the N + -type region 1 are directly joined to form the inner junction region 8, and the P + -type region 2 and the N − -type region 3 are formed. Direct bond to surround inner bond area 8 Forming an outer joint area 9. The diffusion of boron is performed, for example, by a solid diffusion method or the like in which a solid thin film containing boron as an impurity source is formed in the N-type region 3 and the recess 7 and heat-treated. A P + -type region 2 is formed along the N − -type region 3 and the recess 7, and the flat bottom surface 2 a of the P + -type region 2 along the bottom 7 a of the recess 7 is directly bonded to the N + -type region 1 Let By forming P + -type region 2, N _ -type region 3 is disposed between N + -type region 1 and P + -type region 2 so as to surround inner junction region 8. The inclined surface 3a and the flat surface 3b and the P + -type region 2 form a PN junction. The thickness of the P + -type region 2 formed by diffusion is relatively deep in the N − -type region 3 because the impurity concentrations of the N + -type region 1 and the N − -type region 3 are different. A slight step is generated between the inclined surface 2 b of the + type region 2 and the inclined surface 3 a of the N − type region 3.
最後に、 N +型領域 1の下面に平坦な電極 5を接続すると共に、 P +型領域 2 の上面に窪み 6 aを有する電極 6を接続して、 図 1に示すダイォード 1 0を形成 する。 更に、 一対の電極 5、 6に導線を結合し樹脂等で封止することにより製品 となる。  Finally, the flat electrode 5 is connected to the lower surface of the N + -type region 1 and the electrode 6 having the recess 6 a is connected to the upper surface of the P + -type region 2 to form the diode 10 shown in FIG. . Furthermore, a lead is connected to the pair of electrodes 5 and 6 and sealed with a resin or the like to provide a product.
ダイオード 1 0では、 内側接合領域 8に空乏層が狭く形成され、 外側接合領域 9に空乏層が幅広く形成される。 このため、 前記ダイオード 1 0に逆方向の電圧 を印加し、 電圧が N +型及び P +型領域 1、 2の不純物濃度等によって定まる理 論耐圧を超えると、 内側接合領域 8において急激に逆方向の電流が流れる降伏 (ブレークダウン) を生じる。 図 9に示すプレーナ構造の半導体素子 5 0では、 曲率部 3 8 bに電界が局所的に集中し、 この部分で降伏が生じるのに対し、 本実 施の形態では、 不純物濃度の高い N +型領域 1と P +型領域 2との間の平面状の 内側接合領域 8に電界を集中させるため、 理論値に近似する降伏電圧を得ること ができる。 このため、 ダイオード 1 0の設計を容易に行える。 一方、 外側接合領 域 9では幅広く形成された空乏層が電界集中を緩和し、 ブレークダウンを生じな い。 このため、 露出した外端部 9 aに有害物が付着してもブレークダウンを生じ ない。 P N接合の露出する外端部 9 aから離間してダイオード 1 0の略中央に、 ブレークダウンを生じる内側接合領域 8を設けるため、 図 8のメサ構造のダイォ ード 4 0と異なり、 半導体基板 4側面の付着物等による影響を受けず降伏電圧が 変動しない。 本発明では、 前記実施の形態に限定されず、 図 4〜図 7に示すように種々の変 更が可能である。 図 4〜図 7に示す第 2〜第 7の実施の形態では、 図 1に示す第 1の実施の形態とほぼ同様の作用効果が得られる。 In the diode 10, the depletion layer is formed narrow in the inner junction region 8, and the depletion layer is formed wide in the outer junction region 9. Therefore, when a voltage in the reverse direction is applied to the diode 10 and the voltage exceeds the theoretical breakdown voltage determined by the impurity concentration of the N + -type and P + -type regions 1 and 2, etc. Current flow in the direction causes breakdown (breakdown). In the semiconductor element 50 having the planar structure shown in FIG. 9, the electric field is locally concentrated on the curvature portion 38 b and breakdown occurs in this portion, whereas in the present embodiment, N + having a high impurity concentration is used. Since the electric field is concentrated on the planar inner junction region 8 between the mold region 1 and the P + -type region 2, a breakdown voltage close to the theoretical value can be obtained. This facilitates the design of the diode 10. On the other hand, in the outer junction region 9, the widely formed depletion layer relieves the concentration of the electric field and does not cause breakdown. Therefore, even if harmful substances adhere to the exposed outer end 9a, no breakdown occurs. Unlike the diode 40 of the mesa structure shown in FIG. 8, the semiconductor substrate is different from the mesa 40 of FIG. 8 in order to provide an inner junction region 8 which causes breakdown at a substantial center of the diode 10 apart from the exposed outer end 9a of the PN junction. (4) The breakdown voltage does not change because it is not affected by deposits on the side. The present invention is not limited to the above embodiment, and various modifications can be made as shown in FIG. 4 to FIG. In the second to seventh embodiments shown in FIGS. 4 to 7, substantially the same effects as those of the first embodiment shown in FIG. 1 can be obtained.
図 4に示す第 2の実施の形態は、 図 1に比べて第 3の半導体領域 3を厚く形成 すると共に、 第 3の半導体領域 3の傾斜面 3 aの断面を平坦に形成したダイォー ド 30を示す。 図 4に示すダイオード 20の製法は、 最初に、 低濃度のリンを含 む半導体基板の下面にリンを拡散させて、 図 5 (a) に示すように、 第 3の半導 体領域の N—型領域 3の底部に部分的に、 リンを高濃度含む第 1の半導体領域の N +型領域 1を形成する。 次に、 図 5 (b) に示すように N—型領域 3の内側を エッチングにより除去して凹部 7を形成する。 本実施の形態では凹部 7の最下部 7 aを N+型領域 1と N—型領域 3との接合面より上方に形成する。 続いて、 N 一型領域 3及び凹部 7に、 N+型領域 1と導電型が異なる不純物のホウ素を拡散 させて、 高濃度の不純物を含む第 2の半導体領域の P +型領域 2を半導体基板 1 4の上面に形成する。 これにより、 図 5 (c) に示すように、 半導体基板 14の 略中央で N+型領域 1と P+型領域 2とが直接接合する平坦な内側接合領域 8と、 内側接合領域 8を包囲して P +及び N -型領域 2、 3間に接合する外側接合領域 9とが形成される。 P+型領域 2の形成後は、 前記ダイオード 1 0と同様に電極 5、 6を形成することによって、 図 4に示すダイオード 20が得られる。  The second embodiment shown in FIG. 4 is a diode in which the third semiconductor region 3 is formed thicker than in FIG. 1 and the cross section of the inclined surface 3 a of the third semiconductor region 3 is formed flat. Indicates In the method of manufacturing the diode 20 shown in FIG. 4, first, phosphorus is diffused to the lower surface of the semiconductor substrate containing a low concentration of phosphorus, and as shown in FIG. 5 (a), N in the third semiconductor region is formed. The N + -type region 1 of the first semiconductor region containing a high concentration of phosphorus is partially formed at the bottom of the -type region 3. Next, as shown in FIG. 5 (b), the inside of the N-type region 3 is removed by etching to form a recess 7. In the present embodiment, the lowermost portion 7 a of the recess 7 is formed above the bonding surface of the N + -type region 1 and the N − -type region 3. Subsequently, boron of an impurity having a conductivity type different from that of the N + -type region 1 is diffused into the N 1 -type region 3 and the recess 7 to form the P + -type region 2 of the second semiconductor region containing a high concentration of impurities. Form on top of 14 As a result, as shown in FIG. 5 (c), a flat inner junction region 8 where the N + region 1 and the P + region 2 are directly joined in the approximate center of the semiconductor substrate 14 and an inner junction region 8 are surrounded. An outer junction region 9 is formed which joins between the P + and N − regions 2, 3. After the formation of the P + -type region 2, by forming the electrodes 5 and 6 in the same manner as the diode 10, the diode 20 shown in FIG. 4 is obtained.
また、 図 6 (a) 〜 (c) に示す第 3〜第 5の実施の形態では、 半導体領域の 導電型の配置を変更した各ダイオード 20 a、 20 b、 20 cを示す。 ダイォー ド 20 aの第 1、 第 2及び第 3の半導体領域 1、 2、 3には、 N+型、 P+型及 び P一型の半導体領域が各々形成され、 ダイオード 2 O bの第 1、 第 2及び第 3 の半導体領域 1、 2、 3には、 P+型、 N +型及び P—型の半導体領域が各々形 成され、 ダイオード 20 cの第 1、 第 2及び第 3の半導体領域 1、 2、 3には、 P+型、 N+型及び N—型の半導体領域が各々形成される。 図 6 (a) 及び (c) に示す各ダイオード 20 a、 20 cは、 内側接合領域 8と外側接合領域 9 とが略連続した平面状に形成されるため、 高耐圧化が容易なダイォ一ドを得るこ とができる。  Further, in the third to fifth embodiments shown in FIGS. 6 (a) to 6 (c), the respective diodes 20a, 20b and 20c are shown in which the arrangement of the conductivity type of the semiconductor region is changed. N + type, P + type and P type semiconductor regions are respectively formed in the first, second and third semiconductor regions 1, 2 and 3 of the diode 20a, and the first, second and third semiconductor regions of the diode 2O b are formed. In the second and third semiconductor regions 1, 2 and 3, P + -type, N + -type and P − -type semiconductor regions are respectively formed, and the first, second and third semiconductor regions of the diode 20 c are formed. The semiconductor regions of P + type, N + type and N- type are respectively formed in 1, 2 and 3. In each of the diodes 20a and 20c shown in FIGS. 6A and 6C, since the inner junction region 8 and the outer junction region 9 are formed in a substantially continuous planar shape, it is easy to increase the breakdown voltage. You can earn
図 7 (a) に示す第 6の実施の形態は、 図 4のダイオード 20に対し、 第 2及 び第 3の半導体領域 2 、 3間の外側接合領域 9の形状を変更したダイオード 3 0 aを示す。 また、 図 7 ( b ) に示す第 7の実施の形態は、 図 6 ( b ) のダイォー ド 2 O bに対し、 第 1及び第 3の半導体領域 1 、 3間の接合面の形状を変更した ダイォード 3 0 bを示す。 産業上の利用可能性 The sixth embodiment shown in FIG. 7 (a) is different from the diode 20 of FIG. And a diode 3 0 a in which the shape of the outer junction region 9 between the third semiconductor regions 2 and 3 is modified. Further, in the seventh embodiment shown in FIG. 7 (b), the shape of the junction surface between the first and third semiconductor regions 1 and 3 is changed with respect to the diode 2 O b of FIG. 6 (b). Indicates the diode 3 0 b. Industrial applicability
以上のように本発明では、 降伏電圧が理論値に近似する理想的な耐圧が得られ ると共に、 付着物等の影響による降伏を防止して、 耐圧変動が抑制され信頼性の 高い半導体素子を形成することができる。  As described above, according to the present invention, it is possible to obtain an ideal breakdown voltage in which the breakdown voltage is close to the theoretical value, and to prevent breakdown due to the influence of deposits and the like, thereby suppressing fluctuation in breakdown voltage and providing a highly reliable semiconductor device. It can be formed.

Claims

請 求 の 範 囲 The scope of the claims
1 . 第 1の半導体領域と、 該第 1の半導体領域とは異なる導電型を有し且つ 前記第 1の半導体領域に対向して配置された第 2の半導体領域と、 前記第 1の半 導体領域と第 2の半導体領域との間に配置され且つ前記第 1の半導体領域及び第 2の半導体領域より低濃度の不純物を含む第 3の半導体領域とを備えた半導体素 子において、 1. A first semiconductor region, a second semiconductor region having a conductivity type different from that of the first semiconductor region and disposed to face the first semiconductor region, and the first semiconductor A semiconductor element comprising: a third semiconductor region disposed between the first semiconductor region and the second semiconductor region and containing an impurity at a lower concentration than the first semiconductor region and the second semiconductor region.
前記第 1の半導体領域と第 2の半導体領域は、 互いに直接接合される内側接合 領域を形成し、  The first semiconductor region and the second semiconductor region form an inner junction region directly bonded to each other,
前記第 3の半導体領域は、 前記内側接合領域を包囲して環状に形成され且つ前 記第 1の半導体領域又は第 2の半導体領域に対して接合される外側接合領域を形 成することを特徴とする半導体素子。  The third semiconductor region may be formed in an annular shape surrounding the inner junction region and may form an outer junction region joined to the first semiconductor region or the second semiconductor region. Semiconductor device.
2 . 前記第 1の半導体領域は、 内側に形成される皿状凹部を備え、 前記第 2 の半導体領域は、 前記第 1の半導体領域の皿状凹部に接合される平坦な底面を備 える請求項 1に記載の半導体素子。  2. The first semiconductor region comprises a dish-like recess formed on the inside, and the second semiconductor region comprises a flat bottom surface joined to the dish-like recess of the first semiconductor region. The semiconductor device according to item 1.
3 . 前記第 2の半導体領域は略均一な厚さで形成され、 前記第 1の半導体領 域の外面及び前記第 2の半導体領域の外面にそれぞれ電極が形成され、 前記電極 の略中央に窪みが形成される請求項 1又は 2に記載の半導体素子。  3. The second semiconductor region is formed to have a substantially uniform thickness, an electrode is formed on the outer surface of the first semiconductor region and an outer surface of the second semiconductor region, and a recess is formed substantially in the center of the electrode The semiconductor device according to claim 1 or 2, wherein
4 . 高濃度の不純物を含む第 1の半導体領域上に低濃度の不純物を含む第 3 の半導体領域を設ける工程と、  4. providing a third semiconductor region containing low concentration impurities over the first semiconductor region containing high concentration impurities;
前記第 1の半導体領域に達する凹部を前記第 3の半導体領域の内側に形成する 工程と、  Forming a recess reaching the first semiconductor region inside the third semiconductor region;
前記第 1の半導体領域が露出する凹部上及び該凹部を包囲する前記第 3の半導 体領域上に前記第 1の半導体領域とは導電型の異なる高濃度の不純物を含む第 2 の半導体領域を形成して、 該第 2の半導体領域と前記第 1の半導体領域とを直接 接合させて内側接合領域を形成すると共に、 前記第 2の半導体領域と前記第 3の 半導体領域とを直接接合させて前記内側接合領域を包囲する外側接合領域を形成 する工程とを含むことを特徴とする半導体素子の製法。  A second semiconductor region containing a high concentration impurity different in conductivity type from the first semiconductor region on the recess where the first semiconductor region is exposed and on the third semiconductor region surrounding the recess. And forming an inner junction region by directly bonding the second semiconductor region and the first semiconductor region, and directly bonding the second semiconductor region and the third semiconductor region. And V. forming an outer junction region surrounding the inner junction region.
PCT/JP2003/003181 2002-03-26 2003-03-17 Semiconductor element and method for fabricating the same WO2003081681A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003579289A JP4247674B2 (en) 2002-03-26 2003-03-17 Semiconductor element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002085979 2002-03-26
JP2002-85979 2002-03-26

Publications (1)

Publication Number Publication Date
WO2003081681A1 true WO2003081681A1 (en) 2003-10-02

Family

ID=28449283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/003181 WO2003081681A1 (en) 2002-03-26 2003-03-17 Semiconductor element and method for fabricating the same

Country Status (3)

Country Link
JP (1) JP4247674B2 (en)
TW (1) TWI221342B (en)
WO (1) WO2003081681A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110085663A (en) * 2019-05-07 2019-08-02 无锡鸣沙科技有限公司 A kind of semiconductor PN and production method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS433573B1 (en) * 1964-12-22 1968-02-09
JPS462707B1 (en) * 1967-08-03 1971-01-22
JPS4624621B1 (en) * 1967-08-25 1971-07-15
JPS5010980A (en) * 1973-05-28 1975-02-04
JPS548982A (en) * 1977-06-23 1979-01-23 Mitsubishi Electric Corp Semiconductor device
JPH02111079A (en) * 1988-06-16 1990-04-24 Hyundai Electron Ind Co Ltd High voltage semiconductor device and its manufacture

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS433573B1 (en) * 1964-12-22 1968-02-09
JPS462707B1 (en) * 1967-08-03 1971-01-22
JPS4624621B1 (en) * 1967-08-25 1971-07-15
JPS5010980A (en) * 1973-05-28 1975-02-04
JPS548982A (en) * 1977-06-23 1979-01-23 Mitsubishi Electric Corp Semiconductor device
JPH02111079A (en) * 1988-06-16 1990-04-24 Hyundai Electron Ind Co Ltd High voltage semiconductor device and its manufacture

Also Published As

Publication number Publication date
TWI221342B (en) 2004-09-21
TW200305297A (en) 2003-10-16
JPWO2003081681A1 (en) 2005-07-28
JP4247674B2 (en) 2009-04-02

Similar Documents

Publication Publication Date Title
US6770548B2 (en) Trench schottky rectifier
US8178940B2 (en) Schottky barrier diode and method for using the same
JP4055358B2 (en) Semiconductor device and manufacturing method thereof
CN101114670A (en) Schottky barrier semiconductor device
JP6139340B2 (en) Semiconductor device and manufacturing method thereof
JP2002368216A (en) Semiconductor element and manufacturing method therefor
US4542400A (en) Semiconductor device with multi-layered structure
US10615293B2 (en) Diode and method of manufacturing diode
US6670688B2 (en) Semiconductor device including at least one schottky metal layer surrounding PN junction
WO2003081681A1 (en) Semiconductor element and method for fabricating the same
JP2008159927A (en) Group iii nitride semiconductor device and its manufacturing method
WO2003075353A1 (en) Semiconductor device
JPH11274521A (en) Semiconductor device and its manufacture
JP2000312013A (en) Schottky barrier semiconductor device
JP3144527B2 (en) Method for manufacturing semiconductor device having high concentration pn junction surface
US11715766B2 (en) Stacked high barrier III-V power semiconductor diode
JP3970729B2 (en) Semiconductor device and manufacturing method thereof
WO2023173425A1 (en) Structure of and preparation method for silicon carbide transistor
JP2005294772A (en) Semiconductor device
JP3653969B2 (en) Manufacturing method of Schottky barrier diode
JPS6229177A (en) Diode
JP2001148484A (en) Anode common zener diode
JPS6027175A (en) Semiconductor element and manufacture thereof
JPH01227473A (en) Schottky barrier semiconductor device
JP2005019612A (en) Semiconductor element and its manufacturing method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003579289

Country of ref document: JP

122 Ep: pct application non-entry in european phase