WO2003079104A1 - Procede pour produire un modulateur optique - Google Patents

Procede pour produire un modulateur optique Download PDF

Info

Publication number
WO2003079104A1
WO2003079104A1 PCT/JP2003/003374 JP0303374W WO03079104A1 WO 2003079104 A1 WO2003079104 A1 WO 2003079104A1 JP 0303374 W JP0303374 W JP 0303374W WO 03079104 A1 WO03079104 A1 WO 03079104A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
thin portion
manufacturing
optical modulator
optical
Prior art date
Application number
PCT/JP2003/003374
Other languages
English (en)
French (fr)
Inventor
Jungo Kondo
Yukio Mizuno
Minoru Imaeda
Atsuo Kondo
Original Assignee
Ngk Insulators, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ngk Insulators, Ltd. filed Critical Ngk Insulators, Ltd.
Publication of WO2003079104A1 publication Critical patent/WO2003079104A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/225Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure
    • G02F1/2255Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure controlled by a high-frequency electromagnetic component in an electric waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/035Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure
    • G02F1/0356Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure controlled by a high-frequency electromagnetic wave component in an electric waveguide structure

Definitions

  • the present invention relates to a method for manufacturing an optical modulator that can be suitably used for a high-speed, large-capacity optical fiber communication system or the like.
  • FIG. 1 is a cross-sectional view showing an example of a conventional optical modulator.
  • the optical modulator 10 shown in FIG. 1 includes a coplanar type (CPW) type modulation electrode for modulating light guided in an optical waveguide. That is, the optical modulator 10 includes a substrate 1 composed of an X-cut plate of lithium niobate, a Mach-Zehnder optical waveguide 2 formed directly below the main surface IA of the substrate 1 by a titanium diffusion method, and the like. It has a buffer layer 3 made of silicon oxide or the like formed on the main surface IA, and a center electrode 4 and ground electrodes 5-1 and 5-2 formed on the buffer layer 3.
  • CPW coplanar type
  • FIG. 2 is a cross-sectional view showing another example of the conventional optical modulator.
  • the optical modulator 20 shown in FIG. 2 includes a CPW modulation electrode for modulating light guided in the optical waveguide. That is, this optical modulator 20 is composed of a substrate 11 made of a Z-cut plate of lithium niobate and a Mach-Zehnder type formed directly below the main surface 11 A of the substrate 11 by a titanium diffusion method or the like.
  • the buffer layers 3 and 13 are formed by the light guided in the optical waveguides 2 and 12 and the microwave applied to the modulation electrode. It is provided for the purpose of improving speed matching.
  • the buffer layers 3 and 13 included on the substrates 1 and 11 cause a DC drift.
  • the light guided through the optical waveguides 2 and 12 is applied to the light because the modulation signal is applied from the modulation electrode via the buffer layers 3 and 13.
  • the substantial modulation signal voltage has been reduced. For this reason, it is necessary to apply a relatively high voltage to the modulation electrode in order to effectively drive the optical modulators 10 and 20, which is contrary to the demand for reducing the driving voltage. .
  • the optical modulator 20 shown in FIG. 2 since the optical waveguides 12 are arranged asymmetrically with respect to the center electrode 14, the chip becomes large and reliable long-distance transmission is performed. There was a problem that can not be.
  • the present invention provides a method of manufacturing an optical modulator having a novel configuration that can achieve speed matching without having a buffer layer and does not cause the above-described problems. Disclosure of the invention
  • the method of manufacturing an optical modulator according to the present invention includes a step of forming an optical waveguide directly below a main surface of a substrate made of a material having an electro-optical effect; and a step of guiding the inside of the optical waveguide on the main surface of the substrate.
  • a second machining process is performed on the thinned portion of the substrate, a portion of the substrate including the optical waveguide is defined as a first thin portion, and the first thin portion is provided. Forming a portion adjacent to the first thin portion as a second thin portion that is thinner than the first thin portion (first manufacturing method).
  • the method for manufacturing an optical modulator according to the present invention may further include a step of forming an optical waveguide directly below a main surface of a substrate made of a material having an electro-optical effect; and forming the optical waveguide on the main surface of the substrate. Forming a modulation electrode for modulating light guided through the substrate; and performing machining on the back surface of the substrate, and a portion of the substrate including the optical waveguide. A step of reducing the thickness of the substrate, and performing a laser processing process on the thinned portion of the substrate, wherein a portion of the substrate including the optical waveguide is defined as a first thin portion; Setting a portion adjacent to the thin portion to a second thin portion thinner than the first thin portion (second manufacturing method).
  • a step of forming an optical waveguide directly below a main surface of a substrate made of a material having an electro-optical effect; and forming the optical waveguide on the main surface of the substrate Forming a modulation electrode for modulating light that guides the light, and performing a laser processing process on the back surface of the substrate to thin a portion of the substrate including the optical waveguide. Mechanically applying the thinned portion of the substrate to a portion including the optical waveguide in the substrate as a first thin portion, and a portion adjacent to the first thin portion in the substrate. Forming a second thin portion thinner than the first thin portion (third manufacturing method).
  • the method for manufacturing an optical modulator according to the present invention may further include a step of forming an optical waveguide directly below a main surface of a substrate made of a material having an electro-optical effect; and forming the optical waveguide on the main surface of the substrate.
  • the present inventors have succeeded in developing an optical modulator having a novel configuration that can achieve speed matching without having a buffer layer and can further reduce the coupling loss when the optical fibers are coupled. .
  • FIG. 3 is a plan view showing an example of a novel optical modulator according to the manufacturing method of the present invention.
  • FIG. 4 is a cross-sectional view of the optical modulator shown in FIG. 3 taken along line AA. It is.
  • the optical modulator 30 shown in FIGS. 3 and 4 is formed directly below a main surface 21 A of a substrate 21 made of a material having an electro-optical effect, for example, lithium niobate.
  • Mach-Zehnder optical waveguide 22 and the center formed on substrate 21 It has an electrode 24 and a ground electrode 25-1, 25-2.
  • the center electrode 25 and the ground electrodes 25-1, 25-2 constitute a CPW modulation electrode for modulating the light guided in the optical waveguide 22.
  • a predetermined processing is performed on the back surface of the substrate 21 to form a first thin portion 26 in a portion including the optical waveguide 22, and the first thin portion 26 is formed.
  • a second thin portion 27 thinner than the first thin portion 26 is formed adjacent to the thin portion 26. That is, the end surface (back surface) of the first thin portion 26 is located immediately below the optical waveguide 22.
  • the modulation signal from the modulation electrode leaks out to the low dielectric portion 8 (air) existing below the second thin portion 27, so that the speed matching can be performed without forming a buffer layer. Since the conditions can be satisfied and the modulation signal is efficiently applied to the optical waveguide 22, the driving voltage of the optical modulator 30 can be reduced.
  • the thickness tl of the first thin portion 26 formed in the portion including the optical waveguide 22 of the substrate 21 is changed to the second thin portion formed adjacent to the first thin portion. Since the thickness of the optical waveguide 22 is larger than the thickness t 2, the flattening of the cross-sectional shape of the optical waveguide 22 can be suppressed. Therefore, when light is input, it is possible to suppress a reduction in coupling loss with respect to a portion where the first and second thin portions 26 and 27 are not formed.
  • the first thin portion 26 and the second thin portion 27 are preferably formed corresponding to the region P shown in FIG.
  • This region P is a region where light guided through the optical waveguide 22 and the modulation signal from the modulation electrode substantially interact with each other.
  • the optical waveguide 22 and the center electrode 24 and the ground electrode The area indicated by the broken line is substantially parallel to 25-1 and 25-2.
  • the first thin portion 26 and the second thin portion 27 may include the region P and may be formed over the entire length of the substrate 21 along the optical waveguide 22.
  • Thicknesses t 1 and t 2 of the first thin portion 26 and the second thin portion 27 are desirably set to the order of 10 m to 50 m, respectively, and more preferably to the order of several 10 m or less. .
  • it is composed of lithium niobate with a thickness of the order of mm. It is not easy to stably process the extremely thin first and second thin portions 26 and 27 as described above on the substrate 21. Therefore, the manufacturing yield of such an optical modulator may be reduced.
  • the present inventors have established a technique for thinning the substrate and have conducted intensive studies to find a method for stably obtaining an optical modulator as shown in FIG.
  • the above-described first manufacturing method where machining is performed in two stages
  • the second manufacturing method or the third manufacturing method using both machining and laser processing
  • the fourth manufacturing method The fourth laser processing is performed in two steps
  • the first and second thin portions 26 and 27 can be formed stably, and the production of the optical modulator can be performed. It has been found that the yield can be improved.
  • FIG. 1 is a cross-sectional view showing an example of a conventional optical modulator.
  • FIG. 2 is a cross-sectional view showing another example of the conventional optical modulator.
  • FIG. 3 is a plan view showing an example of the optical modulator obtained by the manufacturing method of the present invention.
  • FIG. 4 is a cross-sectional view of the optical modulator shown in FIG. 3 taken along line AA.
  • FIG. 5 is a process diagram showing a state where an optical waveguide is formed on a substrate.
  • FIG. 6 is a process diagram showing a state in which a CPW modulation electrode is formed on a substrate.
  • FIG. 7 is a process diagram showing a state where a thin portion is formed on a substrate.
  • FIG. 8 is a cross-sectional view showing a modification of the optical modulator.
  • FIG. 5 to 7 are cross-sectional views illustrating the manufacturing steps of the manufacturing method according to the first embodiment.
  • a plurality of optical modulators are simultaneously manufactured on a wafer (substrate) having a predetermined size.
  • the manufacturing method according to the first embodiment will be described. As shown in FIG. 5, after a predetermined mask pattern is formed on the main surface 21A of the substrate 21 made of a material having an electro-optical effect such as lithium niobate, titanium is formed immediately below the main surface 21A. A Mach-Zehnder type optical waveguide 22 is manufactured by a diffusion method or the like.
  • a predetermined mask pattern is formed on the main surface 21 A of the substrate 21, and the center electrode 24 and the ground electrode are formed by using the plating method or the vapor deposition method in combination with the plating method.
  • a CPW modulation electrode composed of 25-1, 25-2 is fabricated.
  • the thickness T of the center electrode 24 and the ground electrodes 25-1, 25-2 is preferably
  • the width is set to 15 m to 50 m, and the width W of the center electrode 24 is preferably set to 5 m to 50 m. Thereby, the electrode loss of the modulation signal can be reduced.
  • the gap G between the center electrode 25 and the ground electrodes 25-1 and 25-2 is preferably 25 m to 55 m. This makes it possible to effectively modulate light guided in the optical waveguide 22 while suppressing an increase in drive voltage.
  • the back surface 21 B of the substrate 21 is subjected to a first machining to make it thinner, and a thin portion 28 is formed.
  • a portion other than the portion including the optical waveguide 22 is subjected to the second machining, and as shown in FIG.
  • the first thin portion 26 is formed, and a second thin portion 27 adjacent to the first thin portion 26 and thinner than the first thin portion 26 is formed.
  • portions other than the CPW electrode are non-processed portions (portions not subjected to machining or the like). By doing so, the first and second thin portions 26 and 27 are covered by the thick portion of the substrate, so that the mechanical strength can be maintained.
  • a modulation electrode composed of a center electrode 24 and ground electrodes 25-1, 25-2 is formed. After that, for example, a thermoplastic resin is applied to the modulation electrode, and
  • the thickness t1 of the first thin portion 26 formed as described above is preferably set to 5 m to 30 m.
  • the width L of the first thin portion 26 is determined by the width W of the center electrode 24 and the gap G between the center electrode 24 and the ground electrodes 25 _ 1 and 25-2. , (W + 2 ⁇ m) or more and (W + 2G) or less.
  • the thickness t 2 of the second thin portion 27 is required to be thinner than the thickness t 1 of the first thin portion, specifically, t 1 ⁇ t 2 ⁇ 1 Is preferred. Thereby, the modulation signal from the modulation electrode can be efficiently applied to the light guided in the optical waveguide 22.
  • the first machining and the second machining include grinding using a micro grinder as described above.
  • the outer peripheral blade of the micro-grinder is deformed, and the ground surface becomes uneven, so that the thickness of the substrate varies. Therefore, it is preferable to perform a smoothing process on the machined surface as needed during the above-described grinding process to shape the shape of the outer peripheral edge.
  • the shaping of the outer peripheral edge reflects the surface accuracy of the tooling substrate on the outer peripheral edge, so that, for example, the surface roughness or flatness satisfies a specified condition and is higher than that of the outer peripheral edge. It is preferably a hard material.
  • the grain size and shape of the abrasive grains constituting the outer peripheral blade to be used can be appropriately selected.
  • the second thin portion 27 can be formed in a wedge shape by using a wedge-shaped blade in the second machining.
  • the thickness of the wedge-shaped tip portion that is, the thickness of the thinnest portion is set to t1 described above.
  • the assembly of the optical modulator 30 is basically manufactured according to the steps shown in FIGS. 5 to 7, but differs in the following points.
  • the laser processing is performed on the portion except for the first thin portion 26 as shown in FIG. 3, and the first thin portion 26 is formed at the portion including the optical waveguide 22.
  • a second thin portion 27 which is thinner than the first thin portion 26 is formed.
  • the first and second thin portions are non-processed portions other than the CPW electrode.
  • the laser processing can be performed using, for example, an excimer laser or the like.
  • the irradiation intensity is set to 1 mJ to 2 mJ.
  • the first thin portion 26 and the second thin portion 27 can be formed with high accuracy in a relatively short time.
  • the first machining used to form the thin portion 28 shown in FIG. 7 is a modulation process composed of the center electrode 24 and the ground electrodes 25-1, 25-2. After the electrodes are formed, for example, a thermoplastic resin is applied to the modulation electrode, and the modulation electrode is attached and fixed on a surface plate of a processing machine such as a micro grinder or a sand blast. The roughness and width of the blade used in such grinding are appropriately selected and used.
  • the dimensional characteristics required for the optical modulator 30 including the first thin portion 26 and the second thin portion 27 are the same as those in the case of the manufacturing method according to the first embodiment.
  • a manufacturing method according to a third embodiment will be described.
  • the assembly of the optical modulator 30 is manufactured according to the steps shown in FIGS. 5 to 7, but differs in the following points.
  • the thin-walled portion 28 shown in FIG. It is formed using.
  • laser processing for example, an excimer laser or the like can be used.
  • the irradiation intensity is set to 1.0 JZ cm 2 to 8.0 OJZ cm 2 .
  • the thin portion 28 can be formed with high accuracy in a relatively short time.
  • the portion including the optical waveguide 22 is formed.
  • a first thin portion 26 is formed at the same time, and a second thin portion 27 adjacent to the first thin portion 26 and thinner than the first thin portion 26 is formed. Also in this case, of the first thin portion, the end face directly below the optical waveguide 22 is a non-processed portion.
  • the processing surface is subjected to a grinding process as needed during the grinding process, and the shape of the outer peripheral blade is appropriately shaped.
  • the dimensional characteristics required for the optical modulator 30 including the first thin portion 26 and the second thin portion 27 are the same as those in the case of the manufacturing method according to the first embodiment.
  • a manufacturing method according to a fourth embodiment will be described. Also in the fourth embodiment, basically, the assembly of the optical modulator 30 is manufactured according to the steps shown in FIGS. 5 to 7, but differs in the following points.
  • the thin portion 28 shown in FIG. 7 is formed by using the first laser processing instead of the above-described grinding process, and the first thin portion 26 and the second thin portion 27 are The portion 28 is formed by the second laser processing.
  • the first laser processing is performed using an excimer laser, for example, with the irradiation intensity set to 1.0 J / cm 2 to 8.0 J Zcm 2 . Accordingly, the thin portion 28 can be formed with high accuracy in a relatively short time.
  • the second laser processing is performed by using an excimer laser or the like having a pulse width of 1 Onsec or less and setting the irradiation intensity to lmJ to 2 mJ.
  • the first thin portion 26 and the second thin portion 27 can be formed with high accuracy in a relatively short time.
  • the dimensional characteristics required for the optical modulator 30 including the first thin portion 26 and the second thin portion 27 are the same as in the case of the manufacturing method according to the first embodiment.
  • an optical modulator as shown in FIGS. 3 and 4 was manufactured based on the manufacturing method according to the first embodiment.
  • a Mach-Zehnder optical waveguide 22 was produced by a titanium diffusion method.
  • a modulation electrode for the CPW was fabricated using the plating method.
  • the modulation electrode has a center electrode width W of 30 m, a gap G between the center electrode 24 and the ground electrodes 25-11 and 25-2 of 40 m, an electrode thickness of 30 m, and a length of 40 mm.
  • the electrode surface of the assembly obtained in this manner is attached to the surface of the micro grinder with a thermoplastic resin, with the electrode surface facing down, and a resin pond blade having # 6000 width and 300 width is used.
  • the first polishing process was performed on the back surface of the thin film to form a thin portion 28.
  • the rotation speed of the blade was 12000 rpm, and the blade was placed on the surface of the substrate 21 at a speed of 0.1 mm / min in the thickness direction of the substrate 21.
  • the thin portion 28 was formed by repeating such a process.
  • the tooling process was performed as needed using a # 1500 whetstone every time machining was performed 100 m in the thickness direction.
  • a second grinding process was performed on the thin-walled portion 28 by using a # 600, resin-pound blade having a width of 100 m, and the first thin-walled portion 26 and the second Then, a thin portion 27 was formed.
  • the width L of the first thin portion 26 is 90 / m
  • the thickness t1 of the first thin portion 26 is 15 m
  • the thickness t2 of the second thin portion 27 is 10 m.
  • the substrate 21 was cut into chips to obtain a final optical modulator 30.
  • the optical fiber 30 was bonded and fixed to the optical modulator 30 obtained in this manner with a UV curable resin, and the S21 characteristics (transmission characteristics) after package mounting were evaluated.
  • the 16 dB band was 40 GHz or more
  • the microwave effective refractive index nm was 2.15.
  • the 13 dB characteristic was 40 GHz or more.
  • the coupling loss was 5 dB.
  • the first grinding process and the second grinding process were performed in the same manner as in Example 1, except that the first and second grinding processes were performed using a # 600 resin bridge having a width of 150.
  • An optical modulator 30 having the same dimensions as the above was manufactured. Note that the S21 characteristic, the optical response characteristic, and the coupling loss of the optical modulator 30 were the same as those in the first embodiment.
  • the second grinding process was performed using a wedge-shaped blade, and an optical modulator 3 was formed in the same manner as in Example 1 except that a second thin wedge-shaped portion 27 as shown in FIG. 8 was formed. 0 was produced. Note that the thickness t2 of the second thin portion 27 was set to 10 im as in the first embodiment. Further, the S 21 characteristic, the optical response characteristic, and the coupling loss of the optical modulator 30 were the same as those in the first embodiment.
  • Example 2 Based on the manufacturing method according to the second embodiment, the same dimensions as in Example 1 were used, except that the second thin portion 27 was formed by using a laser processing instead of the second grinding processing.
  • the optical modulator 30 was manufactured.
  • the laser processing was performed using a KrF excimer laser with a frequency of 120 Hz at an irradiation intensity of 2 mJ and a scan speed of 300 mZ sec. Also, the S21 characteristic, optical response characteristic, and coupling loss of the optical modulator 30 are It was the same as in Example 1.
  • An optical modulator having the same dimensions as in Example 1 except that the thin portion 28 is formed by using a laser processing instead of the first grinding processing based on the manufacturing method according to the third embodiment. 30 were produced.
  • the laser processing was performed using a KrF excimer laser with a frequency of 195 Hz, an irradiation intensity of 6.8 JZcm 2 , a scanning speed of 180 Om / sec, and a thickness of the substrate 21 of 100 / im.
  • the substrate 21 was processed at an irradiation intensity of 3.8 JZcm 2 and a scanning speed of 1800 / sec until the thickness of the substrate 21 became 15. Further, the S 21 characteristic, the optical response characteristic, and the coupling loss of the optical modulator 30 were the same as those in the first embodiment.
  • a first laser processing is performed instead of the first grinding processing to form a thin portion 28, and the thin portion 28 is subjected to a second grinding process.
  • An optical modulator 30 having the same dimensions was manufactured in the same manner as in Example 1 except that the first thin portion 26 and the second thin portion 27 were formed by performing a second laser processing instead of the process.
  • the first laser processing was performed using a KrF excimer laser with a frequency of 195 Hz, an irradiation intensity of 6.8 J / c, a scanning speed of 1800 xm / sec, and a thickness of the substrate 21 of 1100 im.
  • the substrate 21 was processed to a thickness of 15 m at an irradiation intensity of 3.81 cm 2 and a scan speed of 1800 um / sec.
  • the second laser processing was performed using a KrF excimer laser with a frequency of 120 Hz at an irradiation intensity of 2 mJ and a scan speed of 300 mZsec. Further, the S 21 characteristic, the optical response characteristic, and the coupling loss of the optical modulator 30 were the same as those in the first embodiment.
  • the first thin portion 26 and the second thin portion 27 are formed on the back surface of the substrate 21 with high precision. It can be seen that as a result of having the first and second thin portions 26 and 27, an optical modulator 30 excellent in speed matching and coupling loss can be manufactured stably. .
  • the present invention has been described in detail based on the embodiments of the present invention by giving specific examples. However, the present invention is not limited to the above contents, and is not deviated from the scope of the present invention. , All modifications and variations are possible.
  • the substrate 21 is formed of an X-cut plate of lithium niobate, a Y-cut plate, a Z-cut plate, and an off-cut plate may be used.
  • a material having a known electrochemical effect such as lithium tantalate can be used.
  • elements such as Mg, Zn, Sc, and In can be added to the substrate 21 to improve the light damage resistance.
  • polishing and the like can be sequentially included as necessary.
  • polishing and the like can be sequentially included as necessary.
  • a proton exchange method or the like can be used in addition to the titanium diffusion method.
  • the first thin portion and the second thin portion can be formed stably and with high precision on the back surface of the substrate.
  • Speed matching can be achieved without having a layer, and an optical modulator excellent in coupling loss and the like can be manufactured.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

明 細 書 光変調器の製造方法 技術分野
本発明は、 高速で大容量の光ファイバ通信システムなどに好適に用いることが できる光変調器の製造方法に関する。 背景技術
近年、 高速で大容量の光ファイバ通信システムの進歩に伴い、 外部変調器 (外 部変調方式による光変調器) に代表されるように、 光導波路素子を用いた高速光 変調器が実用化され、 広く用いられるようになってきている。
図 1は、 従来の光変調器の一例を示す断面図である。 図 1に示す光変調器 1 0 は、 光導波路内を導波する光を変調するためのコプレナ一型 (C PW) の変調用 電極を具えている。 即ち、 この光変調器 1 0は、 ニオブ酸リチウムの Xカット板 からなる基板 1と、 該基板 1の主面 I Aの直下にチタン拡散法などによって形成 されたマッハツェンダー型の光導波路 2と、 主面 I A上に形成された酸化珪素な どからなるバッファ層 3と、 このバッファ層 3上に形成された中心電極 4及び接 地電極 5— 1、 5— 2とを有する。
一方、 図 2は、 従来の光変調器の他の例を示す断面図である。 図 2に示す光変 調器 2 0は、 光導波路内を導波する光を変調するための C P W変調用電極を具え ている。 即ち、 この光変調器 2 0は、 ニオブ酸リチウムの Zカット板からなる基 板 1 1と、 この基板 1 1の主面 1 1 Aの直下に同じくチタン拡散法などによって 形成されたマッハツェンダー型の光導波路 1 2と、 主面 1 1 A上に形成された酸 化珪素などからなるバッファ層 1 3と、 このバッファ層 1 3上に形成された中心 電極 1 4及び接地電極 1 5— 1、 1 5— 2とを有する。
図 1及び図 2に示す光変調器 1 0及び 2 0において、 バッファ層 3及び 1 3は 光導波路 2及び 1 2内を導波する光と、 変調用電極に印加されるマイクロ波との 速度整合を向上させる目的などによって設けられる。
しかしながら、 図 1及び図 2に示す上述した従来の光変調器 1 0及び 2 0にお いて、 基板 1及び 1 1上に含まれるバッファ層 3及び 1 3は、 D Cドリフト発生 の原因となっていた。 さらに、 光導波路 2及び 1 2内を導波する光に対しては、 変調用電極からバッファ層 3及び 1 3を介して変調信号が印加されるために、 前 記光に対して印加される実質的な変調信号電圧が減少してしまっていた。 このた め、 光変調器 1 0及び 2 0を実効的に駆動させるために、 変調用電極に対しては 比較的高い電圧を印加する必要が生じ、 駆動電圧の低減化という要請に反してい た。
また、 図 2に示す光変調器 2 0においては、 中心電極 1 4に対して光導波路 1 2が非対称に配置されるために、 チヤ一プが大きくなつて長距離伝送を確実に行 うことができないという問題があつた。
本発明は、 バッファ層を有することなく速度整合を図ることができ、 上述した 諸問題を生じることのない新規な構成の光変調器の製造方法を提供する。 発明の開示
本発明に係る光変調器の製造方法は、 電気光学効果を有する材料からなる基板 の主面直下に光導波路を形成する工程と、 前記基板の前記主面上に、 前記光導波 路内を導波する光を変調するための変調用電極を形成する工程と、 前記基板の裏 面に対して第 1の機械加工を施して、 前記基板のうち、 前記光導波路を含む部分 , を薄板化する工程と、 前記基板の前記薄板化された部分に対して第 2の機械加工 を施して、 前記基板のうち、 前記光導波路を含む部分を第 1の薄肉部分とし、 前 記第 1の薄肉部分に隣接する部分を前記第 1の薄肉部分よりも薄い第 2の薄肉部 分とする工程とを含むことを特徴とする (第 1の製造方法) 。
また、 本発明に係る光変調器の製造方法は、 電気光学効果を有する材料からな る基板の主面直下に光導波路を形成する工程と、 前記基板の前記主面上に、 前記 光導波路内を導波する光を変調するための変調用電極を形成する工程と、 前記基 板の裏面に対して機械加工を施して、 前記基板のうち、 前記光導波路を含む部分 を薄板化する工程と、 前記基板の前記薄板化された部分に対してレーザ加工処理 を施して、 前記基板のうち、 前記光導波路を含む部分を第 1の薄肉部分とし、 前 記第 1の薄肉部分に隣接する部分を前記第 1の薄肉部分よりも薄い第 2の薄肉部 分とする工程とを含むことを特徴とする (第 2の製造方法) 。
さらに、 本発明に係る光変調器の製造方法は、 電気光学効果を有する材料から なる基板の主面直下に光導波路を形成する工程と、 前記基板の前記主面上に、 前 記光導波路内を導波する光を変調するための変調用電極を形成する工程と、 前記 基板の裏面に対してレーザ加工処理を施して、 前記基板のうち、 前記光導波路を 含む部分を薄板化する工程と、 前記基板の前記薄板化された部分に対して機械加 ェを施して、 前記基板のうち、 前記光導波路を含む部分を第 1の薄肉部分とし、 前記第 1の薄肉部分に隣接する部分を前記第 1の薄肉部分よりも薄い第 2の薄肉 部分とする工程とを含むことを特徴とする (第 3の製造方法) 。
また、 本発明に係る光変調器の製造方法は、 電気光学効果を有する材料からな る基板の主面直下に光導波路を形成する工程と、 前記基板の前記主面上に、 前記 光導波路内を導波する光を変調するための変調用電極を形成する工程と、 前記基 板の裏面に対して第 1のレーザ加工処理を施して、 前記基板のうち、'前記光導波 路を含む部分を薄板化する工程と、 前記基板の前記薄板化された部分に対して第 2のレーザ加工処理を施して、 前記基板のうち、 前記光導波路を含む部分を第 1 の薄肉部分とし、 前記第 1の薄肉部分に隣接する部分を前記第 1の薄肉部分より も薄い第 2の薄肉部分とする工程とを含むことを特徴とする (第 4の製造方法) 。 本発明者らは、 バッファ層を有することなく速度整合を図ることができ、 さら に光ファイバ一を結合した際の結合損失を低減することのできる新規な構成の光 変調器の開発に成功した。
図 3は、 本発明の製造方法に係わる新規な光変調器の一例を示す平面図であり、 図 4は、 図 3に示す光変調器を A— A線に沿って切った場合の断面図である。 図 3及び図 4に示す光変調器 3 0は、 電気光学効果を有する材料、 例えばニオブ酸 リチウムなどから構成される基板 2 1と、 この基板 2 1の主面 2 1 Aの直下にに 形成されたマッハツェンダー型の光導波路 2 2と、 基板 2 1上に形成された中心 電極 2 4及び接地電極 2 5— 1、 2 5— 2とを有する。 中心電極 2 5及び接地電 極 2 5— 1、 2 5— 2は、 光導波路 2 2中を導波する光を変調するための C P W 変調用電極を構成する。
さらに、 図 4に示すように、 基板 2 1の裏面には所定の加工が施されることに よって、 光導波路 2 2を含む部分において第 1の薄肉部分 2 6が形成され、 この 第 1の薄肉部分 2 6に隣接するようにして、 第 1の薄肉部分 2 6よりも薄い第 2 の薄肉部分 2 7が形成されている。 即ち、 光導波路 2 2の直下に第 1の薄肉部分 2 6の端面 (裏面) が位置する。
これによつて、 変調用電極からの変調信号が、 第 2の薄肉部分 2 7の下方に存 在する低誘電率部 8 (空気) にしみ出すため、 バッファ層を形成することなく、 速度整合条件を満足でき、 さらに変調信号が光導波路 2 2に効率良く印加される ことから、 光変調器 3 0の駆動電圧を低減することができる。
また、 基板 2 1のうち、 光導波路 2 2を含む部分に形成されている第 1の薄肉 部分 2 6の厚み t lを、 該第 1の薄肉部分と隣接して形成された第 2の薄肉部分 2 7の厚み t 2よりも厚く形成しているため、 光導波路 2 2の断面形状が偏平化 されるのを抑制することができる。 したがって、 光を入力した場合において、 第 1及び第 2の薄肉部分 2 6及び 2 7が形成されていない部分に対する結合損失の 低減を抑制することができる。
なお、 第 1の薄肉部分 2 6及び第 2の薄肉部分 2 7は、 図 3に示す領域 Pに対 応させて形成することが好ましい。 この領域 Pは、 光導波路 2 2内を導波する光 と変調用電極から変調信号とが実質的に相互作用する領域であって、 例えば、 光 導波路 2 2と中心電極 2 4及び接地電極 2 5— 1、 2 5 - 2とが略平行である破 線で示す領域である。 もちろん、 第 1の薄肉部分 2 6及び第 2の薄肉部分 2 7は、 領域 Pを含み、 かつ、 基板 2 1の光導波路 2 2に沿った長手方向の全体に亘つて 形成しても良い。
第 1の薄肉部分 2 6及び第 2の薄肉部分 2 7の厚さ t 1及び t 2は、 それぞれ 1 0 mから 5 0 mオーダ、 さらには数 1 0 m以下のオーダに設定すること が望ましい。 ところが、 mmオーダの厚さのニオブ酸リチウムなどから構成され る基板 2 1に対して上述したような極めて薄い第 1及び第 2の薄肉部分 2 6及び 2 7を安定に加工することは容易ではない。 したがって、 このような光変調器の 製造歩留まりが低下するおそれがある。
そこで、 本発明者らは、 基板を薄板化する技術を確立し、 図 3に示すような光 変調器を安定に得る方法を見出すべく鋭意検討を行った。 その結果、 上述した第 1の製造方法 (機械加工を 2段階で行う) 、 または第 2の製造方法あるいは第 3 の製造方法 (機械加工及びレーザ加工処理を併用する) 、 または第 4の製造方法 (第 4のレ一ザ加工処理を 2段階で行う) を実施することにより、 これら第 1及 び第 2の薄肉部分 2 6及び 2 7を安定に形成することができ、 光変調器の製造歩 留まりを向上することができることを見出した。 図面の簡単な説明
図 1は、 従来の光変調器の一例を示す断面図である。
図 2は、 従来の光変調器の他の例を示す断面図である。
図 3は、 本発明の製造方法により得た光変調器の一例を示す平面図である。 図 4は、 図 3に示す光変調器の A— A線に沿って切った場合を示す断面図であ る。
図 5は、 基板に光導波路を形成した状態を示す工程図である。
図 6は、 基板上に C P W変調用電極を形成した状態を示す工程図である。 図 7は、 基板に薄肉部分を形成した状態を示す工程図である。
図 8は、 光変調器の変形例を示す断面図である。 発明を実施するための最良の形態
以下、 本発明に光変調器の製造方法の実施の形態例を図 5〜図 8を参照しなが ら説明する。
図 5〜図 7は、 第 1の実施の形態に係る製造方法の製造工程を示す断面図であ る。 なお、 実際の製造工程においては、 所定の大きさを有するゥェ一ハ (基板) 上に複数の光変調器を同時に作製するが、 以下の説明においては、 ゥエーハ上に 4
6
作製される 1つの変調器に着目して説明する。
最初に、 第 1の実施の形態に係る製造方法について説明する。 図 5に示すよう に、 ニオブ酸リチウムなどの電気光学効果を有する材料からなる基板 2 1の主面 2 1 A上に所定のマスクパターンを形成した後、 前記主面 2 1 Aの直下にチタン 拡散法などでマッハツェンダー型の光導波路 2 2を作製する。
次いで、 図 6に示すように、 基板 2 1の主面 2 1 A上に所定のマスクパターン を形成し、 メツキ法又は蒸着法とメツキ法とを併用することによって、 中心電極 2 4及び接地電極 2 5— 1、 2 5— 2から構成される C P W変調用電極を作製す る。
なお、 中心電極 2 4及び接地電極 2 5— 1、 2 5— 2の厚さ Tは、 好ましくは
1 5 m〜5 0 mに設定し、 中心電極 2 4の幅 Wは、 好ましくは 5 m〜5 0 mに設定する。 これによつて、 変調信号の電極損失を低減することができる。 また、 中心電極 2 5と接地電極 2 5— 1及び 2 5— 2とのギャップ Gは、 2 5 m〜5 5 mであることが好ましい。 これによつて、 駆動電圧の増大を抑制しな がら、 光導波路 2 2内を導波する光に対する変調を効果的に行うことができる。 次いで、 図 7に示すように、 基板 2 1の裏面 2 1 Bに対して、 第 1の機械加工 を施して薄板化し、 薄肉部分 2 8を形成する。 次いで、 薄肉部分 2 8のうち、 光 導波路 2 2を含む部分を除いた部分に対して第 2の機械加工を施して、 図 3に示 すように、 光導波路 2 2を含む部分に第 1の薄肉部分 2 6を形成すると共に、 こ の第 1の薄肉部分 2 6と隣接し、 かつ、 第 1の薄肉部分 2 6よりも薄い第 2の薄 肉部分 2 7を形成する。 前記第 1及び第 2の薄肉部分 2 6及び 2 7は、 C P W電 極以外の部分は非加工部分 (機械加工等が施されていない部分) とされている。 こうすることにより、 第 1及び第 2の薄肉部分 2 6及び 2 7が基板厚の厚い部分 に覆われるので機械的強度を保持することが可能となる。
前記第 1の機械加工及び前記第 2の機械加工を行うに際しては、 図 6に示すよ うに、 中心電極 2 4及び接地電極 2 5— 1、 2 5— 2から構成される変調用電極 を形成した後、 この変調用電極に対して、 例えば、 熱可塑性樹脂を塗布し、 マイ
^—などの研削加工機の定盤上に貼り付けて固定した後に行う。 また、 上述のようにして形成した第 1の薄肉部分 2 6の厚さ t 1は、 好ましく は 5 m〜3 0 mに設定する。 これによつて、 光導波路 2 2の偏平化を防止す ることができ、 基板 2 1のうち、 第 1及び第 2の薄肉部分 2 6及び 2 7を形成し ていない部分に対する結合損失の増大を抑制することができる。 さらに、 同様の 理由から、 第 1の薄肉部分 2 6の幅 Lは、 中心電極 2 4の幅 W、 中心電極 2 4と 接地電極 2 5 _ 1及び 2 5— 2とのギャップ Gに対して、 (W+ 2 ^ m) 以上、 (W+ 2 G) 以下であることが好ましい。
さらに、 第 2の薄肉部分 2 7の厚さ t 2は、 第 1の薄肉部分の厚さ t 1よりも 薄いことが要求されるが、 具体的には、 t 1一 t 2≥1 であることが好まし い。 これによつて、 変調用電極からの変調信号を光導波路 2 2内を導波する光に 対して効率よく印加できるようになる。
また、 前記第 1の機械加工及び前記第 2の機械加工は、 上述したように、 マイ クログラインダ一などを用いた研削加工を含む。 このとき、 前記マイクログライ ンダ一の外周刃が変形し、 研削加工面が凸凹になって基板厚みにバラツキが生じ てしまう。 したがって、 上述した研削処理中において加工面に対して随時ツル一 イング処理を行い、 前記外周刃の形状を整形することが好ましい。 この場合、 外 周刃の整形には、 ツル一イング基板の面精度が外周刃に反映されるために、 例え ば表面粗さ、 あるいは平面度が規定の条件を満たし、 かつ、 外周刃よりも硬い材 料であることが好ましい。
なお、 前記第 1の機械加工及び前記第 2の機械加工において、 上述した研削加 ェを含む場合は、 使用する外周刃を構成する砥粒の粒度及び形状などについては 適宜に選択することができる。 例えば、 図 8に示すように、 第 2の機械加工にお いて楔型のブレードを用いることによって、 第 2の薄肉部分 2 7を楔型に形成す ることもできる。 この場合は、 楔型に加工された先端部分の厚さ、 すなわち最も 薄い部分の厚さが上述した t 1となるようにする。 この場合は、 第 2の薄肉部分 2 7を形成する際において、 基板 2 1へのクラックの発生を効果的に抑制するこ とができるとともに、 基板 2 1の機械的強度、 並びに光変調器 3 0の機械的強度 を増大させることができる。 次に、 第 2の実施の形態に係る製造方法について説明する。 この第 2の実施の 形態においても、 基本的には図 5〜図 7に示す工程に従って光変調器 3 0のァセ ンブリを作製するが、 以下の点で異なる。
即ち、 まず、 図 7に示すように、 上述した第 1の機械加工と同様の機械加工を 施して、 薄肉部分 2 8を作製した後、 薄肉部分 2 8のうち、 光導波路 2 2を含む 部分を除いた部分に対してレーザ加工処理を施して、 図 3に示すように、 光導波 路 2 2を含む部分に第 1の薄肉部分 2 6を形成すると共に、 この第 1の薄肉部分 2 6と隣接し、 かつ、 第 1の薄肉部分 2 6よりも薄い第 2の薄肉部分 2 7を形成 する。 この場合も、 前記第 1および第 2の薄肉部分は、 C P W電極以外の部分は 非加工部分とされている。
前記レーザ加工処理は、 例えばエキシマレーザなどを用いることができ、 例え ば照射強度を l m J〜2 m Jに設定して行う。 これによつて、 比較的短時間で、 第 1の薄肉部分 2 6及び第 2の薄肉部分 2 7を高精度に形成することができる。 また、 図 7に示す薄肉部分 2 8を形成する際に用いる第 1の機械加工は、 上述 したように、 中心電極 2 4及び接地電極 2 5— 1、 2 5— 2から構成される変調 用電極を形成した後、 この変調用電極に対して、 例えば、 熱可塑性樹脂を塗布し、 マイクログラインダーやサンドブラス卜などの加工機の定盤上に貼り付けて固定 した後に行う。 なお、 このような研削加工の際に使用するプレードの粗さ及び幅 については適宜に選択して用いる。
さらに、 この研削処理においては、 上記と同様の理由から、 研削処理中におい て加工面に対して随時ツルーィング処理を行い、 外周刃の形状を適宜に整形する ことが好ましい。
なお、 第 1の薄肉部分 2 6及び第 2の薄肉部分 2 7を含む光変調器 3 0に対し て要求される寸法特性は第 1の実施の形態に係る製造方法の場合と同じである。 次に、 第 3の実施の形態に係る製造方法について説明する。 この第 3の実施の 形態においても、 基本的には図 5〜図 7に示す工程に従って光変調器 3 0のァセ ンブリを作製するが、 以下の点で異なる。
即ち、 図 7に示す薄肉部分 2 8は、 上述した研削処理に代えてレーザ加工処理 を用いて形成する。 このレーザ加工処理は、 例えばエキシマレ一ザなどを用いこ とができ、 例えば照射強度を 1 . 0 J Z c m 2〜8 . O J Z c m2に設定して行 う。 これによつて、 比較的短時間で、 薄肉部分 2 8を高精度に形成することがで さる。
次いで、 薄肉部分 2 8に対して、 第 1の実施の形態に係る製造方法における第 2の機械加工と同様の機械加工を行うことで、 図 3に示すように、 光導波路 2 2 を含む部分に第 1の薄肉部分 2 6を形成すると共に、 この第 1の薄肉部分 2 6と 隣接し、 かつ、 第 1の薄肉部分 2 6よりも薄い第 2の薄肉部分 2 7を形成する。 この場合も、 前記第 1の薄肉部分のうち、 光導波路 2 2の直下の端面は非加工部 分とされている。
この機械加工おいても、 上述したように、 中心電極 2 4及び接地電極 2 5— 1、 2 5— 2から構成される変調用電極を形成した後、 この変調用電極に対して、 例 えば、 熱可塑性樹脂を塗布し、 マイクログラインダーやサンドブラストなどの加 ェ機の定盤上に貼り付けて固定した後に行う。 なお、 研削の際に使用するブレ一 ド (外周刃) を構成する砥粒の粗さ及び幅については適宜に選択して用いる。 例 えば、 楔型のブレードを用いることによって、 第 2の薄肉部分 2 7を図 8に示す ように楔型に形成することができる。
さらに、 この研削処理においては、 上記と同様の理由から、 研削処理中におい て加工面に対して随時ツル Γング処理を行い、 外周刃の形状を適宜に整形する ことが好ましい。
なお、 第 1の薄肉部分 2 6及び第 2の薄肉部分 2 7を含む光変調器 3 0に対し て要求される寸法特性は第 1の実施の形態に係る製造方法の場合と同じである。 次に、 第 4の実施の形態に係る製造方法について説明する。 この第 4の実施の 形態においても、 基本的には図 5〜図 7に示す工程に従って光変調器 3 0のァセ ンブリを作製するが、 以下の点で異なる。
即ち、 図 7に示す薄肉部分 2 8は、 上述した研削処理に代えて第 1のレーザ加 ェ処理を用いて形成し、 第 1の薄肉部分 2 6及び第 2の薄肉部分 2 7は、 薄肉部 分 2 8に対する第 2のレーザ加工処理によって形成する。 第 1のレーザ加工処理は、 例えばエキシマレ一ザなどを用い、 その照射強度を 1. 0 J/cm2〜8. 0 J Zcm2に設定して行う。 これによつて、 比較的短 時間で、 薄肉部分 28を高精度に形成することができる。
さらに、 第 2のレーザ加工処理は、 パルス幅が 1 O n s e c以下のエキシマレ 一ザなどを用い、 その照射強度を lm J〜2mJに設定して行う。 これによつて、 第 1の薄肉部分 26及び第 2の薄肉部分 27を比較的短時間で高精度に形成する ことができる。
なお、 第 1の薄肉部分 26及び第 2の薄肉部分 27を含む光変調器 30に対し て要求される寸法特性は第 1の実施の形態に係る製造方法の場合と同じである。
(実施例 1 ) .
本実施例においては、 図 3及び図 4に示すような光変調器を、 第 1の実施の形 態に係る製造方法に基づいて作製した。 基板 21として厚さ 0. 5mmのニオブ 酸リチウムの Xカツト板を用い、 チタン拡散法によってマッハツェンダー型の光 導波路 22を作製した。 次いで、 メツキ法を用いて CPWの変調用電極を作製し た。 該変調用電極は、 中心電極幅 Wが 30 m, 中心電極 24と接地電極 25一 1及び 25— 2とのギャップ Gが 40 m、 電極厚みが 30 m、 長さが 40m mである。
次いで、 このようにして得たアセンブリの電極面を下側にしてマイクログライ ンダ一の定盤に熱可塑性樹脂によって貼り付け、 # 6000番、 幅 300 の 樹脂ポンドブレードを使用することによって、 基板 21の裏面に対して第 1の研 削処理を実施し、 薄肉部分 28を形成した。
なお、 ブレードの回転数は 12000 r pmとし、 基板 21の厚み方向に 0. lmm/mi nの速度でブレードを基板 21の表面 (電極面が下側に位置してい ることから、 実際には基板 21の裏面となる) から l ^m研削加工し、 その位置 から水平方向 (電極長さ方向) に 2 Omm/m i nの速度で溝加工を実施した。 そして、 このような工程を繰り返すことによって、 薄肉部分 28を形成した。 なお、 第 1の研削処理中において、 厚さ方向に 100 m加工が進行する毎に # 1500の砥石を用いて随時ツル一イング処理を実施した。 次いで、 # 6 0 0 0番、 幅 1 0 0 mの樹脂ポンドブレードを使用することに よって薄肉部分 2 8に対して第 2の研削処理を実施し、 第 1の薄肉部分 2 6及び 第 2に薄肉部分 2 7を形成した。 第 1の薄肉部分 2 6の幅 Lは 9 0 / mとし、 第 1の薄肉部分 2 6の厚さ t 1は 1 5 mとし、 第 2の薄肉部分 2 7の厚さ t 2は 1 0 mとした。
次いで、 基板 2 1をチップ状に切り出すことによって最終的な光変調器 3 0を 得た。 このようにして得た光変調器 3 0に対して光ファイバ一を UV硬化樹脂に よって接着固定し、 パッケージ実装後の S 2 1特性 (伝送特性) を評価した。 そ の結果、 一 6 d B帯域が 4 0 G H z以上であり、 マイクロ波実効屈折率 n mは 2 . 1 5であった。 また、 光応答特性を評価した結果、 一 3 d B特性は 4 0 GH z以 上であった。 さらに、 結合損失は 5 d Bであった。
(実施例 2 )
第 1の研削処理及び第 2の研削処理を # 6 0 0 0番、 幅 1 5 0 の樹脂ボン ドブレ一ドを用いて実施した以外は、 実施例 1と同様にして実施し、 実施例 1と 同寸法の光変調器 3 0を作製した。 なお、 光変調器 3 0の S 2 1特性、 光応答特 性、 及び結合損失は実施例 1の場合と同じであった。
(実施例 3 )
第 2の研削処理を楔型のブレ一ドを用いて行い、 図 8に示すような楔型の第 2 の薄肉部分 2 7を形成した以外は、 実施例 1と同様にして光変調器 3 0を作製し た。 なお、 第 2の薄肉部分 2 7の厚さ t 2は、 実施例 1と同様に 1 0 i mとした。 また、 光変調器 3 0の S 2 1特性、 光応答特性、 及び結合損失は実施例 1の場合 と同じであった。
(実施例 4 )
第 2の実施の形態に係る製造方法に基づき、 第 2の研削処理に代えてレーザ加 ェ処理を用いて第 2の薄肉部分 2 7を形成した以外は、 実施例 1と同様にして同 寸法の光変調器 3 0を作製した。 なお、 レーザ加工処理は、 周波数 1 2 0 H zの K r Fエキシマレ一ザを用い、 照射強度 2 m J、 スキャン速度 3 0 0 mZ s e cで実施した。 また、 光変調器 3 0の S 2 1特性、 光応答特性、 及び結合損失は 実施例 1の場合と同じであった。
(実施例 5 )
第 3の実施の形態に係る製造方法に基づき、 第 1の研削処理に代えてレーザ加 ェ処理を用いて薄肉部分 28を形成した以外は、 実施例 1と同様にして同寸法の 光変調器 30を作製した。 なお、 レーザ加工処理は、 周波数 1 9 5Hzの Kr F エキシマレ一ザを用い、 照射強度 6. 8 JZcm2、 スキャン速度 1 80 O m /s e cで、 基板 2 1の厚みが 1 00 /imとなるまで加工した後、 照射強度 3. 8 JZcm2、 スキャン速度 1 800 /s e cで基板 2 1の厚みが 1 5 となるまで加工した。 また、 光変調器 30の S 2 1特性、 光応答特性、 及び結合 損失は実施例 1の場合と同じであった。
(実施例 6)
第 4の実施の形態に係る製造方法に基づき、 第 1の研削処理に代えて第 1のレ 一ザ加工処理を施して薄肉部分 28を形成し、 この薄肉部分 28に対し、 第 2の 研削処理に代えて第 2のレーザ加工処理を施して第 1の薄肉部分 26及び第 2の 薄肉部分 27を形成した以外は、 実施例 1と同様にして同寸法の光変調器 30を 作製した。 なお、 第 1のレーザ加工処理は、 周波数 1 95Hzの Kr Fエキシマ レーザを用い、 照射強度 6. 8 J /c スキャン速度 1 800 xm/s e c で、 基板 2 1の厚みが 1 100 imとなるまで加工した後、 照射強度 3. 81 cm2、 スキャン速度 1 800 um/s e cで基板 2 1の厚み 1 5 mまで加工 した。 また、 第 2のレーザ加工処理は、 周波数 120 Hzの Kr Fエキシマレー ザを用い、 照射強度 2m J、 スキャン速度 300〃mZs e cで実施した。 また、 光変調器 30の S 2 1特性、 光応答特性、 及び結合損失は実施例 1の場合と同じ であった。
上述した実施例から明らかなように、 第 1〜第 4の実施の形態に係る製造方法 によれば、 基板 2 1の裏面側に第 1の薄肉部分 26及び第 2の薄肉部分 27を高 精度に形成することができ、 その結果、 これら第 1及び第 2の薄肉部分 26及び 27を有することに起因して、 速度整合及び結合損失に優れた光変調器 30を安 定に作製できることが分かる。 以上、 具体例を挙げながら発明の実施の形態に基づいて本発明を詳細に説明し てたが、 本発明は上記内容に限定されるものではなく、 本発明の範疇を逸脱しな い範囲において、 あらゆる変更や変形が可能である。
例えば、 基板 2 1は、 ニオブ酸リチウムの Xカット板から構成したが、 Yカツ ト板、 Zカット板、 及びオフカット板などを用いることもできる。 また、 ニオブ 酸リチウムに代えて、 タンタル酸リチウムなど公知の電気化学効果を有する材料 から構成することができる。 さらには、 基板 2 1には、 耐光損傷性を向上させる ベく、 M g、 Z n、 S c、 及び I nなどの元素を添加することができる。
また、 上述した研削加工及びレーザ加工処理に加えて、 研磨加工などを必要に 応じて逐次含ませることができる。 さらに、 光導波路 2 2はチタン拡散法の他に、 プロトン交換法などを用いることもできる。 産業上の利用可能性
以上説明したように、 本発明によれば、 基板の裏面に対して第 1の薄肉部分及 び第 2の薄肉部分を安定して高精度に形成することができ、 これによつて、 バッ ファ層を有することなく速度整合を図ることができ、 結合損失などにも優れた光 変調器を作製することができる。

Claims

請求の範囲
1. 電気光学効果を有する材料からなる基板 (21) の主面 (21 A) 直下に光 導波路 (22) を形成する工程と、
前記基板 (21) の前記主面 (21 A) 上に、 前記光導波路 (22) 内を導波 する光を変調するための変調用電極を形成する工程と、
前記基板 (21) の裏面に対して第 1の機械加工を施して、 前記基板 (21) のうち、 前記光導波路 (22) を含む部分を薄板化する工程と、
前記基板 (21) の前記薄板化された部分に対して第 2の機械加工を施して、 前記基板 (2 1) のうち、 前記光導波路 (22) を含む部分を第 1の薄肉部分 (26) とし、 前記第 1の薄肉部分 (26) に隣接する部分を前記第 1の薄肉部 分 (26) よりも薄い第 2の薄肉部分 (27) とする工程と、
を含むことを特徴とする光変調器の製造方法。
2. 請求項 1記載の光変調器の製造方法において、
前記第 1の機械加工及び前記第 2の機械加工の少なくとも一方は、 外周刃を用 いた研削加工を含むことを特徴とする光変調器の製造方法。
3. 請求項 2記載の光変調器の製造方法において、
前記外周刃を整形するためのツル一イング処理工程を含むことを特徴とする光 変調器の製造方法。
4. 電気光学効果を有する材料からなる基板 (21) の主面 (21A) 直下に光 導波路 (22) を形成する工程と、
前記基板 (21) の前記主面 (21 A) 上に、 前記光導波路 (22) 内を導波 する光を変調するための変調用電極を形成する工程と、
前記基板 (21) の裏面 (21 B) に対して機械加工を施して、 前記基板 (2 1) のうち、 前記光導波路 (22) を含む部分を薄板化する工程と、 前記基板 (21) の前記薄板化された部分に対してレーザ加工処理を施して、 前記基板 (21) のうち、 前記光導波路 (22) を含む部分を第 1の薄肉部分 (26) とし、 前記第 1の薄肉部分 (26) に隣接する部分を前記第 1の薄肉部 分 (26) よりも薄い第 2の薄肉部分 (27) とする工程と、
を含むことを特徴とする光変調器の製造方法。
5. 請求項 4記載の光変調器の製造方法において、
前記機械加工は、 外周刃を用いた研削加工を含むことを特徴とする光変調器の 製造方法。
6. 請求項 5記載の光変調器の製造方法において、
前記外周刃を整形するためのツル一イング処理工程を含むことを特徴とする光 変調器の製造方法。
7. 電気光学効果を有する材料からなる基板 (21) の主面 (21A) 直下に光 導波路 (22) を形成する工程と、
前記基板 (21) の前記主面 (21 A) 上に、 前記光導波路 (22) 内を導波 する光を変調するための変調用電極を形成する工程と、
前記基板 (21) の裏面 (21 B) に対してレーザ加工処理を施して、 前記基 板 (21) のうち、 前記光導波路 (22) を含む部分を薄板化する工程と、 前記基板 (21) の前記薄板化された部分に対して機械加工を施して、 前記基 板 (21) のうち、 前記光導波路 (22) を含む部分を第 1の薄肉部分 (26) とし、 前記第 1の薄肉部分 (26) に隣接する部分を前記第 1の薄肉部分 (2 6) よりも薄い第 2の薄肉部分 (27) とする工程と、
を含むことを特徴とする光変調器の製造方法。
8. 請求項 7記載の光変調器の製造方法において、
前記機械加工は、 外周刃を用いた研削加工を含むことを特徴とする光変調器の 製造方法。
9. 請求項 8記載の光変調器の製造方法において、
前記外周刃を整形するためのツル一^ rング処理工程を含むことを特徴とする光 変調器の製造方法。
10. 電気光学効果を有する材料からなる基板 (21) の主面 (21 A) 直下に 光導波路 (22) を形成する工程と、
前記基板 (21) の前記主面 (21 A) 上に、 前記光導波路 (22) 内を導波 する光を変調するための変調用電極を形成する工程と、
前記基板 (2.1) の裏面 (21 B) に対して第 1のレーザ加工処理を施して、 前記基板 (21) のうち、 前記光導波路 (22) を含む部分を薄板化する工程と、 前記基板 (21) の前記薄板化された部分に対して第 2のレーザ加工処理を施 して、 前記基板 (21) のうち、 前記光導波路 (22) を含む部分を第 1の薄肉 部分 (26) とし、 前記第 1の薄肉部分 (26) に隣接する部分を前記第 1の薄 肉部分 (26) よりも薄い第 2の薄肉部分 (27) とする工程と、
を含むことを特徴とする光変調器の製造方法。
11. 請求項 1〜 10のいずれか 1項に記載の光変調器の製造方法において、 前記第 1の薄肉部分 (26) の厚さが 5 ^m〜 30 zmであることを特徴とす る光変調器の製造方法。
12. 請求項 1〜 1 1のいずれか 1項に記載の光変調器の製造方法において、 前記第 1の薄肉部分 (26) の厚さと前記第 2の薄肉部分 (27) との差が 1 m以上であることを特徴とする光変調器の製造方法。
13. 請求項 1〜 12のいずれか 1項に記載の光変調器の製造方法において、 前記変調用電極を構成する中心電極幅を W、 前記変調用電極を構成する電極間 距離を Gとしたとき、
前記第 1の薄肉部分の幅が、 (W+2 m) 以上、 (W+2G) 以下であるこ とを特徴とする光変調器の製造方法。
PCT/JP2003/003374 2002-03-19 2003-03-19 Procede pour produire un modulateur optique WO2003079104A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002076306A JP2003270599A (ja) 2002-03-19 2002-03-19 光変調器の製造方法
JP2002-76306 2002-03-19

Publications (1)

Publication Number Publication Date
WO2003079104A1 true WO2003079104A1 (fr) 2003-09-25

Family

ID=28035435

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/003374 WO2003079104A1 (fr) 2002-03-19 2003-03-19 Procede pour produire un modulateur optique

Country Status (2)

Country Link
JP (1) JP2003270599A (ja)
WO (1) WO2003079104A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7155848B2 (ja) * 2018-10-12 2022-10-19 住友大阪セメント株式会社 光導波路素子および光変調器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63234219A (ja) * 1987-03-20 1988-09-29 Nippon Telegr & Teleph Corp <Ntt> 光変調器
JPH11254335A (ja) * 1998-03-09 1999-09-21 Asahi Optical Co Ltd 研削工具の製造方法
JP2002169133A (ja) * 2000-09-22 2002-06-14 Ngk Insulators Ltd 進行波形光変調器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63234219A (ja) * 1987-03-20 1988-09-29 Nippon Telegr & Teleph Corp <Ntt> 光変調器
JPH11254335A (ja) * 1998-03-09 1999-09-21 Asahi Optical Co Ltd 研削工具の製造方法
JP2002169133A (ja) * 2000-09-22 2002-06-14 Ngk Insulators Ltd 進行波形光変調器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YOSHINORI KONDO ET AL.: "C-3-3 40Gb/s.2 8Vx-cut LiNbO3 uramito tsuki hikari henchoki", 2001 NEN THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS ELECTRONICS SOCIETY TAIKAI KOEN RONBUNSHU, vol. 2001, 29 August 2001 (2001-08-29), pages 113, XP002968813 *
YOSHINORI KONDO ET AL.: "C-3-53 40Gb/s-yo X-cut LiNbO3 hikari henchoki module", 2002 NEN THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS SOGO TAIKAI KOEN RONBUNSHU, vol. 2002, 7 March 2002 (2002-03-07), pages 185, XP002968812 *

Also Published As

Publication number Publication date
JP2003270599A (ja) 2003-09-25

Similar Documents

Publication Publication Date Title
US6819851B2 (en) Optical waveguide device and a travelling-wave optical modulator
JP4443011B2 (ja) 進行波型光変調器
EP1657588B1 (en) Optical waveguide device and traveling wave type opticalmodulator
JP3954251B2 (ja) 進行波形光変調器
JP2001174765A (ja) 進行波形光変調器
JP2006284961A (ja) 光変調器
JP3762320B2 (ja) 光変調器の製造方法
JPH1010348A (ja) 光導波路デバイスの製造方法
WO2003079102A1 (fr) Procede de fabrication de modulateur optique
WO2003079104A1 (fr) Procede pour produire un modulateur optique
JP2010085789A (ja) 光導波路素子
CN1839336A (zh) 光波导器件以及行波型光学调制器
US7218819B2 (en) Electrode systems for optical modulation and optical modulators
JP2009086336A (ja) 光導波路型デバイス
WO2020202606A1 (ja) 光導波路素子
JPH0868913A (ja) 光導波路構造物の仕上げ方法
JP3425747B2 (ja) 液晶表示素子の製造方法
JP2007079465A (ja) 光制御素子及びその製造方法
JPH10239544A (ja) 光導波路素子及び光導波路素子の製造方法
JPH11352350A (ja) 光導波路素子の製造方法
US20230305326A1 (en) Singulation of lithium-containing photonic devices
JP2012078507A (ja) 光導波路素子
JP5556787B2 (ja) 光制御素子の製造方法
JP2005292716A (ja) 光導波路素子の形成方法及びそれにより得られた光導波路素子
KR0183118B1 (ko) 광부품의 제조방법

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase