WO2003075096A2 - Refraktives projektionsobjektiv - Google Patents

Refraktives projektionsobjektiv Download PDF

Info

Publication number
WO2003075096A2
WO2003075096A2 PCT/EP2003/001147 EP0301147W WO03075096A2 WO 2003075096 A2 WO2003075096 A2 WO 2003075096A2 EP 0301147 W EP0301147 W EP 0301147W WO 03075096 A2 WO03075096 A2 WO 03075096A2
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lens group
refractive
si02hl
refractive projection
Prior art date
Application number
PCT/EP2003/001147
Other languages
English (en)
French (fr)
Other versions
WO2003075096A3 (de
Inventor
Wilhelm Ulrich
Russell Hudyma
Hans-Jürgen Rostalski
Karl-Heinz Schuster
Original Assignee
Carl Zeiss Smt Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carl Zeiss Smt Ag filed Critical Carl Zeiss Smt Ag
Priority to AU2003210214A priority Critical patent/AU2003210214A1/en
Priority to KR10-2004-7013547A priority patent/KR20040089688A/ko
Priority to JP2003573496A priority patent/JP2005519332A/ja
Priority to EP03743308A priority patent/EP1483626A2/de
Publication of WO2003075096A2 publication Critical patent/WO2003075096A2/de
Publication of WO2003075096A3 publication Critical patent/WO2003075096A3/de
Priority to US10/931,051 priority patent/US7190527B2/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70975Assembly, maintenance, transport or storage of apparatus
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/24Optical objectives specially designed for the purposes specified below for reproducing or copying at short object distances
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70241Optical aspects of refractive lens systems, i.e. comprising only refractive elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7095Materials, e.g. materials for housing, stage or other support having particular properties, e.g. weight, strength, conductivity, thermal expansion coefficient
    • G03F7/70958Optical materials or coatings, e.g. with particular transmittance, reflectance or anti-reflection properties

Definitions

  • the invention relates to a refractive projection lens for Mi rolithography that consists of a first belly, a waist and a second belly in the direction of propagation of the light.
  • Such refractive projection lens are also referred to as a waist system.
  • Such waist systems are known for example from US60 / 160799, EP 1 061 396 A2 and from EP 1 139 138 AI or WO 01/23933 -WO 01 / 23935_. It is already known from these documents that the first or the first two lenses on the object side have negative refractive power. It is also known from these writings that the use of aspheres can improve the image quality. Since the resolution that can be achieved with a projection lens increases proportionally with the numerical aperture of the projection lens on the image side and continues to increase in proportion to the reciprocal of the observation wavelength, there is a tendency to provide projection lenses with the largest possible numerical aperture to increase the resolution.
  • the invention has for its object to provide a refractive projection lens that has reduced manufacturing costs due to a reduced material use with a high numerical apatur.
  • menisci have a convex surface on the side facing the object.
  • Figure 1 projection exposure system
  • Figure 2 projection lens for the wavelength 193 n
  • FIG. 3 projection objective for the exposure wavelength 193 nm
  • FIG. 4 projection objective for the wavelength 193 nm
  • Figure 5 Projection lens for the exposure wavelength 157 nm.
  • FIG. 6 projection objective for the wavelength 193 nm
  • FIG. 7 projection objective for the exposure wavelength 193 nm
  • FIG. 8 projection objective for the wavelength 193 nm
  • Figure 9 Projection objective for the exposure wavelength 193 nm.
  • the projection equipment 101 has an illumination device 103 and a projection objective 105.
  • the projection objective 105 comprises a lens arrangement 121 with an aperture diaphragm 119, an optical axis 107 being defined by the lens arrangement 121.
  • a mask 109 is arranged between the illumination device 3 and the projection objective 105 and is held in the beam path by means of a mask holder 111.
  • Such masks 109 used in microlithography have a micrometer to nanometer structure, which is imaged on the image plane 113 by the projection objective 105 or by the lens arrangement 121 down to a factor of 10, in particular by a factor of 4.
  • 1h of the image plane 113 is a substrate or ' positioned by a substrate holder 117. a wafer 115 held.
  • the minimum structures that can still be resolved depend on the wavelength of the light used for the exposure and on the aperture of the projection lens 5; being the maximum achievable resolution the projection exposure system 1 increases with decreasing length of the lens and with increasing numerical aperture of the projection lens 5 on the image side.
  • FIGS. 2 to 5 show possible lens arrangements 121 of the projection objectives 105 in more detail.
  • These lens arrangements 1 21 shown which are also referred to as designs, have a numerical aperture of 0.85 or 0.9 on the image side.
  • the designs shown in FIGS. 2 to 4 and 6 to 9 are designed for the exposure wavelength of 193 nm.
  • the projection objective shown in FIG. 5 is designed for the exposure wavelength of 157 nm. All of these designs have in common that the aberrations that occur are very small and can therefore be resolved with structure widths of up to 70 nm.
  • the wavefront errors are less than 5/1000 of the wavelength of the light used for the exposure and, on the other hand, the distortion is less than 1 nm.
  • the longitudinal color error is less than 380 nm pm.
  • the large field size of 26 x 10.5 mm 2 in which the image is corrected in such a high quality, enables productive use in microlithography. Due to the design of the field size or field format, these projection objectives with such lens arrangements are particularly suitable for use in hthographic scanning devices.
  • the lens arrangements 121 have a first belly 123, a waist 125 and a second belly 127.
  • the waist 125 comprises a point of the narrowest constriction 129 in the second belly a system panel 119 is arranged.
  • the first lens group LG1 comprises three negative lenses with the lens surfaces 2-7.
  • the first two negative lenses are preferably bent towards the object.
  • the third negative lens is preferably a meniscus lens that is bent towards the image. It connects to this first lens group the second lens group LG2, which has positive refractive power, with a lens of maximum diameter of the first belly in this second lens group is arranged.
  • This second lens group LG2 preferably exclusively comprises lenses of positive refractive power.
  • the third lens group LG3, the negative refractive power on ice, is connected to this lens group LG2.
  • This third lens group LG3 comprises at least three successive lenses of negative refractive power.
  • This third lens group LG3 is followed by a fourth lens group LG4, which has positive refractive power.
  • This fourth lens group LG4 ends before the aperture.
  • a fifth lens group LG5 is formed by the lenses arranged after the system diaphragm 119, which also has positive refraction.
  • This fifth lens group LG5 comprises a lens of maximum diameter in the second belly, this diameter being designated D2.
  • All of these examples are characterized by an excellent correction of the wavefront.
  • the image errors that occur are corrected to values less than 5/1000 of the length.
  • the main beam distortion is corrected to values less than 1 nm.
  • the advantageous effect of the existing BrecMcraft distribution has been reinforced by the use of aspheres.
  • the two aspheres on the diverging lenses in the first lens group LG1 are mainly used to correct the distortion and the object and image-side telecentricity of the main rays of the outermost field point.
  • the third lens group LG3 begins with a weakly diverging meniscus, the convex side of which is arranged facing the mask 109.
  • a lens with positive refractive power and at least two strongly diverging biconcave lenses is attached to this meniscus. If aspheres are provided in this second lens group LG2, they are arranged on a concave surface facing the wafer.
  • At least one diverging meniscus is arranged between the waist and the diaphragm, that is to say in the fourth lens group LG4.
  • the latter has a concave surface facing the wafer and thus has a shape similar to that of the diverging meniscus immediately behind the diaphragm.
  • the correlation state is represented for each example on the basis of curves for spherical aberration and astigmatism and the key figures for the RMS value of the wavefront in FIGS. 2a-2c ... to FIGS. 5a-5c.
  • the longitudinal color error CHL which is determined as follows:
  • the use of only one material is provided in the exemplary embodiments shown in FIGS. 2-9, it being possible to achieve excellent image quality with regard to the chromatic aberrations precisely through the arrangement of the menisci provided after the point of the narrowest constriction.
  • This image quality is characterized by a longitudinal chromatic aberration or "axial color” less than 385nm per pm in.
  • the Farbver 'size approximation error or "lateral color” is less than 0.8 pprn pm, which is an excellent value. This corresponds to a color magnification error of 1 lnm / pm at the edge of the picture. Where pp stands for parts per million.
  • a second material which may also be used, can be provided for color error correction and / or high energy density occurring in standing areas to avoid compaction and rarefaction effects.
  • Compaction and rarefaction effects mean the material-dependent changes in refractive index in areas of high energy density.
  • the excellent image quality with regard to color errors is significantly supported by the shapes of the two bellies.
  • the ratio of the maximum diameters of the first belly Di and the second belly D 2 satisfies the following conditions 0.8 ⁇ D1 / D2 ⁇ 1.1. The following preferably applies: 0.8 ⁇ D1 / D2 ⁇ 1.0.
  • all lens arrangements 121 have a numerical aperture of at least 0.85.
  • this special arrangement in a lens arrangement which has a lower numerical index on the image side, in order either to provide a larger field with undiminished image quality or to further improve the image quality by way of the quality shown in the exemplary embodiments or to improve its use of aspheres.
  • the designs are characterized by low beam deflections or beam angles on most surfaces despite the high numerical apatur. As a result, only a few higher-order image errors are generated.
  • the strongly yellowed menisci which have negative refractive power and are arranged in the fourth and fifth lens groups, are provided.
  • Most lenses, however, at least 80% of all lenses have lens surfaces on which the incoming light has an angle of incidence of less than 60 °. The same applies to the lens surfaces at which the radiation emerges again.
  • a free area which is designated as L AP
  • panels can be used which can be adjusted depending on the requirements of the image.
  • a wide variety of diaphragms can also be used, and diaphragm holders can be provided which already have a mechanism for adjusting the diaphragm, since sufficient space must be available to provide such a construction.
  • the last two lenses arranged in front of the system aperture 119 have contributed significantly to the fact that the free space L AP could be provided.
  • the small diameters D1 and D2 in the two bellies 123, 127, and the short overall length of 1000-1150 mm and the small number of lenses made it possible to reduce the lens material required. It was possible to achieve that the lens mass m is less than 55 kg in some exemplary embodiments, see Table 1.
  • Lenses of the lens arrangements shown in FIGS. 2-9 are in the range from 54 to 68 kg.
  • L is the length measured from the reticle to the wafer
  • NA is the numerical aperture on the image side
  • D AX is the maximum diameter of the system, i.e. 1 or D2
  • 2yb is the diameter of the image field , It is particularly advantageous if the maximum diameter of the first belly D1 is at most equal to the maximum diameter of the second belly D2.
  • L geo is the sum of the center thicknesses of all lenses in the lens.
  • LV is a measure of the free space around a system aperture, with L AP being the free distance from the last lens surface before the aperture to the first lens surface after the aperture.
  • L geo is the sum of the center thicknesses of all lenses arranged in the lens and L is the distance from image plane O 'to object plane O.
  • P is the arrow height as a function of the radius h (height to the optical axis 7) with the aspherical constants K, Ci to Cn given in the tables.
  • R is the vertex radius given in the tables.
  • FIGS. 2a to 2c The distribution of the image errors over the image is shown in FIGS. 2a to 2c.
  • the spherical longitudinal aberration is shown in FIG. 2a, the relative opening being plotted on the vertical axis and the longitudinal aberration being plotted on the horizontal axis.
  • the course of the astigmatism can be seen from FIG. 2b.
  • the object height is plotted on the vertical axis and the defocusing is plotted in mm on the horizontal axis.
  • the distortion is shown in FIG. 2c, the distortion being plotted on the horizontal axis in% compared to the object height on the vertical axis.
  • FIGS. 3a-3c show the spherical aberration, the astigmatism and the distortion as already described with reference to FIGS. 2a-2c.
  • FIGS. 4a-4c The imaging quality with regard to spherical aberration, astigmatism and distortion are shown in FIGS. 4a-4c.
  • OOOOOOOOO 31 OOOOOOOOO L710 0.99998200 • 56., 080

Abstract

Refraktives Projektionsobjektiv mit einer numerischen Apertur grösser 0,7, bestehend aus einem ersten Bauch, einem zweiten Bauch und einer zwischen den Bäuchen angeordneten Taille, wobei der erste Bauch einen maximalen Durchmesser, mit D1 bezeichnet, aufweist und der zweite Bauch einen maximalen Durchmesser, mit D2 bezeichnet, aufweist und es gilt: 0,8<D1/D2<1,1.

Description

Beschreibung: Refr aktives Proj ektions obj ektiv
Die Erfindung betrifft ein refraktives Projektionsobjektiv für die Mi rolithographie, dass in Ausbreitungsrichtung des Lichtes aus einem ersten Bauch, einer Taille und einem zweiten Bauch besteht. Derartige refraktives Projektioήsobjektiv werden auch mit Eintaillen-Systeme bezeichnet.
Solche Eintaillen-Systeme sind zum Beispiel aus der US60/160799, der EP 1 061 396 A2 und aus der EP 1 139 138 AI bzw. WO 01/23933 -WO 01/23935_bekannt. Aus diesen Schriften ist es bereits bekannt, dass die erste oder die ersten beiden objektseitigen Linsen negative Brechkraft aufweisen. Weiterhin ist aus diesen Schriften bekannt, dass durch den Einsatz von Asphären die Abbildungsqualität gesteigert werden kann. Da die mit einem Projeldiόnsobjektiv erreichbare Auflösung proportional mit der bildseitigen numerischen Apertur des Projeküonsobjektives ansteigt und weiterhin proportional zum Kehrwert der Behchtuήgswellenlänge ansteigt, herrscht das Bestreben vor, Projektionsobjektive mit möglichst großer numerischer Apertur zur Steigerung der Auflösung bereitzustellen.
Bei den in der M--kroh^ographie gestellten Anforderungen an ein Projektionsobjektiv ist es weiterhin erforderlich, ausgewählte Materialien mit einer hohen Qualität zu verwenden. Insbesondere die Eluorid Materialien sind derzeit nur im begrenzten Umfange in der erforderlichen Qualität erhältlich. So wenden beispielsweise bei einer Behchtungs eilenlänge von 193 n in den für diese Wellenlänge ausgelegten Projel tionsobjektiven einige Linsen aus Calciυmfluorid zur Kompensation von Farbfehlern verwendet. Weiterhin werden bevorzugt kurz vor dem Wafer Calciu fluoridli-αsen eingesetzt, die bezüglich Compaction nicht so empfindlich sind.
. Der Erfindung Hegt die Aufgabe zugrunde eine refraktives Projektionsobjektiv bereitzustellen, dass bei einer hohen numerischen Apatur reduzierte Herstellungskosten durch einen verminderten Materiale nsatz aufweist.
Dies konnte insbesondere durch die Maßnahme, den maximalen Durchmesser des zweiten Bauches zu reduzieren, erreicht werden. l Eine Anordnung von zerstreuenden Linsen im Eingangsbereich des Objektives, insbesondere von drei negativen Linsen, tragen zur Verkürzung des Projektionsobjektives bei, was sich vorteilhaft auf den in der Proj ektionsbelichtungsanlage für das Proj ektionsobj ektiv erforderlichen Platzbedarf auswirkt. Weiterhin impliziert eine Verkürzung des Projektionsobjektives auch eine Reduzierung der eingesetzten Linsen, womit sich das eingesetzte Material und somit die Herstellkosten reduzieren lassen.
Es hat sich als vorteilhaft herausgestellt, zur Kompensation von sphärischen Aberrationen höherer Ordnung, die durch eine hohe numerische Apertur im Endbereich des Projel tionsobjektives erzeugt werden, stark gekrümmte Menisken vorzusehen, die negative Brechkraft aufweisen und die zwischen der engsten Einschnürung in der Taille und der Blende und direkt nach der Blende angeordnet sind..
Es hat sich als vorteilhaft herausgestellt, dass diese Menisken auf der dem Objekt zugewandten Seite eine konvexe Oberfläche aufweisen.
Es hat sich auch als vorteilhaft herausgestellt, zwischen der engsten Einschnürung des Lichtbündels in der Taille und der Blende zwei Menisken vorzusehen, deren konvexen Linsenoberflächen zueinander gewandt sind.
Weiterhin hat es sich als vorteilhaft herausgestellt, im zweiten Bauch einen freien Bereich für die Anordnung einer Systemblende vorzusehen. Durch das Vorsehen dieses freien Bereiches ist es möglich, eine Blende vorzusehen, die axial verschiebbar ist.
' Weiterhin kann bei einem derartigen für die Anordnung der Blende zur Verfügung stehenden Bauraum problemlos auch die Verwendung von gebümmten Blenden vorgesehen werden.
Es hat sich als vorteilhaft herausgestellt die vorgesehenen Linsenoberflächen gezielt so auszuwählen, dass der Ein- und Austrittswinkel der auf die Linse fallende Strahlung bzw. die Linsen verlassende Strahlung kleiner als 60° ist. Diese Maßnahme wirkt sich insbesondere vorteilhaft auf die verwendbaren Beschichtungen der Linsen aus bzw. es können einfachere Beschichtungen als Antireflexbeschichtung vorgesehen werden, da die Wirksamkeit solcher Beschichtungen wie eine Antireflexbeschichtung insbesondere vom Einfallswinkel der auftreffenden Stahlung abhängt.
Weitere vorteilhafte Maßnahmen sind in weiteren Unteransprüchen beschrieben.
Anhand der folgenden Ausführungsbeispiele wird die Erfindung näher erläutert. Diese Ausführungsbeispiele sind nicht einschränkend zu verstehen. Es zeigt:
Figur 1: Projektionsbelichtungsanlage;
Figur 2: Projektionsobjektiv für die Wellenlänge 193 n ;
Figur 3: Projektionsobjektiv für die BeHchtungswellenlänge 193 nm;
Figur 4: Projektionsobjektiv für die Wellenlänge 193 nm;
Figur 5: Projektionsobjektiv für die Belichtungswe-lenlänge 157 nm.
Figur 6 Projektionsobjektiv für die Wellenlänge 193 nm;
Figur 7:Projektionsobjektiv für die Belichtungswellenlänge 193 nm;
Figur 8: Projektionsobjektiv für die Wellenlänge 193 nm;
Figur 9: Projektionsobjektiv für die BeHchtungswellenlänge 193 nm.
Anhand von Figur 1 wird zunächst der prinzipieUe Aufbau einer Projel tionsbelichtungsanlage 101 der Mikrolithographie beschrieben. Die ProjektionsbeHchrungsanlage 101 weist eine Beleuchti gseinrichtung 103 und ein Projektionsobjektiv 105 auf. Das Projektionsobjektiv 105 umfasst eine Linsenanordnung 121 mit einer Aperturblende 119, wobei durch die Linsenanordnung 121 eine optische Achse 107 definiert wird. Zwischen Beleuchtungsemrichrung 3 und Projektionsobjektiv 105 ist eine Maske 109 angeordnet, die mittels eines Maskenhalters 111 im Strahlgang gehalten wird. Solche in der Mikrolithographie verwendeten Masken 109 weisen eine Mikrometer bis Nanometerstruktur auf, die mittels des Projektionsobjektives 105 bzw. durch die Linsenanordnung 121 bis zu einem Faktor von 10, insbesondere um den Faktor 4, verkleinert auf eine Bildebene 113 abgebildet wird. 1h der Bildebene 113 wird ein durch einen Sübstrathalter 117 positionierte Substrat bzw'. ein Wafer 115 gehalten. Die noch auflösbaren minimalen Strukturen hängen von der Wellenlänge des für die Belichtung verwendeten Lichtes sowie von der Apertur des Projelctionsobjektives 5 ab; wobei die maximal erreichbare Auflösung der Projektionsbelichtungsanlage 1 mit abnehmender WeUenlänge und mit zunehmender bildseitiger numerischer Apertur des Projektionsobjektives 5 steigt.
In den Figuren.2 bis 5 sind mögliche Linsenanordnungen 121 der Projektionsobjektive 105 detaillierter dargestellt. Diese dargestellten Linsenanordnungen 1 21, die auch mit Designs bezeichnet werden, weisen bildseitige eine numerische Apertur von 0,85 bzw. 0.9 auf. Die in Figur 2 bis 4 und 6 bis 9 dargestellten Designs sind für die Belichtungswellenlänge von 193 nm ausgelegt. Das in Figur 5 dargestellte Projektionsobjektiv ist für die Belichtungswellenlänge von 157 nm ausgelegt. All diesen Designs ist gemeinsam, dass die auftretenden Aberrationen sehr klein sind und damit strulcturbreiten von bis zu 70 nm aufgelöst werden können. Dabei sind einerseits die Wellenfrontfehler kleiner als 5/1000 der Wellenlänge des für die Belichtung eingesetzten Lichtes und andererseits die Verzeichnung kleiner als 1 nm. Der Farblängsfehler ist kleiner als 380nm pm. Die große Feldgröße von 26 x 10,5 mm2 , in der die Abbildung derart hochwertig korrigiert ist, ermöglicht einen produktiven Einsatz in der Mikrolithographie. Aufgrund der Ausgestaltung der Feldgröße bzw. des Feldformates sind diese Proj ektionsobj ektive mit derartigen Linsenanordnungen insbesondere für den Einsatz in Hthographischen Scaneinrichtungen geeignet.
Bevor auf die ausgezeichneten optischen Eigenschaften der in den Figuren 2-9 gezeigten Linsenanordnungen 121 naher eingegangen wird, wird zunächst der prinzipielle Aufbau dieser Linsenanordnungen 121 näher beschrieben. In Ausbreitungsrichtung des Lichtbündels weisen die Linsenanordnungen 121 einen ersten Bauch 123 eine Taille 125 und einen zweiten Bauch 127 auf. Die Taille 125 umfasst eine Stelle engster Einschnürung 129 in dem zweiten Bauch ist eine Systemblende 119 angeordnet.
Diese Linsenanordnungen lassen sich auch in fünf Linsengruppen LG1-LG5 unterteilen. Die erste Linsengruppe LG1 umfasst drei negativ Linsen mit den Linsenoberflächen 2-7. Die ersten beiden Negativlinsen sind vorzugsweise zum Objekt hin durchgebogen. Die dritte Negativlinse ist vorzugsweise eine MeniskehHnse, die zum Bild hin durchgebogen ist. An diese erste Linsengruppe schließt sie die zweite Linsengruppe LG2 an, die positive Brechkraft aufweist, wobei eine Linse maximalen Durchmessers des ersten Bauches in dieser zweiten Linsengruppe angeordnet ist. Diese zweite Linsengruppe LG2 umfasst vorzugsweise ausschließlich Linsen positiver Brechkraft.
An diese Linsengruppe LG2 schließt sich die dritte Linsengruppe LG3, die negative Brechkraft auf eist, an. Diese dritte Linsengruppe LG3 umfasst mindestens drei aufeinanderfolgende Linsen negativer Brechkraft. An diese dritte Linsengruppe LG3 schließt sich eine vierte Linsengruppe LG4 an, die positive Brechkraft aufweist. Diese vierte Linsengruppe LG4 endet vor der Blende.
Durch die nach der Systemblende 119 angeordneten Linsen wird eine fünfte Linsengruppe LG5 gebildet, die ebenfalls positive Brechlcraft aufweist. Diese fünfte Linsengruppe LG5 umfasst eine Linse maximalen Durchmessers im zweiten Bauch, wobei dieser Durchmesser mit D2 bezeichnet wird.
Alle diese Beispiele zeichnen sich durch eine ausgezeichnete Korrektion der Wellenfront aus. Die auftretenden Bildfehler sind auf Werte kleiner 5/1000 der WeUenlänge korrigiert. Die Hauptstrahlverzeichnung ist auf Werte kleiner 1 nm korrigiert.
Der vorteilhafte Effekt der vorHegenden BrecMcraftverteilung ist durch den Einsatz von Asphären verstärkt worden. Die beiden Asphären auf den zerstreuenden Linsen in der ersten Linsengruppe LG1 dienen hauptsächlich zur Korrektion der Verzeichnung und der objekt- und bildseitigen Telezentrie der Hauptstrahlen des äußersten Feldpunlctes.
Die dritte Linsengruppe LG3 beginnt mit einem schwach zerstreuenden Meniskus, dessen konvexe Seite der Maske 109 zugewandt angeordnet ist. An diesen Meniskus schHeßt sich eine Linse mit positiver Brechkraft und mindestens zwei stark zerstreuenden bikonkave Linsen an. Wenn in dieser zweiten Linsengruppe LG2 Asphären vorgesehen sind, daon sind diese auf einer dem Wafer zugewandten Konkavfiäche angeordnet. Zur Korrektur von höheren Tennen des Öffhungsfehlers und der Koma werden mindestens je eine Asphäre in den Linsengruppen LG4 und 5 bzw. vor und hinter der Blende in der Nähe des größten Durchmessers des zweiten Bauches angeordnet. Zwischen der Taille und der Blende, also in der vierten Linsengruppe LG4, ist mindestens ein zerstreuender Meniskus angeordnet. In den bevorzugten Aus- lπτ-ngsformen, Figur 2 und 3, hat dieser eine dem Wafer zugewandte Konkavfiäche und damit eine ähnliche Form wie der unmittelbar hinter der Blende folgende zerstreuende Meniskus.
Der Korrelctionszustand wird für jedes Beispiel anhand von Kurven für die sphärische Aberration und den Astigmatismus und die Kennzahlen für den RMS Wert der Wellenfront in den Figuren 2a-2c... bis Figur 5a-5c dargestellt. Die RMS- Werte, welche der mittleren quadratischen Wellenfrontdeformation entsprechen, lassen sich wie folgt bestimmen: wms =^w -{w)2 mit W als Wellenfirontfehler und die spitzen Kla mem als Operand für die Mittelwertbildung.
Der Farblängsfehler CHL, der wie folgt bestimmt wird:
CHL = s'(Ä2) -s'(λl) λl2
ist in Tabelle 1 angegeben. Dabei ist s' die paraxiale Bildweite nach der letzten Fläche und λi und λ2 sind BezugsweHenlängen. CHL wird in nm pro p angegeben. '
Die- Wahl eines Eintaillensystems wirkt sich vorteilhaft auf das Auftreten von chromatischen Fehlern aus, die üblicherweise, wie zum Beispiel in der WO 01/23935 durch den Einsatz von mindestens zwei Materialien, so beispielsweise bei einer BeHchtungswellenlänge von 193 nm von Si02 und CaF2 konigiert werden.
Dahingegen ist bei den in den Figuren 2-9 gezeigten Ausführungsbeispielen die Verwendung von nur einem Material vorgesehen, wobei gerade durch die Anordnung der nach der Stelle der engsten Einschnürung vorgesehenen Menisken eine hervorragende Bildqualität bezüglich der chromatischen Aberrationen erreicht werden konnte. Diese Bildqualität zeichnet sich durch einen Farblängsfehler oder „axial color" kleiner als 385nm pro pm aus. Der Farbver'größerungsfehlers oder „lateral color" ist kleiner als 0,8 pprn pm, was einen hervorragenden Wert darstellt. Dies entspricht einem Farbvergrößerungsfehler von 1 lnm/pm am Bildrand. Wobei pp für parts per million steht. Der Einsatz eines eventuell zusätzlich verwendeten zweiten Materials kann zur Farbfehlerkorrektion und/oder an SteHen auftretender hoher Energiedichte zur Vermeidung von Compaction- und Rarefactioneffekte vorgesehen werden Mit Compaction- und Rarefactioneffekten sind dabei die materialabhängigen Brechzahländerungen in Bereichen großer Energiedichte gemeint.
Die ausgezeichnete Bildqualität bezüglich Farbfehler wird durch die Gestalten der beiden Bäuche maßgeblich unterstützt. Das Verhältnis der maximalen Durchmesser des ersten Bauches Di und des zweiten Bauches D2 genügt den folgenden Bedingungen 0,8 < D1/D2 < 1,1. Vorzugsweise gilt: 0,8 < D1/D2 < 1,0.
In den vorliegenden Beispielen weisen alle Linsenanordnungen 121 eine numerische Apertur von mindestens 0,85 auf. Es ist jedoch selbstverständlich auch möglich, diese spezielle Anordnung bei einer Linsenanordnung, die bildseitig eine geringere numerische Apatur aufweist, einzusetzen, um entweder ein größeres Feld mit unverminderter Bildqualität bereitzustellen oder die BildquaHtät über die anhand der Ausfuhrungsbeispiele gezeigte Güte noch weiter zu verbessern oder den Einsatz von Asphären reduzieren zu können. Die Designs zeichnen sich trotz hoher numerischer Apatur durch geringe Strahlablenkungen bzw. Strahlwinkel an den meisten Flächen aus. Dadurch werden nur wenige Bildfehler höherer Ordnung generiert.
Da sich die hohen Einfallswinkel in der Nähe des Wafers auf den Linsen und der planparallelen Abschlussplatte nicht vermeiden lassen, werden zwangsläufig Aberrationen höherer Ordnung generiert. Um diese Aberrationen höherer Ordnung zu kompensieren, sind einige wenige Flächen im System vorgesehen, an denen die einfallende Strahlung bzw. die aus den Linsen austretende Strahlung einen großen Einfallswinkel bzw. Brechungswinkel aufweist, der einer Aberration höherer Ordnung durch Wahl des Vorzeichens entgegenwirkt. 3h den Beispielen sind aus diesem Grunde die stark gelcrü nmten Menisken, die negative Brechkraft aufweisen und die in der vierten und fünften Linsengruppe angeordnet sind, vorgesehen. Die meisten Linsen, mindestens 80 % aller Linsen weisen jedoch Linsenoberflächen auf, an denen das eintretende Licht einen Einfallswinkel von kleiner 60° aufweist. Das gleiche gilt für die Linsenflächen, an denen die Strahlung wieder austritt. Die Möglichkeiten für die optimale Beschichtung der Linsen werden dadurch vereinfacht bzw. eine Rückreflexion an den Linsenoberflächen kann weiter vermindert werden, da die Wirl--sarnkeit solcher Beschichtungen vom Emfallswinkel stark abhängt und mit steigendem Einfalls inlcel in der Regel abnimmt. Es ist nicht möglich mit einem homogenen Schichtsystem über die gesamte Fläche und das volle Spektrum der Einfallswinkel an der Linse konstante Transmission zu erhalten. Insbesondere in der Übergangszone des Winkelbereichs zwischen 50 und 60 Grad verschlechtert sich die Transmission bei gleicher Beschichtung erheblich. Deshalb ist es vorteilhaft, erstens die Einfallswinkel generell so klein wie möglich zu halten und zweitens, wenn sich große Einfallswinkel aus Korrektionsgründen nicht vermeiden lassen, die Flächen mit den maximalen Einfallswinkeln in die Nähe der Blende zu positionieren. In diesem Fall treten bestimmte Einfallswinkelspektren nur in definierten Ringzonen derLinse auf. Zur Erzielung eines optimalen Ergebnisses bezüglich der Transmission werden die Beschichrungen in Abhängigkeit des Radiusses variiert und somit optimal an den jeweiligen Einfallswinkelbereich angepasst.
Um unterschiedlichste Blendensysteme bei den dargestellten Designs vorsehen zu können, ist im Bereich der Blende ein freier Bereich, der mit LAP bezeichnet wird, vorgesehen worden. Dadurch sind Blenden einsetzbar, die in Abhängigkeit von den Anforderungen an das Bild nachgefahren werden können. Auch sind unterschiedlichste Blenden einsetzbar und es können Blendenfassungen vorgesehen werden, die bereits einen Mechanismus zur Verstellung der Blende aufweisen, da für das Vorsehen einer derartigen Konstruktion ausreichend Bauraum zur Verfügung steht muss. Die letzten beiden Linsen vor der Systemblende 119 angeordneten Linsen haben maßgeblich dazu beigetragen, dass der Freiraum LAP bereitgestellt werden konnte.
Durch die kleinen Durchmesser Dl und D2 in den beiden Bäuchen 123, 127, und die kurze Baulänge von 1000-1150 mm und die geringe Anzahl von Linsen konnte eine Reduktion des erforderHchen Linsenmaterials erreicht werden. Es konnte erreicht werden, dass die Linsenmasse m in einigen Ausführungsbeispielen kleiner als 55 kg ist siehe Tabelle 1 . Die
Linsen der in den Figuren 2-9 gezeigten Lmsenanordnungen Hegt im Bereich 54 bis 68 kg.
Systeme mit großer numerischer Apertur neigen dazu, besonders große Durchmesser im zweiten Bauch 127 und eine große Baulänge 0 0r zu erfordern. Wesentlich zur Erzielung der kleinen Bauchdurchmesser und der handlichen Baulänge ist die Gestaltung des Übergangs zwischen TaiUe und dem zweiten Bauch. Hier werden zwei sammelnde Menisken verwendet, die mit ihren konvexen Seiten zueinander gewandt angeordnet sind. Aufgrund dieser Anordnung konnte der maximale Linsendurchmesser und damit insbesondere die Masse der notwendigen Linsenblanks aufgrund der Ausgestaltung des zweiten Bauches gering gehalten werden. Um eine möglichst geringe Masse zu erzielen, müssen die folgenden Beziehungen eingehalten werden:
L * DMX/(NA* 2yb) < 12850 wobei L die Baulänge gemessen vom Reticle zum Wafer ist, NA die bildseitige numerische Apertur ist, D AX der maximale Durchmesser des Systems, also l oder D2 ist und 2yb der Durchmesser des Bildfeldes ist. Besonders vorteilhaft ist es, wenn der maximale Durchmesser des ersten Bauches Dl maximal gleich dem maximalen Durchmesser des zweiten Bauches D2 ist.
-h der nachfolgenden Tabelle 1 sind die jeweiligen Linsenanordnungen 121 charakterisierenden Daten angegeben. Lgeo ist die Summe der Mittendicken aller Linsen des Objektives. LV ist ein Maß für den freien Bauraum um eine Systemblende herum, wobei mit LAP der freie Abstand von der letzten Linsenoberfläche vor der Blende bis zur ersten Linsenoberfläche nach der Blende ist.
Figure imgf000010_0001
Lgeo ist die Su me über die Mittendicken aller im Objektiv angeordneten Linsen ist und L der Abstand von Bildebene O' zur Objεktebene O ist.
TabeUe 1
Figure imgf000010_0002
Figure imgf000011_0001
Die genauen Linsendaten der in Figur 2 gezeigten Linsenanordnung sind aus Tabelle 2 zu entnehmen.
Tabelle 2:
TABELLE 2 crv8_ _5
1/2 FREIER
FLAECHE RADIEKT DICKEN GLAESER Brechzahl DURCHMESSER
0 0. 000000000 32.000000000 L710 0. 99998200 56.080
1 0. 000000000 0.000000000 L710 0 9999B200 63.104
2 727. 642869160 10.000000000 SI02HL 1. 56028895 63.718
3 226. 525323855AS 13.700039256 HΞ193 0. 99971200 65.318
4 2211. 534901544 10.867348809 SI02HL 1. 56028895 67.362
5 •272. 198328283AS 38.109427988 HE193 0. 99971200 70.568
6 -110. 26844B226 53.110762192 SI02HL 1. 56028895 71.923
7 -150. 645587119 1.027970654 HE193 0. 99971200 97.325
B -1859 686377061 35.612645698 SI02HL 1. 56028895 112.154
9 -785. 737931706 1.605632266 HE193 0. 99971200 120.907
10 -15567. 860025603 41.231791248 SI02HL 1. 56028895 124.874
11 -255 699077104 1.000000000 HE193 0 99971200 126.787
12 1289 315128841 21.016190377 SI02HL 1. 56028895 129.339
13 -1288 131288834 • 1.000000000 HΞ193 0 99971200 129.365
14 260 564227287 51.423634995 SI02HL 1 56028895 127.263
15 1730 695425203 13.188971653 HE193 0 99971200 122.159
16 176 011027540 55.000000000 . SI02HL 1 56028895 107.596
17 109 644556647 11.784016964 HE193 0 99971200 81.889
18 136 79S552665 41.333702101 SI02HL 1 56028895 81.527
19 127 780585003 23.051923975 HE193 0 99971200 68.904
20 .2669 .368605391 34*.121643610 SI02HL 1 56028895 68.053
21 . 355 .264577081AS 30.898497897 HE193 0 99971200 62.218
22 -109 .389008884' 10.000000000 SI02HL 1 56028895 61.017
23 249 .223110659 27.598291596 HE193 0 99971200 66.233
24 -143 .820224710 42.179010727 SI02HL 1 56028895 67.085
25 -176 .696299845 2.479524938 HE193 0 .99971200 84.196
26 -475 .210722340AS 19.825006874 ΞI02HL 1 56028895 90.545
27 -224 .363382582 1.042633596 HE193 0 .99971200 93.106
28 308 .609848426 16.000000000 SI02HL 1 .56028895 102.746
29 201 .721667456 25.52BB39747 HE193 0 .99971200 103.303
30 944 .6B7071148AS 19.894794059 SI02HL 1 .56028895 104.495
31 366 .820570030 8.208658436 HE193 0 .99971200 112.097
32 574 .278724113 39.477814236 SI02HL 1 .56028895 113.555
33 -358 .531323193 1.326991422 HE193 0 99971200 116.205
34 320 .594715977AS 33.261672159 SI02HL . 1 .56028895 129.696
35 1861 .755729783 32.119103109 HE193 0 .99971200 129.674
36 0 .000000000 17.287410699 HE193 0 .99971200 130.664
37 361 .690129139 40.443225527 SI02HL 1 .56028895 137.657 38 232..801533112 17.100750060 HE193 0,.99971200 134,.775
39 343 .521129222 43.749080263 SI02HL 1 .56028895 135, .562
40. -1180, ,085155420 5.861047182 HEI93 0, .99971200 136, .059
41 404, .126405350 50.820935982 SI02HL 1, .56028895 137, .263
42 -499, •905302311AS 1.129115320 HE193 0, .99971200 136, ,399
43 132, ,000000000 50.889776270 SI02HL 1, .56028895 108, .737
44 207, .781260330 1.875778948 HΞ193 0, .99971200 96, .990
45 131, .9760BÖ166 50.620041025 SI02HL 1, .56028895 88, .265
46 216, ,108478997 8.560819690 HE193 0, ,99971200 66, .515
47 345, . 8547312OAS 40.780402187 SI02HL 1. ,56028895 62, ,290
48 803. ,014748992 2.855378377 HE193 0, .99971200 37, ,054
49 0, ,000000000 10.000000000 SI02HL 1, .56028895 33, ,755
50 0. ,000000000 B.000000000 L710 0. .9999B200 27. ,205
51 0. ,000000000 0.000000000 1. ,00000000 14. ,020
ASPHR-ERISCHE KONSTANTEN :
FLAECHE MR. 3
K 0.0000 .
Cl -1.09559753e-007
C2 3.57696534e-012
C3 9.55681903e-017
C4 1.60627093e-020
C5 -2.383644116-024
Figure imgf000012_0001
C7 6.17790835e-034
CB 0.00000000e+000
C9 0.00000000e+000
FLAECHE NR. 5
K 0.0000
Cl -3.98669984e-00B
C2 1.21202773e-012
C3 -2.54482855e-016
C4 2.63372160e-020
C5 -7.20324194e-024
C6 1.1161Ö638e-027
C7 -6.59707609e-032
C8 o.ooooooooe+ooo
C9 0.00000000e+000
FLAECHE NR. 21
K O.0000
Cl -2.55118726e-008
C2 -2.20548948e-012
C3 -9.25235857e-017
C4 -3.33206057e-020
C5 6.94726983e-024
C5 -1.13902882e-027
Figure imgf000012_0002
C8 0.00000000e+000
C9 0.00000000e+000
FLAECHE NR. 26
K 0, ,0000
Cl -2, ,59102407e-009
C2 7. . B0412785e-013
C3 6. ,46009507e-01B
C4 9, ,48615754e-022
C5 -5, ,98580637e-026
C6 -6, ,85408327e-031
C7 -1, ,22088512e-035
CB 0, ,00000000e+000
C9 0, ,00000000e+000 FLAECHE NR. 30
K 0.0000
Cl -2.05499169e-009 C2 ' -9'.59524174e-014
C3 3.47471870e-018
C4 -1.59033679e-023
C5 3.61312920e'-027
C6 4.19166365e-031
C7 -6.21964399e-036
C8 O.DOOOOOOOe+OOO
C9 0.00000000e+000
FLAECHE NR. 34
K 0.0000
Cl -5.41197196e-011
C2 2.6B576256e-014
C3 1.97154224e-018
C4 -1.14136005e-023
•C5 -6.50140227e-029
C6 -1.62666510e-032
C7 1.03803879e-037
C8 0.00000000e+000
C9 0.0O0D0O00e+000
FLAECHE NR. 42 0.0000
Cl 4.81397179e-010
C2 -9.43105453e-016
C3 2.243595996- 019
C4 4.36770636e-024
CΞ -6.88569878e-028
C6 4.99976924e-033
C7 -3.386B3104e-039
C8 0.00000000e+000
C9 OlOOOOOOOOe+OOO
FLAECHE NR. 47
K O.0000
Cl -3.383793*88e-008
C2 1.92297513e-012
C3 3.68388126e-016
C4 -4.26261424e-020
C5 -7.931Ξ3105e-025
C6 5.33775440e-028
C7 -3.98605335e-032
C8 O.OOOOODOOe+000
C9 O.00000000e+000
Die asphärischen Flächen werden durch die Gleichung
Figure imgf000013_0001
beschrieben wobei P die Pfeilhöhe als Funktion des Radius h (Höhe zur optischen Achse 7 ) mit den in den Tabellen angegebenen asphärischen Konstanten K, Ci bis Cn ist. R ist der in den Tabellen angegebene Scheitelradius.
In den Figuren 2a bis 2c ist die Verteilung der Bildfehler über das Bild dargestellt. In Figur 2a ist die sphärische Längsaberration dargestellt, wobei auf der Vertikalachse die relative Öffnung und auf der Horizontalachse die Längsaberration aufgetragen ist. Aus Figur 2b ist der Verlauf des Astigmatismus zu entnehmen. Auf der Vertikalachse ist die Objekthöhe aufgetragen und auf der Horizontalachse ist die Defokussierung in mm aufgetragen. In Figur 2c ist die Verzeichnung dargestellt, wobei über die Horizontalachse die Verzeichnung in % gegenüber der Objekthöhe auf der Vertikalachse aufgetragen ist.
Die genauen Linsendaten zu der in Figur 3 dargestellten Linsenanordnung ist der Tabelle 3 zu entnehmen.
TABELLE 3 crv9_ _13
BRECHZAHL 1/2 FREIER
FLAECHE RADIEN DICKEN GLAESER 193.304nm DURCHMESSER
0 0.000000000 32. 000000000 L710 0.99998200 56. 080
1 0.000000000 0. 000000000 L710 0.99998200 63. 102
2 225.350754363AS 10. ooooooooo SI02HL 1.56028895 65. 569
3 205.452906258 16. 699011276 HE193 0.99971200 65. 485
4 -485.968436889AS 10. ,000000000 SI02HL 1.56028895 65. 851
5 236.1205B6098 35. 991435570 HE193 0.99971200 69. 716
6 -118.383252950 35. 248541973 SI02HL 1.5602B895 70. 715
7 -199.283119032 1. .000000000 HE193 0.99971200 91. 711
B -297.219107904 20. .818099956 SI02HL 1.56028B95 96. 216
9 -242.015290785 1. ,012985192 HE193 0.99971200 103. 186
10 -8025.596542346 34, .642805711 SI02HL 1.5602B895 115. ,500
11 -527.541918500 1, .061404340 HE193 0.99971200 122. .264
12 2846.863909159 47, .490572144 SI02HL 1.56028895 129. .024
13 -281.527506472 1, .000000000 HE193 0.99971200 131. .520
14 720.498316515 25 .197751101 SI02HL 1.56028895 133. .348
15 -1864.287720284 1 .000000000 HE1S3 0.99971200 133, .010
16 297.151930333 51 .479599832 SI02HL 1.56028895 129, .235
17 2167.873564789 1 .204618080 HE193 0.99971200 123, .220
18 188.319913743 55 .000000000 SI02HL 1.56028895 111. .397
19 108.153510038 15 .971910183 HE193 0.99971200 83, .7B3
20 148.002390368 55 .000000000 . SI02HL 1.56028895 83 .477
21 190.33590B124 13 .500103985 HE193 0.99971200 es , .512
22 1443.253928436 24 .323718717 SI02HL 1.56028B95 68 .921
23 199.695044391AS 37 .573461703 HE193 0.99971200 62 .387
24 -111.551299373 10 .000000000 SI02HL 1.56028895 60 .784
25 239.358614085 27 .666487186 HE193 0.99971200 65 .748
26 -142.880130573 41 .866297159 SI02HL 1.56028895 66 .580
27 -189.902057474 1 .589605652 HE193 0.99971200 84 .173
28 -748.290216502AS 29 .582545265 SI02HL 1.56028895 90 .858
29 -233.966894232 8 .147720844 HE193 0.99971200 95 .596
30 522.113109615 10 .822356285 SI02HL 1.56028895 105 .238
31 222.998461180 27 .042016978 HE193 0.99971200 107 .333
32 2251.467600263 35 .217263658 SI02HL 1.56028895 108 .549 33 -318.234735893 15.214352753 HEI93 '0.99971200 112.335
34 299 .639B63140 37, .156335602 SI02HL 1, .56028895 130, .529
35 1055 .209248614AS 29 .625427714 HE193 0 .99971200 130 .316
36 0 .000000000 22, .504097096 HE193 0, .99971200 131, .300
37 354, .29B294212 22, .700275111 SI02HL 1, .56028895 139. .703
38 238 .221108961 17 .302866825 HE193 0, .99971200 137 .684
39 350 .361961049 48. .201285092 SI02HL 1, .5602B895 138 .456
40 -830, .182582275AS 8, .553043233 HE193 0, .99971200 138 .929
41 451, .152609432 53, .706250069 SI02HL 1, .56028895 138 .872
42 -529, .782985076 2, .080488115 HE193 0. .99971200 137, .286
43 131 .667284180 '50, .882399067 SI02HL 1, .56028895 10B, .852
44 197, .437143555 1, .961444642 HE193 ] 0. .99971200 96 . .477
45 128. .459992965 50, .613576955 SI02HL 1, •56028B95 87, .931
46 248, .183667913 8, ,856875224 HE193 0. ,99971200 67, .641
47 466. .791B6B973AS 40. ,667719468 SI02HL 1. .5602BB9S 63, .096
48 942, .984808834 2. ,803249134 HE193 0. ,99971200 37, .242
49 0. ,000000000 10. ooooooooo SI02HL 1. ,56028895 33. .823
50 0. ,000000000 8. ,020000000 L710 0. ,99998200 27. .268
51 0. ,000000000 0. ooooooooo 1. ,00000000 14. ,021
ASPHAERISCHE KONSTANTEN
FLAECHE NR. 2
K 0.0000
Cl 9.00497722e-008
C2 -2.96761245e-012
C3 2.42426411e-016
C4 -1.29024008e-020
C5 -2.03172826e-024
C6 5.50185705e-028
C7 -3.8?197744e-032
C8 o.obooooooe+ooo
C9 0.00000000e+000
FLAECHE NR. 4
K 0.0000
Cl 3.65969250e-008
C2 -1.92473151e-012
C3 -1.3266ΞB03e-016
C4 5.69164703e-021
CΞ 1.31041719e-024
C6 -1.53054324e-028
C7 9.97324868e-033
C8 o.ooooooooe+ooo
C9 0.00000000e+000
FLAECHE NR. 23
K 0. 0000
Cl -1. 279B9150e-008
C2 -3. ,BB749373e-012
C3 -2. ,51584504e-016
C4 -8. ,45723879e-021
C5 -7, ,11343179e-024
C6 1, ,64378151e-027
C7 -2, ,17615886e-031
C8 0, ,00000000e+000
C9 0, ,00000000e+000
FLAECHE NR. 28
K 0 .0000
Cl -1 .03153490e-008
C2 6 .25910971e-013
C3 5. .45981131e-01B
C4 9 .75498051e-022
C5 -1 .22736867e-025
C6 1 .17406737e-029
C7 -5 .B1094482e-034 CB 0.00000000e+000
C9 O.00000000e+O00
FLAECHE NR. 35
K 0.0000
Cl 5.28759000e-010
C2 1.518064966-014
C3 -1.87647477e-01B
C4 -1.08308029e-023
C5 -9.74605211e-028
C6 6.03242407e-032
C7 -5.09796873e-037
CB 0.00000000e+000
C9 0.00000000e+000
FLAECHE NR. 40
K 0.0000
Cl 1.83813349e-010
C2 3.19321009e-015
C3 2.04249906e-019
C4 6.57531812e-024
C5 -2.09352644e-028
C6 1.60987553e-033
C7 -2.90466412e-037
C8 O.OOOOOOOOe+OOO
C9 0.00000000e+000
FLAECHE NR. 47
K 0.0000
Cl -3.99800644e-008
C2 4.05930779e-012
C3 1.42362123e-016
C4 -3.12437665e-020
C5 -5.49454012e-024
C6 l.B4641101e-027
C7 -1.545S5739e-031
C8 0.00000000e+000
C9 0.00000000e+000
In den Figuren 3a-3c ist die sphärische Aberration, der Astigmatismus und die Verzeichnung wie bereits anhand von Figur 2a-2c beschrieben dargestellt.
Die genauen Linsendaten zu der in Figur 5 gezeigten Linsenanordnung sind aus Tabelle 5 zu entnehmen.
Tabelle 4
crl5_l
BRECHZAHL 1/2 FREIER FLAECHE RADIEN DICKEN GLAΞSER 157.6 nm DURCHMESSER 0 0.000000000 29.091200000 N2 1.00000300 46 ,.170
1 0.000000000 0.050360271 N2 1.00000300 52 , .536
2 -2,7403.121890329 5.400000000 CAF2HL 1.55848720 52 , .536
3 128.789046652 8.167826938 N2 1.00000300 55 .162
4 464.48182B994AS 6.543292509 CAF2HL 1.55B48720 56, .851
5 250.689303807 19.604013184 N2 1.00000300 58 , .208
6 -223.266447510AS 50.327605169 CAF2HL 1.55848720 59, .504
7 -141.012345914 0.896857450 N2 1.00000300 77, .821
8 ■ -492.125790935 ■ 39.701273305 CAF2HL 1.5584*8720 84. ,708
9 -185.333140083 - 1.620061449 N2 1.00000300 91, .930 0 -4917.002616489AS 36.075373094 CAF2HL 1.55848720 96 . ,618 1 . -224.975412381 17.499455417 N2 1.00000300 98. .628 2 -249.735183706 31.779981213 CAF2HL 1.55848720 97. .516 3 -169.147720350 1.273004772 N2 1.00000300 99 . ,721 4 131.492053134 36.312876809 CAF2HL 1.55848720 83. ,705 5 1183.761281348 0.820000000 N2 1.00000300 79. 822 6 446.400836562 6.793752445 CAF2HL 1.55848720 76. 456 7 80.708201634 6.438487413 N2 1.00000300 62. ,135 8 88.076542641 28.609450919 . CAF2HL 1.55848720 61. 689 9 103.290384365 24.140118330 N2 1.00000300 53. 717 0 -214.410142174 6.400000000 CÄF2HL 1.55848720 , 52. 881 1 166.705978193AS 25.336749078 N2 1.00000300 50. 734 2 -86.759432429 6.718880984 CAF2H ' 1.55848720 50. 602 3 -895.255217870 20.208808365 N2 1.00000300 55. 126 4 -94.182592644 7.167405034 CAF2HL 1.55848720 56. 136 5 -199.256306511 6.787427549 N2 1.00000300 63. 043 6 -257.348011065 42.358250101 CAF2HL 1.55848720 67. 198 7 -158.070327885 0.915908375 N2 1.00000300 79. ,706 8 -536.887928001 21.844348944 CAF2HL 1.55848720 84. ,997 9 -205.950312449 2.162149307 N2 1.00000300 87,. .472 0 -1B45.287959821AS 27.220459982 CAF2HL 1.55848720 90. .588 1 -211.608710551 29.606451754 N2 1.00000300 91. .877 2 -183.434679441 7.418912892 CAF2HL 1.55848720 90. ,562 3 240.98B713790 8.623094130 N2 1.00000300 99, .368 4 286.B16486745 50.566486028 CAF2HL 1.55848720 104. .285 5 -278.974234663 3.401812568 N2 1.00000300 106, .263 6 272.985081433 35.883815357 CAF2HL 1.55848720 110, .387 7 -1204.561658666AS 29.820606892 N2 1.00000300 109, .520 8 -205.963439341 9.589085190 CAF2HL 1.55848720 108. .972 9 -486.467956109 23.105163626 N2 1.00000300 111, .820 0 0. OOOOOOOOO -10.633177329 N2 1.00000300 113. .000 1 520.246306609AS 6.400000000 CÄF2HL 1.55848720 113 , .282
42 210.835739690 9.380949546 N2 1.00000300 113 , .819
43 249.610235127 72.66105685B CAF2HL 1.55848720 116 .2B3
44 -368.944153695 27.617582877 N2 1.00000300 118, .001
45 194.502406707AS 40.994994726 CAF2HL 1.55848720 111 .496
46 2325.171902613 0.959912478 N2 1.00000300 108 .992
47 120.131289340 32.489921154 CAF2HL 1.55848720 91 .646
48 219.061234205 4.330384877 N2 1.00000300 86 .556
49 148.308513415 23.818571196 CAF2HL 1.55848720 79 .114
50 203.105155430 0.826871809 N2 1.00000300 69 .446
51 . 136.769195322 19.729069306 ' CAF2HL 1.55B4B720 ' 64 .538
52 210.657871509 6.502120434 N2 1.00000300 55 .515
53 376.287223054 15.336785456 CAF2HL 1.55848720. 51 .778
54 183.572236231 4.060877180 N2 1.00000300 40 .084
55 181.243374040 16.948210271 CAF2HL 1.55848720 36 .115
56 426.075165306 1.398093981 N2 1.00000300 26 .107
57 0.000000000 2.400024000 CAF2HL 1.55848720 25 .121
58 0.000000000 7.272800000 N2 1.00000300 23 .545
59 0.000000000 q. ooooooooo N2 1.00000300 11 .543
60 0.000000000 0.000000000 .1.00000000 11 .543
ASPHAERISCHE KONSTANTEN
FLAECHE NR. 4
K 0.0000
Cl 3.68947301e-007
C2 -2.07010320e-011
C3 1.8044BB93e-015 C4 -2 .02024724e-019
C5 1. 06591750e- 023
C6 8 .66812157e- 027
C7 - 1 .28036020e-030
C8 0. 00000000e+000
C9 0 . 00000000e+000
FLAECHE NR. 6
K 0.0000
Cl -1.90456699e-007
C2 7.09276542e-012
C3 -9.42039479e-016
C4 9.60030375e-020
C5 -4.B1313543e-023
C6 1.26016542e-026
C7 -2..12906900e-030
C8 0.00000000e+000
C9 O.00000000e+O00
FLAECHE NR. 10
K 0.0000
Cl 1.24881874e-009
C2 -7.54632592e-013
C3 9.59548418e-018
C4 3.61424148e-022
C5 4.66204361e-026
C6 -5.1B069750e-030
C7 6.76055535e-035
C8 0.00000000e+000
C9 O.00000000e+000
FLAECHE NR. 21
K 0.0000
Cl -1.7B4S8549e-007
C2 -5.04642691e-012
C3 -9.31857452e-016
C4 2.412B5214e-019
C5 -1.68512636e-022
C6 5.20287108e-026
C7 -7.17032999e-030
CB 0.00000000e+000
C9 0.00000000e+000
FLAECHE NR. 30
K 0. ,0000
Cl -1. ,34161725e-00B
C2 8, ,16970893e-014
C3 -3. ,14061744e-018
C4 1, ,03237892e-021
C5 -1, .84717130e-025
C5 1, ,87170281e-029
C7 -7. .93751880e-034
CB 0. .00000000e+000
C9 0, . OOOOOOOOe+OOO
FLAECHE NR. 37
K 0, .0000
Cl 7. .99945890e-009
C2 -1, .42636B34Θ-013
C3 -2, .69989142e-019
C4 -5, ,15246689e-023
C5 -4. ,B3470243e-027
C6 2, ,584786226-031
C7 -7. ,74164486e-036
CB 0, .00000000e+000
C9 0, .00000000e+000 FLAECHE NR. 41
K 0 .0000
Cl -4, .43364674e-009
C2 1 .10741132e-014
C3 3, .55153523e-018
C4 -4. .85210428e-024
C5 2, .35336B26e-027
C6 -1 .03253172e-031
C7 4, ,79327883e-036
C8 0, .O0000000e+000
C9 0, .00000O00e+000
FLAECHE NR. 45
K 0, .0000
Cl -1, ,18399241e-009
C2 -1. ,58492270e-013
C3 -1. ,27975554e-018
C4 -1, ,10519991e-022
C5 2. ,24373710e-027
C6 ~9, ,77335519e-032
C7 -5. ,74659204e-036
CB 0. ,00000000e+000
C9 0. ,00000000e+000
Die Abbildungsgüte bezüglich sphärischer Aberration, Astigmatismus und Verzeichnung sind in den Figuren 4a-4c dargestellt.
Die genauen Linsendaten zu der in Figur 5 gezeigten Linsenanordnung sind aus Tabelle 5 zu entnehmen.
Tabelle 5 crvll_ _10
BRECHZAHL 1/2 FREIER
FLAECI __. RADIEN DICKEN GLAESER 193.304nm DURCHMESSER
0 0. OOOOOOOOO 32. ooooooooo LUi"lV193 1.00030168 56.080
1 0. OOOOOOOOO 0. ooooooooo LUFTV193 1.00030168 53.258
2 -1268. 338705527AS 11. 478260873 SI02 1.56078570 63.258
3 267. 538117540 9. .451447213 N2VP950 1.00029966 65.916
4 600. .021131212AS 11. .500000000 SI02V 1.56078570 67.578
5 326. ,741991833 28. ,091498045 N2VP950 1.00029966 70.893
6 -170. ,788507842 51. .999135922 SI02V 1.56078570 72.910
7 -330. .329053389 1, ,000000000 N2VP950 1.00029966 99.226
8 -1068. .525517497 19, .979625145 SI02V 1.56078570 105.942
9 -387. .645501150 1. .ooooooooo N2VP 50 1.00029966 109.709
10 -704, .568730532AS 42, .420550373 SI02V 1.56078570 113.373
11 -222, .016287024 1 .ooooooooo N2VP950 1.00029956 119.118
12 1941, .257887377 52, .ooooooooo SI02V 1.55078570 126.942
13 -469, .372066662 3 .397916884 N2VP950 1.00029966 129.896
14 -4169, .926875111 52 .ooooooooo SI02V. 1.5607B570 129.822
15 -295 .686690038 1 .ooooooooo N2VP950 1.00029966 130.032
16 159. .750938231 51 .964442356 SI02V 1.56078570 108.529
17 376 .268786259 1 .ooooooooo N2VP950 1.00029966 97.568
18 307 .447954470 51 .969227450 SI02V 1.56078570 95.447
19 116 .498974152 31 .898186858 N2VP950 1.00029966 65.905
20 -288 .097826092 11 .500000000 SI02V 1.56078570 64.079
21 336 .397895010AS 37 .099202165 N2VP950 1.00029966 60.053
22 -106 .320408238 11 .500000000 SI02V 1.56078570 58.050
23 187 .789793825 26 .304322413 N2VP950 1.00029966 63.753
24 -209 .237460909 43 .406094751 SI02V 1.56078570 66.044 25 -216.929048076 1.ooooooooo N2VP950 1.00029965 82.840
26 1164 .410193579AS 23 .557441112 SI02V 1 .56078570 92 .682
27 -329 .001203575 1 .ooooooooo N2VP950 1 .00029966 9 .132
28 2521 .852603301 17 .217391310 SI02V 1, .56078570 97 .558
29 228 .980-652217 28 .589394523 N2VP950 1, .00029966 102 .117
30 27241 .479244975 36 .454077888 SI02V 1, .56078570 105 .084
31 -230 .122916051 2 .961510546 N2VP950 1. .00029965 108 .362
32 270 .92511B464 38 .714553103 SI02V 1, .56078570, 12 .500
33 763 .68B485160AS 35 .762711758 N2VP 50 1, ,00029966 . 123 .913
34 0. .ooooooooo 10 .2983B4083 N2VP950 1, .00029966 124 .951
35 305, .539519440 25, .677979598 SI02V • 1, .56078570 131, .506
36 216, .211099364 24, .769069040 N2VP950 1. .00029966 128, .830
37 382, .860100127 50, .973600009 SI02V 1. ,56078570 130. .799
38 -694, .560467360AS 5, .723480057 N2VP950 1. ,00029966 131. .956
39 325, .403745866 49, ,444778918 SI02V 1. .5607857*0 131. .961
40 -731. .949523671 1. ,000000000 N2VP950 1. ,00029965 130, .439
41 129. .520874552 46, ,268119852 SI02V 1. .5607B570 105, .425
42 252. .827890722 1. .OOOOOOOOO N2VP950 1. ,00029966 97. ,727
43 136. .184798222. 47. .793950778 SI02V 1. 56078570 87. ,092
44 291. ,218349738 8. ,959947251 N2VP950 1. 00029966 67. ,069
45 1284. 867832510AS 36. .652815450 SI02V 1. 56D7B570 62. ,759
46 1021. ,772390757 3. 210870937 N2VP950 1. 00029966 38. ,108
47 0. ooooooooo 10. OOOOOOOOO SI02V 1. 56078570 33. ,939
4B 0. ,000000000 8. ,000000000 LTJFTV193 1. 00030168 27. ,350
49 0. ,000000000 0. OOOOOOOOO 1. 00000000 14. ,020
ASPHAERISCHE KONSTANTEN FLAECHE NR . 2
K .0. .0000
Cl 1. .67561866e-007
C2 -2. ,12938922e-011
C3 1. ,69680309e-015
C4 -1, ,98132595e-019
C5 7, ,57848219e-024
C6 -1, ,91694592e-028
C7 7, ,31348529e-034
C8 0. .00000000e+000
C9 0. .QOOOOOOOe+000
FLAECHE NR. 4
K 0. .0000
Cl -7, .60044675e-008
C2 1 .17354453e-011
C3 -1 .30436139e-015
C4 1 .52774359e-019
C5 -6 .11275102e-024
C6 2 .17798015e-028
C7 -4 ,32254321e-033
C8 0 .00000000e+000
C9 0 .00000000e+000
FLAECHE NR . 10
K 0, ,0000
Cl -1, ,34208180e-009
C2 2, ,87384909e-013
C3 -2, ;97929643e-018
C4 -1, .89342955e-022
C5 -5. .11583717e-027
C5 1, .55819935e-031
C7 -1, .40446770e-038
CB 0 .00000000e+000
C9 0, .00000000e+000
FLAECHE NR. 21
K 0 .0000
Cl 1 .83877356e-008 C2 2,.86899242e-012
C3 3. ,19518028e-017
C4 -7, .1905298Se-020
C5 1, .13466451e-023
C6 -1, .77192399e-027
C7 -1, .01670692e-031
C8 0, .00000000e+000
C9 0 .000000006+000
FLAECHE NR . 26
K 0, .0000
Cl -1 .01472536e-008
C2 1, .33731219e-012
C3 -5 .43150945e-018
C4 4, .71557114e-023
C5 -6, ,64341291e-026
C6 -3, ,91519695e-031
C7 6. .1663403Be-035
C8 0, .00000000e+000
C9 0, .00000000e+000
FLAECHE NR . 33
K 0. ,0000
Cl 2. ,13285827e-009
C2 -5. ,84623813e-014
Figure imgf000021_0001
C4 1, .10894118e-023
C5 -1 .75615181e-027
C6 1 .54014495e-031
C7 -3 .58350869e-036
C8 0 .00000000e+000
C9 0 .O0000000e+000
FLAECHE NR. 38
K 0. 0000
Cl -4. 16611922e-009
C2 4. 2861535'3e-014
C3 -6. 79159744e-019
C4 -2. 60455674e-023
C5 1. 06709496e-027
C6 -7. 049B0983e-032
C7 3. .97315562e-037
CB 0. .00000000e+000
C9 0. .00000000e+000
FLAECHE NR. 45
K 0 .0000
Cl -1 .10987995e-008
C2 6 -74554563e-012
C3 -6 .08182492e-016
C4 2 .40267725e-020
C5 -2 .12B67221e-024
C6 6 .08391245e-028
C7 -5 .81691443e-032
CB 0 .OOOOOOOOe+000
C9 0 .O0000000e+Ö00
Die genauen Linsendaten zu der in Figur 6 gezeigten Linsenanordnung sind aus Tabelle 6 zu entnehmen. Tabelle 6 crl5f_ _cafl
BRECHZAHL 1/2 FREIER
FLAECHE RADIEN DICKEN GLAESER 193.304nm DURCHMESSER
0 0. OOOOOOOOO 31. OOOOOOOOO L710 0.99998200 56. ,080
1 0. OOOOOOOOO 1. OOOOOOOOO HE193 0.99971200 62. 856
2 324. 818247939AS 8. 109025357 SI02HL 1.56028895 64. ,645
3 219. 117611826 5. 509660348 HE193 0.99971200 65. 135
4 289. 200300616AS 7. OOOOOOOOO SI02HL 1.56028895 66. 381
5 227. 856104705 17. 243048254 HE193 0.99971200 66. 734
6 -377. 649070374 7. OOOOOOOOO SI02HL 1.5602B895 67. 059
.7 387. 641770903 30. 796463985 HE1S3 0.99971200 71. 597
8 -125. 714248975 54. 975207900 SI02HL 1.56028895 72. 277
9 - -176. 955529980 ■ 1. OOOOOOOOO HE193- 0.99971200 100. 007
10 -1297. 534B96140 31. 636302227 SI02HL 1.56028895 114. 600
11 -320. 961128376 1. OOOOOOOOO HE193 0.99971200 119. 511
12 936. 880173082 44. 820142873 SI02ΞL 1.5602B895 130. 745
13 -328. 618771838 3. 088384233 HE193 0.99971200 131. 968
14 317. 146645669 32. 169396486 SI02HL ' 1.56028895 131. 861
15 1880. 972057190 78. 800003484 HE193 0.99971200 130. 569
16 778. ,616134901 21. 855706412 SI02HL 1.56028895 112. ,867
17 -1344. .B92951770 2. 1205848B2 HE193 0.99971200 111. ,151
1B 184. ,194583638 26. 864832492 SI02HL 1.56028895 98. ,404.
19 117. 923993472 8. ,944323916 HE193 0.99971200 83, ,450
20 122. ,599592610 50. ,092138884 SI02HL 1.56028895 82. ,216
21 123. ,591716800 52, ,677842672 HE193 0.99971200 66. ,129
22. -133, .413687632 7. .OOOOOOOOO SI02HL 1.56028895 59. ,894
23 201. .636820203 31. .091699285 HE193 0.99971200 59. .866
24 -117. ,12-2170355 22. .371886041 SI02HL 1.5602B895 60. ,770
25 271. .237822926 18, .190270939 HE193 0.99971200 77. .184
26 -828, .307583707 23. .724292231 SI02HL 1.56028895 80. .324
27 -217. .730531706 1, .629365175 HE193 0.99971200 86, .028
28 24863, .715253700 23, .891029762 SI02HL 1.56028895 99, .050
29 -340. .154546232 1, .OOOOOOOOO HE193 0.99971200 102 , ..080
30 499, .177180862 33, .230036742 SI02HL 1.56028895 114, .528
31 -613, .861853920 4, .746303203 HE193 0.99971200 115. .894
32 -515, .657687359AS 7 .OOOOOOOOO SI02HL 1.56028B95 116 , .027
33 -2799 .133265700 28 .850953586 HE193 0.99971200 11 .520
34 -374 .801866679 25 .903304270 SI02HL 1.56028895 122 .380
35 -229 .064488423 .13079.8012 HE193 0.99971200 1.25 .091
36 0 .ooooooooo 4 .590309473 HE193 0.99971200 129 .531
37 0 .ooooooooo -1 .761443244 HE193 0.99971200 129 .976
38 480 .603781326 23 .8125B6743 SI02HL 1.56028895 134 .088
39 259 .375898088 8 .237844188 HE193 0.99971200 135 .910
40 312 .231631384 55 .513942588 SI02HL 1.56028895 136 .609
41 -596 .581070286 4 .943686708 HE193 0.99971200 137 .420
42 371 .538894387 38 .328387113 SI02HL i.56028895 138 .683
43 -20570 .555487000AS 2 .057897803 HEI93 0.99971200 137 .171
44 186 .804638892 55 .OOOOOOOOO SI02HL 1.56028895 127 .714
45 371 .539070225 13 .149085685 HE193 0.99971200 117 .755
46 136 .294111489 54 .999981718 SI02HL 1.55028895 99 .988
47 527 .773767013AS 1 .OOOOOOOOO HE193 0.99971200 86 .981
48 170 .379719961 35 .449588232 SI02HL 1.56028895 76 .078
49 292 .013444451AS 7 .226713258 HE193 0.99971200 57 .583
50 0 .ooooooooo 27 .238216082 CAF2HL' 1.50143563 54 .452
51 0 .ooooooooo 1 .500000000 HE193 0.99971200 35 .406
52 0 .OOOOOOOOO 10 .OOOOOOOOO SI02HL 1.56028895 32 ^871
53 0 .OOOOOOOOO 7 .250000000 L710 0.99998200 26 .261
54 0 .OOOOOOOOO 0 .OOOOOOOOO 1.00000000 14 .020
ASPHAERISCHE KONSTANTEN FLAECHE NR. 2
K -1 .8845
Cl 5 .29821153e-008
C2 -4 -43279002e-012
C3 1 .28707472e-015
C4 -2 .39343289e-019
C5 1 .99234178e-023
C6 2 .46399483e-027
C7 -4 .33709316e-031
CB 0 .00000000e+000
C9 0 .00000000e+000
FLAECHE NR. 4
K 0, .1824
Cl 7, .99717816e-0OB
C2 3, .44235754e-013
C3 -1, ,08433322e-015
C4 2. .49428499e-019
C5 -4, ,04253B89e-023
C6 2, .92251162e-027
C7 -2, .35276355e-032
C8 0, .OO'OOOOOOe+OOO
C9 0, .00O000OOe+000
FLAECHE NR. 32
K 0. .0000
Cl -1, ,27754362e-008
C2 3. ,02764844e-013
C3 1, ,00750526e-018
C4 -6, .13679336e-023
C5 4, .3B665224ε-027
C6 -3. .402502B6e-031
C7 1 .46968938e-035
CB 0 .00000000e+000
C9 0 •OOOOOOOOe+OOO
FLAECHE NR . 43
K 0 0000
Cl 1 576856 63 e- 009
C2 1 02156359e- 013
C3 -1 70007813e- 018
C4' - -22 . 26737767e- 023
C5 2 2 B4920826- 027
C6 -1 04091200e- 031
C7 2 34019985e- 036
C8 0 00000000e+000
C9 0 00000000e+000
FLAECHE NR. 47
K 6, ,8784
Cl 1, ,53142434e-008
C2 -3. ,32257012e-013
C3 8, ,40396973e-017
C4 . -1. .22248965e-020
C5 1 .29284065e-024
C6 -8 .69096802e-029
C7 1 .99745782e-033
CB 0 .00000000e+000
C9 0 .00000000e+000
FLAECHE NR. 49
K 0 .0000
Cl -2 .17885424e-008
C2 -4 .43299434e-013 C3 - 1 .44194471e-015
C4 2 . 99216702e-019
C5 - 8 . 06687258e- 023
C6 1 . 77963946e-026
C7 -1 .41052000e- 030
C8 0 . 00000000e+000
C9 0 . 00000000e+000
Die genauen Linsendaten zu der in Figur 7 gezeigten Linsenanordnung sind aus Tabelle 7 zu entnehmen.
TABELLE 7 crlδf
BRECHZAHL 1/2 FREIER
FLAEC -HE RADIEN DICKEN GLAESER 193.304πtll DURCHMESSER
0 0. OOOOOOOOO 31. ooooooooo L710 0.99998200 56. 080
1 0. ooooooooo 1. ooooooooo HE193 0.99971200 62. 856
2 324. B18247939AS 8. 109025357 SI02H , 1.56028895 64. 646
3 219. 117611826 5. 508087220 HE193 0.99971200 65. 135
4 289. 200300616AS 7. ooooooooo SI02HL 1.56028895 66. 381
5 227. 856104705 17. 243070148 HEI93 0.99971200 66. 734
6 -377. 649070374 7. ,000000000 SI02HL 1.56028895 67. ,059
7 387. 641770903 30. ,765544016 HE193 0.99971200 71. ,598
8 -125. .714248975 54. .975207900 SI02HL 1.56028895 72. ,265
9 -176. 955529980 1. .ooooooooo HE193 0.99971200 99. ,993
10 -1297. 534896140 31. .636302227 SI02HL 1.56028895 114. ,582
11 -320. 961128376 1. .ooooooooo HE193 0.99971200 119. .494
12 936. 880173082 44. ,820142873 SI02HL 1.56028895 130. ,725
13 -328. .618771838 3. ,492277374 HE193 0.99971200 131, .951
14 317. 146646669 32, ,169396486 SI02HL 1.56028895 131, .848
15 1B80. ,972057190 78, .466159550 HE193 0.99971200 130. .555
16 778. .616134901 21. .855706412 SI02HL 1.56028895 112. .930
17 -1344. .892951770 1, .631223556 HE193 0.99971200 111, .218
18 184. .194583638 26, .864832492 SI02HL 1.56028895 98, .601
19 117, .923993472 8, .738538132 HE193 0.99971200 83. .612
20 122. .599592610 50 .09213B884 SI02HL 1.56028895 B2, .419
21 123. .591716B00 53 .386697866 HE193 0.99971200 66, .332
22 -133. .413687632 7 .ooooooooo SI02HL 1.55028895 59. .919
23 201, .636820203 31 .123951016 HE193 0.99971200 59 .900
24 -117. .122170355 22 .371886041 SI02HL 1.56028895 60 .806
25 271 .237822926 18 .548517752 HE193 0.99971200 77 .260
26. -B28 .307583.707 23 .724292231 SI02HL 1.56028895 80 .717
27 -217 .730531706 1- .'ooooooooo HEI93 0.99971200 86 .373
28 24863 .715253700 23 .891029762 SI02HL 1.56028895 99 .099
29 -340 .154546232 1 .ooooooooo HE193 0.99971200 102 .128
30 499 .177180862 33 .230036742 SI02HL 1.56028895 114 .615
31 -613 .861853920 4 .746303203 HE193 0.99971200 115 .978
32 -515 .657687359AS 7 .ooooooooo SI02HL 1.55028895 116 .111
33 -2799 .133265700 28 .850953586 HE193 0.99971200 119 .614
34 -374 .801866579 25 .903304270 SI02HL 1.56028895 122 .472
35 -229 ,064488423 3 .130798012 HE193 0.99971200 125 .181
36 0 .ooooooooo 5 .173121288 HE193 0.99971200 129 .642
37 0 .ooooooooo 1 .ooooooooo HE193 0.99971200 130 .135
38 474 .346153969 24 .214285976 SI02HL 1.56028895 134 .997
39 257 .158432536 8 .053951335 HE193 0.99971200 136 .742
40 306 .376423539 57 .804293441 SI02HL 1.56028895 137 .456
41 -562 .895510400 1 .OOOOOOOOO HΞ193 0.99971200 138 .239
42 372 .293287787 33 .212051475 SI02HL 1.56028895 138 .770 43 12328,.532325400AS 1.1065B7587 HE193 0,.99971200 137,.675
44 193, .144605329 54, ,576878288 SI02HL 1, .56028895 128, .685
45 379, .786426378 16, .773776607 HE193 0, .99971200 118, .623
46 134, .855937913 55. ,000000000 SI02HL 1, .56028895 99, .496
47 536, .515306116AS 1, ,080464261 HE193 0, .99971200 86, .795
48 173, .206435013 35, .323967088 SI02HL 1. .56028895 76. .055
49 299 , 060830919AS 6, .56345B346 * HE193 0. .99971200 57. .738
5*0 0, .000000.000 28, .341741198 SI02HL 1, .56028895 55, .402
51 0, .ooooooooo 1, .500000000 HE193 0, .99971200 36, .669
52 0, .ooooooooo 10, .ooooooooo SI02HL 1. .56028895 34. ,134
53 0, .ooooooooo 7, ,999999986 L710 0. .99998200 27. .525
54 0, .ooooooooo 0, ,000000000 1. .00000000 14, .020
ASPHAERISCHE KONSTANTEN
FLAECHE NR. 2 '
K -1.8845
Cl 5.29821153e-008
C2 -4.43279002e-012
C3 1.2B707472e-015
C4 -2.39343289e-019
C5 1.9923417Be-023
C6 2.46399483e-027
C7 -4.337093166-031
C8 0.00000000e+000
C9 0.00000000e+000
FLAECHE NR. 4
K 0.1824
Cl 7.99717816e-008
C2 3.442357546-013
C3 -l.O8433322e-015
C4 2.49428499e-019
C5 -4.04263889e-023
C6 2.92251162e-027
C7 -2.35276355e-032
C8 0.00000000e+000
C9 0.00000000e+000
FLAECHE NR. 32
K 0.0000
Cl -1.27754362e-008
C2 3.02764844e-013
C3 1.00750526e-018
C4 -6.13679336e-023
C5 4.3B665224e-027
C6 -3.40250286e-031
C7 1.46968938e-035
C8 0.00000000e+000
C9 0.00000000e+000
FLAECHE NR. 43
K 0.0000
Cl 1.36549730e-009
C2 1.02306815e-013
C3 -1.35739896e-018
C4 -1.99345093e-023
C5 1.59224599e-027
C6 -6.7588225Be-032
C7 1.39559450e-036
C8 0.00000000e+000
C9 0.00000000e+000
FLAECHE NR. 47
K 7.2953 Cl 1 61057750e-008
C2 -5 05815963e-013
C3 8 8.84032736e-017
C4 --11.119B1147e-020
C5 1 140B5256e-024
C6 -7 433B7672e-029
C7 1 41113763e-033
C8 0 00000000e+000
C9 0 0.00000000e+000
FLAECHE NR. 49
K 0, .0000
Cl -3, .00219975e-008
C2 -1, .20927625e-013
C3 -1, .49865939e-015
C4 3, .27847128e-019
C5 -9, .19939235e-023
C6 2. ,08B07050e-026
C7 -1. ,7143536Se-030
CB 0. .00000000e+000
C9 0. .OOOOOOOOe+000
Die genauen Linsendaten zu der in Figur 8 gezeigten Lmsenanordnung sind aus Tabelle 8 zu entnehmen.
TABELLE 8 hna_ _28_NA09
BRECHZAHL 1/2 FREIER
FLAECHE RADIEN DICKEN GLAESER 193.304nra DURCHMESSER
0 0. ooooooooo 34. 598670703 LUK Vigs 1.00030168 56. 080
1 0. ooooooooo 5. 480144837 LUFTV193 1.00030168 64. 122
2 6478. 659586000AS 10. 8435B5909 SI02V 1.56078570 65. 807
3 -1354. 203087320 2. 423172128 N2VP950 1.00029966 66. 705
4 -1087. 803716660 9. 621961389 SI02V 1.56078570 67. 029
5 1B3. 366808766 2. 746190506 N2VP950 1.00029966 70. 249
6 206. 367008633AS 8. 085673558 SI02V 1.56078570 71. 462
7 193. 387116101 36. 794320510 N2VP950 1.00029966 72. 483
B -140. ,799169619 50. ,095071588 SI02V 1.56078570 73. .484
9 -373. ,463518266 1. .000055376 N2VP950 1.00029966 103. .736
10 -561, .45280648B 22, ,561578822 SI02V 1.56078570 107. ,508
11 -263. .612680429 1. ,000756794 N2VP950 1.00029966 111. .562
12 -49392. .564837400AS 53. .841314203 SI02V 1.56078570 124. .515
13 -266. .35900504B 15, .247580669 N2VP950 1.00029966 130, .728
14 840 .618794866 29, .011390428 SI02V 1.56078570 141. .816
15 -926 .722502535 1 .005611320 N2VP950 1.00029966 142. .120
16 2732 .904696180 38 .725041529 SI02V 1.56078570 141. .999
17 -356 .203262494AS 2 .005496104 N2VP950 1.00029966 141, .858
18 318 .151930355 16 .617316424 SI02V 1.56078570 12 .740
19 513 .819497301 1 .562497532 N2VP950 1.00029966 122 .663
20 171 .455700974 30 .277693574 SI02V 1.56078570 111 .385
21 154 .841382726 1 .064445848 N2VP950 1.00029966 98 .077
22 127 .756841801 43 .191494812 ΞI02V 1.56078570 94 .695
23 104 .271940246 52 .476004091 N2VP950 1.00029966 74 .378
24 -2B3 .692700248 8 .000000007 SI02V 1.56078570 68 .565
25 242 .925344027 39 .949819872 N2VP950 1.00029966 64 .404
26 -117 .414778719 8 .181191942 SI02V 1.56078570 63 .037
27 197 .144513187 26 .431530314 N2VP950 1.00029966 69 .190
28 -244 .477949570 44 .225451360 SI02V 1.56078570 71 .085
29 -230 .356430065 1 .409104251 N2VP950 1.00029966 88 .427
30 1472 .096750620AS 21 .137736519 SI02V 1.56078570 99 .340
31 -450 .7152834B4 1 .259333876 N2VP950 1.00029966 101 .126 32 3573,.378947270 8.391191259 SI02V 1.56078570 105,.206
33 7695, .066698120 1. .258010005 N2VP950 1, .00029966 106, .474
34 1029, .326174920 8. .390466230 SI02V 1, .56078570 108, .186
35 243 .058844043 29 .823514356 N2VP950 1 .00029966 " 112, .152
36 29057, .985214iθO 38 .911793339 SI02V 1, .56078570 114, .058
37 -232 .205630821 1, .000000003. N2VP950 1, .00029965 11*6, .928
38 270, .144711058 55, .B50950401 SI02V 1, .56078570 139. .162
39 1183 .955771760AS 20 .935175304 N2VP950 1 .00029966 138, .048
40 0 .ooooooooo -2 .958030543 N2VP950 1 .00029966 138, .244
41 368 .838236812 22 .472409726 SI02V 1, .56078570 141, .049
42 220, .05B626B92 26, .974361640 N2VP950 1. .00029966 137. .707
43 355. .728536436 58, .022036072 SI02V 1 .56078570 i;o, .923
44 -861, .478Ö61183AS 4, .104303800 N2VP950 1, .00029966 142, .103
45 420, .713002153 55, .049896341 SI02V 1, .56078570 142, .502
46 -478. .998238339 1. ,000000000 N2VP950 1, .00029966 141. .431
47 122. .579574949 4B. .569395230 SI02V 1. .56078570 106, .623
48 223. .61236435SAS 1, .OOOOOOOOO N2VP950 1, .00029966 99. .428
49 132. .028746911 49. .487311459 SI02V 1, .56078570 8B. .176
50 247. .223594320 10. ,595001724 N2VP950 1, .00029966 65. .249
51 .712, .954951376AS 8. .355490390 SI02V 1. .56078570 57. .430
52 163. .735058824 3. .094306970 N2VP950 1. .00029966 47. .446
53 154. ,368612651 19. ,294967287 SI02V 1, ,56078570 44. ,361
54 677. .158668491 2. ,851896407 N2VP950 1, .00029966 33. .956
55 o; .ooooooooo 10, .ooooooooo SI02V 1. .56078570 29. .686
56 0. ,000000000 4. ,000000000 LUFTV193 1. ,00030168 22. ,559
57 0. .ooooooooo 0. .OOOOOOOOO l". .00000000 14. .020
ASPHAERISCHE KONSTANTEN FLAECHE* NR. 2
K 0. 0000 .
Cl 1. 38277367e-007
C2 -1. B8982133e-011
C3 1. 94899866e-015
C4 -3. .04512613e-019
C5 3. ,31424645e-023
C6 -2. ,70316185e-027
C7 1, ,30470314e-031
C8 0, .00000000e+000
C9 0. .OOOOOOODe+OOO
FLAECHE NR. 6
K 0. .0000
Cl -1. .02654080e-008
C2 1 .22477004e-011
C3 -1 .70638250e-015
C4 2 .48526394e-019
C5 -2 -385B2445e-023
C6 1 .51451580e-027
C7 -6 .30610228e-032
C8 0 .00000000e+000
C9 0 .00000000e+000
FLAECHE NR . 12
K 0. .0000
Cl -3. , 368*70323e-009
C2 1. ,77350477e-013
C3 1. , 19052376e-019
C4 -1, .17127296Θ-022
C5 -9. .25382522e-027
C6 4. .88058037e-031
C7 -1, .327B2815e-035
CB 0. .00000000e+000
C9 0, .00000000e+000
FLAECHE NR . 17 K 0 . 0000 Cl 2.29017476e-010
C2 4.92394931e-014
C3 2.34180010e-019
C4 -2.74433865e-023
C5 B.0293B234e-029
C6 -1.052B2366e-032
C7 -1.44319713e-038
C8 0.00000000e+000
C9 0.00000000e+000
FLAECHE NR. 30
K 0 .0000
Cl -1 .51349530e-008
C2 9 .73999326e-013
C3 8, .62745113e-018
C4 5, .94720340e-022
C5 -4, .71903409e-026
C6 2. . B7654316e-031
C7 4 , ,40822786e-035
C8 0. 00000000e+000
C9 0. 00000000e+000
FLAECHE NR. 39
K 0 00O0
Cl 5 16807B05e-009
C2 --6S.529B6543e-014
C3 -6 91577796e-019
C4 -3 S1532300e-024
C5 -1 38222518e-027
C6 1 06689880e-031
C7 -1 65303231e-036
C8 0 00000000e+000
C9 0 00000000e+000
FLAECHE NR. 44
K 0 .0000
Cl -3, .74086200e-009
C2 9 .09495287e-014
C3 -9, .58269360e-019
C4 2. .46215375e-023
C5 -8, .23397865e-02B
C6 1, .33400957e-032
C7 -5. .95002910e-037
C8 0, .00000000e+000
C9 0, .00000000e+000
FLAECHE NR. 48
K 0, .0000
Cl -2, .07951112e-00g
C2 -3, .247936B4e-014
C3 -4 , .06763809e-018
C4 -4, .85274422e-022
C5 2. .39376432e-027
C6 2. .44680800e-030
C7 -5, .62502628e-035
C8 0. .00000000e+000
C9 0, .00000000e+000
FLAECHE NR. 51
K 0.0000
Cl -6.57065732e-009
C2 2.35659016e-012
C3 -1.23585829e-016
C4 5.34294269e-020
C5 -1.12897797e-023
C6 1.37710849e-027 C7 -1.15055048e-031
C8 0 .O0000000e+O00
C9 0 .OOOOOOOOe+000
Bezugszeichenliste:
101 ProjektionsbeHchtungsanlage
103 Beleuchtungseinrichtung
105 Projektionsobjektiv
107 optische Achse
109 Maske
111 Maskenhafter
113 Bildebene
115 Wafer, Substrat
117 Substrathalter
119 Systemblende
121 Linsenanordnung
123 erster Bauch
125 Taille
127 zweiter Bauch
129 Stelle engste Einschnürung

Claims

Patentansprüche:
1. Refraktives Proj ektionsobj ektiv der Mikrohthographie mit einer numerischen Ap ertur von größer 0,7 bestehend aus einem ersten Bauch, einem zweiten Bauch und einer zwischen den Bäuchen angeordneten Taille, dadurch gekennzeichnet, dass der erste Bauch einen maximalen Durchmesser, mit Dl bezeichnet, aufweist und der zweite Bauch ' einen maximalen Durchmesser, mit D2 bezeichnet, aufweist und es gilt: 0,8 <Dι/D2< l,l.
2. Refraktives Projektionsobjektiv nach Anspruch 1 , dadurch gekennzeichnet, dass für die Verhältnisse der maximalen Durchmesser gilt:
0,9 < Dι/D2 < l,0.
3. Refraktives Projektionsobjektiv, das in Ausbreitungsrichtung des Lichtes. aus einer ersten Linsengruppe mit negativer Brechkraft, aus einer zweiten Linsengruppe mit positiver Brechkraft, aus einer dritten Linsengruppe mit negativer Brechkraft zur Bereitstellung emer Einschnürung des Lichtbündels und aus einer nachfolgenden vierten Linsengruppe mit positiver Brechkraft, aus einer Systemblende mit einer nachfolgenden fünften Linsengruppe, die positive Brechkraft aufweist besteht, dadurch gekennzeichnet, dass vor der Blende und nach der Blende jeweils eine zum Objekt hin durchgebogene Meniskenlinse angeordnet ist.
4. Refraktives Projektionsobjektiv nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass die folgenden Beziehungen gelten:
L * I (NA* 2yb) < 1285.0 wobei L die Baulänge gemessen vom Reticle zum Wafer ist, NA die bildseitige numerische Apertur ist, D AX der maximale Durchmesser des Systems, also Dl oder D2 ist und 2yb der Durchmesser des Bildfeldes ist.
5. Refraktives Proj ektionsobj ektiv nach mindestens einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die erste Linsengruppe mindestens zwei, vorzugsweise drei negative Linsen aufweist.
6. Refraktives Proj ektionsobj ektiv bestehend aus einem ersten Bauch und einem zweiten Bauch und einer zwischen den Bäuchen angeordneten Taille, die eine Stelle engster Einschnürung umfasst, dadurch gekennzeichnet, dass nach dieser engsten Einschnürung und vor der Systemblende zwei Meniskenlinsen mit zueinander gewandten konvexen Oberflächen angeordnet sind.
7. Refraktives Projektionsobjektiv bestehend aus einem ersten Bauch, einer nachfolgenden Taille und einem darauffolgenden zweiten Bauch, wobei im zweiten Bauch eine Systemblende angeordnet ist und wobei der Bereich von der Objektebene 0 bis zur letzten der Blende zugewandten Linsenoberfläche mit Lp bezeichnet wird und der Bereich von der ersten auf die Blende folgende Linsenoberfläche bis zur Bildebene mit LR bezeichnet wird und der Bereich zwischen Lp und LR mit LAP bezeichnet wird, dadurch gekennzeichnet, dass für das Längenverhältnis LV gilt:
Figure imgf000032_0001
LV ≥ O.l, wobei Lgeo die Summe über die Mittendicken aller im Objektiv angeordneten Linsen ist und L der Abstand von Bildebene O' zur Objektebene O ist.
8. Refraktives Projektionsobjektiv nach Anspruch 7, dadurch gekennzeichnet, dass die numerische Apertur größer 0,7, vorzugsweise größer 0,8 ist.
9. Refraktives Projektionsobjektiv nach den vorhergehenden Ansprüchen 1 bis 8, dadurch gekennzeichnet, dass der Lichtleitwert des projektionsobjektives größer als 2% der Baulänge ist, wobei der Lichtleitwert als Produkt aus Bildfelddurchmesser und numerischer Apertur auf der Bildseite definiert ist.
10. Refraktives Proj ektionsobj ektiv nach mindestens einem der Ansprüche 1, 3 bis 5, 6, 7 oder 8, dadurch gekennzeichnet, dass nur Linsen aus einem Material verwendet worden sind.
11. Refraktives Projektionsobjektiv* nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass das Verhältnis von Baulänge (00') und Brennweite der fünften Linsengruppe größer acht ist.
12. Refralctives Projektionsobjektiv nach mindestens einem der Ansprüchen 1 bis 11, dadurch gekennzeichnet, dass die erste Linsengruppe LG1 mindestens eine asphärische Fläche enthält, wobei vorzugsweise zwei asphärische Flächen vorgesehen sind.
13. Refraktives Proj ektionsobj ektiv mindestens nach Anspruch 12, dadurch gekennzeichnet, dass die asphärischen Flächen in der erste Linsengruppe LG1 bevorzugt auf der dem Retikel zugewandte Flächen liegen.
14. Refraktives Projektionsobjektiv mindestens nach Anspruch 13, dadurch gekennzeichnet, dass die asphärischen Flächen in der erste Linsengruppe LG1 bevorzugt auf der dem Retikel zugewandte sammelnden Flächen Hegen.
15. Refraktives Projektionsobjektiv nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass bei dem, wenn asphärische Flächen in der dritten Linsengruppe LG3 verwendet werden, diese immer auf Flächen, die dem afer zugewandt sind eingesetzt werden.
16. Refraktives Projektionsobjektiv nach mindestens einem der Ansprüche 1 , 2, 4, 5 und 7 bis 14, dadurch gekennzeichnet, dass in der dritten Linsengruppe keine asphärische Flächen vorgesehen sind
17. Refraktives Projektionsobjektiv nach den Ansprüchen 15 oder 16, dadurch gekennzeichnet, dass in der ersten Linsengruppe LG1 mindestens eine zur Objektebene konvexe Memskuslinse mit negativer Brechkraft angeordnet ist.
18. Refraktives Proj ektionsobj ektiv nach den Ansprüchen 15 oder 16, dadurch gekennzeichnet, dass die fünfte Linsengruppe LG5 mindestens zwei asphärische Fläche enthält.
19. Refraktives Projektionsobjektiv nach den Ansprüchen 15 oder 16, dadurch gekennzeichnet, dass die fünfte Linsengruppe LG5 mindestens zwei bikonvexe Linsen und zwei zum Bild konkave sammelnde Menisken.
20. Refraktives Proj ektionsobj ektiv nach den Ansprüchen 15 oder 16, dadurch gekennzeichnet, dass die fünfte Linsengruppe LG5 maximal als 5 sammelnde Linsen aufweist.
21. Refraktives Projektionsobjektiv nach den Ansprüchen 15 oder 16, dadurch gekennzeichnet, dass in den Linsengruppen LGl und LG2 die Höhe des Hauptstrahles für den äußersten Feldpunkt größer als die Höhe des Randstrahles zur Abbildung des Achspunktes ist, wobei sich dieses Verhältnis innerhalb der Linsengruppe G3 umkehrt.
22. Refralctives Proj ektionsobj ektiv nach den Ansprüchen 15 oder 16, dadurch gekennzeichnet, dass die maximale Höhe des Randstrahles zur Abbüdung des Achspunktes mehr als drei mal so groß ist wie seine Höhe in der engsten Einschnürung in Linsengruppe LG3.
23. Refraktives Projektionsobjektiv nach den Ansprüchen 15 oder 16. dadurch gekennzeichnet, dass der maximale Durchmesser der Linsengruppe zwei LG2 zwei Mal größer ist als der Objektfelddurchmesser.
24. . Refraktives Projektionsobjektiv nach den Ansprüchen 15 oder 16, dadurch gekennzeichnet, dass der minimale freie Durchmesser in der Linsengruppe LG3 kleiner als das 1.2fache des Objektfelddurchmessers ist, in bevorzugten Ausftώrungsformen kleiner als das 1.1 fache.
25. Proj lrtionsbelichtungsanlage der MikroHthographie umfassend einem Proj elctionsobj ektiv nach mindestens einem der Ansprüche 1-25 .
26. Verfahren zur Herstellung mikrostruleturiertε Bauteile, bei dem ein mit einer lichtempfindHchen Schicht versehene Substrat mittels einer Maske und einer Projektionsbelichtungsanlage mit einer Linsenanordnung nach mindestens einem der Ansprüche 1 -25 durch ultraviolettes LaserHcht beHchtet wird und gegebenenfaUs nach' entwickeln der HchtempfindHchen Schicht entsprechend einem auf der Maske enthaltenen Muster strakturiert ird.
PCT/EP2003/001147 2002-03-01 2003-02-06 Refraktives projektionsobjektiv WO2003075096A2 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2003210214A AU2003210214A1 (en) 2002-03-01 2003-02-06 Refractive projection lens
KR10-2004-7013547A KR20040089688A (ko) 2002-03-01 2003-02-06 굴절투사렌즈
JP2003573496A JP2005519332A (ja) 2002-03-01 2003-02-06 屈折型投影対物レンズ
EP03743308A EP1483626A2 (de) 2002-03-01 2003-02-06 Refraktives projektionsobjektiv
US10/931,051 US7190527B2 (en) 2002-03-01 2004-09-01 Refractive projection objective

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US36084502P 2002-03-01 2002-03-01
US60/360,845 2002-03-01

Publications (2)

Publication Number Publication Date
WO2003075096A2 true WO2003075096A2 (de) 2003-09-12
WO2003075096A3 WO2003075096A3 (de) 2003-11-13

Family

ID=27789034

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/EP2003/001147 WO2003075096A2 (de) 2002-03-01 2003-02-06 Refraktives projektionsobjektiv
PCT/US2003/006592 WO2003075049A2 (en) 2002-03-01 2003-03-03 Refractive projection objective

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/US2003/006592 WO2003075049A2 (en) 2002-03-01 2003-03-03 Refractive projection objective

Country Status (5)

Country Link
EP (1) EP1483626A2 (de)
JP (1) JP2005519332A (de)
KR (1) KR20040089688A (de)
AU (2) AU2003210214A1 (de)
WO (2) WO2003075096A2 (de)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6891683B2 (en) 2002-03-01 2005-05-10 Carl Zeiss Smt Ag Refractive projection objective with a waist
JP2007515660A (ja) * 2003-10-22 2007-06-14 カール・ツァイス・エスエムティー・アーゲー 浸漬リソグラフィー用屈折性投影対物レンズ
DE102008000790A1 (de) 2007-03-20 2008-09-25 Carl Zeiss Smt Ag Verfahren zum Verbessern von Abbildungseigenschaften eines optischen Systems sowie derartiges optisches System
US7492509B2 (en) 2003-12-02 2009-02-17 Carl Zeiss Smt Ag Projection optical system
DE102008041144A1 (de) 2007-08-21 2009-03-05 Carl Zeiss Smt Ag Optische Anordnung und optisches Abbildungssystem damit, Verfahren zu deren Optimierung und Verfahren zum Herstellen eines optischen Elements
DE102007055567A1 (de) 2007-11-20 2009-05-28 Carl Zeiss Smt Ag Optisches System
DE102008042356A1 (de) 2008-09-25 2010-04-08 Carl Zeiss Smt Ag Projektionsbelichtungsanlage mit optimierter Justagemöglichkeit
US7714307B2 (en) 2005-09-09 2010-05-11 Asml Netherlands B.V. Method of designing a projection system, lithographic apparatus and device manufacturing method
US7957069B2 (en) 2004-12-30 2011-06-07 Carl Zeiss Smt Gmbh Projection optical system
WO2011116792A1 (en) 2010-03-26 2011-09-29 Carl Zeiss Smt Gmbh Optical system, exposure apparatus, and waverfront correction method
US8228483B2 (en) 2007-08-03 2012-07-24 Carl Zeiss Smt Gmbh Projection objective for microlithography, projection exposure apparatus, projection exposure method and optical correction plate
US8325322B2 (en) 2007-08-24 2012-12-04 Carl Zeiss Smt Gmbh Optical correction device
US8508854B2 (en) 2006-09-21 2013-08-13 Carl Zeiss Smt Gmbh Optical element and method
US8542346B2 (en) 2006-12-01 2013-09-24 Carl Zeiss Smt Gmbh Optical system with an exchangeable, manipulable correction arrangement for reducing image aberrations
US8605253B2 (en) 2006-07-03 2013-12-10 Carl Zeiss Smt Gmbh Lithographic projection objective
US8773638B2 (en) 2007-10-09 2014-07-08 Carl Zeiss Smt Gmbh Microlithographic projection exposure apparatus with correction optical system that heats projection objective element
WO2015032418A1 (en) 2013-09-09 2015-03-12 Carl Zeiss Smt Gmbh Microlithographic projection exposure apparatus and method of correcting optical wavefront deformations in such an apparatus
US9091843B1 (en) 2014-03-16 2015-07-28 Hyperion Development, LLC Optical assembly for a wide field of view point action camera with low track length to focal length ratio
US9316820B1 (en) 2014-03-16 2016-04-19 Hyperion Development, LLC Optical assembly for a wide field of view point action camera with low astigmatism
US9316808B1 (en) 2014-03-16 2016-04-19 Hyperion Development, LLC Optical assembly for a wide field of view point action camera with a low sag aspheric lens element
US9494772B1 (en) 2014-03-16 2016-11-15 Hyperion Development, LLC Optical assembly for a wide field of view point action camera with low field curvature
US9726979B2 (en) 2004-05-17 2017-08-08 Carl Zeiss Smt Gmbh Catadioptric projection objective with intermediate images
US9726859B1 (en) 2014-03-16 2017-08-08 Navitar Industries, Llc Optical assembly for a wide field of view camera with low TV distortion
US9772478B2 (en) 2004-01-14 2017-09-26 Carl Zeiss Smt Gmbh Catadioptric projection objective with parallel, offset optical axes
US9995910B1 (en) 2014-03-16 2018-06-12 Navitar Industries, Llc Optical assembly for a compact wide field of view digital camera with high MTF
US10139595B1 (en) 2014-03-16 2018-11-27 Navitar Industries, Llc Optical assembly for a compact wide field of view digital camera with low first lens diameter to image diagonal ratio
US10386604B1 (en) 2014-03-16 2019-08-20 Navitar Industries, Llc Compact wide field of view digital camera with stray light impact suppression
US10545314B1 (en) 2014-03-16 2020-01-28 Navitar Industries, Llc Optical assembly for a compact wide field of view digital camera with low lateral chromatic aberration

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8208198B2 (en) 2004-01-14 2012-06-26 Carl Zeiss Smt Gmbh Catadioptric projection objective
US7301707B2 (en) 2004-09-03 2007-11-27 Carl Zeiss Smt Ag Projection optical system and method
US7508488B2 (en) 2004-10-13 2009-03-24 Carl Zeiss Smt Ag Projection exposure system and method of manufacturing a miniaturized device
DE102005045862A1 (de) 2004-10-19 2006-04-20 Carl Zeiss Smt Ag Optisches System für Ultraviolettlicht
US7508489B2 (en) 2004-12-13 2009-03-24 Carl Zeiss Smt Ag Method of manufacturing a miniaturized device
JP5533656B2 (ja) * 2008-09-18 2014-06-25 株式会社ニコン 結像光学系、露光装置及び電子デバイスの製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0770895A2 (de) * 1995-10-12 1997-05-02 Nikon Corporation Optisches Projektionssystem mit Belichtungsgerät
EP1006387A2 (de) * 1998-11-30 2000-06-07 Carl Zeiss Projektionsobjektiv für die Mikrolithographie
WO2001050171A1 (de) * 1999-12-29 2001-07-12 Carl Zeiss Projektionsobjektiv mit benachbart angeordneten asphärischen linsenoberflächen

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19855108A1 (de) * 1998-11-30 2000-05-31 Zeiss Carl Fa Mikrolithographisches Reduktionsobjektiv, Projektionsbelichtungsanlage und -Verfahren

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0770895A2 (de) * 1995-10-12 1997-05-02 Nikon Corporation Optisches Projektionssystem mit Belichtungsgerät
EP1006387A2 (de) * 1998-11-30 2000-06-07 Carl Zeiss Projektionsobjektiv für die Mikrolithographie
WO2001050171A1 (de) * 1999-12-29 2001-07-12 Carl Zeiss Projektionsobjektiv mit benachbart angeordneten asphärischen linsenoberflächen

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6891683B2 (en) 2002-03-01 2005-05-10 Carl Zeiss Smt Ag Refractive projection objective with a waist
JP2007515660A (ja) * 2003-10-22 2007-06-14 カール・ツァイス・エスエムティー・アーゲー 浸漬リソグラフィー用屈折性投影対物レンズ
US7492509B2 (en) 2003-12-02 2009-02-17 Carl Zeiss Smt Ag Projection optical system
US9772478B2 (en) 2004-01-14 2017-09-26 Carl Zeiss Smt Gmbh Catadioptric projection objective with parallel, offset optical axes
US9726979B2 (en) 2004-05-17 2017-08-08 Carl Zeiss Smt Gmbh Catadioptric projection objective with intermediate images
US7957069B2 (en) 2004-12-30 2011-06-07 Carl Zeiss Smt Gmbh Projection optical system
US7714307B2 (en) 2005-09-09 2010-05-11 Asml Netherlands B.V. Method of designing a projection system, lithographic apparatus and device manufacturing method
US9494868B2 (en) 2006-07-03 2016-11-15 Carl Zeiss Smt Gmbh Lithographic projection objective
US10042265B2 (en) 2006-07-03 2018-08-07 Carl Zeiss Smt Gmbh Lithographic projection objective
US8605253B2 (en) 2006-07-03 2013-12-10 Carl Zeiss Smt Gmbh Lithographic projection objective
US8508854B2 (en) 2006-09-21 2013-08-13 Carl Zeiss Smt Gmbh Optical element and method
US8891172B2 (en) 2006-09-21 2014-11-18 Carl Zeiss Smt Gmbh Optical element and method
EP2650730A2 (de) 2006-09-21 2013-10-16 Carl Zeiss SMT GmbH Optisches Element und Verfahren
US8542346B2 (en) 2006-12-01 2013-09-24 Carl Zeiss Smt Gmbh Optical system with an exchangeable, manipulable correction arrangement for reducing image aberrations
US8659745B2 (en) 2006-12-01 2014-02-25 Carl Zeiss Smt Gmbh Optical system with an exchangeable, manipulable correction arrangement for reducing image aberrations
DE102008000790A1 (de) 2007-03-20 2008-09-25 Carl Zeiss Smt Ag Verfahren zum Verbessern von Abbildungseigenschaften eines optischen Systems sowie derartiges optisches System
US8228483B2 (en) 2007-08-03 2012-07-24 Carl Zeiss Smt Gmbh Projection objective for microlithography, projection exposure apparatus, projection exposure method and optical correction plate
DE102008041144A1 (de) 2007-08-21 2009-03-05 Carl Zeiss Smt Ag Optische Anordnung und optisches Abbildungssystem damit, Verfahren zu deren Optimierung und Verfahren zum Herstellen eines optischen Elements
US8325322B2 (en) 2007-08-24 2012-12-04 Carl Zeiss Smt Gmbh Optical correction device
US8773638B2 (en) 2007-10-09 2014-07-08 Carl Zeiss Smt Gmbh Microlithographic projection exposure apparatus with correction optical system that heats projection objective element
DE102007055567A1 (de) 2007-11-20 2009-05-28 Carl Zeiss Smt Ag Optisches System
US8379188B2 (en) 2007-11-20 2013-02-19 Carl Zeiss Smt Gmbh Optical system
US9052609B2 (en) 2008-09-25 2015-06-09 Carl Zeiss Smt Gmbh Projection exposure apparatus with optimized adjustment possibility
DE102008042356A1 (de) 2008-09-25 2010-04-08 Carl Zeiss Smt Ag Projektionsbelichtungsanlage mit optimierter Justagemöglichkeit
US10054860B2 (en) 2008-09-25 2018-08-21 Carl Zeiss Smt Gmbh Projection exposure apparatus with optimized adjustment possibility
US9354524B2 (en) 2008-09-25 2016-05-31 Carl Zeiss Smt Gmbh Projection exposure apparatus with optimized adjustment possibility
US8203696B2 (en) 2008-09-25 2012-06-19 Carl Zeiss Smt Gmbh Projection exposure apparatus with optimized adjustment possibility
US9081310B2 (en) 2010-03-26 2015-07-14 Carl Zeiss Smt Gmbh Optical system of microlithographic projection exposure apparatus and method of correcting wavefront deformation in same
WO2011116792A1 (en) 2010-03-26 2011-09-29 Carl Zeiss Smt Gmbh Optical system, exposure apparatus, and waverfront correction method
WO2015032418A1 (en) 2013-09-09 2015-03-12 Carl Zeiss Smt Gmbh Microlithographic projection exposure apparatus and method of correcting optical wavefront deformations in such an apparatus
US9684251B2 (en) 2013-09-09 2017-06-20 Carl Zeiss Smt Gmbh Microlithographic projection exposure apparatus and method of correcting optical wavefront deformations in such an apparatus
US9091843B1 (en) 2014-03-16 2015-07-28 Hyperion Development, LLC Optical assembly for a wide field of view point action camera with low track length to focal length ratio
US9726859B1 (en) 2014-03-16 2017-08-08 Navitar Industries, Llc Optical assembly for a wide field of view camera with low TV distortion
US9494772B1 (en) 2014-03-16 2016-11-15 Hyperion Development, LLC Optical assembly for a wide field of view point action camera with low field curvature
US9778444B1 (en) 2014-03-16 2017-10-03 Navitar Industries, Llc Optical assembly for a wide field of view point action camera with low astigmatism
US9784943B1 (en) 2014-03-16 2017-10-10 Navitar Industries, Llc Optical assembly for a wide field of view point action camera with a low sag aspheric lens element
US9995910B1 (en) 2014-03-16 2018-06-12 Navitar Industries, Llc Optical assembly for a compact wide field of view digital camera with high MTF
US9316808B1 (en) 2014-03-16 2016-04-19 Hyperion Development, LLC Optical assembly for a wide field of view point action camera with a low sag aspheric lens element
US9316820B1 (en) 2014-03-16 2016-04-19 Hyperion Development, LLC Optical assembly for a wide field of view point action camera with low astigmatism
US10107989B1 (en) 2014-03-16 2018-10-23 Navitar Industries, Llc Optical assembly for a wide field of view point action camera with low field curvature
US10139595B1 (en) 2014-03-16 2018-11-27 Navitar Industries, Llc Optical assembly for a compact wide field of view digital camera with low first lens diameter to image diagonal ratio
US10139599B1 (en) 2014-03-16 2018-11-27 Navitar Industries, Llc Optical assembly for a wide field of view camera with low TV distortion
US10317652B1 (en) 2014-03-16 2019-06-11 Navitar Industries, Llc Optical assembly for a wide field of view point action camera with low astigmatism
US10386604B1 (en) 2014-03-16 2019-08-20 Navitar Industries, Llc Compact wide field of view digital camera with stray light impact suppression
US10545314B1 (en) 2014-03-16 2020-01-28 Navitar Industries, Llc Optical assembly for a compact wide field of view digital camera with low lateral chromatic aberration
US10545313B1 (en) 2014-03-16 2020-01-28 Navitar Industries, Llc Optical assembly for a wide field of view point action camera with a low sag aspheric lens element
US10739561B1 (en) 2014-03-16 2020-08-11 Navitar Industries, Llc Optical assembly for a compact wide field of view digital camera with high MTF
US10746967B2 (en) 2014-03-16 2020-08-18 Navitar Industries, Llc Optical assembly for a wide field of view point action camera with low field curvature
US11754809B2 (en) 2014-03-16 2023-09-12 Navitar, Inc. Optical assembly for a wide field of view point action camera with low field curvature

Also Published As

Publication number Publication date
JP2005519332A (ja) 2005-06-30
KR20040089688A (ko) 2004-10-21
AU2003230593A8 (en) 2003-09-16
EP1483626A2 (de) 2004-12-08
WO2003075049A3 (en) 2004-04-08
AU2003230593A1 (en) 2003-09-16
WO2003075096A3 (de) 2003-11-13
AU2003210214A1 (en) 2003-09-16
WO2003075049A2 (en) 2003-09-12

Similar Documents

Publication Publication Date Title
WO2003075096A2 (de) Refraktives projektionsobjektiv
WO2003077036A1 (de) Projektionsobjektiv höchster apertur
EP1242843B1 (de) Projektionsobjektiv mit benachbart angeordneten asphärischen linsenoberflächen
EP1855160B1 (de) Projektionsbelichtungsanlage, Projektionsbelichtungsverfahren und Verwendung eines Projektionsobjektivs
DE10139177A1 (de) Objektiv mit Pupillenobskuration
EP1544676A2 (de) Refraktives Projektionsobjektiv für Immersions-Lithographie
EP1260845A2 (de) Katadioptrisches Reduktionsobjektiv
WO2006125790A2 (de) Abbildungssystem, insbesondere für eine mikrolithographische projektionsbelichtungsanlage
DE10229249A1 (de) Refraktives Projektionsobjektiv mit einer Taille
WO2005050321A1 (de) Refraktives projektionsobjektiv für die immersions-lithographie
DE10151309A1 (de) Projektionsbelichtungsanlage der Mikrolithographie für Lambda &lt;200 nm
EP1217412B1 (de) Lithographieobjektiv mit einer ersten Linsengruppe, bestehend ausschliesslich aus Linsen positiver Brechkraft und Verfahren zur Herstellung mikrostrukturierter Bauteile mit&amp;#xA;einem solchen Objektiv
EP1235112A2 (de) Teilobjektiv für Beleuchtungssystem
WO2003093904A1 (de) Projektionsobjektiv höchster apertur
EP1344112A2 (de) Projektionsobjektiv
JP2000356741A (ja) 投影光学系
DE102006028242A1 (de) Projektionsobjektiv einer mikrolithographischen Projektionsbelichtungsanlage
JP2000199850A (ja) 投影光学系及び投影露光装置並びにデバイスの製造方法
DE102005027099A1 (de) Immersionslithographieobjektiv
WO2005033800A1 (de) Lithographie-objektiv und projektionsbelichtungsanlage mit mindestens einem solchen lithographie-objektiv
WO2018184720A2 (de) Projektionsobjektiv, projektionsbelichtungsanlage und projektionsbelichtungsverfahren
EP1481286A2 (de) Refraktives projektionsobjektiv mit einer taille
DE102008015775A1 (de) Chromatisch korrigiertes Lithographieobjektiv
DE10224361A1 (de) Projektionsobjektiv höchster Apertur
DE102016205618A1 (de) Projektionsobjektiv mit Wellenfrontmanipulator, Projektionsbelichtungsverfahren und Projektionsbelichtungsanlage

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003743308

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020047013547

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2003573496

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 1020047013547

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003743308

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWE Wipo information: entry into national phase

Ref document number: 05052766

Country of ref document: CO