WO2003074710A1 - Polynucléotides, polypeptides et leur procédé de production - Google Patents

Polynucléotides, polypeptides et leur procédé de production Download PDF

Info

Publication number
WO2003074710A1
WO2003074710A1 PCT/JP2002/001978 JP0201978W WO03074710A1 WO 2003074710 A1 WO2003074710 A1 WO 2003074710A1 JP 0201978 W JP0201978 W JP 0201978W WO 03074710 A1 WO03074710 A1 WO 03074710A1
Authority
WO
WIPO (PCT)
Prior art keywords
enzyme
polypeptide
amino acid
mca
protease
Prior art date
Application number
PCT/JP2002/001978
Other languages
English (en)
French (fr)
Inventor
Eiji Ichishima
Byung Rho Lee
Kenichi Hirano
Keiichi Ando
Original Assignee
Amano Enzyme Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amano Enzyme Inc. filed Critical Amano Enzyme Inc.
Priority to JP2003573157A priority Critical patent/JP4347062B2/ja
Priority to PCT/JP2002/001978 priority patent/WO2003074710A1/ja
Publication of WO2003074710A1 publication Critical patent/WO2003074710A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/58Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from fungi
    • C12N9/62Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from fungi from Aspergillus

Definitions

  • the present invention relates to a polynucleotide having a novel protease gene function, a polypeptide having such protease activity, and a method for producing a polypeptide having such protease activity.
  • trypsin derived from animals that acts on both arginine and lysine residues is known as a protease that acts on basic amino acid residues in peptides and hydrolyzes the peptide bonds. Its activity as a protease is used in the production of protein degradation products in the food field, the production of leather in the industrial field, the processing of raw silk, etc., and its blood coagulation, blood pressure reduction, and anti-inflammatory effects Used in the medical field.
  • a trypsin-like protease derived from microorganisms that acts on both arginine residues and lysine residues (Japanese Patent Application Laid-Open No. 2000-116377).
  • proteases that act on both arginine residues and lysine residues have wide substrate specificity. When they act on proteins, the proteins are reduced in molecular weight, and the protein has inherent emulsifying properties and water retention properties. There is a problem that functionalities such as properties are lost. Under these circumstances, in the food industry, the emulsifying properties of hydrolyzed products such as soybean protein, wheat protein, egg protein, etc. used for the production of ham, sausage, fish paste products, low allergenic egg products and tofu, etc. A proteinase that selectively regulates functions such as solubility, solubility, dispersibility, etc. and can diversify the functions, that is, to improve protein functionality by degrading proteins to a very limited extent There is a need for the development of proteases with narrow specificities.
  • the present invention has been made in order to solve the above problems, and has a novel substrate derived from a microorganism having a narrow substrate specificity as a protease and capable of mass production, and a method for encoding the polypeptide.
  • An object of the present invention is to provide a method for producing a polynucleotide and a polypeptide having protease activity.
  • the present inventors have conducted intensive studies to solve the above problems, and as a result, have found that a strain derived from the genus Aspergillus produces a novel protease, thereby completing the present invention.
  • the present invention first provides a polynucleotide having the nucleotide sequence shown in SEQ ID NO: 1. It also has a nucleotide sequence that hybridizes under stringent conditions with a DNA having the nucleotide sequence of SEQ ID NO: 1 or a nucleotide sequence complementary thereto, and contains a protease gene, preferably a serine protease gene or a cysteine protease. Also provided are polynucleotides that function as genes.
  • polynucleotide refers to single-stranded or double-stranded DNA and / or RNA. “Hybridize under stringent conditions” means that one polynucleotide (DNA) or a fragment of the polynucleotide is reacted with another polynucleotide under the following conditions by a suitable hybridization method known in the art. It means that polynucleotide (DNA) can be hybridized. That is, one polynucleotide or a fragment of the polynucleotide immobilized on the filter is hybridized with the other polynucleotide in the presence of 0.7 to 1 M NaCl at a predetermined temperature (X ° C).
  • X ° C. is at least 50 ° C. or more, more preferably 60 ° C. or more, and further preferably 65 ° C. or more.
  • the present invention secondly provides a polypeptide having the amino acid sequence shown in SEQ ID NO: 1. You. Also provided is a polypeptide having the amino acid sequence shown in SEQ ID NO: 1 and having an amino acid sequence in which 5 or less arbitrary amino acid residues are substituted, deleted or added, and exhibiting protease activity. . Further, the present invention provides polypeptides encoded by the above-mentioned various polynucleotides.
  • the present invention relates to a polypeptide obtained by culturing a strain belonging to the genus Aspergillus in a nutrient medium, producing and accumulating the polypeptides having the various protease activities in the medium, and purifying and collecting the polypeptide.
  • a method for producing a peptide As the aforementioned strain, a strain belonging to the species Aspergillus oryzae is particularly preferred, and an Aspergillus oryzae IAM2609 strain is particularly preferred.
  • FIG. 1 is an SDS-polyacrylamide gel electrophoresis diagram of a protease according to the present invention.
  • FIG. 2 is a view showing the pH characteristics of the protease according to the present invention.
  • FIG. 3 is a diagram showing the pH stability of the protease according to the present invention.
  • FIG. 4 is a diagram showing the temperature stability of the protease according to the present invention.
  • the polypeptide of the present invention (hereinafter also referred to as "the enzyme") can be obtained by culturing a strain belonging to the genus Aspergillus in a nutrient medium, producing and accumulating the enzyme in the medium, and purifying and collecting the enzyme. You.
  • the strain belonging to the genus Aspergillus any strain having the present enzyme-producing ability can be used, and mutants of these strains can also be used.
  • Preferred strains include strains belonging to one kind of Aspergillus oryzae and mutants of these strains.
  • strain having the enzyme-producing ability include, for example, Aspergillus oryzae IAM2609 (accession number FERM BP-7913 on February 25, 2002, Ministry of Economy, Trade and Industry ⁇ International deposit with the Patented Microorganisms Depositary Center).
  • the mycological properties of this strain are as follows.
  • Form Conidial head radial.
  • Conidium pattern rough surface, 1300-2000 x 5-10 / ⁇ 111.
  • Top Flask-shaped, 11-22 mm in diameter, forming a phialid or metre from upper 1 / 2-3 / 4.
  • Metre When forming, form a phialid at the tip of the metre, 6-12 X 4 to 6 ⁇ m.
  • Conidia spherical to subspherical, smooth to irregularly rough (under optical microscope), splinter to stitch (under scanning electron microscope), 4 to 8 X 4 to 6 ⁇ .
  • Malt extract agar plate medium yellowish gray to gray green surface tone. The back is yellowish gray.
  • Wapequist extract agar plate medium yellowish gray to white surface tone. The back is yellowish gray.
  • the strain is classified as Aspergillus oryzae based on its color tone and tissue, conidial shape and structure, conidial shape and surface structure, etc.Aspergillus oryzae ⁇ ⁇ They are stored so that they can be distributed at the culture collection and can be easily obtained by anyone.
  • any of a liquid culture method and a solid culture method can be used.
  • a wheat bran medium is usually used as a medium, and water is added at a ratio of 40 to 200 parts by weight, preferably 60 to 120 parts by weight, per 100 parts by weight of wheat bran.
  • an organic nitrogen source such as yellow flour or soy flour or an inorganic nitrogen source such as ammonium sulfate or ammonium nitrate can be added as a medium additive at that time.
  • Culture conditions are as follows: culture at 20 to 40 ° C, preferably 25 to 37 ° C, for 24 to 120 hours, and extraction from the bran koji obtained after the culture using water or a buffer solution of PH5 to 8
  • An extract containing the present enzyme (hereinafter also referred to as “crude enzyme solution”) is obtained by centrifugation, filtration, or the like.
  • a synthetic medium containing a carbon source, a nitrogen source, inorganic salts, necessary nutrients, and the like necessary for the strain to grow well and produce the enzyme smoothly is used as a medium.
  • a natural medium for example, carbohydrates such as starch or its constituent fractions, roasted dextrin, processed starch, starch derivatives, physically treated starch, and a-starch can be used as the carbon source.
  • Specific examples include soluble starch, corn starch, potato starch, sweet potato starch, dextrin, amylopectin, amylose and the like.
  • nitrogen source examples include organic nitrogen source substances such as polypton, casein, meat extract, yeast extract, corn steep prima or extract such as soybean or soybean meal, and inorganic salt nitrogen such as ammonium sulfate and ammonium phosphate. And amino acids such as glutamic acid.
  • inorganic salts examples include phosphates such as monopotassium phosphate and diphosphate phosphate, magnesium salts such as magnesium sulfate, calcium salts such as calcium chloride, and sodium salts such as sodium carbonate.
  • the culture is performed under aerobic conditions such as shaking culture and aeration and stirring culture, and the medium is adjusted to 4-10, preferably ⁇ 5-8, at 20-40 ° C, preferably 25-37 ° C. Incubate for ⁇ 96 hours. After the culture, the cells are removed by centrifugation, filtration, etc., to obtain a crude enzyme solution.
  • the purification of the present enzyme from the crude enzyme solution obtained by the above-mentioned solid culture method and liquid culture method is performed by a conventional method used for enzyme purification, namely, ammonium sulfate salting-out method, alcohol fractionation method.
  • Purification methods by various kinds of chromatography (ion exchange resin, resin for hydrophobic chromatography, resin for affinity chromatography, resin for gel filtration, etc.) and the like can be used in appropriate combination.
  • the enzyme of high purity can be obtained by the purification method.
  • the present enzyme can be obtained by a purification method described above from a commercially available enzyme preparation containing the enzyme as a contaminant.
  • a commercially available enzyme preparation protease "Amano j A” (manufactured by Amano Enzym Co., Ltd.) produced from Aspergillus oryzae, a kind of microorganism, protease "Amano” M (manufactured by Amano Enzym Co., Ltd.) and the like can be used. it can.
  • Example 1 Culture of the present enzyme by Aspergillus oryzae IAM2609
  • Potato dextrose agar medium (Kyokuto Pharmaceutical Co., Ltd.) to 30; and Asuperugi Luz oryzae IAM260 9 5 days of culture was inoculated wheat bran suspension lOOmL (pH5 6.) Culture flask containing sterile 8 g, Shaking culture was carried out at 30 ° C for 40 hours at 140 rpm to obtain a seed culture.
  • 900 mL (900 g) of water was sprinkled onto 1000 g of wheat bran, the whole amount was inoculated into a sterilized medium, and the mixture was allowed to stand still at 68 ° C. for 68 hours to produce the enzyme. After the culture, 4200 mL of water was added, and the produced enzyme was extracted to obtain 3000 mL of a crude enzyme solution.
  • Example 2 Purification of the present enzyme from the crude enzyme solution of Example 1
  • the crude enzyme solution obtained in Example 1 was concentrated to 300 mL with an ultrafiltration membrane having a molecular weight cut off of 6000, and 1200 mL of cold ethanol was added to obtain a crude enzyme precipitate.
  • the crude enzyme precipitate was collected by centrifugation and dried under vacuum to obtain 60 g of crude enzyme powder.
  • This crude enzyme powder had an enzyme activity of 19. lnkat per kilogram.
  • 60 g of the obtained crude enzyme powder was dissolved in 200 mL of a buffer solution (10 mmol / L citrate buffer, PH 5.0), and ammonium sulfate fractionation (50% saturation) was performed.
  • the precipitate is centrifuged at 6000 X g for 30 minutes at 4 ° C, and the supernatant is added to Phenyltoyopearl 650MM (manufactured by Tosoh Corporation), and the adsorbed protein is concentrated to an ammonium sulfate concentration of 1 Eluted with 4 to 0 moles of linear gradient.
  • the eluted enzyme-active fraction was collected, added to arginine-sepharose 4B (Amajam's Pharmacia), and subjected to linear gradient elution at a salt concentration of 0.1 mol to 0.3 mol. Minutes were collected.
  • This enzyme solution is concentrated with a UF membrane (Millipore), and then added to Super mouth 6 (Amajam 'Pharmacia Biotech), and the active fraction is collected and purified enzyme solution (hereinafter referred to as " Also referred to as “the present enzyme solution.”
  • the activity of the purified enzyme was 28.8 (mkat / kg protein). The yield was 0.9% and the purity increased 510-fold.
  • AMC j 7-amino-4-methylcoumarin
  • protease M “Amano” (a commercial enzyme) (manufactured by Amano Enzym Co., Ltd.) in 200 mL of a buffer solution (10 ol / l citric acid buffer, pH 5.0), fractionate ammonium sulfate (50% saturation) ).
  • the precipitate is centrifuged at 6000 X g for 30 minutes at 4 ° C, the supernatant is added to Phanyl Toyopearl 650M (manufactured by Tosoh Ichi Co., Ltd.), and the adsorbed protein is concentrated to an ammonium sulfate concentration of 1 Eluted with a linear gradient from 4 mol to 0 mol.
  • the eluted enzyme-active fraction was collected, added to arginine-sepharose 4B (Amajam'Pharmacia), and subjected to linear gradient elution at a salt concentration of 0.1 mol to 0.3 mol. Collected.
  • the enzyme solution was concentrated using a UF membrane (manufactured by Millipore) and then added to Superose 6 (manufactured by Amajam Pharmacia), and the active fraction was recovered to obtain the enzyme solution.
  • the activity of this enzyme was 29.8 (mkat / kg protein). The yield was 0.4% and the purity increased 106-fold.
  • this enzyme is a glycoprotein with a sugar chain attached, the sugar chain is degraded with N-glycanase (Roche-Diagnostics), and only the protein part is subjected to SDS-polyacrylamide gel electrophoresis. As a result, as shown in (3) of FIG. 1, it was a single band and had a molecular weight of 61,300.
  • the substrate specificity of the enzyme obtained in Example 3 was measured using each synthetic substrate manufactured by Peptide Research Institute shown in Table 1. That, 50mm01 / L (P H4. 0, Kuen acid buffer) were mixed 0. 945 ml and the enzyme Motoeki 0. 05mL, lOmmol / Ji each synthetic substrate solution concentration (50mraol / L, pH4. 0 , Kuen Acid buffer) to start the enzyme reaction. Using a fluorometer, the amount of AMC released by hydrolysis with this enzyme was measured over time at an excitation wavelength of 360 nm and an emission wavelength of 440 nm to calculate the activity. The activity against Z-arginyl-arginine MCA was expressed as a relative value assuming 100%.
  • this enzyme has one peptide bond among the amino acid residues adjacent to the MCA (hereinafter referred to as “P1 amino acid residue”). It did not act on the PI amino acid residues of the tides Arg-MCA, Lys-MCA, Leu-MCA, Phe-MCA, Ala-MCA, Met-MCA, and Pyr-MCA.
  • P1 amino acid residue is an aspartic acid residue of acidic amino acid, Ac-Tyr-Val-Ala-Asp-MCA, Ac-Asp-Glu. -Val-Asp-MCA, Z-Leu-Leu-Glu-MCA, which is a glutamic acid residue, Z-Leu-Arg-Gly-Gly-MCA, where P1 amino acid residue is a glycine residue of neutral amino acid
  • P1 amino acid residue is a proline residue of basic amino acid, such as Gly-Pro-MCA, Sue-Gly-Pro-Leu-Gly-Pro.
  • This enzyme had no effect on SCA-lie-lie-Trp-MCA, which is a tryptophan residue.
  • Boc-Glu-Lys-Lys-MCA whose basic amino acid residue is a lysine residue, this enzyme showed an action with a slight relative activity, but did not respond to Boc-Val-Leu-Lys-MCA. Did not show any effect.
  • the P1 amino acid residue is an arginine residue of a basic amino acid, such as Boc-Leu-Arg-Arg-MCA or Z-Arg-Arg.
  • -MCA Boc-Gly-Arg-Arg-MCA, Boc-Gin-Arg-Arg-MCA, Pyr-Gly-Arg-MCA, Boc-Gly-Sys-Arg-MCA, Boc-Leu-Lys-Arg- MCA, Boc-Gin-Gly-Arg-MCA, Boc Leu-Gly-Arg-MCA, Boc-lie-Glu-Gly-Arg-MCA, Boc-Leu-Ser-Thr-Arg-MCA, Boc-Leu- Thr-Arg-MCA, Z-Phe-Arg-MCA, Boc-Ala-Gly-Pro-Arg-MCA, Boc-Val-Pro-Arg-MCA, Boc-Asp (OBzl)-Pro- Arg-MCA, For Boc-Phe
  • this enzyme is a peptide having two or more peptide bonds
  • the P1 amino acid residue acts on the peptide which is an arginine residue of a basic amino acid
  • the peptide bond is Has no effect on peptides having one peptide bond and has two or more peptide bonds
  • the P1 amino acid residue is a neutral, acidic or basic amino acid residue other than arginine.
  • Aspartic acid except that it slightly affected lysine residues It does not cleave the amino acid residues of glutamic acid, glycine, tyrosine, alanine, proline, leucine, hu-l-alanine, and tributofan. Became.
  • This enzyme solution was dissolved in 10mraol / L citrate buffer at pH2-4, 10mmol / L acetate buffer at pH5, lOmmol / L phosphate buffer at pH6-8, and 10mmol / L Tris buffer at pH9. After leaving at 30 ° C for 30 minutes, the pH was adjusted to 4.0 and the enzyme activity was measured. As a result, as shown in FIG. 3, 90% or more of the original activity was maintained in the pH range of 3 to 6. Therefore, this enzyme is stable at least in the pH range of 3-6.
  • P-chloromercury which is a cereal-mouth protease inhibitor, manufactured by Sigma-Aldrich Japan Co., Ltd.
  • the study was conducted using benzoic acid, N-ethylmaleimide, loupeptin, antipain, and ethylenediaminetetraacetic acid, a metalloprotease inhibitor.
  • the inhibitor was tested at the conditions shown in Table 2 for each strain. After standing at 30 for 30 minutes, the enzyme activity was measured. As a result, as shown in Table 2, the enzyme activity was inhibited by leptin and antipain, suggesting that the present enzyme was serine protease or cysteine protease.
  • SDS-polyacrylamide gel electrophoresis was performed according to the method of Laemrali.
  • the standard proteins ⁇ are as follows:-Malt manufactured by Uingland Biolabs Ltd.-Suba reading protein used beta-galactosidase (158000), beta-galactosidase (116000), phosphorylase b (97200), bovine serum albumin (66400), glutamate dehydrogenase (55600), maltose binding protein (42700), lactate dehydrogenase (36500), and triosphosphoisomersase (26600)
  • Gel staining was performed using Coomassie Grill iant Blue R-250 (Pharmacia LKB 1-111).
  • the amino acid sequence was determined using the protein sequencer PPSQ-23 of Shimadzu (SHIMADZU).
  • the N-terminal sequence of this enzyme was GLN (T) VTNTDQLITPEXIRALYKIPSAXAAP.
  • the internal sequence was determined by fragmentation of the pyridylethylated enzyme by treatment with lysylendopeptidase, followed by separation of the peptide fragment of the enzyme by HPLC and sequence determination.
  • the internal sequence was XHNPP YPYYXGAXNL. X represents an unspecified amino acid.
  • a sense primer ao-N (5′-AAYACIG AYCARYTIATHACNCC-3 ′) was prepared.
  • an antisense primer ao-C1 (5′-RTARTAIGGRTAIGGNGGRTT-3 ′) was prepared based on the internal sequence NPPYPYY. (Where Y is TC, I is inosinic acid, R is A force G, H is T force C force A, N is A force T force).
  • PCR was performed using Aspergillus' oryzae IAM2609 genomic DNA as type III.
  • the PCR reaction was performed using T0Y0B0 KOD DNA polymerase, denatured DNA at 95 ° C for 3 minutes, and then performed 25 cycles of 94T for 0.5 minutes, 55 ° C for 0.5 minutes, and 68 ° C for 2 minutes. .
  • a DNA fragment of 1. 1 kb was amplified, and this DNA fragment was used as an Ec of pBluescript IIKS-.
  • Subcloning to the RV site was performed and the nucleotide sequence was determined.
  • Positive clones were obtained by plaque hybridization.
  • the probe label used was a DIG label system manufactured by Roche.
  • a 4 kb XbaI fragment containing the desired DNA fragment was subcloned from the recombinant phage DNA into pBluescript IIKS- and used for nucleotide sequence determination.
  • RNA was purified from the cultured cells of Aspergillus oryzae IAM2609 (using the RNeasy Mini Kit manufactured by QIAGEN). Next, single-stranded cDNA was synthesized from the total RNA using an anchor T primer (5'-GACCACGCGTAT CGATGTCGACTTTTTTTTTTTTTTTTTTTT-3 ') and AMV reverse transcriptase.
  • an anchor T primer 5'-GACCACGCGTAT CGATGTCGACTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT-3 '
  • CDNA was amplified by PCR reaction.
  • a ⁇ type single-strand cDNA was used, and Apa-Spe2 (5′-AATCTCGCATACTAGTTCCACACAATG-3 ′ :) and anchor (5′-GACCACGCGTATCGATGTCGA C-3 ′) were used as primers.
  • Apa-Spe2 5′-AATCTCGCATACTAGTTCCACACAATG-3 ′ :
  • anchor 5′-GACCACGCGTATCGATGTCGA C-3 ′
  • the cycle went.
  • a 2.2 kb DNA fragment was amplified. This DNA fragment was subcloned into the SpeI and ClaI sites of pBluescript IIKS- to determine the nucleotide sequence.
  • plasminogen contained a large amount of BSA for stabilization, so purification was attempted. Lys-Sepharose 4B (1.0 mM) equilibrated with 1 mM / ml plasminogen 200 1 adjusted to 5 mM phosphate buffer pH 7.4 with 50 mM phosphate buffer (pH 7.5). X 10 cm) and wash well with the same buffer. The wells were further washed with 50 mM phosphate buffer (pH 7.5) containing 0.5 M NaCl, and eluted with 0.2 M ⁇ -amino-n-capronic acid. The eluted fraction was dialyzed against a 10 mM MES buffer (pH 5.4) to remove E-amino-n-capronicacid. The homogeneity of this fraction was confirmed by SDS-PAGE.
  • the novel polypeptide of the present invention exhibits a protease activity of specifically hydrolyzing a peptide bond on the carboxyl group side of an arginine residue in a protein.
  • the protein of wheat and soybeans which have low solubility in water, is degraded to retain the functions of the protein such as emulsifying properties and water retention. Improving solubility as it is, it can be used in food applications as a bulking agent for ham, sausage, fishery products and the like.
  • a protein having an arginine residue at its active center can be hydrolyzed at the arginine residue site to inactivate the protein.
  • soybean trypsin inhibitor in soybeans can be degraded and inactivated, and soybean protein with good digestibility can be produced.
  • the protein having an arginine residue as an allergenic active center is hydrolyzed to reduce its allergenicity, and can be used for the production of food products such as low allergenic egg products and tofu.
  • the novel protease of the present invention can be widely used for food.
  • a functional protein is produced as a non-functional proprotein, it can be converted into a functional protein by decomposing arginine residues of the protein. For example, activation of plasminogen to plasmin can be exemplified.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Mycology (AREA)
  • Enzymes And Modification Thereof (AREA)

Description

明 細 書 ポリヌクレオチド、 ポリペプチド、 ポリペプチドの製造方法 技術分野
本発明は、新規なプロテアーゼの遺伝子機能を有するポリヌクレオチド、かかるプ 口テアーゼ活性を有するポリペプチド、及ぴかかるプロテアーゼ活性を有するポリぺプ チドの製造方法に関する。 背景技術
従来、ぺプチド中の塩基性アミノ酸残基に作用し、そのぺプチド結合を加水分解す るプロテア一ゼには、 アルギニン残基、 リジン残基の双方に作用する動物由来のトリプ シンが知られており、そのプロテアーゼとしての作用が食品分野での蛋白質分解物の製 造、 工業分野での皮革製造、 生絹の処理等に利用されている他、 その血液凝固、 血圧低 下、 抗炎症作用は医療分野で利用されている。 またアルギニン残基、 リジン残基の双方 に作用する微生物由来のトリプシン様のプロテアーゼも知られている (特開 2000- 1163 77 号) 。
しかし、上記のアルギニン残基、 リジン残基の双方に作用するプロテアーゼでは基 質特異性が広く、蛋白質に作用させると該蛋白質の低分子化を生じ、蛋白質が本来有し ている乳化性、保水性等の機能性が消失すると言う問題があった。 かかる事情から、 食 品業界においては、 ハム、 ソーセージや水産練り製品、 低アレルゲン性の卵製品や豆腐 等の製造用途に供される大豆蛋白、 小麦蛋白、 卵蛋白等の分解物の乳化性、 保水性、 溶 解性、分散性等の機能性を選択的に調節し、 当該機能性の多様化を図ることができるプ 口テアーゼ、即ち蛋白質を極めて限定的に分解して蛋白質の機能性の改善ができる基質 特異性の狭いプロテア一ゼの開発が要望されている。
—方、 例えばアルギニン残基に特異的に作用するプロテアーゼとして、 人、 猿、 ノヽ ムスター等の動物細胞中に存在するプロテアーゼ (プロプロテイン'コンバターゼ) が 知られてレヽる力 s (Handbook of Proteolyti c Enzyme, Academic Press, 1998, p349— 36 8) 、 動物由来のプロテアーゼには、 動物臓器の供給 ftに制限があると共に狂牛病等の プリオン病の懸念もあるため、量産性のある微生物に由来する新規なプロテア一ゼの開 発が強く要望されている。 発明の開示
本発明は、上記問題点を解決するためになされたものであり、プロテアーゼとして の基質特異性が狭く、量産性のある微生物に由来する新規なポリべプチド、 このポリぺ プチドをコ一ドするポリヌクレオチド、及びプロテアーゼ活性を有するポリぺプチドの 製造方法を提供することを課題とする。そこで本発明者らは、上記課題を解決すベく鋭 意検討した結果、 ァスペルギルス ( Aspergi l lus) 属由来の菌株が新規なプロテアーゼ を生産することを見出し、 本発明を完成するに至った。
本発明は、第 1に、配列番号 1に示す塩基配列を有するポリヌクレオチドを提供す る。又、配列番号 1に示す塩基配列又はこれと相補的な塩基配列を有する D N Aとスト リンジェントな条件下でハイプリダイズする塩基配列を有し、プロテアーゼ遺伝子、好 ましくはセリンプロテアーゼ遺伝子もしくはシスティンプロテアーゼ遺伝子として機 能するポリヌクレオチドをも提供する。
上記において 「ポリヌクレオチド」 とは 1本鎖又は 2本鎖の DNA及び/又は RNA を言う。 「ス トリンジェントな条件下でハイブリダィズする」 とは、 公知の適宜なハイ ブリダィゼーシヨン法において、 以下の条件下で一方のポリヌクレオチド (DNA ) 又は 該ポリヌクレオチドの断片に対して他方のポリヌクレオチド(DNA ) がハイブリダイズ できることを言う。即ち、 フィルターに固定化された一方のポリヌクレオチド又は該ポ リヌクレオチドの断片に対し、 0. 7〜 1M の NaClの存在下、 所定温度 (X ° C ) 下で他 方のポリヌクレオチドのハイプリダイゼーシヨンを行った後、 0. 1〜2 倍程度の SSC 溶液 (1 倍濃度の SSC 溶液の組成は、 150mM塩化ナトリゥム、 15mMクェン酸ナトリウム よりなる) を用いて X ° Cの条件下でフィルターを洗浄した場合に、他方のポリヌクレ ォチドを同定できることを言う。 そして 「X ° C」 とは、 少なく とも 50° C以上であり、 より好ましくは 60° C以上であり、 更に好ましくは 65° C以上である。
本発明は、第 2に、配列番号 1に示すァミノ酸配列を有するポリぺプチドを提供す る。又、配列番号 1に示すアミノ酸配列を有するポリぺプチドにおいて 5個以下の任意 のアミノ酸残基が置換、欠失又は付加されたアミノ酸配列を有し、 プロテアーゼ活性を 示すポリぺプチドをも提供する。更に、上記各種のポリヌクレオチドによりコードされ るポリぺプチドをも提供する。
本発明は、 第 3に、 ァスペルギルス (Aspergi llus ) 属に属する菌株を栄養培地に 培養し、培地中に上記各種のプロテア一ゼ活性を有するポリペプチドを生成蓄積させ、 これを精製採取するポリぺプチドの製造方法を提供する。前記菌株としてはァスペルギ ルス 'ォリゼ一 (Aspergi llus oryzae) 種に属する菌株が特に好ましく、 ァスペルギル ス .オリゼ一 IAM2609株がとりわけ好ましい。 図面の簡単な説明
第 1図は本発明に係るプロテアーゼの SDS-ポリアクリルアミ ドゲル電気泳動図で ある。第 2図は本発明に係るプロテアーゼの p H特性を示す図である。第 3図は本発明 に係るプロテアーゼの p H安定性を示す図である。第 4図は本発明に係るプロテアーゼ の温度安定性を示す図である。 発明の実施形態
先ず、 本発明のポリペプチド (プロテアーゼ) の製造法について説明する。 本発明 のポリペプチド (以下「 本酵素」 ともいう。 ) は、 ァスペルギルス属に属する菌株を栄 養培地で培養し、培地中に本酵素を生成蓄積させ、 これを精製採取して得ることができ る。 ァスペルギルス属に属する菌株としては、本酵素生産能を有するものであればいか なる菌株でも使用することができ、 これらの菌株の変異株も使用することができる。好 ましい菌株としては、ァスペルギルス 'オリゼ一種に属する菌株及ぴこれらの菌株の変 異株が挙げられる。 本酵素生産能を有する菌株の具体例としては、 例えば、 ァスペルギ ルス 'ォリゼ一 IAM2609 (寄託番号 FERM BP- 7913 として 2002年 2 月 25日に経済産業 省 ·工業技術院 ·生命工学工業技術研究所 ·特許微生物寄託センタ一へ国際寄託) 菌株 が挙げられる。 本菌株の菌学的性質は次の通りである。
1 . 形態 分生子頭:放射状。
分生子柄:粗面、 1300〜2000 X 5 〜10 /^ 111。
頂のう :フラスコ形、 直径 11〜22 Ζ ΙΠ、 上部 1/2〜3/4 よりフィアラィ ドあるいはメ ト レを形成。
フィアライ ド :アンプル形、 9 〜18 Χ 4 〜5 μ m。
メ ト レ :形成する場合メ トレ先端にフィアラィ ドを形成、 6 - 12 X 4 〜6 μ m。 分生子:球状〜亜球状、 滑面〜不規則な粗面 (光学顕微鏡下) 、 裂片状〜編目状 (走 査型電子顕微鏡下) 、 4 〜8 X 4 〜6 μ πι。
2 . 生育状態
マルトエキス寒天平板培地:黄色がかった灰色〜灰緑色の表面色調である。裏面は 黄色がかった灰色である。
ッァペックィ一ストエキス寒天平板培地:黄色がかった灰色〜白色の表面色調であ る。 裏面は黄色がかった灰色である。
本菌株は、 その集落の色調及び組織、 分生子形状構造、 分生子の形状及び表面構造 等から、 ァスペルギルス ·ォリゼ一種に分類され、 ァスペルギルス ·オリゼー ΙΑΜ260 9菌株として、 東京大学分子細胞生物学研究所 ΙΑΜカルチャーコ レクショ ンにおいて分 譲可能なように保存され、 何人も容易に入手することができる。
次に、 ァスペルギルス属菌の培養法しては、 液体培養法、 固体培養法のいずれも使 用することができる。 固体培養法の場合、培地としては、 通常は小麦ふすま培地が用い られ、 水を小麦ふすま 100 重量部に対して 40〜200 重量部、 好ましくは 60〜120 重量部の割合で添加する。 必要ならば、 その際の培地添加物として黄粉、 大豆粉等の有 機窒素源或いは硫酸アンモ-ゥム、硝酸アンモニゥム等の無機窒素源を添加することが できる。 培養条件としては、 20〜40°C、 好ましくは 25〜37°Cで、 24〜120 時間培養を行 い、培養後得られたふすま麹より水又は PH5 〜8 の緩衝液を用いて抽出し、遠心分離、 ろ過等により、 本酵素 (プロテアーゼ) を含む抽出液 (以下「 粗酵素液」 ともいう。 ) を得る。
液体培養法の場合、 培地としては、 当該菌株が良好に生育し、本酵素を順調に生産 するために必要な炭素源、 窒素源、 無機塩類、 必要な栄養源等を含有する合成培地また は天然培地があげられる。 例えば、 炭素源としては、 澱粉またはその組成画分、 焙焼デ キス トリン、 加工澱粉、 澱粉誘導体、 物理処理澱粉及び a—澱粉等の炭水化物が使用で きる。 具体例としては、 可溶性澱粉、 トウモロコシ澱粉、 馬鈴薯澱粉、 甘藷澱粉、 デキ ス トリン、 アミロぺクチン、 アミロース等があげられる。
窒素源としては、 ポリぺプトン、 カゼイン、 肉エキス、 酵母エキス、 コーンスティ 一プリカ一又は大豆もしくは大豆粕などの抽出物等の有機窒素源物質、硫酸アンモニゥ ム、 リン酸アンモニゥム等の無機塩窒素化合物、 グルタミン酸等のァミノ酸類が挙げら れる。
そして、 無機塩類としては、 リン酸 1カリウム、 リン酸 2力リゥム等のリン酸塩、 硫酸マグネシウム等のマグネシウム塩、塩化カルシウム等のカルシウム塩、炭酸ナトリ ゥム等のナトリウム塩等が用いられる。
培養は振盪培養、通気撹袢培養等の好気的条件下で培地を Ρ Η 4〜10、好ましくは ρΗ5〜8 に調製し、 20〜40°C、 好ましくは 25〜37°Cで、 24〜96時間培養する。 培養後菌 体を遠心分離、 ろ過等により除去し、 粗酵素液を得る。
次に、上記の固体培養法及び液体培養法により得られた粗酵素液からの本酵素の精 製には、 酵素の精製に用いられる通常の方法、 即ち、 硫安塩析法、 アルコール分画法、 各種ク口マトグラフィー (イオン交換樹脂、 疎水クロマト用樹脂、 ァフィ二テイクロマ ト用樹脂、 ゲルろ過用樹脂等によるクロマ 1、グラフィー)等による精製法を適宜組み合 わせて用いることができ、 該精製法により高純度の本酵素を得ることができる。
更に、本酵素は、該酵素を夾雑物として含む市販の酵素製剤から上記精製法により 得ることができる。 市販の酵素剤としては、 ァスペルギルス 'ォリゼ一種の微生物から 製造されたプロテアーゼ「アマ'ノ j A (天野ェンザィム株式会社製)、プロテアーゼ「ァ マノ」 M (天野ェンザィム株式会社製) 等を用いることができる。 該市販の酵素製剤か らの本酵素の精製は、該市販の酵素製剤を PH4〜PH7 の緩衝液に溶解後、酵素の精製に 用いられる通常の方法、 即ち、 硫安塩析法、 アルコール分画法、 各種クロマトグラフィ 一(イオン交換樹脂、 疎水クロマト用樹脂、 ァフイエテイクロマト用樹脂、 ゲル濾過用 樹脂等によるクロマトグラフィー)による精製法等を適宜組み合わせることにより行う ことができ、 これにより高純度の本酵素を得ることができる。 実施例
〔実施例 1 : ァスペルギルス ·オリゼー IAM2609による本酵素の培養〕
ポテトデキストロース寒天培地 (極東製薬製) に 30 ;、 5 日間培養したァスペルギ ルス ·オリゼー IAM2609を、 滅菌した 8 gの小麦ふすま懸濁液 lOOmL (pH5. 6 ) を入れ た培養フラスコに接種し、 30°C、 40時間、 140rpmの条件下振盪培養し、 種培養とした。
これを小麦ふすま 1000g に 900mL (900g) の水を散水し、殺菌した培地に全量接種 し、 30°Cにて 68時間、 静置培養して本酵素を産生させた。 培養後、 水 4200mLを加え、 産 生した酵素を抽出し、 粗酵素液 3000mLを得た。
〔実施例 2 (実施例 1の粗酵素液からの本酵素の精製〕
実施例 1で得た粗酵素液を分画分子量 6000の限外ろ過膜で 300mL まで濃縮し、冷ェ タノール 1200mLを添加し粗酵素沈殿物を得た。該粗酵素沈殿物を遠心分離により分取後 真空乾燥し、 60g の粗酵素粉末を得た。 この粗酵素粉末の本酵素活性はキログラム当た り 19. lnkatであった。得られた粗酵素粉末 60g を緩衝液( 10mmol/Lのクェン酸緩衝液、 PH5. 0 ) 200mL に溶解後、 硫酸アンモニゥム分画 (50%飽和) を行った。 沈殿物を 4 °C、 6000 X g の条件で 30分間遠心分離を行い、上清をフエニールトヨパール 650MM (東ソ一 株式会社製) に添力□し、吸着した蛋白を硫酸アンモニゥム濃度 1. 4 モル〜 0 モルのリニ アグラジェントで溶出した。溶出した酵素活性画分を回収し、アルギニン一セファロー ス 4B (アマジャム ' フアルマシア社製) に添加し、 0. 1 モル〜 0. 3 モルの食塩濃度でリ 二アグラジェント溶出を行い、 酵素活性画分を回収した。 この酵素溶液を U F膜 (ミリ ポア社製) で濃縮を行い、 次いでスーパー口一ス 6 (アマジャム 'フアルマシアバイオ テク社製) に添加し、 活性画分を回収し精製酵素液 (以下「 本酵素液」 ともいう。 ) を 得た。 精製酵素の活性は 28. 8 (mkat/kg 蛋白質) であった。 収率は 0. 9 %であり、 純度 は 510 倍に増加した。
酵素活性測定法 ( Z—アルギニル一アルギ-ン M C A法)
50mmol/L濃度のクェン酸緩衝液 (pH4. 0 ) 0. 945mL に 0. 05mLの酵素液を加え、 30°C で 10分間加温する。 これに 10mraol/l濃度の Z—アルギニル一アルギ-ン MCA (Z-アルギ 二ルーアルギニンと 7 -ァミノ- 4- メチルクマリンとの脱水縮合体)溶液を 0. 005mL 添加 し酵素反応を開始する。蛍光光度計を用いて、本酵素による加水分解により遊離される 7 -ァミノ- 4- メチルクマリン (以下、 「 AMC j とレヽう。 ) 量を励起波長 360nm 、 蛍光波 長 440nm で蛍光強度の増加を経時的に測定する。上記反応条件下、 1秒間あたり 1モル の AMC を遊離させる本酵素量を lkatal (kat ) とした。
〔実施例 3 : 市販酵素剤からの本酵素の精製〕
市販酵素剤のプロテアーゼ M 「ァマノ」 (天野ェンザィム株式会社製) 20g を緩衝 液 (10誦 ol/lのクェン酸緩衝液、 pH5. 0 ) 200mL に溶解後、 硫酸アンモニゥム分画 (5 0%飽和) を行った。 沈殿物を 4 °C、 6000 X g の条件で 30分間遠心分離を行い、 上清を フヱニールトヨパール 650M (東ソ一株式会社製) に添加し、 吸着した蛋白を硫酸アンモ ユウム濃度 1. 4 モル〜 0 モルのリニアグラジェン トで溶出した。溶出した酵素活性画分 を回収し、 アルギニン一セファロース 4B (アマジャム ' フアルマシア社製) に添加し、 0. 1 モル〜 0. 3 モルの食塩濃度でリニアグラジェント溶出を行い、酵素活性画分を回収 した。 この酵素溶液を UF膜(ミ リポア社製)で濃縮を行い、次いでスーパ一ロース 6 (ァ マジャム ·フアルマシア社製) に添加し、 活性画分を回収し本酵素液を得た。 本酵素の 活性は 29. 8 (mkat/kg 蛋白質) であった。 収率は 0. 4 %であり、 純度は 106 倍に増加し た。 本酵素は糖鎖が結合した糖蛋白質であるので、 糖鎖を N—グリカナ一ゼ (ロシュ- ダイァグノスティックス製) で分解した後に、 蛋白質部分のみを SDS -ポリアクリルァ ミ ドゲル電気泳動を行った結果、 図 1の (3 ) のように、 単一なバンドであり、 分子量 は 61300 であった。
〔実施例 4 :本酵素の理化学的性質〕
( 1 ) 作用 ,基質特異性
表 1に示したぺプチド研究所製の各合成基質を用いて、実施例 3で得られた本酵素 の基質特異性を測定した。 即ち、 50mm01/L (PH4. 0 、 クェン酸緩衝液) 0. 945mL と本酵 素液 0. 05mLを混合後、 lOmmol/じ濃度の各合成基質液 (50mraol/L、 pH4. 0 、 クェン酸緩衝 液) を 0. 005mL 添加し、 酵素反応を開始する。 蛍光光度計を用いて、 本酵素による加水 分解により遊離される AMC 量を励起波長 360nm 、蛍光波長 440nm で蛍光強度の増加を経 時的に測定し活性を算出した。 Z -アルギニル一アルギニン MCA に対する活性を 100 %と して、 相対値で表した。 その結果、 表 1に示すように、 本酵素は MCA に隣接するァミノ 酸残基( 以下「 P1アミノ酸残基」 という。) のうちで、ペプチド結合を 1個有するぺプ チドである Arg - MCA 、 Lys-MCA 、 Leu - MCA 、 Phe-MCA 、 Ala - MCA 、 Met - MCA 、 Pyr-MCA の各 PIァミノ酸残基には作用しなかった。
また、ぺプチド結合を 2個以上有するぺプチドのうち、 P1ァミノ酸残基が酸性ァミ ノ酸のァスパラギン酸残基である Ac-Tyr- Val- Ala- Asp- MCA、 Ac- Asp-Glu - Val- Asp - MCA、 グルタミン酸残基である Z - Leu- Leu - Glu - MCA 、P1ァミノ酸残基が中性ァミノ酸のグリシ ン残基である Z- Leu- Arg- Gly- Gly - MCA 、 チロシン残基である Sue- Leu- Leu- Val- Tyr-MCA
、 ロイシン残基である Z-Leu - Leu - Leu- MCA 、 フェニールァラニン残基である Sue-Ala- Ala- Pro - Phe - MCA 、 ァラニン残基である Sue - Ala-Pro- Ala- MCA 、 Sue - Ala- Al a-Al a-MCA にも本酵素は作用しなかった。
さらに、ぺプチド結合を 2個以上有するぺプチドのうち、 P1ァミ ノ酸残基が塩基性 ァミノ酸のプロリン残基である Gly-Pro - MCA 、 Sue - Gly- Pro- Leu- Gly- Pro- MCA 、 トリプ トフアン残基である Sue- lie - l ie- Trp- MCA に本酵素は作用を示さなかった。 また、塩基 性アミノ酸残基がリジン残基である Boc- Glu - Lys- Lys-MCA については、本酵素は、僅か な相対活性で作用を示したものの、 Boc- Val- Leu-Lys- MCA については、 作用を示さなか つた。
一方、ぺプチド結合を 2個以上有するぺプチドのうち、 P1ァミ ノ酸残基が塩基性ァ ミ ノ酸のアルギニン残基である Boc- Leu- Arg- Arg- MCA 、 Z- Arg - Arg- MCA 、 Boc-Gly - Arg - Arg - MCA 、 Boc - Gin - Arg - Arg - MCA 、 Pyr - Gly - Arg - MCA 、 Boc - Gly -し ys - Arg - MCA 、 Boc - Leu-Lys-Arg-MCA 、 Boc - Gin - Gly - Arg - MCA 、 Boc Leu - Gly- Arg - MCA 、 Boc - li e - Glu - Gly - Arg - MCA 、 Boc-Leu-Ser-Thr-Arg-MCA 、 Boc - Leu - Thr - Arg - MCA 、 Z - Phe - Arg - MCA 、 Bo c - Ala - Gly - Pro - Arg - MCA 、 Boc - Val - Pro - Arg - MCA 、 Boc - Asp (OBzl) - Pro- Arg - MCA 、 Boc -Phe-Ser-Arg-MCA 、 Boc-Glu- (OBzl) - Ala- Arg- MCAについては、 本酵素は幅広い相対活 性で作用し、 該アルギニン残基のカルボキシル基側のぺプチド結合を加水分解した。
以上のように、本酵素は、ぺプチド結合を 2個以上有するぺプチドであって P1ァミ ノ酸残基が塩基性アミノ酸のアルギニン残基であるぺプチドに対し作用し、ぺプチド結 合を 1個有するぺプチドには作用せず、またべプチド結合を 2個以上有するぺプチドで あって P 1ァミノ酸残基が中性、酸性及びアルギニン以外の塩基性ァミノ酸残基である ぺプチドに対しては、 リジン残基に対して僅かに作用したことを除き、 ァスパラギン酸、 グルタミン酸、 グリシン、 チロシン、 ァラニン、 プロリン、 ロイシン、 フエ-一ルァラ ニン、 トリブトファンの各アミノ酸残基を切断しないことから、アルギユンに対して極 めて高い加水分解特異性を有していることが明らかになった。
【表 1】 合 に紂る 特異 1¾
Figure imgf000010_0001
一 9—
差替え用銑(規則 26) 表 1中の用語について、 以下に説明する。
MCA : 4-メチルクマリンアミ ド (4 -メチル- 7- ァミノクマリンとの脱水縮合体) Boc : t -ブチロキシカルボ二ノレ
Z : ベンジルォキシカルボニル
Pyr : ピログノレタミノレ
OBzl :ベンジルォキシ
Ac : ァセチノレ
Sue :サクシニノレ
( 2 ) 至適 pH
pH2 〜4 の 50mmol/L クェン酸緩衝液、 pH5 の 50mmol/L 酢酸緩衝液、 pH6 〜8 の 50mmol/L リ ン酸緩衝液、 pH9 〜10の 50ramol/L トリス緩衝液のそれぞれ 0. 945mL に本酵素液の 0. 05mLを混合後、 10画 ol/L 濃度の各合成基質液 (50mmol /し、 pH4. 0 、 ク ェン酸緩衝液) を 0. 005mL 添加し、 酵素反応を開始する。 蛍光光度計を用いて、 本酵素 による加水分解により遊離される AMC 量を励起波長 360nm 、蛍光波長 440nm で蛍光強度 の増加を経時的に測定し活性を算出した。最も活性の高い所を 100 %として、各 pHで相 対活性を算出し至適 pHを求めた。図 2に示すように、至適 pHは pH4 を中心に存在してい ることから、 該至適 pHを約 4とした。
( 3 ) pH安定性
pH2 〜4 の 10mraol/L クェン酸緩衝液、 pH5 の 10mmol/L 酢酸緩衝液、 pH6 〜8 の l Ommol/L リン酸緩衝液、 pH9 の 10mmol/L トリス緩衝液に溶解した本酵素液を 30°C に 30分間放置後、 pHを 4. 0 にし酵素活性を測定した。 その結果、 図 3に示すように pH 3〜 6の範囲で元の活性の 90 %以上を維持していた。 従って、 本酵素は少なく とも pH 3〜 6の範囲で安定である。
( 4 ) 温度安定性
pH 4の 50mmol/L クェン酸緩衝液に溶解した本酵素液を 10~ 70°Cに 10分間放置し た後、 酵素活性を測定した。 その結果、 図 4に示すように、 40°C以下の温度において元 の活性の 70%以上を維持していた。 従って、 本酵素は 40°C以下で安定である。 ( 5 ) 阻害剤
阻害剤として、シグマアルドリツチジャパン株式会社製のセリンブ口テアーゼ阻害 剤であるフエユールメタンスルホニルフルオラィ ド、 0-フエナンスロリン、 ロイぺプチ ン、 アンチパイン、 システィンプロテアーゼ阻害剤,である P-クロロマーキュリー安息香 酸、 N-ェチルマレイミ ド、 ロイぺプチン、 アンチパイン及び金属プロテアーゼ阻害剤で あるエチレンジァミン四酢酸を用いて検討を行った。 なお、阻害剤の澳度は表 2に示し た各漉度の条件下で行った。 30でで 30分間放置後に酵素活性を測定した。 その結果、 表 2に示すように、 ロイぺプチン及びアンチパインにより、酵素活性が阻害されたことか ら、 本酵素はセリンプロテア一ゼ又はシスティンプロテアーゼと示唆された。
【表 2】
Figure imgf000012_0001
( 6 ) 分子せ
SDS-ポリアクリルアミ ドゲル黧気泳動は Laemral i の方法 準じて行った。標準蛋白 赏 (括弧内に分子惫を示す。 ) としては、 -ユーィングランドバイオラボ社製のマルト —スバイレディングプロテインヒユースドベータ一ガラク トシダーゼ (158000) 、 ベー ターガラク トシダーゼ (116000) 、 ホスフォリラ一ゼ b ( 97200) 、 牛血清アルブミン ( 66400) 、 グルタミン酸脱水素酵素 ( 55600) 、 マルト一スバインディングプロティ ン ( 42700) 、 乳酸脱水素酵素 ( 36500) 、 トリオ一スホスフヱ一トイソメラ一ゼ ( 26600) を使用し、 ゲル染色は、 Coomassie Gri ll iant Blue R-250 (フアルマシア LKB 一 11一
差替え用銑 (規則 6) 製) を用いた CBB 染色で行った。 電気泳動図を図 1に示した。 その結果、 本酵素は図 1 の (2 ) に示したように、 約 70000 から 100000の広い分子量を示していた。 本酵素は糖 鎖が結合した糖蛋白質であるので、 糖鎖を N-ダリカナーゼ (ロシュ · 'ダイァグノスティ ックス社製) で分解した後に蛋白質部分のみを、 SDS-ポリアクリルアミ ドゲル電気泳動 を行った結果、 図 1の ( 3 ) に示したように、 単一なバンドであり、 分子量は 61300 であった。
〔実施例 5 :本酵素のゲノム DM 取得〕
1 ) 部分ァミノ酸配列決定
アミノ酸配列の決定は島津製作所 (SHIMADZU) のプロテインシークェンサ一 PPSQ- 23 を用いた。 本酵素の N 末端配列は GLN (T) VTNTDQLITPEXIRALYKIPSAXAAPであった。 内 部配列はピリジルェチル化した本酵素をリジルェンドぺプチダーゼ処理により断片化 した後、 本酵素のペプチド断片を HPLCにより分離し、 配列を決めた。 内部配列は XHNPP YPYYXGAXNL であった。 X は特定されなかったアミノ酸を示す。
2 ) プローブ作製
N末端配列の中 NTDQLITP の配列をベースにセンスプライマー ao- N (5' - AAYACIG AYCARYTIATHACNCC-3' ) を作製した。 また、 内部配列 NPPYPYYをベースにアンチセンス プライマー ao- C1 (5' - RTARTAIGGRTAIGGNGGRTT - 3' )を作製した。 (ここで Y は TC, I はイノシン酸、 R は A 力 G、 H は T 力 C 力 A, Nは A カ^ 力 T 力 を示す)。プライマ 一 ao- 及び ao - C1 を用い、 ァスペルギルス 'オリゼー IAM2609のゲノム DNAを鐯型と して PCRを行った。 PCR 反応は T0Y0B0の KOD DNA ポリメラーゼを用い、 95°Cで 3 分間 DNA を変性した後、 94Tで 0. 5 分間、 55°Cで 0. 5 分間、 68°Cで 2 分間を 25サイクル 行った。 その結果、 1. lkb の DNA 断片が増幅したので、 この DNA 断片を pBluescript I I KS-の Ec。 RV部位へサブクローユングし塩基配列を決定した。 塩基配列から予想され るアミノ酸配列は ao-N プライマー配列の後に続いて N 末端アミノ酸配列 ECIRALYKIPS ARAAPをコードしていたので、 この DNA 断片は目的のものと判断し、 DNA クローニング の際にプローブとして用いた。
3 ) ライブラリ一作製 ァスペルギルス ·オリゼー IAM2609のゲノム DNAを Sau 3AI で部分分解し、 約 15k bの DNA 断片を得た。 ベクターとしては T0Y0B0の; DASH I I を用い Bam HI部位へ DNA断 片をライゲーシヨンした。 このライゲートを Gi gapack I I I Gold in v itro packaging Ki tによりパッケージングし、 宿主大腸菌 XL1- Blue MRA (P2)を用いて 1回増幅した。
4 ) クローニング
プラークハイプリダイゼーションにより陽性クローンを得た。プローブのラベルは口 ッシュ (Roche ) 社製の DIG label systemを用いた。 組換えファージ DNA から目的の D NA 断片を含む 4kb Xba I 断片を pBluescript I I KS-へサブクローニングし塩基配列の 決定に用いた。
5 ) 塩基配列決定の決定には、 日立製作所 ( HITACHI) の SQ- 5500 DNA シークェンサ一 を用いた。
〔実施例 6 :本酵素の cDNA取得等〕
1 ) 1本鎖 cDNA の作製
ァスペルギルス ·ォリゼー IAM2609の培養菌体から全 RNA を精製した (キアゲン(Q IAGEN)社製の RNeasy Mini Kit 使用) 。 次にアンカー Tプライマー( 5' - GACCACGCGTAT CGATGTCGACTTTTTTTTTTTTTTTT - 3' ) と、 AMV 逆転写酵素を用い、 全 RNA から 1本鎖 cDNA を合成した。 ·
2 ) 2本鎖 cDNA の作製
PCR 反応により cDNAの増幅を行った。 鎳型としては 1本鎮 cDNA、 プライマーは Apa - Spe2 (5' - AATCTCGCATACTAGTTCCACACAATG - 3':)とアンカー (5' - GACCACGCGTATCGATGTCGA C-3' ) を用いた。 PCR 反応は T0Y0B0社製の KOD DNA ポリメラーゼを用い、 95°Cで 3 分間 DNA を変性した後、 94°Cで 0. 5 分間、 55でで 0. 5 分間、 68°Cで 2 分間を 25サイクル 行った。 その結果、 2. 2kb の DNA 断片が増幅したので、 この DNA 断片を pBluescript I I KS -の Spe I , Cla I 部位へサブクローニングし塩基配列を決定した。
3 ) 遺伝子配列の解析
ゲノム DNAと cDNAの配列を比較することにより、プロモーター配列及びイントロン を決定した。 この遺伝子は 8個のィントロンを含んでいた。 4 ) 全ァミノ酸配列の決定
cDNA の塩基配列から本酵素の全アミノ酸配列を推定した。この遺伝子は 652 ァミノ 酸残基をコードしており、 成熟タンパク質は 437 アミノ酸からなっていた。
〔実施例 7 : プラスミノ一ゲンの活性化〕
1 ) プラスミノーゲンの精製
市販プラスミノーゲン(ROCHE) は安定化のため多量の BSA が入っているので精製 を試みた。 5 mMリン酸緩衝液 pH 7. 4に調整された 1 mg/ml プラスミノーゲン 200 1 を、 50 mM リン酸緩衝液(pH 7. 5)で平衡化した Lys- Sepharos e 4B ( 1. 0 X 10 cm)に供し、 同緩衝液でよく洗浄する。 0· 5 M NaClを含む 50 mM リン酸緩衝液(pH 7. 5)でさらによく 洗浄し、 0. 2 M ε -amino-n-capron i c aci dにて溶出した。溶出画分を 10 mM MES 緩衝液 (pH 5. 4)で透析し、 E— ami no— n— capron i c ac i dを除レヽた。 この画分(こつレヽて SDS— PAGE により均一性を確認した。
2 ) プラスミノーゲンの活性化
精製したプラスミノーゲン 450 μ 1 に本酵素希釈液 50 μ ΐ を加え混合し、 37°Cで各 時間反応させた後、 200niM Tri s-HCl緩衝液 (pH 7. 5) 500 μ 1 を加えることにより本酵 素の酵素反応を停止した。これに 10 mM Boc-Val-Leu-Lys-MCA 基質 5 μ 1 を加え活性化 されたプラスミンの酵素反応を開始した。基質から遊離される AMC の量を島津製作所製 の RF 5000 型分光蛍光光度計を用いて、励起波長 360nm と蛍光波長 440nm で測定した。 プラスミンの活性は 37°C、 pH 7. 5で測定した。 その結果、 本酵素は 10分間反応でプラス ミンノ一ゲンの活性化を最大にした。その以上の反応ではプラスミンの活性が徐々に下 がっていたことから、 活性化されたプラスミンを分解して行くものと考えられた。 産業上の利用分野
本発明の新規ポリぺプチドは、蛋白質中のアルギニン残基のカルボキシル基側のぺ プチド結合を特異的に加水分解するプロテアーゼ活性を示すことから、蛋白質を極めて 限定分解して、 蛋白質の機能性の改善ができる。 具体的には、 水に対して溶解性が低い 小麦や大豆の蛋白質を分解して、蛋白質の有する乳化性、保水性等の機能性を保持した まま、 溶解性を向上させることが挙げられ、 ハム、 ソーセージや水産練り製品等の増量 剤として食品用途で利用され得る。
また、アルギユン残基を活性中心に有する蛋白質を、 そのアルギニン残基部位で加 水分解することにより、 蛋白質を不活性化することができる。 具体的には、 大豆中の大 豆トリプシンインヒビターを分解して不活性化ができ、消化性の良い大豆蛋白質を製造 させうる。
さらに、アルギニン残基をアレルゲン性の活性中心とする蛋白質を加水分解してァ レルゲン性を低減させ、低アレルゲン性の卵製品、豆腐等の食品製造の用途に利用され 得る。 このように本発明の新規プロテアーゼは、 広く食品用に利用され得る。
また、遺伝子組替えによる蛋白質の機能性の発現にも利用されうる。機能性の蛋白 質は、機能性を有しないプロ蛋白質として生産されるが、 この蛋白質のアルギニン残基 を分解することにより、機能性を有する蛋白質に変換することができる。 例えば、 ブラ スミノーゲンをプラスミンに活性化することを例示できる。

Claims

請 求 の 範 囲
1 . 配列番号.1に示す塩基配列を有するポリヌクレオチド。
2 .配列番号 1に示す塩基配列又はこれと相補的な塩基配列を有する D N Aとス トリン ジェントな条件下でハイプリダイズする塩基配列を有し、プロテアーゼ遺伝子として機 能するポリヌクレオチド。
3 . 配列番号 1に示すアミノ酸配列を有するポリぺプチド。
4 .配列番号 1に示すァミノ酸配列を有するポリぺプチドにおいて 5個以下の任意のァ ミ ノ酸残基が置換、欠失又は付加されたァミノ酸配列を有し、プロテアーゼ活性を有す るポリぺプチド。
5 . 請求の範囲 2項に記載のポリヌクレオチドによりコードされるポリべプチド。
6 . ァスペルギルス (Aspergi l lus ) 属に属する菌株を栄養培地に培養し、 培地中に請 求の範囲 3項〜 5項のいずれかに記載のポリぺプチドを生成蓄積させ、これを精製採取 するポリぺプチドの製造方法。
7 . 前記菌株がァスペルギルス 'ォリゼ一 (Aspergi l lus oryzae) 種に属する菌株であ る請求の範囲 6項に記載のポリぺプチドの製造方法。
8 . 前記菌株がァスペルギルス 'オリゼー IAM2609株である請求の範囲 7項に記載のポ リぺプチドの製造方法。
PCT/JP2002/001978 2002-03-04 2002-03-04 Polynucléotides, polypeptides et leur procédé de production WO2003074710A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003573157A JP4347062B2 (ja) 2002-03-04 2002-03-04 ポリヌクレオチド、ポリペプチド、ポリペプチドの製造方法
PCT/JP2002/001978 WO2003074710A1 (fr) 2002-03-04 2002-03-04 Polynucléotides, polypeptides et leur procédé de production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2002/001978 WO2003074710A1 (fr) 2002-03-04 2002-03-04 Polynucléotides, polypeptides et leur procédé de production

Publications (1)

Publication Number Publication Date
WO2003074710A1 true WO2003074710A1 (fr) 2003-09-12

Family

ID=27773225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/001978 WO2003074710A1 (fr) 2002-03-04 2002-03-04 Polynucléotides, polypeptides et leur procédé de production

Country Status (2)

Country Link
JP (1) JP4347062B2 (ja)
WO (1) WO2003074710A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009232835A (ja) * 2008-03-04 2009-10-15 Amano Enzyme Inc 新規プロテアーゼ及びその製造法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0325986A2 (en) * 1988-01-28 1989-08-02 Miles Inc. Enzymatic hydrolysis of proteins
JPH10210967A (ja) * 1996-11-29 1998-08-11 Ajinomoto Co Inc 高活性変異株及びそれを用いる蛋白加水分解物の製造法
WO2000053725A1 (en) * 1999-03-11 2000-09-14 Societe Des Produits Nestle S.A. Expression of proteolytic enzymes in koji mold in the presence of carbon sources

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0325986A2 (en) * 1988-01-28 1989-08-02 Miles Inc. Enzymatic hydrolysis of proteins
JPH10210967A (ja) * 1996-11-29 1998-08-11 Ajinomoto Co Inc 高活性変異株及びそれを用いる蛋白加水分解物の製造法
WO2000053725A1 (en) * 1999-03-11 2000-09-14 Societe Des Produits Nestle S.A. Expression of proteolytic enzymes in koji mold in the presence of carbon sources

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KASAI, N. et al.: "Purification of an Aspergillus oryzae Metallo-proteinase by Talopeptin-aminohexyl-Sepharose and Its Properties", Agric. Biol. Chem., 1984, Vol. 48, No. 6, pages 1533 to 1538 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009232835A (ja) * 2008-03-04 2009-10-15 Amano Enzyme Inc 新規プロテアーゼ及びその製造法

Also Published As

Publication number Publication date
JPWO2003074710A1 (ja) 2005-06-30
JP4347062B2 (ja) 2009-10-21

Similar Documents

Publication Publication Date Title
JP3609648B2 (ja) 新規蛋白質脱アミド酵素、それをコードする遺伝子、その製造法並びにその用途
JP4549386B2 (ja) 新規プロテアーゼ、該プロテアーゼを生産する微生物、及びこれらの利用
Yamashita et al. Plastein reaction for food protein improvement
JP2001517094A (ja) アスペルギルスオリザからのプロリル−ジペプチジル−ペプチダーゼのクローニング
US20110165305A1 (en) Method for preparing a protein hydrolysate
Bao et al. Comparison of ACE inhibitory activity in skimmed goat and cow milk hydrolyzed by alcalase, flavourzyme, neutral protease and proteinase K
JP2003192695A (ja) アンジオテンシンi変換酵素阻害剤
CN100558244C (zh) 饮食品的口味和/或风味的改善方法
AU708537B2 (en) Leucine aminopeptidases produced by recombinant technology from aspergillus soyae
JP2009232835A (ja) 新規プロテアーゼ及びその製造法
WO2003074710A1 (fr) Polynucléotides, polypeptides et leur procédé de production
JP4401555B2 (ja) 新規なキモトリプシン様プロテア−ゼ及びその製造法並びに新規なキモトリプシン様プロテアーゼを作用させるタンパク質分解物含有物の製造法。
KR102158642B1 (ko) 글루탐산을 고발현하는 락토코커스 락티스 균주 및 이의 용도
JP2022102874A (ja) エラスチンペプチド
JP4071876B2 (ja) 新規なセリンプロテアーゼ及びその製造法
JP2590373B2 (ja) 新規なすり身とその製造方法
EP1371725B1 (en) Novel aminopeptidase and its gene
JP6697226B2 (ja) 新規ペプチダーゼ
US7595183B2 (en) Cathepsins L-like cysteine protease derived from northern shrimp (Pandalus eous)
JP2003024012A (ja) アンジオテンシンi変換酵素阻害剤及び血圧降下性機能食品
WO2024071388A1 (ja) 酵素剤及びその応用
RU2423526C2 (ru) Способ получения рекомбинантного белка
JP3403472B2 (ja) 蛋白質加水分解物の呈味改善方法
JP2023027412A (ja) エラスチン分解酵素
JP2024159958A (ja) エラスチン分解酵素

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

WWE Wipo information: entry into national phase

Ref document number: 2003573157

Country of ref document: JP