WO2003074161A2 - Sauerstoffmembran für den einsatz bei hohen temperaturen - Google Patents

Sauerstoffmembran für den einsatz bei hohen temperaturen Download PDF

Info

Publication number
WO2003074161A2
WO2003074161A2 PCT/DE2003/000337 DE0300337W WO03074161A2 WO 2003074161 A2 WO2003074161 A2 WO 2003074161A2 DE 0300337 W DE0300337 W DE 0300337W WO 03074161 A2 WO03074161 A2 WO 03074161A2
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen
oxygen membrane
membrane
oxidic material
oxide
Prior art date
Application number
PCT/DE2003/000337
Other languages
English (en)
French (fr)
Other versions
WO2003074161A3 (de
Inventor
Mahmoud Al Daroukh
Detlev STÖVER
Frank Tietz
Helmut Ullmann
Vladimir Vashuk
Original Assignee
Forschungszentrum Jülich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Jülich GmbH filed Critical Forschungszentrum Jülich GmbH
Priority to AU2003208282A priority Critical patent/AU2003208282A1/en
Publication of WO2003074161A2 publication Critical patent/WO2003074161A2/de
Publication of WO2003074161A3 publication Critical patent/WO2003074161A3/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • B01D71/0271Perovskites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2641Compositions containing one or more ferrites of the group comprising rare earth metals and one or more ferrites of the group comprising alkali metals, alkaline earth metals or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0041Inorganic membrane manufacture by agglomeration of particles in the dry state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0041Inorganic membrane manufacture by agglomeration of particles in the dry state
    • B01D67/00411Inorganic membrane manufacture by agglomeration of particles in the dry state by sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • B01J35/59Membranes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0229Purification or separation processes
    • C01B13/0248Physical processing only
    • C01B13/0251Physical processing only by making use of membranes
    • C01B13/0255Physical processing only by making use of membranes characterised by the type of membrane
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/016Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on manganites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0043Impurity removed
    • C01B2210/0046Nitrogen
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6582Hydrogen containing atmosphere
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6584Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage below that of air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Definitions

  • the invention relates to an oxygen membrane made of an oxidic material which is suitable for use at high temperatures.
  • Oxygen membranes are often used as oxygen-transporting membranes in catalytic reactors, which are especially designed for high working temperatures.
  • the oxide materials that are regularly used to build up such oxygen membranes are selected so that they have the best possible properties for the transport of oxygen from a gas rich in oxygen, usually air, into a reaction gas, for example natural gas. At the same time, these materials should have catalytic properties for the partial oxidation of the reaction gas to produce certain chemical products.
  • the materials must be stable at the operating temperature of the catalytic reactor over long periods and over many temperature cycles both in the oxygen-rich gas and in the reaction gas. They must not have a large gradient in the thermal expansion behavior between the side of the membrane delimited by the oxygen-rich gas and the side delimited by the reaction gas. They must be chemically compatible and the others in terms of their thermal expansion coefficient Material components must be adjusted.
  • the requirements can be summarized as follows:
  • the materials to be used for oxygen permeation should be mechanically and chemically stable in the long term, especially under the conditions of use (600 ° C ⁇ T ⁇ 1000 ° C, 10 ⁇ 12 Pa ⁇ p0 2 ⁇ 10 6 Pa) , They should also be compatible with all materials that are in direct contact.
  • the phase stability should be given in all 0 2 partial pressure ranges.
  • Preferred materials for catalytic membranes are oxides with a perovskite structure with the general composition AB0 3 . These include rare earth manganites, ferrites, cobaltites, with strontium or calcium substitution on the rare earth ion site and with mixed occupancy of the B-
  • the object of the invention is to make an oxygen membrane from an oxidic material with a good
  • the oxidic material of the oxygen membrane should be stable both in the gas with high oxygen partial pressure and in the reaction gas and should have a moderate thermal expansion of approx. 12 to 14 * 10 _s K -1 .
  • the oxygen membrane should furthermore allow a high permeation flow of oxygen even at temperatures in the range from 800 to 900 ° C. This requires values of the chemical diffusion coefficient of oxygen in the order of 10 "4 cm 2 s " 1 .
  • an oxygen membrane comprising an oxidic material with a high diffusion coefficient for oxygen, which has a complex K 2 NiF 4 layer structure.
  • Oxygen diffusion is understood to mean the passage of oxygen through a gas-tight ceramic membrane due to the diffusion of oxide ions.
  • a layer suitable as an intermediate layer can have, for example, a NaCl structure.
  • the sequence of the layers can alternate directly (e.g. perovskite - NaCl - perovskite - NaCl - etc.) or have a different order (e.g. perovskite - NaCl - NaCl - perovskite - NaCl - NaCl etc. ).
  • This sequence also gives the general formula of the complex oxide as an oxidic material, especially for an oxygen membrane.
  • the perovskite Structure (AB0 3 ) plus a NaCl structure (AO) gives the empirical formula (A 2 B0 4 ).
  • the A site is usually occupied by a rare earth ion (Ln).
  • Ln means a rare earth element
  • A an alkaline earth element
  • B a transition metal element or also a mixture of transition metal elements.
  • the parameter a specifies the composition ratio between Ln and A. Both elements together occupy the (Ln + A) lattice site. Minor deviations from the stochiometry of the oxygen ⁇ are determined from the valences of the metals.
  • the B-lattice sites are regularly occupied by metals, of which iron, cobalt, nickel, manganese, copper and chromium in particular can be mentioned individually or as a mixture.
  • oxides show no thermal elimination of oxygen from the oxide and therefore no increase in thermal expansion, even in gases with a low oxygen partial pressure, because of their higher stability.
  • These complex oxides are therefore particularly suitable as oxide-ceramic materials for use in an oxygen membrane at high temperatures and in contact with different gases.
  • the oxygen membrane according to the invention is built up from the aforementioned complex oxide, and regularly has a high electrical and ionic conductivity and a higher stability than those membranes which have the perovskite-type oxides examined so far.
  • a suitable method for producing the oxygen membrane according to the invention comprises, for example, the following steps.
  • a mixture of rare earth (Ln) oxide, alkaline earth (A) carbonate and an oxide of metal B is weighed in such a way that after annealing in air a compound with the composition according to the formula Ln 2 _ a A a B0 4 - ⁇ is formed.
  • the composition results from the solid-state reaction of the individual components of the mixture that takes place during annealing.
  • the mixture is then annealed at the appropriate annealing temperature which creates the desired structure in the compound.
  • the resulting powder can then be sintered for use in a ceramic layer or a body, especially an oxygen membrane. During the sintering, a temperature is set which is approximately 50 K higher than the annealing temperature.
  • compositions have a sufficient electronic conductivity (greater than 10 S cm “1 ) and values of the chemical diffusion of the oxidation by 10 ⁇ 4 cm 2 s “ 1 in the temperature range from 800 to 1000 ° C., combined with reduction stability in the reaction gas and with Expansion coefficients in air and argon from 12 to 14 * 10 "6 K “ 1 .
  • the annealing temperature T g is required for the production of powders with the desired structure. In order to sinter ceramic layers or bodies from these powders, temperatures around 50 ° C are required.
  • the preparation of a preferred composition for an oxygen membrane is described below.
  • Lanthanum oxide, strontium carbonate and nickel oxide are mixed in such a ratio that after annealing in air at 1300 ° C for 10 hours the composition La ⁇ / 4 Sr 0 , 6 Ni0 - ⁇ is formed.
  • the connection is stable when annealed for 10 hours at 800 ° C in Ar / H 2 / H 2 0 with an oxygen partial pressure of 10 "11 Pa.
  • the electrical conductivity at 800 ° C in air is 80 S cm -1
  • the chemical diffusion the oxide ions under these conditions is 10 "4 cm 2 s " 1.
  • the coefficient of thermal expansion in air is 12.5 * 10 "s K " 1 that in argon
  • the electrical conductivity of the oxides is of the p-semiconducting type.
  • La can be replaced by Pr and Sr to be replaced by Ca.
  • the composition and properties can be easily varied by a slightly underdio-metric occupation of the cations La and Sr compared to the stochiometry of the B site and / or by a mixed occupation of the B site with two of the specified cations.
  • Figure 1 Electrical conductivity of the oxidic material with a K 2 NiF 4 structure as a function of temperature
  • Figure 2 Electrical conductivity of the oxidic material with a K 2 NiF 4 structure as a function of the oxygen partial pressure.
  • compositions 1 to 7 in air in the temperature range above 600 ° C. have specific conductivities greater than 10 S per cm, as is required in particular for use as a cathode material. Show the highest values
  • the seven proposed compositions have specific conductivities of more than 10 S per cm, as are required in particular for cathode materials.
  • the highest values also have LaSrCo0_ ⁇ and La x Sr 0 6 Ni0 4 _ ⁇ .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

Die Erfindung betrifft eine Sauerstoffmembran umfassend ein oxidsches Material, welches einen Sauerstoffdiffu­sionskoeffizienten von mindestens 10-4 cm2 s-1 und eine K2NiF4-Schichtstruktur aufweist, bei der wenigstens eine Perowskitschicht an eine weitere Schicht angrenzt, die keine Perowskitstruktur aufweist. Dieses oxidische Material weist eine besonders gute Sauerstoffleitung, insbesondere im Temperaturbereich von 800 bis 1000 °C auf, und ist damit besonders für den Einsatz in einer Sauerstoffmembran geeignet, welche bei hohen Arbeitstemperaturen beispielsweise in einem Katalysereaktor eingesetzt wird.

Description

Beschreibung
Sauerstoffmembran für den Einsatz bei hohen
Temperaturen
Die Erfindung betrifft eine Sauerstoffmembran aus einem oxidischen Material, welches für den Einsatz bei hohen Temperaturen geeignet ist.
Stand der Technik
Sauerstoffmembranen finden häufig Anwendung als Sauerstoff transportierende Membranen in Katalysereaktoren, die insbesondere für hohe Arbeitstemperaturen ausgelegt sind.
Die Oxidmaterialien, die zum Aufbau solcher Sauerstoffmembranen regelmäßig Verwendung finden, werden danach ausgewählt, dass sie möglichst gute Eigenschaften für den Transport von Sauerstoff aus einem an Sauerstoff reichen Gas, meist Luft, in ein Reaktionsgas, zum Beispiel Erdgas, haben. Gleichzeitig sollen diese Materialien katalytische Eigenschaften für die partielle Oxi- dation des Reaktionsgases zur Erzeugung bestimmter che- mischer Produkte aufweisen. Die Materialien müssen bei der Betriebstemperatur des Katalysereaktors über lange Zeiten und über viele Temperaturzyklen sowohl im sauerstoffreichen Gas, als auch im Reaktionsgas stabil sein. Sie dürfen keinen großen Gradienten des thermischen Ausdehnungsverhaltens zwischen der vom sauerstoffreichen Gas und der vom Reaktionsgas begrenzten Seite der Membran aufweisen. Sie müssen chemisch verträglich und im thermischen Ausdehnungskoeffizienten den weiteren Materialkomponenten angepaßt sein. Zusammenfassend lassen sich die Anforderungen wie folgt beschreiben: Die für die Sauerstoffpermeation einzusetzenden Materialien sollten, insbesondere unter der Einsatzbedingungen (600 °C ≤ T ≤ 1000 °C, 10~12 Pa ≤ p02 ≤ 106 Pa) , mechanisch und chemisch langzeitstabil sein. Sie sollten darüber hinaus mit allen direkt in Kontakt stehenden Werkstoffen kompatibel sein. Die Phasenstabilität sollte in allen 02-Partialdruckbereichen gegeben sein.
Bislang sind aus der Literatur verschiedene Material- kompositionen für den Aufbau von Katalysemembranen vorgeschlagen worden. Die ausgewählten Materialien sind regelmäßig gute Elektronen/Oxidionen-Mischleiter, die einen hohen Sauerstofftransport durch eine gasdichte keramische Membran gewährleisten. Weiterhin lassen sie einen guten Sauerstoffaustausch an der Oberfläche des Oxids zu.
Bevorzugte Materialien für Katalysemembranen, wie sie derzeit verwendet werden, sind Oxide mit Perowskit- struktur mit der allgemeinen Zusammensetzung AB03. Dazu zählen Seltenerd-Manganite, -Ferrite, -Kobaltite, mit Strontium- oder Kalzium-Substitution auf dem Platz des Seltenerdions und mit gemischter Besetzung des B-
Platzes, zum Beispiel mit Eisen oder Nickel auf einem Teil der Manganplätze. Diese vorgenannten Oxide zeichnen sich durch einen hohen Diffusionskoeffizienten für Sauerstoff aus. Gleichzeitig zeigen sie eine gute kata- lytische Wirkung für die partielle Oxidation von Kohlenwasserstoffen . Je höher der Oxidionentransport und je besser die kata- lytischen Eigenschaften sind, desto geringer ist jedoch regelmäßig die Reduktionsstabilität der Oxide im Reaktionsgas. Die dadurch bedingte thermische Abspaltung von Sauerstoff aus den Oxiden führt gleichzeitig zu einer Erhöhung des thermischen Ausdehnungskoeffizienten in der dem Reaktionsgas zugewandten Oxidschicht, und damit zu thermischen Spannungen zwischen den beiden Seiten der keramischen Oxidmembran.
Es wurde auch versucht, Gemische aus einem Elektronenleiter (Silber oder Palladium) mit einem reinen oxidkeramischen Oxidionenleiter (stabilisiertes Zirkoniumoxid) , sogenannte Cermets, als Sauerstoffmembranen zu verwenden. Die oxidkeramischen Membranen auf der Basis von Elektronen/lonen-Mischleitern, die aus einem homogenen Material bestehen, sind demgegenüber jedoch einfacher und preiswerter herstellbar. Aus diesen vorgenannten Gründen wird weiter nach Membranmaterialien auf Basis von Oxiden geforscht, die allen vorgenannten Anforderungen entsprechen sollen.
Aufgabe und Lösung
Die Aufgabe der Erfindung ist es, eine Sauerstoffmemb- ran aus einem oxidischen Material mit einer guten
Elektroden/Ionen-Mischleitung zu schaffen, welche zudem einen sehr guten Sauerstofftransport aus einem sauerstoffhaltigen Gas, beispielsweise Luft, zu einem Reaktionsgas gewährleistet. Gleichzeitig soll das oxidische Material der Sauerstoffmembran stabil sowohl im Gas mit hohem Sauerstoffpartialdruck als auch im Reaktionsgas sein und eine moderate thermische Ausdehnung von ca. 12 bis 14 * 10_s K-1 aufweisen. Die Sauerstoffmembran soll ferner schon bei Temperaturen im Bereich von 800 bis 900 °C einen hohen Permeationsfluß von Sauerstoff ermöglichen. Dazu sind Werte des chemischen Diffusionskoeffizienten des Sauerstoffs in der Größenordnung von 10"4 cm2 s"1 erforderlich.
Die Aufgaben werden gelöst durch eine Sauerstoffmembran umfassend ein oxidisches Material mit der Gesamtheit der Merkmale des Hauptanspruchs . Vorteilhafte Ausfüh- rungsformen und Ausgestaltungen der Sauerstoffmembran ergeben sich aus den jeweils darauf rückbezogenen Ansprüchen.
Gegenstand der Erfindung Erfindungsgemäß wird die Aufgabe durch eine Sauerstoff- membran umfassend ein oxidisches Material mit einem hohen Diffusionskoeffizienten für Sauerstoff gelöst, welches eine komplexe K2NiF4-Schichtstruktur aufweist. Unter der Sauerstoffdiffusion ist dabei der Durchtritt von Sauerstoff durch eine gasdichte keramische Membran infolge der Diffusion von Oxidionen zu verstehen. Bei der K2NiF-Schichtstruktur wird eine Schicht mit einer Perowskitstruktur durch eine benachbarte Schicht mit einer anderen Struktur (Zwischenschicht) stabilisiert. Eine als Zwischenschicht geeignete Schicht kann beispielsweise eine NaCl-Struktur aufweisen. Die Abfolge der Schichten kann dabei direkt alternieren (z. B. Pe- rowskit - NaCl - Perowskit - NaCl - etc.) oder auch eine andere Reihenfolge aufweisen (z. B. Perowskit - NaCl - NaCl - Perowskit - NaCl - NaCl etc.) .
Aus dieser Abfolge ergibt sich auch die allgemeine Formel des komplexen Oxides als oxidisches Material insbesondere für eine Sauerstoffmembran. Die Perowskit- Struktur (AB03) plus einer NaCl-Struktur (AO) ergibt die Summenformel (A2B04) .
Der A-Platz ist üblicherweise durch ein Seltenerdion (Ln) besetzt. Durch teilweise Substitution des A- Platzes durch ein Erdalkaliion ergibt sich dann die modifizierte Formel gemäß Ln(2-a)AaB0-δ. Dabei bedeutet Ln ein Seltenerdelement, A ein Erdalkalielement und B ein Übergangsmetallelement bzw. auch ein Gemisch aus Übergangsmetallelementen. Der Parameter a gibt das Zusam- mensetZungsverhältnis zwischen Ln und A an. Beide Elemente besetzten zusammen den (Ln+A) Gitterplatz. Geringe Abweichungen von der Stochiometrie des Sauerstoffs δ bestimmen sich aus den Valenzen der Metalle.
Vielfältige Untersuchungen haben gezeigt, dass für eine Sauerstoffmembran als geeignete Seltenerdionen (Ln) insbesondere Lanthan, Praseodym, Gadolinium, und als Erdalkaliionen (A) insbesondere Strontium, Calcium, und Barium zu nennen sind. Die Stochiometrie ergibt für die Kombination von Ln plus A regelmäßig 2 mol , wobei das Mischungsverhältnis dieser beiden Elemente untereinander durch den Parameter a gekennzeichnet wird. Weitere Untersuchungen haben jedoch gezeigt, dass auch Mischungsverhältnisse mit (Ln + A) zwischen 1,6 und 2,0 geeignet sind, soweit sie die K2NiF4-Struktur aufweisen.
Als eine besonders vorteilhafte Ausgestaltung der Zusammensetzung des oxidischen Materials für die Sauer- stoffmembran hat sich in Versuchen Lanthan als
Seltenerdion (Ln) und Strontium als Erdalkaliion (A) herausgestellt . Die B-Gitterplätze werden regelmäßig von Metallen eingenommen, von denen insbesondere Eisen, Kobalt, Nickel, Mangan, Kupfer und Chrom einzeln oder im Gemisch als geeignet zu nennen sind.
Es wurde gefunden, dass für verschiedene Metalle (B) jeweils unterschiedliche Bereiche der Zusammensetzung für A-Gitterplätze besonders geeignet sind.
Es hat sich als insbesondere als vorteilhaft herausgestellt, dass die vorgenannten Oxide auf Grund ihrer höheren Stabilität auch in Gasen mit niedrigem Sauerstoffpartialdruck keine thermische Abspaltung von Sau- erstoff aus dem Oxid und dadurch keine Zunahme der thermischen Ausdehnung zeigen. Damit sind diese komplexen Oxide als oxidkeramische Materialien für die Anwendung in einer Sauerstoffmembran bei hohen Temperaturen und im Kontakt mit unterschiedlichen Gasen besonders geeignet.
Die erfindungsgemäße Sauerstoffmembran ist aus dem vorgenannten komplexen Oxid aufgebaut, und weist dabei regelmäßig eine hohe elektrische und ionische Leitfähig- keit und eine höhere Stabilität als solche Membranen auf, die die bisher untersuchten Oxide vom Perowskittyp aufweisen.
Ein geeignetes Verfahren zur Herstellung der erfin- dungsgemäßen Sauerstoffmembran umfasst beispielsweise die folgenden Schritte. Ein Gemisch von Selten- erd(Ln)oxid, Erdalkali (A) carbonat und einem Oxid des Metalls B wird derart eingewogen, dass nach dem Glühen an der Luft eine Verbindung mit der Zusammensetzung entsprechend der Formel Ln2_aAaB04-δ entsteht . Die Zusammensetzung ergibt sich aus der beim Glühen stattfindenden Festkörperreaktion der einzelnen Komponenten der Mischung. Das Glühen der Mischung erfolgt dann bei der entsprechenden Glühtemperatur, die die gewünschte Struktur in der Verbindung erzeugt. Das dadurch entstehende Pulver kann für die Verwendung in einer keramischen Schicht oder einem Körper, insbesondere einer Sauerstoffmembran, anschließend gesintert werden. Bei der Sinterung wird eine Temperatur eingestellt, die ca. 50 K höher ist, als die Glühtemperatur.
Spezieller Beschreibungsteil Nachfolgend wird der Gegenstand der Erfindung anhand eines Ausführungsbeispiels, zweier Figuren sowie einer Tabelle näher erläutert, ohne dass der Gegenstand der Erfindung dadurch beschränkt wird.
Ein Gemisch von Seltenerd (Ln) oxid, Erdalkali (A) karbonat und einem Oxid des Metalls B (B = Mangan und/oder Nickel) wird so eingewogen, dass nach dem Glühen durch Festkörperreaktion eine molare Zusammensetzung entsprechend Ln2. aAaB04-δ entsteht .
Folgende Zusammensetzungen weisen im Temperaturbereich von 800 bis 1000 °C eine ausreichende elektronische Leitfähigkeit (größer als 10 S cm"1) und Werte der chemischen Diffusion des Oxidions um 10~4 cm2 s"1, kombi- niert mit Reduktionsstabilität im Reaktionsgas und mit Ausdehnungskoeffizienten an Luft und Argon von 12 bis 14*10"6 K"1 auf. Damit sind diese Oxide insbesondere für die Verwendung in der erfindungsgemäßen Sauerstoffmembran geeignet (Tabelle) :
Tabelle: Als oxidische Materialen geeignete Zusammensetzungen von Oxiden des Typs Ln2_aAaB04-δ nach Glühen an Luft bei Tg(°C) Ln A a[mol] B Tg[°C]
La Sr 1,0 bis 1,5 Mn 1200
La Sr 0,4 bis 0, 8 Co 1100
La Sr 0 bis 0,6 Ni 1300
Die Glühtemperatur Tg ist für die Herstellung von Pulvern mit der gewünschten Struktur erforderlich. Um aus diesen Pulvern keramische Schichten oder Körper zu sin- tern, braucht man etwa 50 °C höhere Temperaturen.
Im folgenden wird die Herstellung einer bevorzugten Zusammensetzung für eine Sauerstoffmembran beschrieben. Lanthanoxid, Strontiumkarbonat und Nickeloxid werden in einem solchen Verhältnis gemischt, dass nach dem Glühen an Luft bei 1300 °C über 10 Stunden die Zusammensetzung Laι/4Sr0,6Ni0 -δ entsteht . Beim Glühen über 10 Stunden bei 800 °C in Ar/H2/H20 mit einem Sauerstoffpartialdruck von 10"11 Pa ist die Verbindung stabil. Die elektrische Leitfähigkeit bei 800 °C an Luft beträgt 80 S cm-1, die chemische Diffusion der Oxidionen unter diesen Bedingungen beträgt 10"4 cm2 s"1. Der thermische Ausdehnungskoeffizient an Luft beträgt 12,5*10"s K"1, der an Argon
Figure imgf000009_0001
Die elektrische Leitfähigkeit der Oxide ist vom Typ der p-Halbleitung. In einigen Fällen kann La durch Pr und Sr durch Ca ersetzt werden. Zusammensetzung und Eigenschaften lassen sich durch eine leicht unterstδchio- metrische Besetzung der Kationen La und Sr gegenüber der Stochiometrie des B-Platzes und/oder durch gemisch- te Besetzung des B-Platzes mit zwei der angegebenen Kationen leicht variieren.
Zur Verdeutlichung der Erfindungen zeigen
Figur 1: Elektrische Leitf higkeit des oxidischen Materials mit einer K2NiF4-Struktur in Abhängigkeit von der Temperatur, und Figur 2 : Elektrische Leitfähigkeit des oxidischen Materials mit einer K2NiF4-Struktur in Abhän- gigkeit vom Sauerstoffpartialdruck.
In Fig. 1 ist zu sehen, dass an Luft die Zusammensetzungen 1 bis 7 im Temperaturbereich oberhalb 600 °C spezifische Leitfähigkeiten größer als 10 S pro cm ha- ben, wie sie insbesondere für die Anwendung als Kathodenmaterial erforderlich ist. Die höchsten Werte weisen
LaSrCo04_δ und Laιj4Sr0,εNiO-δ.
In Fig. 2 ist zu sehen, dass bei 800 °C im Bereich des Sauerstoffpartialdrucks der Luft (2*104 Pa) die sieben vorgeschlagenen Zusammensetzungen spezifische Leitfähigkeiten von mehr als 10 S pro cm aufweisen, wie sie insbesondere für Kathodenmaterialien gefordert werden. Die höchsten Werte haben ebenfalls wieder LaSrCo0_δ und Lax Sr0 6Ni04_δ.

Claims

Patentansprüche
Sauerstoffmembran umfassend ein oxidisches Material, welches einen Sauerstoffdiffusionskoeffizienten von mindestens 10~4 cm2 s"1 und einer K2NiF4-Schicht- Struktur aufweist, bei der wenigstens eine Pe- rowskitschicht an eine weitere Schicht angrenzt, die keine Perowskitstruktur aufweist.
Sauerstoffmembran nach Anspruch 1, mit einer Zusammensetzung des oxidischen Materials gemäß der For- mel
Ln2_aAaB04-δ, wobei
Ln = Seltenerdelement aus der Gruppe (La, Ce, Pr,
Nd) , A = Erdalkali aus der Gruppe (Ca, Sr) , B Übergangsmetall oder Mischung aus Übergangs- metallen aus der Gruppe (Fe, Co, Ni, Mn) , 0 ≤ a < 1,6, und δ bestimmt sich durch die Valenzen der Metalle.
Sauerstoffmembran nach Anspruch 1, mit einer Zusam- mensetzung des oxidischen Materials gemäß der Formel
Lnx_aAaB0_δ, wobei
Ln = Seltenerdelement aus der Gruppe (La, Ce, Pr, Nd) , A Erdalkali aus der Gruppe (Ca, Sr) ,
B = Übergangsmetall oder Mischung aus Übergangsmetallen aus der Gruppe (Fe, Co, Ni, Mn) ; 1,6 ≤ x ≤ 2, 0 < a < 1,6, und δ bestimmt sich durch die Valenzen der Metalle. Sauerstoffmembran nach einem der Ansprüche 1 bis 3, mit
Ln = Lanthan und A= Strontium.
Sauerstoffmembran nach einem der Ansprüche 1 bis 4, mit
B = Mn und a = 1,0 bis 1,5 mol .
Sauerstoffmembran nach Anspruch 5, mit einer Zusammensetzung des oxidischen Materials gemäß der Formel La0.8S:n.2MnO4_δ.
Sauerstoffmembran nach einem der Ansprüche 1 bis 4, mit B = Ni und a = 0 bis 0,6 mol.
Sauerstoffmembran nach Anspruch 7, mit einer Zusammensetzung des oxidischen Materials gemäß der For-
Figure imgf000012_0001
Sauerstoffmembran nach einem der Ansprüche 1 bis 4, mit
B = Co und a = 0,4 bis 0,8 mol.
PCT/DE2003/000337 2002-03-01 2003-02-06 Sauerstoffmembran für den einsatz bei hohen temperaturen WO2003074161A2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003208282A AU2003208282A1 (en) 2002-03-01 2003-02-06 Oxygen membrane for use at high temperatures

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10208883.7 2002-03-01
DE10208883A DE10208883A1 (de) 2002-03-01 2002-03-01 Sauerstoffmembran für den Einsatz bei hohen Temperaturen

Publications (2)

Publication Number Publication Date
WO2003074161A2 true WO2003074161A2 (de) 2003-09-12
WO2003074161A3 WO2003074161A3 (de) 2003-11-27

Family

ID=27762529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2003/000337 WO2003074161A2 (de) 2002-03-01 2003-02-06 Sauerstoffmembran für den einsatz bei hohen temperaturen

Country Status (3)

Country Link
AU (1) AU2003208282A1 (de)
DE (1) DE10208883A1 (de)
WO (1) WO2003074161A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009117978A1 (de) * 2008-03-28 2009-10-01 Forschungszentrum Jülich GmbH Sauerstoff durchlässige membran sowie verfahren zu dessen herstellung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0275343A1 (de) * 1987-01-23 1988-07-27 International Business Machines Corporation Supraleitender Verbund des Strukturtypes von K2NiF4 mit hoher Übergangstemperatur und Verfahren zu seiner Herstellung
WO1999059702A1 (en) * 1998-05-20 1999-11-25 Norsk Hydro Asa A membrane and use thereof
WO2000069556A1 (en) * 1999-05-19 2000-11-23 Eltron Research, Inc. Improved mixed ionic and electronic conducting ceramic membranes for hydrocarbon processing
US20010003232A1 (en) * 1997-10-28 2001-06-14 Kleefisch Mark S. Composite materials for membrane reactors
US6251533B1 (en) * 1998-10-07 2001-06-26 Haldor Topsoe A/S Ceramic laminate material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01215702A (ja) * 1988-02-24 1989-08-29 Shimadzu Corp 超電導薄膜の製造法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0275343A1 (de) * 1987-01-23 1988-07-27 International Business Machines Corporation Supraleitender Verbund des Strukturtypes von K2NiF4 mit hoher Übergangstemperatur und Verfahren zu seiner Herstellung
US20010003232A1 (en) * 1997-10-28 2001-06-14 Kleefisch Mark S. Composite materials for membrane reactors
WO1999059702A1 (en) * 1998-05-20 1999-11-25 Norsk Hydro Asa A membrane and use thereof
US6251533B1 (en) * 1998-10-07 2001-06-26 Haldor Topsoe A/S Ceramic laminate material
WO2000069556A1 (en) * 1999-05-19 2000-11-23 Eltron Research, Inc. Improved mixed ionic and electronic conducting ceramic membranes for hydrocarbon processing

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 013, no. 529 (C-658), 27. November 1989 (1989-11-27) & JP 01 215702 A (SHIMADZU CORP), 29. August 1989 (1989-08-29) -& DATABASE WPI Section Ch, Week 198940 Derwent Publications Ltd., London, GB; Class A97, AN 1989-290972 XP002251728 & JP 01 215702 A (SHIMADZU SEISAKUSHO KK), 29. August 1989 (1989-08-29) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009117978A1 (de) * 2008-03-28 2009-10-01 Forschungszentrum Jülich GmbH Sauerstoff durchlässige membran sowie verfahren zu dessen herstellung
US8486184B2 (en) 2008-03-28 2013-07-16 Forschungszentrum Juelich Gmbh Oxygen-permeable membrane and method for the production thereof

Also Published As

Publication number Publication date
AU2003208282A1 (en) 2003-09-16
DE10208883A1 (de) 2003-09-18
WO2003074161A3 (de) 2003-11-27

Similar Documents

Publication Publication Date Title
DE60007326T2 (de) Sauerstoff-ione leitende keramikmembran
EP0696386B1 (de) Hochtemperaturbrennstoffzelle mit verbesserter festelektrolyt/elektroden-grenzfläche und verfahren zur herstellung der grenzfläche
DE60103347T2 (de) Festoxidbrennstoffzelle mit unterstütztem elektrolytischem Film
EP2036152B1 (de) Keramische werkstoffkombination für eine anode für eine hochtemperatur-brennstoffzelle
DE19839382B4 (de) Oxid-Ionenleiter und seine Verwendung
DE19949431A1 (de) Festoxidbrennstoffzelle mit einem Mischungsgradienten zwischen Elektrode und Elektrolyt
DE19839202A1 (de) Leitfähige Substanz aus Mischoxidionen und deren Verwendung
DE4406276A1 (de) Elektrisch leitendes Keramikmaterial und unter dessen Verwendung hergestellte Brennstoffzelle
DE10351955A1 (de) Kathodenwerkstoff für eine Hochtemperatur-Brennstoffzelle (SOFC) sowie eine daraus herstellbare Kathode
EP1271683A2 (de) Brennstoffzelle
DE60123840T2 (de) Gestapelte mikrostrukturen leitender, keramischer oxidionenmembranen; verwendung zur hochdrucksauerstoffproduktion
DE60123839T2 (de) Gestapelte mikrostrukturen leitender, keramischer oxidionenmembranen; verwendung zur trennung von sauerstoff von luft
EP3331075B1 (de) Brennstoffzelle mit verbesserter robustheit
EP1880437B1 (de) Verfahren zur herstellung einer kathode
EP2595729B1 (de) Co2 tolerantes, gemischt leitendes oxid und dessen anwendung für die wasserstoffabtrennung
EP1481431B1 (de) Kathode für den einsatz bei hohen temperaturen
DE4307727C3 (de) Elektrolytfolie für planare Hochtemperaturbrennstoffzellen und Verfahren zu ihrer Herstellung
WO2003074161A2 (de) Sauerstoffmembran für den einsatz bei hohen temperaturen
DE2824408C3 (de) Verfahren zur Herstellung eines elektronisch
DE60217787T2 (de) Komplexe Oxide, Oxidionenleiter, leitende Oxidionenschichten und elektrochemische Zellen
DE112009003518T5 (de) Anodenwerkstoff for Hochtemperaturbrennstoffzellen
DE112021007166T5 (de) Brennstoffelektrode und elektrochemische zelle
EP2997614B1 (de) Elektrochemisches speichermaterial und elektrochemische speichereinrichtung zur speicherung elektrischer energie, umfassend ein solches speichermaterial
DE19643157C1 (de) Verfahren zur Herstellung eines Chrom-Werkstoffes
DE19643156C1 (de) Verfahren zur Herstellung eines Chrom-Werkstoffs

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AU CA JP NO US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP