WO2003073538A1 - Materiau actif a base de faisceaux de nanotubes unidimensionnels de dichalcogenures de metaux de transition pour batteries et accumulateurs au lithium - Google Patents

Materiau actif a base de faisceaux de nanotubes unidimensionnels de dichalcogenures de metaux de transition pour batteries et accumulateurs au lithium Download PDF

Info

Publication number
WO2003073538A1
WO2003073538A1 PCT/SI2003/000005 SI0300005W WO03073538A1 WO 2003073538 A1 WO2003073538 A1 WO 2003073538A1 SI 0300005 W SI0300005 W SI 0300005W WO 03073538 A1 WO03073538 A1 WO 03073538A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
bundles
transition metal
nanotubes
metal dichalcogenide
Prior art date
Application number
PCT/SI2003/000005
Other languages
English (en)
Inventor
Robert Dominko
Miran Gaberscek
Ales Mrzel
Denis Arcon
Maja Remskar
Dragan D. Mihailovic
Original Assignee
Institut 'josef Stefan'
Kemijski Institut
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut 'josef Stefan', Kemijski Institut filed Critical Institut 'josef Stefan'
Priority to AU2003214788A priority Critical patent/AU2003214788A1/en
Publication of WO2003073538A1 publication Critical patent/WO2003073538A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the production and the use of an active electrode material in lithium-ion batteries and accumulators that is based on bundles of one-dimensional transition metal dichalcogenide nanotubes and on an electronic conductor.
  • the field of the invention is chemical engineering and, more specifically, materials into which lithium ions can be incorporated and respectively released therefrom, and which are suitable for employment in lithium-ion accumulators.
  • the invention relates to the production and the use of a material consisting of bundles of one-dimensional transition metal dichalcogenide nanotubes and of an electronic conductor as active material in lithium-ion batteries and accumulators .
  • Lithium-ion accumulators are based on the incorporation and the release of Li + ions. While the accumulator is charging, Li + ions are incorporated into the negative electrode and released from the positive electrode. Upon .reversal of the potential at the electrodes (in other words, by discharging the battery through a current consumer) , the inverse process takes place (cf . A. R. Armstrong et al . , Nature, vol. 381, 499 (1996)), which is why electrodes are made of materials that allow Li + ions to be incorporated and released. The ⁇ application of oxides and . sulfides as- active materials for electrodes is being intensely investigated (H. Park et al., J. Electrochem. Soc, 142, 1068 (1995) ) .
  • layered crystals of transition metal dichalcogenides are also frequently employed as active cathode material.
  • the layered crystal particles usually measure from 1 to 100 ⁇ m.
  • lithium is intercalated between individual layers of the crystal (C. A. Vincent and B. Scrosati in "Modern Batteries” , Arnold, London, 1997) . Intercalation of alkali metals into layered transition metal dichalcogenide crystals was first described by R ⁇ dorff (Chimia, 19 r 489 (1965)).
  • layered MoS 2 , TiS 2 and S 2 crystals, and mixtures of said layered crystals with other, , composite materials are utilized ⁇ Anderman et al., Cathodic Electrode, U.S. Pat. No. 4,735,875) .
  • Lithium is inserted between the crystalline layers of layered transition metal chalcogenide crystals in the form of a solvated cation Li + (J. 0. Besenhard et al., Z. Naturforsch. 31b 907 (1976)) .
  • a major limitation to the employment of layered dichalcogenide crystals as active material is represented by the decomposition of the electrolyte ⁇ K. Kumai et al., J. Power Sources 70, 235 (1998)) .
  • the incorporation of lithium into layered MoS 2 crystals occurs at a voltage of 3 V to 0.3 V versus a Li/Li + half-cell (Hearing et al . , Lithium ' '" Molybdenum Bisulphide Battery Cathode; U. S . Pa t . No . 4 ,224 , 390) in multiple stages, being reversible at all stages of incorporation.
  • the average working voltage of the MoS 2 //electrolyte//Li cell is 1.8 V versus a Li/Li + half- cell with a charge capacity of around • 160 mAh/g, which roughly corresponds to the incorporation of 1 mole of lithium per mole of layered molybdenum disulfide crystals, 0.5 moles of lithium being reversibly released in the process .
  • the incorporation of lithium into layered TiS 2 crystals takes place continuously in the potential range of 3 to 1.6 V versus a Li/Li + half-cell.
  • the average working voltage of the TiS 2 //electrolyte//Li cell is 2.1 V versus a Li/Li + half-cell with a charge capacity of around 230 mAh/g.
  • Said capacity roughly corresponds to the incorporation of one mole of lithium per mole of layered titanium disulfide crystals (C. A. Vincent and B . Scrosati in "Modern Batteries" , Arnold, London , 1997) .
  • the object of the invention is to produce and put to use an active electrode material that will enable lithium to be incorporated at desired potentials and in great quantities, allowing high capacities to be attained over a wide temperature range .
  • the object is achieved by preparing an electrode material based on bundles of one-dimensional transition metal dichalcogenide nanotubes and an electronic conductor.
  • Such electrode material is suitable for the construction of an electrode for lithium-ion batteries and accumulators.
  • the object of the invention is attained with the employment of an electrode material based on bundles of one-dimensional transition metal dichalcogenide nanotubes and an electronic conductor as electrode material, which allows lithium to be reversibly incorporated into bundles of one-dimensional transition metal dichalcogenide nanotubes in lithium-ion batteries and accumulators according to the independent patent claims.
  • one- dimensional transition metal dichalcogenide nanotubes e. g. MoS 2
  • Figure 1 shows the voltage of the electrode comprising an electrode material based on bundles of one-dimensional MoS 2 nanotubes and a polyaniline-based electronic conductor measured against lithium metal, in three consecutive charge/discharge cycles of the cell.
  • Figure 2 shows the amount of lithium incorporated in charging/discharging as a function of the number of work cycles for the electrode material based on bundles of one- dimensional oS 2 nanotubes and a polyaniline-based electronic conductor.
  • Bundles of one-dimensional transition metal dichalcogenide nanotubes are mixed with an electronically conductive material (such as sulfonated polyaniline or any other electronic conductor that provides an electrical contact between the bundles of one-dimensional nanotubes and the current collector) with the addition of l-methyl-2-pyrrolidone or another solvent. After drying, the electrode material is recovered.
  • an electronically conductive material such as sulfonated polyaniline or any other electronic conductor that provides an electrical contact between the bundles of one-dimensional nanotubes and the current collector
  • 0.5 to 2 mg of bundles of one-dimensional molybdenum disulfide nanotubes are mixed with sulfonated polyaniline and l-methyl-2-pyrrolidone so that after drying, bundles of one-dimensional molybdenum disulfide nanotubes constitute 85-99 % by mass.
  • the partially dried mixture (the electrode material) is applied on a copper foil with a diameter of 8 mm.
  • the applied coating is then compressed under a pressure of 1500 kg/cm 2 and dried for 2 to 8 hours under vacuum or inert atmosphere at a temperature of 70 to 120° C.
  • the final thickness is 20-100 ⁇ m.
  • the dried electrode is then transferred to a dry chamber (argon atmosphere, less than 1 ppm H 2 0) and incorporated into an electrochemical cell as the negative electrode.
  • Preferred embodiment 2 Bundles of one-dimensional molybdenum disulfide nanotubes are mixed with sulfonated polyaniline and 1- methyl-2-pyrrolidone so that after drying, bundles of one- dimensional molybdenum disulfide nanotubes constitute 1-85 % by mass.
  • the obtained electrode material is processed as described in preferred embodiment 1, yielding an electrode suitable for incorporation into electrochemical cells.
  • the electrochemical reversible capacity of thus obtained electrodes is proportional to the mass fraction of molybdenum sulfide.
  • Bundles of one-dimensional molybdenum disulfide nanotubes are mixed with sulfonated polyaniline and 1- methyl-2-pyrrolidone.
  • the obtained mixture (electrode material) is applied on a metal foil or grid, suitable for performing the functions of both mechanical support and current collector in negative electrodes of lithium accumulators.
  • the partially dried coating is then compressed under a pressure of 100 to 10000 kg/cm 2 , whereupon the electrode is either rolled up in combination with other electrodes and separators, or employed in planar form.
  • the dried electrode is transferred to a dry chamber and used as the negative electrode in an electrochemical cell.
  • an electrochemical half-cell is constructed, wherein the negative (working) electrode is identical or similar to the electrode of preferred embodiments 1, 2 or 3.
  • the positive (auxiliary) and reference electrodes are made of metal lithium.
  • the technical implementation of the three-electrode cell may be identical to the cell described by M. Gaberscek et al. in Electrochem and Solid State Lett . 3, 1 71 (2000) .
  • the incorporation of lithium into the negative electrode and its release therefrom takes place at a constant current 10- 25 m ⁇ /g, while the potential of the negative electrode varies between 3.0 and ' 0.0 V versus the reference lithium electrode.
  • the plot of the electrical potential of the negative electrode during the incorporation and the release of lithium can be seen in Figure 1.
  • an electrochemical half-cell is constructed, wherein the negative (working) electrode is identical to the electrode of preferred embodiments 1, 2 or 3.
  • the construction of the auxiliary and reference electrodes, and likewise the technical implementation of the cell as such may be chosen arbitrarily.
  • the incorporation of lithium into the negative electrode and its release therefrom occurs at a constant or variable current between 0.1 and 1000 mA/g, while the potential of the negative electrode varies between 3.0 and Q.O V versus the potential of a Li/Li + half-cell.
  • the electrode material based on bundles of one- dimensional transition metal dichalcogenide nanotubes for manufacturing electrode material is characterized in that beside the bundles of one-dimensional transition metal dichalcogenide nanotubes it also contains an electronic conductor and affords reversible electrochemical incorporation and release of lithium in the potential range of 3.0 V to 0 V versus the potential of a Li/Li + electrochemical half-cell.
  • the percentage of the bundles of one-dimensional transition metal dichalcogenide nanotubes contained in the electrode material is 1-99 %, the remainder consisting of an electronic conductor and additives in the form of other conductive compounds and composites.
  • the incorporation of lithium takes place in the temperature range of -20° C to +60° C.

Abstract

L'invention concerne la production et l'utilisation d'un matériau d'électrode dans des batteries et des accumulateurs ion-lithium, ce matériau étant essentiellement constitué de nanotubes unidimensionnels de dichalcogénures de métaux de transition et d'un conducteur électronique. Ledit matériau à base de nanotubes unidimensionnels de dichalcogénures de métaux de transition et d'un conducteur électronique permet d'incorporer du lithium dans des batteries ion-lithium et des accumulateurs ion-lithium. La quantité de lithium incorporé dans ce matériau à base de faisceaux de nanotubes unidimensionnels de dichalcogénures de métaux de transition et d'un conducteur électronique dépend du pourcentage de matériau actif ainsi que de sa structure, et peut atteindre 3,2 moles (2,3 moles en moyenne) de lithium par mole de chalcogénures de métaux de transition. La tension moyenne de la libération de lithium à partir du matériau actif à base de faisceaux de nanotubes unidimensionnels de MoS2 et d'un conducteur électronique est de 1,1 V, valeur mesurée par rapport à une demi-cellule Li/Li+.
PCT/SI2003/000005 2002-02-27 2003-02-20 Materiau actif a base de faisceaux de nanotubes unidimensionnels de dichalcogenures de metaux de transition pour batteries et accumulateurs au lithium WO2003073538A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003214788A AU2003214788A1 (en) 2002-02-27 2003-02-20 Active material based on bundles of one-dimensional transition metal dichalcogenide nanotubes for use in lithium batteries and accumulators

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SI200200057A SI21155A (sl) 2002-02-27 2002-02-27 Material na osnovi svežnjev enoplastnih nanocevk dihalkogenidov prehodnih kovin in elektronskega prevodnika za uporabo v litijevih baterijah in akumulatorjih
SIP-0200057 2002-02-27

Publications (1)

Publication Number Publication Date
WO2003073538A1 true WO2003073538A1 (fr) 2003-09-04

Family

ID=27765021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/SI2003/000005 WO2003073538A1 (fr) 2002-02-27 2003-02-20 Materiau actif a base de faisceaux de nanotubes unidimensionnels de dichalcogenures de metaux de transition pour batteries et accumulateurs au lithium

Country Status (3)

Country Link
AU (1) AU2003214788A1 (fr)
SI (1) SI21155A (fr)
WO (1) WO2003073538A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1702374A1 (fr) * 2003-12-30 2006-09-20 LG Chem, Ltd. Cathode modifiee par liquide ionique et dispositif electromecanique utilisant une telle cathode
US8262942B2 (en) 2008-02-07 2012-09-11 The George Washington University Hollow carbon nanosphere based secondary cell electrodes
CN102938461A (zh) * 2012-11-19 2013-02-20 山东大学 纳米片自组装的MoS2纳米空心材料及其制备与作为储锂电极材料的应用
WO2014076693A1 (fr) * 2012-11-13 2014-05-22 Yeda Research And Development Co. Ltd. Matériaux et composites à base de polymères conducteurs et de nanostructures inorganiques
CN105845892A (zh) * 2016-06-07 2016-08-10 安徽师范大学 一种管状二硫化钼纳米材料及其制备方法、锂离子电池负极及锂离子电池

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111446422A (zh) * 2020-03-10 2020-07-24 深圳先进技术研究院 一体化结构的隔膜负极材料及其制备方法和二次电池

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5569561A (en) * 1994-01-21 1996-10-29 Renata A.G. Primary or secondary electrochemical generator having a nanoparticulate electrode
US6217843B1 (en) * 1996-11-29 2001-04-17 Yeda Research And Development Co., Ltd. Method for preparation of metal intercalated fullerene-like metal chalcogenides

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5569561A (en) * 1994-01-21 1996-10-29 Renata A.G. Primary or secondary electrochemical generator having a nanoparticulate electrode
US6217843B1 (en) * 1996-11-29 2001-04-17 Yeda Research And Development Co., Ltd. Method for preparation of metal intercalated fullerene-like metal chalcogenides

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1702374A1 (fr) * 2003-12-30 2006-09-20 LG Chem, Ltd. Cathode modifiee par liquide ionique et dispositif electromecanique utilisant une telle cathode
EP1702374A4 (fr) * 2003-12-30 2007-10-24 Lg Chemical Ltd Cathode modifiee par liquide ionique et dispositif electromecanique utilisant une telle cathode
US8262942B2 (en) 2008-02-07 2012-09-11 The George Washington University Hollow carbon nanosphere based secondary cell electrodes
WO2014076693A1 (fr) * 2012-11-13 2014-05-22 Yeda Research And Development Co. Ltd. Matériaux et composites à base de polymères conducteurs et de nanostructures inorganiques
CN102938461A (zh) * 2012-11-19 2013-02-20 山东大学 纳米片自组装的MoS2纳米空心材料及其制备与作为储锂电极材料的应用
CN105845892A (zh) * 2016-06-07 2016-08-10 安徽师范大学 一种管状二硫化钼纳米材料及其制备方法、锂离子电池负极及锂离子电池

Also Published As

Publication number Publication date
AU2003214788A1 (en) 2003-09-09
SI21155A (sl) 2003-08-31

Similar Documents

Publication Publication Date Title
KR102402391B1 (ko) 복합 음극 활물질, 상기 복합 음극 활물질을 포함하는 음극 및 상기 음극을 포함하는 리튬 이차전지
CN106558687B (zh) 高性能硅阳极用多孔碳化复合材料
KR101444189B1 (ko) 나트륨 이차전지용 음극활물질, 이를 이용한 전극의 제조방법 및 이를 포함하는 나트륨 이차전지
US9478798B2 (en) Prussian blue analogue electrodes without zeolitic water content
US20130171502A1 (en) Hybrid electrode and surface-mediated cell-based super-hybrid energy storage device containing same
KR20180101474A (ko) 높은 체적 및 중량 에너지 밀도를 갖는 알칼리 금속-황 전지
US10170750B2 (en) Lithium-conducting sulfur compound cathode for lithium-sulfur batteries
Zhang et al. High sulfur loading lithium–sulfur batteries based on a upper current collector electrode with lithium-ion conductive polymers
KR101621519B1 (ko) 리튬 이차전지용 음극, 이를 포함하는 리튬 이차전지 및 상기 음극의 제조방법
EP3680961A1 (fr) Électrodes hautement efficaces rendus possibles par des réseaux ségrégués
US20100279003A1 (en) Free standing nanostructured metal and metal oxide anodes for lithium-ion rechargeable batteries
EP1656709A2 (fr) Nouvelle batterie au lithium a nanotubes de carbone
CN111095626B (zh) 锂二次电池用负极活性材料及其制备方法
Rao et al. Rational design of self-supporting graphene-Polypyrrole/sulfur-Graphene sandwich as structural paper electrode for lithium sulfur batteries
Sun et al. Effect of synthesis temperature on the phase structure, morphology and electrochemical performance of Ti3C2 as an anode material for Li-ion batteries
KR20190050424A (ko) 황-탄소 복합체 및 이를 포함하는 리튬-황 전지
KR20200128256A (ko) 전고체 전지용 복합 음극 및 이의 제조방법
Tripathy et al. Understanding the high capacity contributions of Cu3PS4 towards lithium storage
US20200403224A1 (en) Lithium molybdate anode material
WO2003073538A1 (fr) Materiau actif a base de faisceaux de nanotubes unidimensionnels de dichalcogenures de metaux de transition pour batteries et accumulateurs au lithium
Mao et al. Honeycomb-like 3D carbon skeletons with embedded phosphorus-rich phosphide nanoparticles as advanced anodes for lithium-ion batteries
KR20090074429A (ko) 고전압 고효율 전극 조성을 구비한 리튬 이차 전지
US11837726B2 (en) Cathode active material for secondary battery, cathode for secondary battery including the same, secondary battery including the cathode for secondary battery, and manufacturing methods thereof
KR20110078307A (ko) 금속계 아연 음극 활물질 및 이를 이용한 리튬이차전지
JPS63314766A (ja) 活性炭金属酸化物複合物を正極とする有機電解質電池

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP