WO2003072910A1 - Rezirkulationsstruktur für turboverdichter - Google Patents

Rezirkulationsstruktur für turboverdichter Download PDF

Info

Publication number
WO2003072910A1
WO2003072910A1 PCT/DE2003/000623 DE0300623W WO03072910A1 WO 2003072910 A1 WO2003072910 A1 WO 2003072910A1 DE 0300623 W DE0300623 W DE 0300623W WO 03072910 A1 WO03072910 A1 WO 03072910A1
Authority
WO
WIPO (PCT)
Prior art keywords
guide elements
recirculation
annular chamber
structure according
recirculation structure
Prior art date
Application number
PCT/DE2003/000623
Other languages
English (en)
French (fr)
Inventor
Peter Seitz
Original Assignee
Mtu Aero Engines Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mtu Aero Engines Gmbh filed Critical Mtu Aero Engines Gmbh
Priority to DE50306028T priority Critical patent/DE50306028D1/de
Priority to AU2003222718A priority patent/AU2003222718A1/en
Priority to JP2003571571A priority patent/JP4527403B2/ja
Priority to CA2495186A priority patent/CA2495186C/en
Priority to DE10390754T priority patent/DE10390754D2/de
Priority to US10/473,152 priority patent/US6935833B2/en
Priority to EP03718608A priority patent/EP1478828B1/de
Priority to UA20040907814A priority patent/UA76596C2/uk
Publication of WO2003072910A1 publication Critical patent/WO2003072910A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/68Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
    • F04D29/681Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
    • F04D29/685Inducing localised fluid recirculation in the stator-rotor interface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form
    • F01D5/145Means for influencing boundary layers or secondary circulations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/541Specially adapted for elastic fluid pumps
    • F04D29/545Ducts
    • F04D29/547Ducts having a special shape in order to influence fluid flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0207Surge control by bleeding, bypassing or recycling fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/321Rotors specially for elastic fluids for axial flow pumps for axial flow compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S415/00Rotary kinetic fluid motors or pumps
    • Y10S415/914Device to control boundary layer

Definitions

  • the invention relates to a recirculation structure for turbocompressors, according to the preamble of claim 1, and to an aircraft engine and a stationary gas turbine.
  • DE 33 22 295 C3 protects an axial fan with a generic "casing treatment".
  • Characteristic of this type of "casing treatment” is a closed ring (7), which is approximately aligned with the contour of the main flow channel and separates the rear entry area from the front exit area of the recirculation structure and forms a smooth, closed surface area.
  • a very similar “casing treatment” is known from DE 35 39 604 C1, with an area that is open in the circumferential direction being present in the front and rear area of the ring chamber (7). Also note the radially inner ring 6 here.
  • the object of the invention is to provide a recirculation structure for turbocompressors which enables a significant increase in the surge limit and thus a significant increase in the stable operating range without a relevant deterioration in the compressor efficiency.
  • the essence of the invention is that the annular chamber with the guide elements to the main flow channel is completely open over its axial length and circumference. Ring-like elements with rubbing pads etc. are not required.
  • the above-mentioned patents show that, up to now, experts have tried to make recirculation structures to the main flow channel, ie to the so-called annulus, smooth, with little gap and closed over as large an axial area as possible, in order to extend the contour of the Main flow channel to effect. In contrast, the invention leads to cracks, jagged surfaces, etc. and thus appears to be disadvantageous and inappropriate. However, tests have shown that the recirculation structure according to the invention is superior to known solutions both in terms of raising the surge limit and in terms of efficiency.
  • FIG. 1 shows a partial longitudinal section through an axial-type compressor in the region of a recirculation structure on the housing
  • FIG. 2 shows a comparable partial longitudinal section in the area of a hub-side recirculation structure
  • FIG. 3 shows a partial cross section through the recirculation structure according to FIG. 1
  • FIG. 4 shows a partial view of the recirculation structure according to FIGS. 1 and 3 radially from the inside
  • FIG. 5 shows a partial longitudinal section in the area of a housing-side recirculation structure modified with respect to FIG. 1, and
  • FIG. 6 shows a partial longitudinal section in the area of a housing-side recirculation structure modified with respect to FIG. 1 and FIG. 5.
  • the recirculation structure 1 according to FIG. 1 is integrated into the housing 5 of a turbocompressor and can therefore be referred to as a “casing treatment”.
  • device in the bladed main flow channel 9 is indicated on the left with an arrow, it therefore runs from left to right.
  • the flow first meets a guide vane ring 13, then a moving vane ring 20 and finally again a guide vane ring 14.
  • the radially outer contour 11 of the main flow channel 9 corresponds to the inner contour of the housing 5 and is to the left and right of the actual one for clarification Continuation of dash-dotted lines.
  • the static recirculation structure 1 interacts with the rotor blade ring 20 and lies largely axially in front of the latter, ie upstream.
  • the annular chamber 29 forming the recirculation structure 1 together with the guide elements 37 adjoins the main flow channel 9 radially from the outside and is open towards the latter.
  • the free edges 41 of the guide elements 37 lie on or close to the contour 11 of the main flow channel 9, that is to say they are at least approximately aligned with the housing inner contour.
  • the guide elements 37 can consist of a metal, such as a Ni-based alloy, or of a light metal, such as Al, or of a plastic, such as thermoplastics, thermosets or elastomers.
  • the front wall 33 and the rear wall 34 of the annular chamber 29 are inclined forwards starting from their radially inner edges 35, 36 in order to be aerodynamically favorable for the recirculation indicated by a small arrow.
  • the angle of inclination of the front wall is denoted by ⁇ , it can be the same or different in relation to the angle of the rear wall 34.
  • The angle of inclination of the front wall
  • FIG. 2 shows a recirculation structure 2 integrated in a rotating hub 8.
  • a rotor blade ring 21 In the main flow channel 10, a rotor blade ring 21, a guide blade ring 15 with radially inner, free blade ends 26 and a rotor blade ring 22 can be seen from left to right.
  • the arrangement of a recirculation structure would consequently be referred to as "hub treatment”.
  • the recirculation consisting of annular chamber 30 and guide elements 38 ons Vietnamese 2 with front and rear recesses 47, 48 cooperates with a largely downstream guide vane ring 15. Since the "hub treatment” rotates here and the guide vane ring 15 stands, the rotor speed acts fully as the differential speed. The mode of operation does not differ in principle from that of a "casing treatment”.
  • “Casing treatment” and “hub treatment” can also be combined in a turbo compressor
  • the radial inner contour 12 of the main flow channel corresponds here to the outer contour of the hub 8.
  • FIG. 3 shows a detail from FIG. 1 in cross section.
  • the guide elements 37 are inclined at an angle ⁇ to the radial such that the blade ends 25 of the rotor blade ring 20 convey the recirculation flow into the annular chamber 29 without major losses, the direction of rotation (see arrow) to be noted.
  • the angle of inclination ⁇ can decrease from radially inside to outside to the value “zero” with appropriately curved guide elements.
  • FIG. 4 for FIG. 3 shows the blade profiling of the rotor blade ring 20 in connection with its direction of rotation (arrow) and gives a good idea of the aerodynamic profiling and curvature of the guide elements 37.
  • the person skilled in the art can recognize that the recirculation outlet in the area of the upstream Edge 35 of the annular chamber 29 in relation to the blade ring 20 is to take place here with counter-swirl. With 36 the downstream edge of the annular chamber is designated.
  • the guide elements 37 can also consist of flat or curved “sheets” in simpler versions.
  • the recirculation structure 3 according to FIG. 5 is a "casing treatment" with an annular chamber 31 integrated into a housing 6.
  • the guide elements 39 extend here to the front wall of the annular chamber 31, recesses 49 are provided in the rear area, in the immediate vicinity of the blade ends 27 of the Blade ring 23.
  • the free edges 43 of the guide elements 39 do not extend into the rotation region of the blade ends 27. With 16 and 17, guide blade rings are designated.
  • the recirculation structure 4 in FIG. 6 with the annular chamber 32 and guide elements 40 is likewise a “casing treatment”, which is integrated in a housing 7 and interacts with a moving blade ring 24.
  • the guide elements 40 extend to the rear wall of the annular chamber 32.
  • Recesses 50 are provided in the front area here, since the free edges 44 of the guide elements 40 extend into the rotation area of the blade ends 28, they are offset radially outward in the rear area in order to reliably avoid contact with the blades the edges are also offset accordingly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Catalysts (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Rezirkulationsstruktur für Turboverdichter, mit einer im Bereich der freien Schaufelenden eines Schaufelkranzes grossteils stromaufwärts von letzterem angeordneten, an den Hauptströmungskanal (9) angrenzenden Ringkammer (29), und mit einer Vielzahl von in der Ringkammer angeordneten, über deren Umfang verteilten Leitelementen (37), die strömungsgünstig bezüglich der Rezirkulationsströmung angeordnet und geformt sind, wobei die Leitelemente (37) im vorderen und/oder hinteren Bereich der Ringkam­mer (29) Aussparungen aufweisen. Die an die Kontur des Hauptströmungskanales (9) angrenzende Seite der Ringkammer (29) ist über ihre axiale Länge sowie über ihren gesamten Umfang offen, wobei die freien Kanten (41) der Leitelemente (37) auf oder nahe bei der Kontur des Hauptströmungskanales (9) liegen.

Description

Rezirkulationsstruktur für Turboverdichter
Die Erfindung betrifft eine Rezirkulationsstruktur für Turboverdichter, gemäß dem Oberbegriff des Patentanspruches 1 , sowie ein Flugtriebwerk und eine stationäre Gasturbine.
Rezirkulationsstrukturen für Turboverdichter sind seit geraumer Zeit bekannt und werden in der Fachwelt in der Regel als „Casing Treatments" bezeichnet. Diese haben primär die Aufgabe, den aerodynamisch stabilen Betriebsbereich des Verdichters zu erhöhen, wobei die sogenannte Pumpgrenze zu höheren Verdichterdrücken, d.h. zu einer höheren Verdichterbelastung hin, verschoben wird. Die für einen örtlichen Strömungsabriss und letztlich für das Pumpen des Verdichters verantwortlichen Störungen treten gehäuseseitig an den Laufschaufelenden einer bzw. mehrerer Verdichterstufen, nabenseitig an den radial innenliegenden Leitschaufelenden auf, da in diesen Bereichen die aerodynamische Belastung am höchsten ist. Durch Rezirkula- tion der zwischen den Schaufelspitzen mit Schaufeldrehzahl umlaufenden, eine reduzierte Energie aufweisenden „Luftteilchen" in den Hauptstrom unter Energiezunahme wird die Strömung im Bereich der Schaufelenden wieder stabilisiert. Da Strömungsstörungen in der Regel nicht gleichmäßig über den Stufenumfang auftreten, sollte strömungstechnisch auch ein Ausgleich in Umfangsrichtung, zusätzlich zur im wesentlichen axialen Rezirkulation, möglich sein. Der Hauptnachteil der bekannten „Casing Treatments" liegt darin, dass sie zwar die Pumpgrenze erhöhen, aber gleichseitig den Verdichterwirkungsgrad reduzieren.
Die DE 33 22 295 C3 schützt einen Axialventilator mit einem gattungsgemäßen „Casing Treatment". Man erkennt dort eine Ringkammer (8), in der Leitelemente (9) fest angeordnet sind. Im stromabwärtigen Bereich über den Laufschaufelenden befindet sich ein in Umfangsrichtung offener Bereich, in den sich die Leitelemente nicht erstrecken. Charakteristisch für diese Art „Casing Treatment" ist ein etwa mit der Kontur des Hauptströmungskanales fluchtender, geschlossener Ring (7), der den hinteren Eintrittsbereich vom vorderen Austrittsbereich der Rezirkulationsstruktur trennt und einen glatten, geschlossenen Oberflächenbereich bildet. Ein ganz ähnliches „Casing Treatment" ist aus der DE 35 39 604 C1 bekannt, wobei hier im vorderen und hinteren Bereich der Ringkammer (7) ein in Umfangsrichtung offener Bereich vorhanden ist. Man beachte auch hier den radial innenliegenden Ring 6.
Ein neueres „Casing Treatment" ist aus der US 5,282,718 A bekannt. Hier sind die Ringkammer (18, 28) und die Leitelemente (24) strömungstechnisch verfeinert. Auch hier sind Ein- und Austritt der Rezirkulationsströmung durch einen massiven, zu den Schaufeln hin glatten und geschlossenen Ring getrennt. Derartige Ringe im Schaufelbereich müssen für den Fall der Berührung mit den Schaufelspitzen in der Regel mit einem Anstreif- bzw. Einlaufbelag versehen werden.
Es gibt weitere „Casing Treatments" mit axialen bzw. axial schrägen Nuten, wie z.B. in der US 5, 137,419 A offenbart. Diese bleiben hier deshalb außer Betracht, da mangels Verbindung der Nuten untereinander bei diesen Versionen kein Strömungsausgleich in Umfangsrichtung möglich ist.
Angesichts der Nachteile der Lösungen nach dem Stand der Technik besteht die Aufgabe der Erfindung darin, eine Rezirkulationsstruktur für Turboverdichter bereitzustellen, die eine deutliche Erhöhung der Pumpgrenze und somit eine deutliche Vergrößerung des stabilen Betriebsbereiches ohne relevante Verschlechterung des Verdichterwirkungsgrades ermöglicht.
Diese Aufgabe wird durch die in Patentanspruch 1 gekennzeichneten Merkmale gelöst, in Verbindung mit den gattungsbildenden Merkmalen in dessen Oberbegriff.
Das Wesen der Erfindung liegt darin, dass die Ringkammer mit den Leitelementen zum Hauptströmungskanal hin über ihre axiale Länge und ihren Umfang vollkommen offen ist. Ringartige Elemente mit Anstreifbelägen etc. entfallen dabei. Die obengenannten Patentschriften zeigen, dass die Fachwelt bis dato versucht hat, Rezirkulati- onsstrukturen zum Hauptströmungskanal, d.h. zum sog. Ringraum hin über einen möglichst großen axialen Bereich glatt, spaltarm und geschlossen auszuführen, um eine möglichst strömungsgünstige und verlustarme Verlängerung der Kontur des Hauptströmungskanales zu bewirken. Die Erfindung führt demgegenüber zu Spalten, zerklüfteten Oberflächen etc. und erscheint somit nachteilig und unzweckmäßig zu sein. Versuche haben jedoch gezeigt, dass die erfindungsgemäße Rezirkulationsstruktur bekannten Lösungen sowohl hinsichtlich Pumpgrenzanhebung als auch hinsichtlich Wirkungsgrad überlegen ist. Dies ist aerodynamisch dadurch zu erklären, dass die freie, ungezwungene Ausbildung der Rezirkulationsströmung in der offenen Ringkammer mit freistehenden Leitelementen und Strömungsverbindungen in Umfangsrichtung wichtiger ist, als eine möglichst spaltfreie Verlängerung der Kontur des Hauptströmungskanales. Das Fehlen eines geschlossenen Rings hat die weiteren Vorteile, dass kein Anstreif- bzw. Einlaufbelag für die Leitelemente erforderlich ist und radialer Bauraum sowie Gewicht eingespart wird, was zu strukturmechanischen Vorteilen führt.
In den Unteransprüche sind bevorzugte Ausgestaltungen der Rezirkulationsstruktur nach dem Hauptanspruch gekennzeichnet.
Die Erfindung wird anschließend anhand er Zeichnungen noch näher erläutert. Dabei zeigen in vereinfachter, nicht maßstäblicher Darstellung:
Figur 1 einen Teillängsschnitt durch einen Verdichter in Axialbauart im Bereich einer gehäuseseitigen Rezirkulationsstruktur,
Figur 2 einen vergleichbaren Teillängsschnitt im Bereich einer nabenseitigen Rezirkulationsstruktur,
Figur 3 einen Teilquerschnitt durch die Rezirkulationsstruktur gemäß Figur 1, Figur 4 eine Teilansicht der Rezirkulationsstruktur gemäß Figur 1 und 3 radial von Innen,
Figur 5 einen Teillängsschnitt im Bereich einer gehäuseseitigen, gegenüber Figur 1 modifizierten Rezirkulationsstruktur, und
Figur 6 einen Teillängsschnitt im Bereich einer gehäuseseitigen, gegenüber Figur 1 und Figur 5 modifizierten Rezirkulationsstruktur.
Die Rezirkulationsstruktur 1 gemäß Figur 1 ist in das Gehäuse 5 eines Turboverdichters integriert und somit als „Casing Treatment" zu bezeichnen. Die Strömungsrich- tung im beschaufelten Hauptströmungskanal 9 ist links mit einem Pfeil angedeutet, sie verläuft also von links nach rechts. Die Strömung trifft im gezeigten Bereich zunächst auf einen Leitschaufelkranz 13, dann auf einen Laufschaufelkranz 20 und schließlich wieder auf einen Leitschaufelkranz 14. Die radial äußere Kontur 1 1 des Hauptströmungskanals 9 entspricht der inneren Kontur des Gehäuses 5 und ist zur Verdeutlichung links und rechts der eigentlichen Darstellung strichpunktiert fortgesetzt. Die statische Rezirkulationsstruktur 1 wirkt mit dem Laufschaufelkranz 20 zusammen und liegt großteils axial vor diesem, d.h. stromaufwärts. Die zusammen mit den Leitelementen 37 die Rezirkulationsstruktur 1 bildende Ringkammer 29 grenzt radial von außen an den Hauptströmungskanal 9 an und ist zu diesem hin offen. Die freien Kanten 41 der Leitelemente 37 liegen auf oder nahe bei der Kontur 1 1 des Hauptströmungskanales 9, d.h. sie fluchten zumindest annähernd mit der Gehäuseinnenkontur. Die Leitelemente 37 können aus einem Metall, wie einer Ni- Basislegierung, oder aus einem Leichtmetall, wie AI, oder aus einem Kunststoff, wie Thermoplaste, Duroplaste oder Elastomere, bestehen. Die vordere Wand 33 und die hintere Wand 34 der Ringkammer 29 sind ausgehend von ihren radial inneren Kanten 35, 36 nach vorne geneigt, um für die mit einem kleinen Pfeil angedeutete Rezirkula- tion strömungsgünstig zu sein.
Der Neigungswinkel der vorderen Wand ist mit α bezeichnet, er kann gleich oder unterschiedlich in Relation zum Winkel der hinteren Wand 34 sein. Zwischen der vorderen Wand 33, den Leitelementen 37 und der hinteren Wand 34 sind Aussparungen 45, 46 vorhanden, die Strömungsvorgänge innerhalb der Ringkammer in Umfangsrichtung zulassen, zusätzlich zur vorwiegend axial verlaufenden Rezirkulation. Mit 25 sind die freien Schaufelenden des Laufschaufelkranzes 20 bezeichnet, in deren Bereich Strömungsstörungen am ehesten auftreten.
Im Unterschied zu Figur 1 zeigt Figur 2 eine in eine rotierende Nabe 8 integrierte Rezirkulationsstruktur 2. Man erkennt im Hauptströmungskanal 10 von links nach rechts einen Laufschaufelkranz 21 , einen Leitschaufelkranz 15 mit radial inneren, freien Schaufelenden 26 und einen Laufschaufelkranz 22. Eine solche, neue Anordnung einer Rezirkulationsstruktur wäre konsequenterweise als „Hub Treatment" zu bezeichnen. Die aus Ringkammer 30 und Leitelementen 38 bestehende Rezirkulati- onsstruktur 2 mit vorderen und hinteren Aussparungen 47, 48 wirkt mit einem großteils stromabwärts liegenden Leitschaufelkranz 15 zusammen. Da hier das „Hub Treatment" rotiert und der Leitschaufelkranz 15 steht, wirkt die Rotordrehzahl voll als Differenzdrehzahl. Die Wirkungsweise unterschiedet sich prinzipiell nicht von der eines „Casing Treatments" In einem Turboverdichter können "Casing Treatment" und „Hub Treatment" auch kombiniert werden und in mehreren Stufen zur Anwendung kommen. Die radial innere Kontur 12 des Hauptströmungskanals entspricht hier der Außenkontur der Nabe 8.
Figur 3 zeigt im Querschnitt ein Detail aus Fig. 1. Die Leitelemente 37 sind um einen Winkel ß so zur Radialen geneigt, dass die Schaufelenden 25 des Laufschaufelkranzes 20 die Rezirkulationsströmung ohne größere Verluste in die Ringkammer 29 hineinfördern, wobei die Drehrichtung (siehe Pfeil) zu beachten ist. Der Neigungswinkel ß kann von radial Innen nach Außen bis auf den Wert „Null" abnehmen bei entsprechend gekrümmten Leitelementen.
Eine radiale Anordnung der Leitelemente, d.h. ß = 0° ist möglich, dürfte aber weniger strömungsgünstig sein.
Die Ansicht gemäß Figur 4 zu Figur 3 zeigt die Schaufelprofilierung des Laufschaufelkranzes 20 in Verbindung mit seiner Drehrichtung (Pfeil) und vermittelt eine gute Vorstellung von der strömungsgünstigen Profilierung und Krümmung der Leitelemente 37. Der Fachmann vermag zu erkennen, dass der Rezirkulationsaustritt im Bereich der stromaufwärtigen Kante 35 der Ringkammer 29 in Relation zum Laufschaufelkranz 20 hier mit Gegendrall erfolgen soll. Mit 36 ist die stromabwärtige Kante der Ringkammer bezeichnet. Es sei daran erinnert, dass die Leitelemente 37 in einfacheren Ausführungen auch aus ebenen oder gekrümmten „Blechen" bestehen können.
Die Rezirkulationsstruktur 3 gemäß Figur 5 ist ein „Casing Treatment" mit einer in ein Gehäuse 6 integrierten Ringkammer 31. Die Leitelemente 39 reichen hier bis zur vorderen Wand der Ringkammer 31, im hinteren Bereich sind Aussparungen 49 vorhanden, in unmittelbarer Nähe der Schaufelenden 27 des Laufschaufelkranzes 23. Die freien Kanten 43 der Leitelemente 39 reichen nicht bis in den Rotationsbereich der Schaufelenden 27. Mit 16 und 17 sind Leitschaufelkränze bezeichnet.
Die Rezirkulationsstruktur 4 in Figur 6 mit Ringkammer 32 und Leitelementen 40 ist ebenfalls ein „Casing Treatment", das in ein Gehäuse 7 integriert ist und mit einem Laufschaufelkranz 24 zusammenwirkt. Im Unterschied zu Figur 5 reichen hier die Leitelemente 40 bis zur hinteren Wand der Ringkammer 32. Aussparungen 50 sind hier im vorderen Bereich vorgesehen. Da die freien Kanten 44 der Leitelemente 40 bis in den Rotationsbereich der Schaufelenden 28 reichen, sind sie im hinteren Bereich radial nach außen versetzt, um eine Berührung mit den Schaufeln sicher zu vermeiden. Natürlich können die Kanten auch im ganzen entsprechen versetzt sein.
Für alle Ausgestaltungen der Rezirkulationsstruktur gilt, dass die freien Kanten 41 bis 44 der Leitelemente 37 bis 40 nicht radial nach außen versetzt sein müssen, wenn die Leitelemente aus einem weichen Leichtmetall oder einem Kunststoff hergestellt sind, weil eine Berührung mit den Schaufelenden 25 bis 28 zugelassen werden kann, ohne dass die Schaufeln beschädigt werden.

Claims

Patentansprüche
Rezirkulationsstruktur für Turboverdichter, mit einer konzentrisch zur Verdichterachse im Bereich der freien Schaufelenden eines Schaufelkranzes angeordneten Ringkammer, deren axiale Mitte stromaufwärts der axialen Mitte der freien Schaufelenden liegt, und die radial an die Kontur des Hauptströmungskanales, des sogenannten Ringraumes, angrenzt, und mit einer Vielzahl von in der Ringkammer angeordneten, über deren Umfang verteilten Leitelementen, die in der Weise angeordnet und geformt sind, dass im axial hinteren Bereich der Ringkammer der Eintritt der Rezirkulationsströmung strömungsgünstig erfolgt, und im axial vorderen Bereich der Ringkammer der Austritt der Rezirkulationsströmung relativ zum stromabwärtigen Schaufelkranz mit definierter Richtung und ggf. definiertem Drall erfolgt, wobei die Leitelemente im vorderen und/oder im hinteren Bereich der Ringkammer Aussparungen für einen Strömungsdurchtritt in Umfangsrichtung aufweisen, dadurch gekennzeichnet, dass die an die Kontur (1 1, 12) des Hauptströmungskanales (9, 10) angrenzende Seite der Ringkammer (29 bis 32) über ihre axiale Länge, d.h. vom Eintritt bis zum Austritt der Rezirkulationsströmung, sowie über ihren gesamten Umfang zum Hauptströmungskanal (9, 10) hin offen ist, wobei die freien Kanten (41 bis 44) der Leitelemente (37 bis 40) auf oder nahe bei der Kontur ( 1 1, 12) des Hauptströmungskanales (9, 10) liegen.
Rezirkulationsstruktur nach Anspruch 1, dadurch gekennzeichnet, dass sie ein- oder mehrfach gehäusefest, d.h. statisch, im Bereich eines oder mehrerer Laufschaufelkränze (20, 23, 24) und/oder ein- oder mehrfach nabenfest, d.h. rotierend, im Bereich eines oder mehrerer Leitschaufelkränze (15) angeordnet ist.
Rezirkulationsstruktur nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass sie in einem ein- oder mehrstufigen Turboverdichter in Axial-, Diagonal- oder Radialbauweise angeordnet ist.
Rezirkulationsstruktur nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die axial vordere Wand (33) und die axial hintere Wand (34) der Ringkammer (29) ausgehend von ihren Kanten (35,36) auf der Kontur ( 1 1 ) des Hauptströmungskanales (9) um den gleichen oder einen unterschiedlichen Winkel α stromaufwärts, d.h. schräg nach vorne, geneigt sind.
Rezirkulationsstruktur nach Anspruch 4, dadurch gekennzeichnet, dass der Neigungswinkel α der axial vorderen und der axial hinteren Wand der Ringkammer ausgehend von der Radialrichtung einen Wert im Bereich von 30° bis 60° aufweist.
Rezirkulationsstruktur nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Leitelemente (37 bis 40) blechartig, eben oder gekrümmt, mit konstanter Dicke, oder schaufelartig, räumlich gekrümmt, mit variierender Dicke und mit definierten Profilschnitten ausgeführt sind.
Rezirkulationsstruktur nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Leitelemente (37 bis 40) - bei axialer Blickrichtung - radial, in Umfangsrichtung geneigt oder in Umfangsrichtung gekrümmt angeordnet sind, wobei im Falle einer Neigung oder Krümmung die Winkel ß so gewählt sind, dass der Eintritt der Rezirkulationsströmung in die Ringkammer (29 bis 32) strömungstechnisch erleichtert wird, d.h. strömungsgünstig erfolgt.
Rezirkulationsstruktur nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Verhältnis des Gesamtströmungsvolumens zum Gesamtvolumen der Leitelemente (37 bis 40) innerhalb der Rezirkulationsstruktur (1 bis 4) möglichst groß gewählt ist, d.h. die Leitelemente (37 bis 40) möglichst dünnwandig bzw. dünn profiliert ausgeführt sind.
Rezirkulationsstruktur nach eine der vorhergehenden Ansprüche, bei der sich die Leitelemente axial bis in den Bereich der freien Schaufelenden erstrecken, dadurch gekennzeichnet, dass die freien Kanten (44) der Leitelemente (40) zumindest im Bereich der freien Schaufelenden (28) radial so weit zurückgesetzt sind, dass im Normalbetrieb des Turboverdichters keine Berührung zwischen den Schaufelenden (28) und den Leitelementen (40) erfolgt. Rezirkulationsstruktur nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Leitelemente (37 bis 40) aus einem Metall, wie Stahl oder einer Ni- oder einer Co-Basislegierung, einem Leichtmetall, wie AI, oder einem Kunststoff, wie Thermoplaste, Duroplaste oder Elastomere, bestehen.
Rezirkulationsstruktur nach Anspruch 10, dadurch gekennzeichnet, dass sich die freien Kanten (41 bis 44) der Leitelemente (37 bis 40) im Fall von Leichtmetall oder Kunststoff bis in den Bereich der freien Schaufelenden (25 bis 28) erstrecken und eine Berührung möglich ist.
Flugtriebwerk, umfassend einen Turboverdichter mit wenigstens einer Rezirkulationsstruktur nach einem oder mehreren der vorhergehenden Ansprüche.
Stationäre Gasturbine, umfassend einen Turboverdichter mit wenigstens einer Rezirkulationsstruktur nach einem oder mehreren der Ansprüche 1 bis 1 1.
PCT/DE2003/000623 2002-02-28 2003-02-26 Rezirkulationsstruktur für turboverdichter WO2003072910A1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
DE50306028T DE50306028D1 (de) 2002-02-28 2003-02-26 Rezirkulationsstruktur für turboverdichter
AU2003222718A AU2003222718A1 (en) 2002-02-28 2003-02-26 Recirculation structure for turbo chargers
JP2003571571A JP4527403B2 (ja) 2002-02-28 2003-02-26 ターボコンプレッサ用再循環構造
CA2495186A CA2495186C (en) 2002-02-28 2003-02-26 Recirculation structure for turbocompressors
DE10390754T DE10390754D2 (de) 2002-02-28 2003-02-26 Rezirkulationsstruktur für Turboverdichter
US10/473,152 US6935833B2 (en) 2002-02-28 2003-02-26 Recirculation structure for turbo chargers
EP03718608A EP1478828B1 (de) 2002-02-28 2003-02-26 Rezirkulationsstruktur für turboverdichter
UA20040907814A UA76596C2 (uk) 2002-02-28 2003-02-26 Рециркулюючий пристрій для турбокомпресора, авіаційний двигун та стаціонарна газова турбіна, оснащені рециркулюючим пристроєм

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
ZA02/1688 2002-02-28
ZA200201688 2002-02-28
DE10238837.7 2002-08-23
DE10238837 2002-08-23

Publications (1)

Publication Number Publication Date
WO2003072910A1 true WO2003072910A1 (de) 2003-09-04

Family

ID=27766709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2003/000623 WO2003072910A1 (de) 2002-02-28 2003-02-26 Rezirkulationsstruktur für turboverdichter

Country Status (11)

Country Link
US (1) US6935833B2 (de)
EP (1) EP1478828B1 (de)
JP (1) JP4527403B2 (de)
CN (1) CN100395432C (de)
AT (1) ATE348943T1 (de)
AU (1) AU2003222718A1 (de)
CA (1) CA2495186C (de)
DE (2) DE10390754D2 (de)
RU (1) RU2293221C2 (de)
UA (1) UA76596C2 (de)
WO (1) WO2003072910A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7186072B2 (en) 2002-08-23 2007-03-06 Mtu Aero Engines Gmbh Recirculation structure for a turbocompressor
US7600965B2 (en) * 2004-07-08 2009-10-13 Mtu Aero Engines Gmbh Flow structure for a turbocompressor
EP2927503A1 (de) * 2014-04-03 2015-10-07 MTU Aero Engines GmbH Gasturbinenverdichter, Flugtriebwerk und Auslegungsverfahren

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008010283A1 (de) * 2008-02-21 2009-08-27 Mtu Aero Engines Gmbh Zirkulationsstruktur für einen Turboverdichter
FR2940374B1 (fr) * 2008-12-23 2015-02-20 Snecma Carter de compresseur a cavites optimisees.
US8337146B2 (en) * 2009-06-03 2012-12-25 Pratt & Whitney Canada Corp. Rotor casing treatment with recessed baffles
FR2949518B1 (fr) * 2009-08-31 2011-10-21 Snecma Compresseur de turbomachine ayant des injecteurs d'air
US8616838B2 (en) * 2009-12-31 2013-12-31 General Electric Company Systems and apparatus relating to compressor operation in turbine engines
FR2961564B1 (fr) 2010-06-17 2016-03-04 Snecma Compresseur et turbomachine a rendement optimise
FR2988146B1 (fr) * 2012-03-15 2014-04-11 Snecma Carter pour roue a aubes de turbomachine ameliore et turbomachine equipee dudit carter
FR2989744B1 (fr) * 2012-04-19 2014-06-13 Snecma Carter de compresseur a cavites au calage optimise
US9181877B2 (en) 2012-09-27 2015-11-10 United Technologies Corporation Seal hook mount structure with overlapped coating
EP2818724B1 (de) * 2013-06-27 2020-09-23 MTU Aero Engines GmbH Strömungsmaschine und Verfahren
US9783309B2 (en) 2013-07-16 2017-10-10 The Boeing Company Methods and device for mixing airflows in environmental control systems
US10041500B2 (en) * 2015-12-08 2018-08-07 General Electric Company Venturi effect endwall treatment
CN105465047A (zh) * 2015-12-14 2016-04-06 中国北方发动机研究所(天津) 一种改善压气机失速和喘振的机匣处理装置
US10106246B2 (en) 2016-06-10 2018-10-23 Coflow Jet, LLC Fluid systems that include a co-flow jet
US10315754B2 (en) 2016-06-10 2019-06-11 Coflow Jet, LLC Fluid systems that include a co-flow jet
CN106151112B (zh) * 2016-08-29 2020-02-18 中国能源建设集团广东省电力设计研究院有限公司 轴流风机的防失速装置及其控制方法
RU2645100C1 (ru) * 2016-09-28 2018-02-15 ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "Брянский государственный технический университет" Периферийное устройство для снижения утечек теплоносителя
CN106382260B (zh) * 2016-10-14 2018-08-10 中国科学院工程热物理研究所 一种压气机弦向凹槽导流片式机匣处理方法及装置
CN109209980B (zh) * 2017-06-30 2020-06-05 中国航发商用航空发动机有限责任公司 一种用于轴流压气机的导流板
US10465539B2 (en) * 2017-08-04 2019-11-05 Pratt & Whitney Canada Corp. Rotor casing
US10683076B2 (en) 2017-10-31 2020-06-16 Coflow Jet, LLC Fluid systems that include a co-flow jet
US11293293B2 (en) 2018-01-22 2022-04-05 Coflow Jet, LLC Turbomachines that include a casing treatment
DE102018203304A1 (de) 2018-03-06 2019-09-12 MTU Aero Engines AG Gasturbinenverdichter
US11111025B2 (en) 2018-06-22 2021-09-07 Coflow Jet, LLC Fluid systems that prevent the formation of ice
US10876549B2 (en) 2019-04-05 2020-12-29 Pratt & Whitney Canada Corp. Tandem stators with flow recirculation conduit
CN110374688B (zh) * 2019-07-16 2022-02-22 中国航发沈阳发动机研究所 一种多腔静子结构及气流吸附系统
GB2600584B (en) 2019-07-23 2024-03-06 Coflow Jet Llc Fluid systems and methods that address flow separation
US11702945B2 (en) * 2021-12-22 2023-07-18 Rolls-Royce North American Technologies Inc. Turbine engine fan case with tip injection air recirculation passage
US20230265862A1 (en) * 2022-02-21 2023-08-24 General Electric Company Turbofan engine having angled inlet pre-swirl vanes
US11970985B1 (en) 2023-08-16 2024-04-30 Rolls-Royce North American Technologies Inc. Adjustable air flow plenum with pivoting vanes for a fan of a gas turbine engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3620640A (en) * 1969-03-27 1971-11-16 Aerospatiale Propeller or fan shrouds
US5282718A (en) * 1991-01-30 1994-02-01 United Technologies Corporation Case treatment for compressor blades
US5474417A (en) * 1994-12-29 1995-12-12 United Technologies Corporation Cast casing treatment for compressor blades
EP0719908A1 (de) * 1994-12-29 1996-07-03 United Technologies Corporation Compressorgehäuse mit Rezirkulationskanälen

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1155958A (fr) * 1956-03-28 1958-05-12 Perfectionnements aux turbines à fluide compressible
JPS5018603B1 (de) * 1968-08-13 1975-07-01
SE451873B (sv) 1982-07-29 1987-11-02 Do G Pk I Experiment Axialflekt
SE451620B (sv) 1983-03-18 1987-10-19 Flaekt Ab Forfarande for framstellning av ledskenekrans for aterstromningskanal vid axialflektar
GB2245312B (en) * 1984-06-19 1992-03-25 Rolls Royce Plc Axial flow compressor surge margin improvement
JPS6331293U (de) * 1986-08-13 1988-02-29
KR100198721B1 (ko) * 1991-01-30 1999-06-15 레비스 스테픈 이 개선된 케이스를 갖는 가스 터어빈 엔진
JP3004474B2 (ja) * 1992-06-12 2000-01-31 三菱重工業株式会社 軸流回転機械
RU2034175C1 (ru) * 1993-03-11 1995-04-30 Центральный институт авиационного моторостроения им.П.И.Баранова Турбокомпрессор
US5431533A (en) * 1993-10-15 1995-07-11 United Technologies Corporation Active vaned passage casing treatment
GB9400254D0 (en) 1994-01-07 1994-03-02 Britisch Technology Group Limi Improvements in or relating to housings for axial flow fans
US5562404A (en) * 1994-12-23 1996-10-08 United Technologies Corporation Vaned passage hub treatment for cantilever stator vanes
US5586859A (en) * 1995-05-31 1996-12-24 United Technologies Corporation Flow aligned plenum endwall treatment for compressor blades
JPH09291897A (ja) * 1996-04-26 1997-11-11 Toshiba Corp 軸流圧縮機
CN2374683Y (zh) * 1999-06-18 2000-04-19 张坤林 微型泵气体导流改进结构
US6302640B1 (en) * 1999-11-10 2001-10-16 Alliedsignal Inc. Axial fan skip-stall
JP3841391B2 (ja) * 2000-03-17 2006-11-01 株式会社 日立インダストリイズ ターボ機械
DE10105456A1 (de) 2001-02-07 2002-08-08 Daimler Chrysler Ag Verdichter, insbesondere für eine Brennkraftmaschine
US6585479B2 (en) * 2001-08-14 2003-07-01 United Technologies Corporation Casing treatment for compressors

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3620640A (en) * 1969-03-27 1971-11-16 Aerospatiale Propeller or fan shrouds
US5282718A (en) * 1991-01-30 1994-02-01 United Technologies Corporation Case treatment for compressor blades
US5474417A (en) * 1994-12-29 1995-12-12 United Technologies Corporation Cast casing treatment for compressor blades
EP0719908A1 (de) * 1994-12-29 1996-07-03 United Technologies Corporation Compressorgehäuse mit Rezirkulationskanälen

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7186072B2 (en) 2002-08-23 2007-03-06 Mtu Aero Engines Gmbh Recirculation structure for a turbocompressor
US7600965B2 (en) * 2004-07-08 2009-10-13 Mtu Aero Engines Gmbh Flow structure for a turbocompressor
EP2927503A1 (de) * 2014-04-03 2015-10-07 MTU Aero Engines GmbH Gasturbinenverdichter, Flugtriebwerk und Auslegungsverfahren
US10450869B2 (en) 2014-04-03 2019-10-22 MTU Aero Engines AG Gas turbine compressor

Also Published As

Publication number Publication date
JP4527403B2 (ja) 2010-08-18
CN1646790A (zh) 2005-07-27
RU2004129277A (ru) 2005-08-27
DE50306028D1 (de) 2007-02-01
EP1478828B1 (de) 2006-12-20
US6935833B2 (en) 2005-08-30
CA2495186A1 (en) 2003-09-04
US20040156714A1 (en) 2004-08-12
CA2495186C (en) 2010-04-27
RU2293221C2 (ru) 2007-02-10
CN100395432C (zh) 2008-06-18
ATE348943T1 (de) 2007-01-15
EP1478828A1 (de) 2004-11-24
AU2003222718A1 (en) 2003-09-09
DE10390754D2 (de) 2005-05-12
UA76596C2 (uk) 2006-08-15
JP2006505730A (ja) 2006-02-16

Similar Documents

Publication Publication Date Title
WO2003072910A1 (de) Rezirkulationsstruktur für turboverdichter
EP1530670B1 (de) Rezirkulationsstruktur für turboverdichter
DE10330084B4 (de) Rezirkulationsstruktur für Turboverdichter
EP1614863B1 (de) Strömungsstruktur für einen Turboverdichter
EP2802780B1 (de) Axial- oder diagonallüfter mit stolperkante auf der laufschaufel-saugseite
EP2725194B1 (de) Turbinenrotorschaufel einer Gasturbine
EP2242931B1 (de) Zirkulationsstruktur für einen turboverdichter
EP0903468B1 (de) Vorrichtung zur Spaltdichtung
EP1609999B1 (de) Strömungsarbeitsmaschine
EP1706597B1 (de) Strömungsmaschine mit einem axial verschiebbaren rotor
DE102006048933A1 (de) Anordnung zur Strömungsbeeinflussung
DE102015120127A1 (de) Axialverdichterendwandeinrichtung zur steuerung der leckage in dieser
EP2025946A2 (de) Schaufeldeckband mit Sperrstrahlerzeugung
DE1909807A1 (de) Stroemungsmaschinen
DE102016124806A1 (de) Turbinen-Laufschaufelanordnung für eine Gasturbine und Verfahren zum Bereitstellen von Dichtluft in einer Turbinen-Laufschaufelanordnung
EP3246518A1 (de) Leitschaufelkranz, zugehörige baugruppe und strömungsmaschine
DE3031553A1 (de) Gasturbinenlaufrad.
EP3431708A1 (de) Umströmungsanordnung, zugehörige strömungsmaschine und verwendung
EP2112332B1 (de) Trägerring einer Leitvorrichtung mit Sperrluftkanal
DE60027713T2 (de) Radiale turbomaschine
DE102018206601A1 (de) Schaufel, Schaufelsegment und Baugruppe für eine Turbomaschine und Turbomaschine
DE2412242A1 (de) Gasturbinentriebwerk fuer stroemungsdeflektor im fankanal
CH225231A (de) Gekühlte Hohlschaufel.
DE102014226341A1 (de) Verdichter, Abgasturbolader und Brennkraftmaschine
DE102012021400A1 (de) Turbinenrotorschaufel einer Gasturbine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10473152

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003718608

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2003571571

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1393/KOLNP/2004

Country of ref document: IN

Ref document number: 01393/KOLNP/2004

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2004129277

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 20038075032

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2003718608

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2495186

Country of ref document: CA

REF Corresponds to

Ref document number: 10390754

Country of ref document: DE

Date of ref document: 20050512

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 10390754

Country of ref document: DE

WWG Wipo information: grant in national office

Ref document number: 2003718608

Country of ref document: EP