EP2927503A1 - Gasturbinenverdichter, Flugtriebwerk und Auslegungsverfahren - Google Patents

Gasturbinenverdichter, Flugtriebwerk und Auslegungsverfahren Download PDF

Info

Publication number
EP2927503A1
EP2927503A1 EP14163465.9A EP14163465A EP2927503A1 EP 2927503 A1 EP2927503 A1 EP 2927503A1 EP 14163465 A EP14163465 A EP 14163465A EP 2927503 A1 EP2927503 A1 EP 2927503A1
Authority
EP
European Patent Office
Prior art keywords
groove
upstream
edge
blade tip
gas turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP14163465.9A
Other languages
English (en)
French (fr)
Other versions
EP2927503B1 (de
Inventor
Giovanni Brignole
Tobias Mayenberger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Aero Engines AG
Original Assignee
MTU Aero Engines AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Aero Engines AG filed Critical MTU Aero Engines AG
Priority to EP14163465.9A priority Critical patent/EP2927503B1/de
Priority to US14/672,959 priority patent/US10450869B2/en
Publication of EP2927503A1 publication Critical patent/EP2927503A1/de
Application granted granted Critical
Publication of EP2927503B1 publication Critical patent/EP2927503B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/321Rotors specially for elastic fluids for axial flow pumps for axial flow compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form
    • F01D5/142Shape, i.e. outer, aerodynamic form of the blades of successive rotor or stator blade-rows
    • F01D5/143Contour of the outer or inner working fluid flow path wall, i.e. shroud or hub contour
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/522Casings; Connections of working fluid for axial pumps especially adapted for elastic fluid pumps
    • F04D29/526Details of the casing section radially opposing blade tips
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/68Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
    • F04D29/681Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
    • F04D29/685Inducing localised fluid recirculation in the stator-rotor interface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor

Definitions

  • the present invention relates to a gas turbine compressor and an aircraft engine with such a gas turbine compressor and a method for designing such a gas turbine compressor.
  • a gas turbine compressor with a casing treatment (CT) is known.
  • CT gas turbine compressor with a casing treatment
  • This comprises a circumferential or interrupted circumferential groove, which is arranged axially in the region of a circumferential blade tip and are arranged in the deflection means in the form of webs.
  • the webs on arbitrary radial recesses.
  • An object of an embodiment of the present invention is to improve a gas turbine compressor.
  • one, in particular axial, gas turbine compressor has one or more circumferentially juxtaposed blades with, in particular deckband sou, blade tips and this radially opposite flow channel wall.
  • the gas turbine compressor is a gas turbine compressor for an aircraft engine or an aircraft engine; in particular, it may be a low-pressure compressor arranged upstream of another gas turbine compressor in a gas turbine or a high-pressure compressor arranged downstream of another gas turbine compressor.
  • the blades are in a version a rotating rotatably mounted rotor, rotating in operation blades whose radially outer blade tips the housing-fixed flow channel wall radially outwardly opposite.
  • the blades are fixed to the housing vanes, which faces the rotating in operation, rotatably mounted Strömungskanalwandung radially inward.
  • a circumferential groove is arranged.
  • this has an upstream groove flank which merges into the flow channel wall in an upstream groove edge, a downstream groove flank which merges into a flow channel wall in a downstream groove edge, and a groove base which connects these groove flanks.
  • a groove edge may have a sharp-edged or angular or even rounded or have a radius, in which case the center edge or intersection of its two outermost tangents may define the groove edge for dimensions.
  • the upstream groove flank and / or the downstream groove flank has an axial undercut whose cross-sectional area in a meridian section in a development is less than 10% of a cross-sectional area of the circumferential groove between its upstream and downstream groove edge.
  • a meridian section in the sense of the present invention is a plane section which contains the axis of rotation of the compressor.
  • An axial undercut of the upstream groove flank is a region of this groove flank which is arranged in the axial direction upstream of the upstream groove edge.
  • an axial undercut of the downstream groove flank is a region of this groove flank which is arranged downstream in the axial direction behind the downstream groove edge.
  • a cross-sectional area of the circumferential groove between its upstream and downstream groove edges is correspondingly the area delimited in the meridian section by the groove bottom, a straight connecting line between the upstream and downstream groove edges, and perpendiculars by the upstream and downstream groove edges.
  • the circumferential groove extends in one embodiment, in particular continuously or without interruption, over the full circumference of the flow channel wall or over 360 °.
  • the upstream and downstream groove edges are each a continuous edge that extends uninterrupted 360 °.
  • one or more webs are arranged.
  • a plurality of adjacent, in particular all, webs can be designed identically in one embodiment, in particular, at least substantially, have identical dimensions and contours.
  • the production and / or aerodynamics of the circumferential groove can be improved.
  • adjacent webs can be designed differently in one embodiment, in particular have different dimensions and / or contours.
  • targeted asymmetries can be displayed or compensated in one embodiment.
  • Three or more, in particular all, webs can be spaced equidistantly in the circumferential direction.
  • three or more, in particular all, webs in the circumferential direction in pairs have different distances from each other.
  • a radial pruning means in particular, an empty space between a blade-side end face of the web and its projection into a reference surface which extends from the upstream groove edge to the downstream groove edge, wherein the curvature of the reference surface in the meridian sections through the end face is equal to infinity or to the upstream and downstream groove edge is the same as the curvature of the flow channel wall and is continuously linear therebetween in the axial direction.
  • the radial cutback is understood as meaning the free area between a blade tip side upper edge of the cross section of the web and a reference curve extending from the upstream groove edge to the downstream groove edge, the curvature of the reference curve being equal to infinity or at the upstream and downstream groove edge equal to the curvature of the Strömungskanalwandung and between them in the axial direction is continuously linear.
  • said virtual continuation contour be a straight connection level or line the groove edges can connect with a curvature which corresponds to the groove edges of the curvature of the flow channel contour and interpolated linearly therebetween.
  • an upstream beginning of the cutback is axially downstream of the upstream groove edge between that groove edge and the upstream leading edge of the blade tip and disposed downstream end of the cutback in a blade tip nearer half of a radial height of the circumferential groove.
  • an inventive pruning starting downstream of the upstream groove edge and upstream of the upstream leading edge of the blade tip and terminating in the blade tip nearer half of the circumferential groove in one embodiment, has the advantages of casing structuring in non-flattening mode ("off-design "), at least substantially, while at the same time in the design mode or under nominal operating conditions unwanted flow phenomena can be reduced.
  • an upstream start of the cutback is understood to be that axial position beyond which the blade-side end face or upper edge of the web deviates from the virtually continuous flow channel contour or the reference surface or curve away from the blade tip towards the groove bottom.
  • an upstream beginning of the cutback section is understood to be the axial position from which the blade-side end face or upper edge of the web from the straight reference surface or curve in the radial direction to the groove base by at least 1%, in particular at least 5% of a maximum Radial distance between a blade tip closer groove edge and the groove bottom deviates.
  • the upstream start of the cutback is arranged axially downstream of the upstream groove edge and upstream of the upstream leading edge of the blade tip according to the above aspect.
  • the blade-side end face (or in one or more, preferably all, meridian sections through the blade tip side end face of the web, the upper edge) of the web in one embodiment, the flow channel contour with continuous curvature or without abrupt change in the curvature continues.
  • a downstream end of the cutback section is understood to be that axial position at which the blade-side end face or upper edge of the web opens again into the reference surface or curve or into the downstream groove flank.
  • a downstream end of the recut section is understood to be that axial position from which the blade-side end face or upper edge of the web from the straight reference surface or curve to the groove bottom in the radial direction again by less than 5%, in particular less than 1 % of the maximum radial distance between the blade tip closer groove edge and the groove bottom deviates.
  • a radial height of the circumferential groove is in particular a maximum distance between the groove base and the reference surface or curve, in particular a maximum distance between the groove base and the groove edge closer to the blade tip, in the radial direction or in a direction perpendicular to the connecting line understood upstream and downstream groove edge, wherein such a distance perpendicular to the connecting line generalizing is referred to as the radial height of the circumferential groove.
  • the radial pruning terminates in the reference surface or curve, in a further embodiment axially upstream of or downstream of the upstream one Leading edge of the blade tip.
  • the blade-side end face (or the upper edge in one or more, preferably all, meridian sections through the blade tip-side end face of the web) sets the flow channel contour with a continuous curvature or without an abrupt change in the curvature from the downstream in one embodiment Groove edge upstream.
  • the radial cutback ends in the radially upper half of the downstream groove flank, the web is continuously cut back radially from the beginning of the cutback.
  • the radially upper half is generally referred to the part of the downstream groove flank extending in the radial direction or a direction perpendicular to the line connecting the upstream and downstream groove edge over 50% of the maximum distance of the downstream groove edge from the groove bottom in this direction.
  • the web opens into the upstream and / or the downstream groove flank of the circumferential groove, so it can thus extend in particular axially through the groove or its maximum axial length.
  • a blade tip-side upper edge of the web at the upstream groove edge may have the same curvature as the flow channel contour, i. at the upstream groove edge have a continuous curvature, and continue steadily until the beginning of the re-cut.
  • the web can be straight or curved or run.
  • the blade-side end face of the web at least substantially, open axially into the upstream groove edge.
  • the blade-side end face in or against a direction of rotation of the blade tip curved into the downstream groove edge open.
  • the surface of the cutback is limited in at least one meridian section to at most 30%, in particular at most 25% of the cross-sectional area of the circumferential groove.
  • the web in one or more, in particular all meridian sections through the blade tip side end face of the web on a cross-sectional area which is at least 70%, in particular at least 75%, the cross-sectional area of the circumferential groove in this meridian section.
  • a cross-sectional area of the circumferential groove is, according to the above-described definition, the area delimited in the meridian section by the groove bottom, the groove flanks and a straight connecting line between the upstream and downstream groove edge.
  • the circumferential groove encloses in one or more, in particular all meridian sections through the blade tip side end face of the web at the upstream edge of the groove with the flow channel wall at an angle which is between 60 ° and 90 °. In this way, in particular, an advantageous axial undercut can be represented.
  • an axial distance between the upstream groove edge and the downstream edge of the blade tip downstream therefrom is greater than an axial distance between the downstream groove edge and the leading edge of the blade tip disposed therefrom.
  • the leading edge of the blade tip is disposed between the upstream and downstream groove edges and closer to the downstream groove edge.
  • an axial distance between the upstream and downstream groove edges is at least 25% of an axial distance between the upstream leading edge and a downstream trailing edge of the blade tip.
  • the web may be straight or curved, wherein it or its tangents may be radial or inclined to the radial direction. Accordingly, in one embodiment in one or more, in particular all sections perpendicular to the axis of rotation of the compressor inclined by the blade tip side end face of the web of the web to the groove bottom of the circumferential groove in the direction of rotation of the blade tip, in particular by at least 25 ° and / or at most 65 ° to the radial direction.
  • Fig. 1 shows in a meridian section a part of a gas turbine compressor according to an embodiment of the present invention and a designed according to an embodiment of the present invention gas turbine compressor.
  • the meridian section contains the axis of rotation of the compressor (horizontal in Fig. 1 ), in the Fig. 1 vertical direction is a radial direction.
  • the gas turbine compressor has in the circumferential direction (perpendicular to the plane of the Fig. 1 ) juxtaposed blades with uncovered blade tips, of which in the meridian section of the Fig. 1 a blade tip 10 is partially shown, and a radially outwardly opposite housing fixed flow channel wall 20 on.
  • a circumferential groove is arranged, which has an upstream groove flank 31, which merges into an upstream groove edge 21 in the Strömungskanalwandung, a downstream groove flank 32, which merges in a downstream groove edge 22 in the flow channel wall, and a groove bottom 33 connecting these groove flanks.
  • the upstream groove flank has an axial undercut whose cross-sectional area in the meridian section is less than 10% of a cross-sectional area of the circumferential groove between its upstream and downstream groove edges.
  • This cross-sectional area of the circumferential groove between its upstream and The downstream edge of the groove is the area that is in the meridian section of the Fig. 1 is limited by the groove bottom, a straight connecting line 24 between the upstream and downstream groove edge and perpendicular through the upstream and downstream groove edge, which in Fig. 1 dash-dotted lines are indicated, the cross-sectional area of the undercut corresponding to the area between the upstream groove flank 31 and the in Fig. 1 left dotted vertical lines on the connecting line 24th
  • a straight connecting line 24 between the upstream and downstream groove edge 21, 22 is designated. This thus represents a reference curve which extends from the upstream groove edge to the downstream groove edge, their curvature being equal to infinity.
  • Fig. 1 another reference curve, which also extends from the upstream groove edge to the downstream groove edge, wherein the curvature of this reference curve at the upstream and downstream groove edge is equal to the curvature of Strömungskanalwandung and therebetween in the axial direction is continuously linear, ie the curvature of Strömungskanalwandung 20th interpolated linearly between the groove edges 21, 22.
  • This reference curve 23 thus continues the flow channel contour 20 virtually over the circumferential groove.
  • the reference curves 23, 24 each provide a corresponding reference surface 23, 24 extending in the circumferential direction in the meridian section of FIG Fig. 1 by a blade tip-side end face or upper edge 43 of the web 40.
  • the blade-side end face or upper edge 43 also deviates from the straight reference surface or curve 24 toward the groove base by at least 1% of a maximum radial distance between the groove edge 22 closer to the blade tip and the groove base 33.
  • the point or circumferential line 41 thus defines an upstream beginning of a radial cut-back 44 of the web.
  • the blade-side end face or upper edge of the web continues the flow channel contour 20 with a continuous curvature.
  • the point or circumferential line 42 defines a downstream end of the radial cut-back 44, at which the blade-side end or upper edge 43 of the web opens into the downstream groove flank 32.
  • the blade-side end face or upper edge 43 of the web opens again into the reference surface or curve 23. Then, the point or the circumferential line on which or the blade-side end face or upper edge 43 of the web again opens into the reference surface or curve 23, or the point or the circumferential line, from which or the blade-side end face or upper edge of the web of the straight reference surface or curve 24 to the groove bottom 33 again by less than 1% the maximum radial distance between the blade tip closer groove edge 22 and the groove bottom 33 deviates, the downstream end of the radial cutback.
  • the empty space or the free area between the blade-side end face or upper edge 43 of the web and the reference surface or curve 23 thus defines the radial cutback 44 with its upstream end 41 and its downstream end 42.
  • this upstream beginning 41 of the cutback 44 becomes axially downstream (right in FIG Fig. 1 ) from the upstream groove edge 21 between this groove edge 21 and the upstream leading edge 11 of the blade tip 10 and the downstream end 42 of the cutback 44 are located in a blade tip nearer half 34 of a radial height 35 of the circumferential groove.
  • the maximum distance between the groove base 33 and the blade tip closer groove edge 22 in the radial direction (vertically in Fig. 1 ) or, as in Fig. 1 indicated, the maximum distance 35 between the groove base 33 and the blade tip closer groove edge 22 may be defined in a direction perpendicular to the straight connecting line 24 of the upstream and downstream groove edge.
  • the radial cutback ends in the radially upper half 34 of the downstream groove flank 32, the web is continuously cut back radially from the beginning 41.
  • the radially upper half is the part or region of the downstream groove flank 32 which extends in the radial direction or the direction perpendicular to the connecting line 24 of the upstream and downstream groove edge over 50% of the maximum distance of the downstream groove edge 22 from the groove base 33 in this direction ,
  • the web 40 terminates in the upstream and downstream groove flanks 31, 32 of the circumferential groove, thus extending axially through the groove.
  • the blade tip-side end face or upper edge of the web at the upstream groove edge 21 has the same curvature as the flow channel contour 20 and steadily continues it until the beginning 41 of the cut-back 44.
  • the web 40 has an in Fig. 1 hatched indicated cross-sectional area, which is at least 75% of the cross-sectional area of the circumferential groove in this meridian section, which is defined by the groove flanks 31, 32, the groove bottom 33 and the connecting line 24 between the two groove edges 21, 22.
  • Fig. 1 closes the circumferential groove at the upstream groove edge 21 with the Strömungskanalwandung 20 an angle ⁇ , which is between 60 ° and 90 °.
  • Fig. 1 In the execution of Fig. 1 is an axial distance between the upstream groove edge 21 and the downstream thereof (right in FIG Fig. 1 ) disposed leading edge 11 of the blade tip 10 is greater than an axial distance between the downstream groove edge 22 and the front edge 11 thereof arranged upstream.
  • an axial distance between the upstream and downstream groove edges 21, 22 is at least 25% of an axial distance between the upstream leading edge 11 and a downstream trailing edge (not shown) of the blade tip 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Die vorliegende Erfindung betrifft einen Gasturbinenverdichter, mit wenigstens einer Schaufelspitze (10) und einer dieser radial gegenüberliegenden Strömungskanalwandung (20), in der eine Umfangsnut (31-33) angeordnet ist, in der wenigstens ein Steg (40) angeordnet ist, der einen radialen Rückschnitt (44) aufweist, wobei ein stromaufwärtiger Anfang (41) des Rückschnitts axial stromabwärts von einer stromaufwärtigen Nutkante (21) zwischen dieser Nutkante und einer stromaufwärtigen Vorderkante (11) der Schaufelspitze und ein stromabwärtiges Ende (42) des Rückschnitts in einer schaufelspitzennäheren Hälfte (34) einer radialen Höhe (35) der Umfangsnut angeordnet ist.

Description

  • Die vorliegende Erfindung betrifft einen Gasturbinenverdichter sowie ein Flugtriebwerk mit einem solchen Gasturbinenverdichter und ein Verfahren zum Auslegen eines solchen Gasturbinenverdichters.
  • Aus der US 2010/0014956 A1 ist ein Gasturbinenverdichter mit einer Gehäusestrukturierung ("casing treatment" CT) bekannt. Dieses umfasst eine umlaufende oder unterbrochene Umfangsnut, die axial im Bereich einer umlaufenden Schaufelspitze angeordnet ist und in der Ablenkmittel in Form von Stegen angeordnet sind. In verschiedenen Ausführungsbeispielen weisen die Stege willkürliche radiale Rückschnitte auf.
  • Eine Aufgabe einer Ausführung der vorliegenden Erfindung ist es, einen Gasturbinenverdichter zu verbessern.
  • Diese Aufgabe wird durch einen Gasturbinenverdichter mit den Merkmalen des Anspruchs 1 gelöst. Ansprüche 15, 16 stellen ein Flugtriebwerk mit einem solchen Gasturbinenverdichter bzw. ein Verfahren zum Auslegen eines solchen Gasturbinenverdichters unter Schutz. Vorteilhafte Ausführungsformen der Erfindung sind Gegenstand der Unteransprüche.
  • Nach einem Aspekt der vorliegenden Erfindung weist ein, insbesondere axialer, Gasturbinenverdichter eine oder mehrere in Umfangsrichtung nebeneinander angeordnete Schaufeln mit, insbesondere deckbandlosen, Schaufelspitzen und eine diesen radial gegenüberliegende Strömungskanalwandung auf.
  • Der Gasturbinenverdichter ist in einer Ausführung ein Gasturbinenverdichter für ein Flugtriebwerk bzw. eines Flugtriebwerks, er kann insbesondere ein in einer Gasturbine stromaufwärts vor einem weiteren Gasturbinenverdichter angeordneter Niederdruckverdichter oder ein stromabwärts nach einem weiteren Gasturbinenverdichter angeordneter Hochdruckverdichter sein. Die Schaufeln sind in einer Ausführung an einem drehbar gelagerten Rotor angeordnete, im Betrieb umlaufende Laufschaufeln, deren radial äußeren Schaufelspitzen die gehäusefeste Strömungskanalwandung radial außen gegenüberliegt. In einer anderen Ausführung sind die Schaufeln gehäusefeste Leitschaufeln, denen die im Betrieb umlaufende, drehbar gelagerte Strömungskanalwandung radial innen gegenüberliegt.
  • In der Strömungskanalwandung ist eine Umfangsnut angeordnet. Diese weist in einer Ausführung eine stromaufwärtige Nutflanke, die in einer stromaufwärtigen Nutkante in die Strömungskanalwandung übergeht, eine stromabwärtige Nutflanke, die in einer stromabwärtigen Nutkante in die Strömungskanalwandung übergeht, und einen diese Nutflanken verbindenden Nutgrund auf. Eine Nutkante kann in einer Ausführung scharfkantig bzw. eckig oder auch abgerundet sein bzw. einen Radius aufweisen, wobei dann für Maßangaben dessen Mittelpunkt oder Schnittpunkt seiner beiden äußersten Tangenten die Nutkante definieren kann.
  • In einer Ausführung weist die stromaufwärtige Nutflanke und/oder die stromabwärtige Nutflanke eine axiale Hinterschneidung auf, deren Querschnittsfläche in einem Meridianschnitt in einer Weiterbildung weniger als 10% einer Querschnittsfläche der Umfangsnut zwischen ihrer stromaufwärtigen und stromabwärtigen Nutkante beträgt.
  • Ein Meridianschnitt im Sinne der vorliegenden Erfindung ist ein ebener Schnitt, der die Drehachse des Verdichters enthält. Eine axiale Hinterschneidung der stromaufwärtigen Nutflanke ist ein Bereich dieser Nutflanke, der in axialer Richtung stromaufwärts vor der stromaufwärtigen Nutkante angeordnet ist. Entsprechend ist eine axiale Hinterschneidung der stromabwärtigen Nutflanke ein Bereich dieser Nutflanke, der in axialer Richtung stromabwärts hinter der stromabwärtigen Nutkante angeordnet ist. Eine Querschnittsfläche der Umfangsnut zwischen ihrer stromaufwärtigen und stromabwärtigen Nutkante ist entsprechend die Fläche, die im Meridianschnitt vom Nutgrund, einer geraden Verbindungslinie zwischen der stromaufwärtigen und stromabwärtigen Nutkante und Senkrechten durch die stromaufwärtige und stromabwärtige Nutkante begrenzt ist.
  • Die Umfangsnut erstreckt sich in einer Ausführung, insbesondere durchgehend bzw. unterbrechungsfrei, über den vollen Umfang der Strömungskanalwandung bzw. über 360°. Mit anderen Worten ist in einer Ausführung die stromaufwärtige und stromabwärtige Nutkante jeweils eine durchgehende Kante, die sich unterbrechungsfrei über 360° erstreckt. Hierdurch kann in einer Ausführung die Herstellung und/oder Aerodynamik der Umfangsnut verbessert werden.
  • In der Umfangsnut sind ein oder mehrere Stege angeordnet. Mehrere benachbarte, insbesondere alle Stege, können in einer Ausführung gleichartig ausgebildet sein, insbesondere, wenigstens im Wesentlichen, identische Abmessungen und Konturen aufweisen. Hierdurch kann in einer Ausführung die Herstellung und/oder Aerodynamik der Umfangsnut verbessert werden. Gleichermaßen können benachbarte Stege in einer Ausführung verschiedenartig ausgebildet sein, insbesondere unterschiedliche Abmessungen und/oder Konturen aufweisen. Hierdurch können in einer Ausführung gezielt Asymmetrien dargestellt oder kompensiert werden. Drei oder mehr, insbesondere alle, Stege können in Umfangsrichtung äquidistant beabstandet sein. Gleichermaßen können drei oder mehr, insbesondere alle, Stege in Umfangsrichtung paarweise unterschiedliche Abstände voneinander aufweisen.
  • Ein oder mehrere, vorzugsweise alle Stege weisen einen radialen Rückschnitt auf. Unter einem radialen Rückschnitt wird vorliegend insbesondere ein Leerraum zwischen einer schaufelseitigen Stirnseite des Steges und deren Projektion in eine Referenzfläche verstanden, die sich von der stromaufwärtigen Nutkante zu der stromabwärtigen Nutkante erstreckt, wobei die Krümmung der Referenzfläche in den Meridianschnitten durch die Stirnseite gleich Unendlich oder an der stromaufwärtigen und stromabwärtigen Nutkante gleich der Krümmung der Strömungskanalwandung und dazwischen in axialer Richtung stetig linear ist. In einem Meridianschnitt wird als radialer Rückschnitt entsprechend die freie Fläche zwischen einer schaufelspitzenseitigen Oberkante des Querschnitts des Stegs und einer Referenzkurve verstanden, die sich von der stromaufwärtigen Nutkante zu der stromabwärtigen Nutkante erstreckt, wobei die Krümmung der Referenzkurve gleich Unendlich oder an der stromaufwärtigen und stromabwärtigen Nutkante gleich der Krümmung der Strömungskanalwandung und dazwischen in axialer Richtung stetig linear ist. Mit anderen Worten wird unter einem radialen Rückschnitt in einer Ausführung der Leerraum bzw. die freie Fläche zwischen der schaufelseitigen Stirnseite bzw. Oberkante des Steges und einer virtuell über die Umfangsnut hinweg fortgesetzte Strömungskanalkontur verstanden, wobei diese virtuell fortgesetzte Kontur eine gerade Verbindungsebene bzw. -linie sein oder die Nutkanten mit einer Krümmung verbinden kann, die an den Nutkanten der Krümmung der Strömungskanalkontur entspricht und dazwischen linear interpoliert.
  • Nach einem Aspekt der vorliegenden Erfindung ist bzw. wird, insbesondere in einem oder mehreren, vorzugsweise allen, Meridianschnitten durch die schaufelspitzenseitige Stirnseite des Steges, ein stromaufwärtiger Anfang des Rückschnitts axial stromabwärts von der stromaufwärtigen Nutkante zwischen dieser Nutkante und der stromaufwärtigen Vorderkante der Schaufelspitze und ein stromabwärtiges Ende des Rückschnitts in einer schaufelspitzennäheren Hälfte einer radialen Höhe der Umfangsnut angeordnet.
  • Überraschenderweise hat sich herausgestellt, dass ein erfindungsgemäßer Rückschnitt, der stromabwärts nach der stromaufwärtigen Nutkante und stromaufwärts vor der stromaufwärtigen Vorderkante der Schaufelspitze beginnt und in der schaufelspitzennäheren Hälfte der Umfangsnut endet, in einer Ausführung die Vorteile der Gehäusestrukturierung im Nicht-Ausglegungsbetrieb ("Off-Design"), wenigstens im Wesentlichen, beibehalten werden, während gleichzeitig im Auslegungsbetrieb bzw. unter Nennbetriebsbedingungen ungewollte Strömungsphänomene reduziert werden können.
  • Unter einem stromaufwärtigen Anfang des Rückschnitts wird in einer Ausführung diejenige Axialposition verstanden, ab der die schaufelseitigen Stirnseite bzw. Oberkante des Steges von der virtuell fortgesetzten Strömungskanalkontur bzw. der Referenzfläche bzw. -kurve von der Schaufelspitze weg zum Nutgrund hin abweicht. In einer anderen Ausführung wird unter einem stromaufwärtigen Anfang des Rückschnitts diejenige Axialposition verstanden, ab der die schaufelseitige Stirnseite bzw. Oberkante des Steges von der geraden Referenzfläche bzw. -kurve in radialer Richtung zum Nutgrund hin um wenigstens 1%, insbesondere wenigstens 5% eines maximalen radialen Abstandes zwischen einer schaufelspitzennäheren Nutkante und dem Nutgrund abweicht.
  • Der stromaufwärtige Anfang des Rückschnitts ist nach dem vorstehenden Aspekt axial stromabwärts nach der stromaufwärtigen Nutkante und stromaufwärts vor der stromaufwärtigen Vorderkante der Schaufelspitze angeordnet. Bis zum Anfang des Rückschnitts setzt die schaufelseitige Stirnseite (bzw. in einem oder mehreren, vorzugsweise allen, Meridianschnitten durch die schaufelspitzenseitige Stirnseite des Steges die Oberkante) des Steges in einer Ausführung die Strömungskanalkontur mit stetiger Krümmung bzw. ohne sprunghafte Änderung der Krümmung fort.
  • Unter einem stromabwärtigen Ende des Rückschnitts wird entsprechend in einer Ausführung diejenige Axialposition verstanden, an der die schaufelseitige Stirnseite bzw. Oberkante des Steges wieder in die Referenzfläche bzw. -kurve oder in die stromabwärtige Nutflanke mündet. In einer anderen Ausführung wird unter einem stromabwärtigen Ende des Rückschnitts diejenige Axialposition verstanden, ab der die schaufelseitige Stirnseite bzw. Oberkante des Steges von der geraden Referenzfläche bzw. -kurve zum Nutgrund hin in radialer Richtung wieder um weniger als 5%, insbesondere weniger als 1% des maximalen radialen Abstandes zwischen der schaufelspitzennäheren Nutkante und dem Nutgrund abweicht.
  • Das stromabwärtige Ende des Rückschnitts ist nach dem vorstehenden Aspekt in einer schaufelspitzennäheren Hälfte einer radialen Höhe der Umfangsnut angeordnet. Unter einer radialen Höhe der Umfangsnut wird im Sinne der vorliegenden Erfindung insbesondere ein maximaler Abstand zwischen dem Nutgrund und der Referenzfläche bzw. -kurve, insbesondere also ein maximaler Abstand zwischen dem Nutgrund und der schaufelspitzennäheren Nutkante, in radialer Richtung oder einer Richtung senkrecht zur Verbindungslinie der stromaufwärtigen und stromabwärtigen Nutkante verstanden, wobei auch ein solcher Abstand senkrecht zur Verbindungslinie verallgemeinernd als radiale Höhe der Umfangsnut bezeichnet wird.
  • In einer Ausführung endet der radiale Rückschnitt in der Referenzfläche bzw. -kurve, in einer Weiterbildung axial stromaufwärts vor oder stromabwärts hinter der stromaufwärtigen Vorderkante der Schaufelspitze. Bis zum Ende des Rückschnitts setzt die schaufelseitige Stirnseite (bzw. in einem oder mehreren, vorzugsweise allen, Meridianschnitten durch die schaufelspitzenseitige Stirnseite des Steges die Oberkante) des Steges in einer Ausführung die Strömungskanalkontur mit stetiger Krümmung bzw. ohne abrupte Änderung der Krümmung von der stromabwärtigen Nutkante stromaufwärts fort.
  • In einer anderen Ausführung endet der radiale Rückschnitt in der radial oberen Hälfte der stromabwärtigen Nutflanke, der Steg ist ab dem Anfang des Rückschnitts durchgehend radial rückgeschnitten. Als radial obere Hälfte wird verallgemeinernd der Teil der stromabwärtigen Nutflanke bezeichnet, der sich in radialer Richtung oder einer Richtung senkrecht zur Verbindungslinie der stromaufwärtigen und stromabwärtigen Nutkante über 50% des maximalen Abstandes der stromabwärtigen Nutkante vom Nutgrund in dieser Richtung erstreckt.
  • In einer Ausführung mündet der Steg in der stromaufwärtigen und/oder der stromabwärtigen Nutflanke der Umfangsnut, er kann sich somit insbesondere axial durch die Nut hindurch bzw. deren maximale axiale Länge erstrecken.
  • Dann kann, wie vorstehend bereits ausgeführt, in einem oder mehreren, insbesondere allen Meridianschnitten durch die schaufelspitzenseitige Stirnseite des Steges eine schaufelspitzenseitige Oberkante des Stegs an der stromaufwärtigen Nutkante dieselbe Krümmung aufweisen wie die Strömmugskanalkontur, d.h. an der stromaufwärtigen Nutkante eine stetige Krümmung aufweisen, und diese bis zum Anfang des Rückschnitts stetig fortsetzen.
  • In einer Abwicklung kann der Steg gerade oder gekrümmt sein bzw. verlaufen. Insbesondere kann in einer Ausführung die schaufelseitige Stirnseite des Steges, wenigstens im Wesentlichen, axial in die stromaufwärtige Nutkante münden. Zusätzlich oder alternativ kann die schaufelseitige Stirnseite in oder entgegen einer Drehrichtung der Schaufelspitze gekrümmt in die stromabwärtige Nutflanke münden. Vorzugsweise ist die Fläche des Rückschnitts in wenigstens einem Meridianschnitt auf höchstens 30%, insbesondere höchstens 25% der Querschnittsfläche der Umfangsnut limitiert. Entsprechend weist in einer Ausführung der Steg in einem oder mehreren, insbesondere allen Meridianschnitten durch die schaufelspitzenseitige Stirnseite des Steges eine Querschnittsfläche auf, die wenigstens 70%, insbesondere wenigstens 75%, der Querschnittsfläche der Umfangsnut in diesem Meridianschnitt beträgt. Eine Querschnittsfläche der Umfangsnut ist entsprechend der vorstehend erläuterten Definition die Fläche, die im Meridianschnitt vom Nutgrund, den Nutflanken und einer geraden Verbindungslinie zwischen der stromaufwärtigen und stromabwärtigen Nutkante begrenzt ist.
  • In einer Ausführung schließt die Umfangsnut in einem oder mehreren, insbesondere allen Meridianschnitten durch die schaufelspitzenseitige Stirnseite des Steges an der stromaufwärtigen Nutkante mit der Strömungskanalwandung einen Winkel ein, der zwischen 60° und 90° beträgt. Hierdurch kann insbesondere eine vorteilhafte axiale Hinterschneidung dargestellt werden.
  • In einer Ausführung ist ein axialer Abstand zwischen der stromaufwärtigen Nutkante und der hiervon stromabwärts angeordneten Vorderkante der Schaufelspitze größer als ein axialer Abstand zwischen der stromabwärtigen Nutkante und der hiervon stromaufwärts angeordneten Vorderkante der Schaufelspitze. Mit anderen Worten ist die Vorderkante der Schaufelspitze zwischen der stromaufwärtigen und stromabwärtigen Nutkante und näher bei der stromabwärtigen Nutkante angeordnet.
  • In einer Ausführung beträgt ein axialer Abstand zwischen der stromaufwärtigen und der stromabwärtigen Nutkante wenigstens 25% eines axialen Abstands zwischen der stromaufwärtigen Vorderkante und einer stromabwärtigen Hinterkante der Schaufelspitze.
  • In einem Schnitt senkrecht zu einer Drehachse des Verdichters kann der Steg gerade oder gekrümmt sein, wobei er bzw. seine Tangenten radial verlaufen oder gegen die radiale Richtung geneigt sein können. Entsprechend ist in einer Ausführung in einem oder mehreren, insbesondere allen Schnitten senkrecht zur Drehachse des Verdichters durch die schaufelspitzenseitige Stirnseite des Steges der Steg zum Nutgrund der Umfangsnut hin in Drehrichtung der Schaufelspitze geneigt, insbesondere um wenigstens 25° und/oder höchstens 65° gegen die radiale Richtung.
  • Weitere vorteilhafte Weiterbildungen der vorliegenden Erfindung ergeben sich aus den Unteransprüchen und der nachfolgenden Beschreibung bevorzugter Ausführungen. Hierzu zeigt, teilweise schematisiert, die einzige:
  • Fig. 1
    einen Teil eines Gasturbinenverdichters nach einer Ausführung der vorliegenden Erfindung in einem Meridianschnitt.
  • Fig. 1 zeigt in einem Meridianschnitt einen Teil eines Gasturbinenverdichters nach einer Ausführung der vorliegenden Erfindung bzw. eines nach einer Ausführung der vorliegenden Erfindung ausgelegten Gasturbinenverdichters. Der Meridianschnitt enthält die Drehachse des Verdichters (horizontal in Fig. 1), die in Fig. 1 vertikale Richtung ist eine radiale Richtung.
  • Der Gasturbinenverdichter weist in Umfangsrichtung (senkrecht zur Zeichenebene der Fig. 1) nebeneinander angeordnete Laufschaufeln mit deckbandlosen Schaufelspitzen, von denen im Meridianschnitt der Fig. 1 eine Laufschaufelspitze 10 teilweise dargestellt ist, und eine diesen radial außen gegenüberliegende gehäusefeste Strömungskanalwandung 20 auf.
  • In der Strömungskanalwandung ist eine Umfangsnut angeordnet, die eine stromaufwärtige Nutflanke 31, die in einer stromaufwärtigen Nutkante 21 in die Strömungskanalwandung übergeht, eine stromabwärtige Nutflanke 32, die in einer stromabwärtigen Nutkante 22 in die Strömungskanalwandung übergeht, und einen diese Nutflanken verbindenden Nutgrund 33 aufweist.
  • Die stromaufwärtige Nutflanke weist eine axiale Hinterschneidung auf, deren Querschnittsfläche in dem Meridianschnitt weniger als 10% einer Querschnittsfläche der Umfangsnut zwischen ihrer stromaufwärtigen und stromabwärtigen Nutkante beträgt. Diese Querschnittsfläche der Umfangsnut zwischen ihrer stromaufwärtigen und stromabwärtigen Nutkante ist die Fläche, die im Meridianschnitt der Fig. 1 vom Nutgrund, einer geraden Verbindungslinie 24 zwischen der stromaufwärtigen und stromabwärtigen Nutkante und Senkrechten durch die stromaufwärtige und stromabwärtige Nutkante begrenzt ist, die in Fig. 1 strichpunktiert angedeutet sind, die Querschnittsfläche der Hinterschneidung entsprechend die Fläche zwischen der stromaufwärtigen Nutflanke 31 und der in Fig. 1 linken strichpunktierten Senkrechten auf die Verbindungslinie 24 .
  • In der Umfangsnut sind mehrere Stege in Umfangsrichtung (senkrecht auf der Zeichenebene der Fig. 1) beabstandet angeordnet, von denen in dem Meridianschnitt der Fig. 1 ein Steg 40 geschnitten dargestellt ist.
  • Mit 24 ist in Fig. 1, wie vorstehend bereits erläutert, eine gerade Verbindungslinie 24 zwischen der stromaufwärtigen und stromabwärtigen Nutkante 21, 22 bezeichnet. Diese stellt somit eine Referenzkurve dar, die sich von der stromaufwärtigen Nutkante zu der stromabwärtigen Nutkante erstreckt, wobei ihre Krümmung gleich Unendlich ist.
  • Mit 23 ist in Fig. 1 eine andere Referenzkurve bezeichnet, die sich ebenfalls von der stromaufwärtigen Nutkante zu der stromabwärtigen Nutkante erstreckt, wobei die Krümmung dieser Referenzkurve an der stromaufwärtigen und stromabwärtigen Nutkante jeweils gleich der Krümmung der Strömungskanalwandung und dazwischen in axialer Richtung stetig linear ist, d.h. die Krümmung der Strömungskanalwandung 20 zwischen den Nutkanten 21, 22 linear interpoliert. Diese Referenzkurve 23 setzt die Strömungskanalkontur 20 somit virtuell über die Umfangsnut hinweg fort.
  • Die Referenzkurven 23, 24 stellen jeweils eine sich in Umfansgrichtung erstreckende entsprechende Referenzfläche 23, 24 in dem Meridianschnitt der Fig. 1 durch eine schaufelspitzenseitige Stirnfläche bzw. Oberkante 43 des Steges 40 dar.
  • Wie im Meridianschnitt der Fig. 1 erkennbar, weicht die schaufelspitzenseitige Stirnfläche bzw. Oberkante 43 von einem Punkt bzw. einer Umfangslinie 41 ab bis zu einem weiteren Punkt bzw. einer weiteren Umfangslinie 42 von der Referenzkurve bzw. -fläche 23 bzw. der virtuell fortgesetzten Strömungskanalkontur von der Schaufelspitze weg zum Nutgrund hin radial (nach oben in Fig. 1) ab.
  • Ab dem Punkt bzw. der Umfangslinie 41 weicht die schaufelseitigen Stirnseite bzw. Oberkante 43 zudem von der geraden Referenzfläche bzw. -kurve 24 zum Nutgrund hin um wenigstens 1% eines maximalen radialen Abstandes zwischen der schaufelspitzennäheren Nutkante 22 und dem Nutgrund 33 ab.
  • Der Punkt bzw. die Umfangslinie 41 definiert damit einen stromaufwärtigen Anfang eines radialen Rückschnitts 44 des Steges.
  • Bis zu diesem Anfang 41 des Rückschnitts 44 setzt die schaufelseitige Stirnseite bzw. Oberkante des Steges die Strömungskanalkontur 20 mit stetiger Krümmung fort.
  • Der Punkt bzw. die Umfangslinie 42 definiert ein stromabwärtiges Ende des radialen Rückschnitts 44, an dem bzw. der die schaufelseitige Stirnseite bzw. Oberkante 43 des Steges in die stromabwärtige Nutflanke 32 mündet.
  • In einer nicht dargestellten Abwandlung mündet die schaufelseitige Stirnseite bzw. Oberkante 43 des Steges hingegen wieder in die Referenzfläche bzw. -kurve 23. Dann stellt der Punkt bzw. die Umfangslinie, an dem bzw. der die schaufelseitige Stirnseite bzw. Oberkante 43 des Steges wieder in die Referenzfläche bzw. -kurve 23 mündet, oder der Punkt bzw. die Umfangslinie, ab dem bzw. der die schaufelseitige Stirnseite bzw. Oberkante des Steges von der geraden Referenzfläche bzw. -kurve 24 zum Nutgrund 33 hin wieder um weniger als 1% des maximalen radialen Abstandes zwischen der schaufelspitzennäheren Nutkante 22 und dem Nutgrund 33 abweicht, das stromabwärtigen Ende des radialen Rückschnitts dar.
  • In dieser nicht dargestellten Abwandlung kann die schaufelseitige Stirnseite bzw. Oberkante des Steges die Strömungskanalkontur mit stetiger Krümmung von der stromabwärtigen Nutkante 22 stromaufwärts (nach links in Fig. 1) bis zu diesem Ende des Rückschnitts fortsetzen, wie dies analog für den Bereich zwischen der stromaufwärtigen Nutkante 21 und dem stromaufwärtigen Anfang 41 des Rückschnitts gezeigt bzw. erläutert ist.
  • Der Leerraum bzw. die freie Fläche zwischen der schaufelseitigen Stirnseite bzw. Oberkante 43 des Steges und der Referenzfläche bzw. -kurve 23 definiert somit den radialen Rückschnitt 44 mit seinem stromaufwärtigen Anfang 41 und seinem stromabwärtigen Ende 42.
  • Wie im Meridianschnitt der Fig. 1 erkennbar, wird bzw. ist dieser stromaufwärtige Anfang 41 des Rückschnitts 44 axial stromabwärts (rechts in Fig. 1) von der stromaufwärtigen Nutkante 21 zwischen dieser Nutkante 21 und der stromaufwärtigen Vorderkante 11 der Schaufelspitze 10 und das stromabwärtige Ende 42 des Rückschnitts 44 in einer schaufelspitzennäheren Hälfte 34 einer radialen Höhe 35 der Umfangsnut angeordnet.
  • Dabei kann als radiale Höhe der maximale Abstand zwischen dem Nutgrund 33 und der schaufelspitzennäheren Nutkante 22 in radialer Richtung (vertikal in Fig. 1) oder, wie in Fig. 1 angedeutet, der maximale Abstand 35 zwischen dem Nutgrund 33 und der schaufelspitzennäheren Nutkante 22 in einer Richtung senkrecht zur geraden Verbindungslinie 24 der stromaufwärtigen und stromabwärtigen Nutkante definiert sein.
  • In der dargestellten Ausführung endet der radiale Rückschnitt in der radial oberen Hälfte 34 der stromabwärtigen Nutflanke 32, der Steg ist ab dem Anfang 41 durchgehend radial rückgeschnitten. Als radial obere Hälfte wird der Teil bzw. Bereich der stromabwärtigen Nutflanke 32 bezeichnet, der sich in radialer Richtung oder der Richtung senkrecht zur Verbindungslinie 24 der stromaufwärtigen und stromabwärtigen Nutkante über 50% des maximalen Abstandes der stromabwärtigen Nutkante 22 vom Nutgrund 33 in dieser Richtung erstreckt.
  • In der Ausführung der Fig. 1 mündet der Steg 40 in der stromaufwärtigen und stromabwärtigen Nutflanke 31, 32 der Umfangsnut, er erstreckt sich somit axial durch die Nut hindurch.
  • Wie vorstehend bereits ausgeführt, weist die schaufelspitzenseitige Stirnfläche bzw. Oberkante des Stegs an der stromaufwärtigen Nutkante 21 dieselbe Krümmung auf wie die Strömugskanalkontur 20 und setzt diese bis zum Anfang 41 des Rückschnitts 44 stetig fort.
  • In der Ausführung der Fig. 1 weist der Steg 40 eine in Fig. 1 schraffiert angedeutete Querschnittsfläche auf, die wenigstens 75% der Querschnittsfläche der Umfangsnut in diesem Meridianschnitt beträgt, welche durch die Nutflanken 31, 32, den Nutgrund 33 und die Verbindungslinie 24 zwischen den beiden Nutkanten 21, 22 definiert ist.
  • In der Ausführung der Fig. 1 schließt die Umfangsnut an der stromaufwärtigen Nutkante 21 mit der Strömungskanalwandung 20 einen Winkel α ein, der zwischen 60° und 90° beträgt.
  • In der Ausführung der Fig. 1 ist ein axialer Abstand zwischen der stromaufwärtigen Nutkante 21 und der hiervon stromabwärts (rechts in Fig. 1) angeordneten Vorderkante 11 der Schaufelspitze 10 größer als ein axialer Abstand zwischen der stromabwärtigen Nutkante 22 und der hiervon stromaufwärts angeordneten Vorderkante 11.
  • In der Ausführung der Fig. 1 beträgt ein axialer Abstand zwischen der stromaufwärtigen und der stromabwärtigen Nutkante 21, 22 wenigstens 25% eines axialen Abstands zwischen der stromaufwärtigen Vorderkante 11 und einer stromabwärtigen Hinterkante (nicht dargestellt) der Schaufelspitze 10.
  • Obwohl in der vorhergehenden Beschreibung exemplarische Ausführungen erläutert wurden, sei darauf hingewiesen, dass eine Vielzahl von Abwandlungen möglich ist. Außerdem sei darauf hingewiesen, dass es sich bei den exemplarischen Ausführungen lediglich um Beispiele handelt, die den Schutzbereich, die Anwendungen und den Aufbau in keiner Weise einschränken sollen. Vielmehr wird dem Fachmann durch die vorausgehende Beschreibung ein Leitfaden für die Umsetzung von mindestens einer exemplarischen Ausführung gegeben, wobei diverse Änderungen, insbesondere in Hinblick auf die Funktion und Anordnung der beschriebenen Bestandteile, vorgenommen werden können, ohne den Schutzbereich zu verlassen, wie er sich aus den Ansprüchen und diesen äquivalenten Merkmalskombinationen ergibt.
  • Bezugszeichenliste
  • 10
    Schaufelspitze
    11
    Vorderkante
    20
    Strömungskanalkontur
    21
    stromaufwärtige Nutkante
    22
    stromabwärtige Nutkante
    23
    Referenzfläche/-kurve
    24
    gerade Referenzfläche/-kurve
    31
    stromaufwärtige Nutflanke
    32
    stromabwärtige Nutflanke
    33
    Nutgrund
    34
    schaufelspitzennähere Hälfte der Umfangsnut
    35
    radiale Höhe der Umfangsnut
    40
    Steg
    41
    stromaufwärtiger Anfang des Rückschnitts
    42
    stromabwärtiges Ende des Rückschnitts
    43
    schaufelspitzenseitige Stirnseite/Oberkante
    44
    Rückschnitt
    α
    Winkel

Claims (16)

  1. Gasturbinenverdichter, mit wenigstens einer Schaufelspitze (10) und einer dieser radial gegenüberliegenden Strömungskanalwandung (20), in der eine Umfangsnut (31-33) angeordnet ist, in der wenigstens ein Steg (40) angeordnet ist, der einen radialen Rückschnitt (44) aufweist;
    dadurch gekennzeichnet, dass
    ein stromaufwärtiger Anfang (41) des Rückschnitts axial stromabwärts von einer stromaufwärtigen Nutkante (21) zwischen dieser Nutkante und einer stromaufwärtigen Vorderkante (11) der Schaufelspitze und ein stromabwärtiges Ende (42) des Rückschnitts in einer schaufelspitzennäheren Hälfte (34) einer radialen Höhe (35) der Umfangsnut angeordnet ist.
  2. Gasturbinenverdichter nach Anspruch 1, dadurch gekennzeichnet, dass der Steg in einer stromaufwärtigen und/oder einer stromabwärtigen Nutflanke (31, 32) der Umfangsnut mündet.
  3. Gasturbinenverdichter nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass in wenigstens einem Meridianschnitt eine schaufelspitzenseitige Oberkante (43) des Stegs an der stromaufwärtigen Nutkante, insbesondere bis zum Anfang des Rückschnitts, eine stetige Krümmung aufweist.
  4. Gasturbinenverdichter nach einem der beiden vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine schaufelseitige Stirnseite (43) des Steges, wenigstens im Wesentlichen, axial in die stromaufwärtige Nutkante und/oder in oder entgegen einer Drehrichtung der Schaufelspitze gekrümmt in die stromabwärtige Nutflanke mündet.
  5. Gasturbinenverdichter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Steg in wenigstens einem Meridianschnitt eine Querschnittsfläche aufweist, die wenigstens 70%, insbesondere wenigstens 75%, einer Querschnittsfläche der Umfangsnut beträgt.
  6. Gasturbinenverdichter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Umfangsnut sich über den vollen Umfang der Strömungskanalwandung erstreckt.
  7. Gasturbinenverdichter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Umfangsnut in wenigstens einem Meridianschnitt an der stromaufwärtigen Nutkante mit der Strömungskanalwandung einen Winkel (α) einschließt, der zwischen 60° und 90° beträgt.
  8. Gasturbinenverdichter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein axialer Abstand zwischen der stromaufwärtigen Nutkante und der hiervon stromabwärts angeordneten Vorderkante der Schaufelspitze größer ist als ein axialer Abstand zwischen der stromabwärtigen Nutkante und der hiervon stromaufwärts angeordneten Vorderkante der Schaufelspitze.
  9. Gasturbinenverdichter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein axialer Abstand zwischen der stromaufwärtigen und der stromabwärtigen Nutkante wenigstens 25% eines axialen Abstands zwischen der stromaufwärtigen Vorderkante und einer stromabwärtigen Hinterkante der Schaufelspitze beträgt.
  10. Gasturbinenverdichter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Steg in wenigstens einem Schnitt senkrecht zu einer Drehachse des Verdichters zu einem Nutgrund der Umfangsnut hin in Drehrichtung der Schaufelspitze geneigt ist, insbesondere um wenigstens 25° und/oder höchstens 65° gegen eine radiale Richtung.
  11. Gasturbinenverdichter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in der Umfangsnut wenigstens drei gleich- oder verschiedenartige Stege in Umfangsrichtung äquidistant oder mit unterschiedlichen Abständen voneinander angeordnet sind.
  12. Gasturbinenverdichter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Schaufelspitze eine radial äußere Schaufelspitze (11) einer Laufschaufel (10) ist, der die Strömungskanalwandung radial außen gegenüberliegt.
  13. Gasturbinenverdichter nach einem der vorhergehenden Ansprüche 1 bis 12, dadurch gekennzeichnet, dass die Schaufelspitze eine radial innere Schaufelspitze einer Leitschaufel ist, der die Strömungskanalwandung radial innen gegenüberliegt.
  14. Gasturbinenverdichter nach einem der vorhergehenden Ansprüche 1 bis 12, dadurch gekennzeichnet, dass eine stromaufwärtige Nutflanke (31) und/oder eine stromabwärtige Nutflanke (32) der Umfangsnut eine axiale Hinterschneidung aufweisen, deren Querschnittsfläche in einem Meridianschnitt weniger als 10% einer Querschnittsfläche der Umfangsnut zwischen ihrer stromaufwärtigen und stromabwärtigen Nutkante beträgt.
  15. Flugtriebwerk mit einem Gasturbinenverdichter nach einem der vorhergehenden Ansprüche.
  16. Verfahren zum Auslegen eines Gasturbinenverdichters nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein stromaufwärtiger Anfang (41) des Rückschnitts axial stromabwärts von einer stromaufwärtigen Nutkante (21) zwischen dieser Nutkante und einer stromaufwärtigen Vorderkante (11) der Schaufelspitze und ein stromabwärtiges Ende (42) des Rückschnitts in einer schaufelspitzennäheren Hälfte (34) einer radialen Höhe (35) der Umfangsnut angeordnet wird.
EP14163465.9A 2014-04-03 2014-04-03 Gasturbinenverdichter, Flugtriebwerk und Auslegungsverfahren Active EP2927503B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14163465.9A EP2927503B1 (de) 2014-04-03 2014-04-03 Gasturbinenverdichter, Flugtriebwerk und Auslegungsverfahren
US14/672,959 US10450869B2 (en) 2014-04-03 2015-03-30 Gas turbine compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP14163465.9A EP2927503B1 (de) 2014-04-03 2014-04-03 Gasturbinenverdichter, Flugtriebwerk und Auslegungsverfahren

Publications (2)

Publication Number Publication Date
EP2927503A1 true EP2927503A1 (de) 2015-10-07
EP2927503B1 EP2927503B1 (de) 2023-05-17

Family

ID=50434071

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14163465.9A Active EP2927503B1 (de) 2014-04-03 2014-04-03 Gasturbinenverdichter, Flugtriebwerk und Auslegungsverfahren

Country Status (2)

Country Link
US (1) US10450869B2 (de)
EP (1) EP2927503B1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3536974A1 (de) 2018-03-06 2019-09-11 MTU Aero Engines GmbH Gasturbinenverdichter

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11965528B1 (en) 2023-08-16 2024-04-23 Rolls-Royce North American Technologies Inc. Adjustable air flow plenum with circumferential movable closure for a fan of a gas turbine engine
US11970985B1 (en) 2023-08-16 2024-04-30 Rolls-Royce North American Technologies Inc. Adjustable air flow plenum with pivoting vanes for a fan of a gas turbine engine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6290458B1 (en) * 1999-09-20 2001-09-18 Hitachi, Ltd. Turbo machines
WO2003072910A1 (de) * 2002-02-28 2003-09-04 Mtu Aero Engines Gmbh Rezirkulationsstruktur für turboverdichter
WO2004018844A1 (de) * 2002-08-23 2004-03-04 Mtu Aero Engines Gmbh Rezirkulationsstruktur für turboverdichter
GB2408546A (en) * 2003-11-25 2005-06-01 Rolls Royce Plc Compressor casing treatment slots
US20100014956A1 (en) 2008-07-07 2010-01-21 Rolls-Royce Deutschland Ltd & Co Kg Fluid flow machine featuring a groove on a running gap of a blade end
FR2989743A1 (fr) * 2012-04-19 2013-10-25 Snecma Carter de compresseur a cavites de longueurs variees

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008010283A1 (de) * 2008-02-21 2009-08-27 Mtu Aero Engines Gmbh Zirkulationsstruktur für einen Turboverdichter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6290458B1 (en) * 1999-09-20 2001-09-18 Hitachi, Ltd. Turbo machines
WO2003072910A1 (de) * 2002-02-28 2003-09-04 Mtu Aero Engines Gmbh Rezirkulationsstruktur für turboverdichter
WO2004018844A1 (de) * 2002-08-23 2004-03-04 Mtu Aero Engines Gmbh Rezirkulationsstruktur für turboverdichter
GB2408546A (en) * 2003-11-25 2005-06-01 Rolls Royce Plc Compressor casing treatment slots
US20100014956A1 (en) 2008-07-07 2010-01-21 Rolls-Royce Deutschland Ltd & Co Kg Fluid flow machine featuring a groove on a running gap of a blade end
FR2989743A1 (fr) * 2012-04-19 2013-10-25 Snecma Carter de compresseur a cavites de longueurs variees

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3536974A1 (de) 2018-03-06 2019-09-11 MTU Aero Engines GmbH Gasturbinenverdichter
DE102018203304A1 (de) 2018-03-06 2019-09-12 MTU Aero Engines AG Gasturbinenverdichter
US11686207B2 (en) 2018-03-06 2023-06-27 MTU Aero Engines AG Gas turbine compressor

Also Published As

Publication number Publication date
EP2927503B1 (de) 2023-05-17
US20150285079A1 (en) 2015-10-08
US10450869B2 (en) 2019-10-22

Similar Documents

Publication Publication Date Title
EP1632662B1 (de) Strömungsarbeitsmaschine mit Fluidentnahme
EP2761137B1 (de) Schaufel einer rotor- oder statorreihe für den einsatz in einer strömungsmaschine
EP3176370B1 (de) Leitschaufelcluster für eine strömungsmaschine
CH697806A2 (de) Turbinenschaufel-Deckbandkantenprofil.
EP2921716B1 (de) Schaufelreihengruppe
EP2617949B1 (de) Strömungsmaschinen-Dichtungsanordnung
WO2005116404A1 (de) Schaufelblatt mit übergangszone
EP2947270B3 (de) Schaufelreihengruppe
DE112013002712T5 (de) Turbinendämpfer
EP3078804A1 (de) Deckbandanordnung einer schaufelreihe von stator- oder rotorschaufeln und zugehörige turbine
EP2607625B1 (de) Turbomaschine und turbomaschinenstufe
EP2927427A1 (de) Gasturbinenschaufel
EP2787178B1 (de) Leitschaufelanordnung
EP3401504A1 (de) Schaufelgitterplattform
EP2927503A1 (de) Gasturbinenverdichter, Flugtriebwerk und Auslegungsverfahren
EP2410131A2 (de) Rotor einer Turbomaschine
EP2871368B1 (de) Gasturbinenverdichter
DE102013213416B4 (de) Schaufel für eine Gasturbomaschine
EP2607626A1 (de) Turbomaschine und Turbomaschinenstufe
EP2730745B1 (de) Schaufelanordnung für eine Turbomaschine
DE102014219058A1 (de) Radialverdichterlaufrad und zugehöriger Radialverdichter
EP3536974B1 (de) Gasturbinenverdichter
EP3375977A1 (de) Konturierung einer schaufelgitterplattform
EP3163019B1 (de) Laufschaufel
DE102019108811B4 (de) Laufschaufel einer Strömungsmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20160315

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180528

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RIC1 Information provided on ipc code assigned before grant

Ipc: F04D 29/52 20060101ALI20210910BHEP

Ipc: F04D 29/68 20060101ALI20210910BHEP

Ipc: F04D 29/32 20060101AFI20210910BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20211103

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20221212

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014016560

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1568473

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230615

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230517

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230517

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230918

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230817

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230517

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230517

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230517

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230517

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230517

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230517

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230917

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230517

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230517

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230517

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230517

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230517

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230517

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230517

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230517

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230517

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014016560

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20240220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230517

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230517

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230517