WO2003072850A1 - Dispositif de production de semi-conducteurs ou de cristaux liquides - Google Patents

Dispositif de production de semi-conducteurs ou de cristaux liquides Download PDF

Info

Publication number
WO2003072850A1
WO2003072850A1 PCT/JP2003/002138 JP0302138W WO03072850A1 WO 2003072850 A1 WO2003072850 A1 WO 2003072850A1 JP 0302138 W JP0302138 W JP 0302138W WO 03072850 A1 WO03072850 A1 WO 03072850A1
Authority
WO
WIPO (PCT)
Prior art keywords
inert gas
support member
cylindrical support
reaction vessel
semiconductor
Prior art date
Application number
PCT/JP2003/002138
Other languages
English (en)
French (fr)
Inventor
Akira Kuibira
Masuhiro Natsuhara
Hirohiko Nakata
Original Assignee
Sumitomo Electric Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries, Ltd. filed Critical Sumitomo Electric Industries, Ltd.
Priority to EP03743036A priority Critical patent/EP1484429A1/en
Priority to US10/478,278 priority patent/US7806984B2/en
Priority to KR1020037014738A priority patent/KR101006634B1/ko
Publication of WO2003072850A1 publication Critical patent/WO2003072850A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45519Inert gas curtains
    • C23C16/45521Inert gas curtains the gas, other than thermal contact gas, being introduced the rear of the substrate to flow around its periphery
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4412Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4581Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber characterised by material of construction or surface finish of the means for supporting the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4586Elements in the interior of the support, e.g. electrodes, heating or cooling devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68792Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by the construction of the shaft

Definitions

  • the present invention relates to a semiconductor or liquid crystal manufacturing apparatus provided with a means for holding and heating an object to be processed in a reaction vessel, and particularly to a semiconductor or liquid crystal manufacturing apparatus such as a CVD apparatus, a plasma CVD apparatus, an etching apparatus, and a plasma etching apparatus.
  • a semiconductor or liquid crystal manufacturing apparatus such as a CVD apparatus, a plasma CVD apparatus, an etching apparatus, and a plasma etching apparatus.
  • a single-wafer type semiconductor manufacturing apparatus having excellent reaction controllability is generally used.
  • the semiconductor wafer is placed on the surface of the holder placed in the reaction vessel and left as it is, mechanically fixed, or chucked by electrostatic force by applying a voltage to the electrode built into the holder. Then, it is fixed on the holder.
  • the temperature of the held semiconductor wafer is strict in order to maintain a uniform film formation rate and etching rate in chemical vapor deposition (CVD), plasma CVD, etc., or etching, plasma etching, etc. Is controlled.
  • CVD chemical vapor deposition
  • plasma CVD etc.
  • etching plasma etching, etc.
  • the holding body is heated by a resistance heating element built in the holding body, and the semiconductor wafer is heated to a predetermined temperature by heat transfer from the surface.
  • the holder is supported by a cylindrical member at a part other than the surface holding the object to be treated, and is set in the reaction vessel.
  • a lead wire is connected to an electrode provided on the part of the holder other than the workpiece holding surface, and power is supplied from outside. Supplied.
  • the holder is made of a material having heat resistance, insulation, and corrosion resistance, for example, ceramics such as aluminum nitride and silicon nitride.
  • the tubular member is made of the above-mentioned ceramics having heat resistance and corrosion resistance, or W or Mo, or a metal coated with corrosion resistance.
  • a highly corrosive gas such as a halogen-based gas is used as a reaction gas used for CVD, etching, etc., so that electrodes such as resistance heating elements and lead wires are cylindrical members attached to a holder. It is housed inside, and both ends are hermetically sealed to the holder and the reaction container to protect it from contact with corrosive gas.
  • the inside of the cylindrical member is isolated from corrosive gas, it is inevitable that the electrode is oxidized because it is exposed to the oxidizing atmosphere of atmospheric pressure air.
  • the electrode attached to the back of the holder is also exposed to an irritating atmosphere at about 600 ° C. Therefore, it was necessary to protect it with an oxidation-resistant seal.
  • the end of the tubular member supporting the holding body is forcibly cooled to 200 ° C. or less as described above. Therefore, thermal stress due to a temperature difference is applied to the cylindrical member in the length direction. If the thermal gradient is too large, the ceramic cylindrical member, which is a brittle material, breaks, so the cylindrical member had to be, for example, about 300 mm long.
  • the present invention can prevent oxidation and corrosion of an electrode provided on the back surface of a holder without applying an oxidation-resistant seal ⁇ a corrosion-resistant seal. It is an object of the present invention to provide a semiconductor or liquid crystal manufacturing apparatus capable of maintaining uniform heat, suppressing unnecessary power consumption, reducing the size of the apparatus, and reducing the manufacturing cost.
  • the present invention relates to a semiconductor or liquid crystal manufacturing apparatus including, in a reaction vessel to which a reaction gas is supplied, a ceramic holder for holding and heating an object to be processed on its surface, A ceramic holder is supported at one end other than the surface holding the object to be processed, and the other end is fixed to a part of the reaction vessel. A ceramic support member, and an inert gas is supplied into an inner space of the cylindrical support member. It is an object of the present invention to provide a semiconductor or liquid crystal manufacturing apparatus characterized by comprising a supply pipe for supplying, an exhaust pipe and an exhaust pump for exhausting an inert gas from a space inside a cylindrical support member. The inside of the reaction vessel to which the reaction gas is supplied is maintained at a reduced pressure of about 8 kPa.
  • the inert gas atmosphere in the space inside the cylindrical support member is preferably less than 0.1 MPa (1 atm). Furthermore, it is preferable that the space between the other end of the tubular support member and a part of the reaction vessel is not hermetically sealed.
  • the inert gas supply pipe is opened near the ceramic holder, and the inert gas exhaust pipe is opened near the bottom of the reaction vessel. It is preferable that the inert gas atmosphere in the space is gradually reduced in pressure from the ceramic holder side to the reaction vessel bottom side. It is preferable that both the active gas exhaust pipes are opened near the bottom of the reaction vessel, and the pressure of the inert gas in the inert gas exhaust pipe is gradually reduced from the cylindrical support member toward the exhaust pump. Further, the semiconductor or liquid crystal manufacturing apparatus according to the present invention may further include a partition plate between the ceramic holder and the bottom of the reaction vessel in the cylindrical support member, and the inert gas supply pipe may be provided between the partition plate and the ceramic. It is preferable that an opening is provided in the space between the holders, an inert gas exhaust pipe is opened between the partition plate and the bottom of the reaction vessel, and the partition plate has an inert gas vent.
  • the inert gas exhaust pipe for exhausting the inert gas from the inside of the cylindrical support member, and the reaction gas exhaust pipe for exhausting the reaction gas from the inside of the reaction vessel It is preferable that they join on the way and share an exhaust pump. Further, an inert gas exhaust pipe for exhausting an inert gas from the inside space of the cylindrical support member and a reaction gas exhaust pipe for exhausting the reaction gas from the inside of the reaction vessel are partially double-structured. You may. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a schematic sectional view showing a specific example of a semiconductor manufacturing apparatus according to the present invention.
  • FIG. 2 is a schematic cross-sectional view showing another specific example of the semiconductor manufacturing apparatus according to the present invention.
  • FIG. 3 is a schematic cross-sectional view showing one specific example in which the exhaust pump is shared in the semiconductor manufacturing apparatus according to the present invention. is there.
  • FIG. 4 is a schematic cross-sectional view showing a specific example of a semiconductor manufacturing apparatus according to the present invention provided with a double-structured exhaust pipe.
  • FIG. 5 is a schematic sectional view showing another specific example of the semiconductor manufacturing apparatus according to the present invention.
  • a ceramic support 2 is supported in a reaction vessel 1 by a ceramic cylindrical support member '3, and an inert gas supply pipe 4 is provided. And an inert gas exhaust pipe 5, and exhaust gas is simultaneously exhausted by the exhaust pump 6 while supplying the inert gas into the cylindrical support member 3.
  • the electrode 8 provided on the back surface of the ceramic holder 2 for supplying power to the resistance heating element 7 and the lead wire 9 connected to the electrode 8 are housed in the cylindrical support member 3 and a part of the reaction vessel 1 From outside the system put out.
  • the silicon wafer 10 as the object to be processed is held on the surface of the ceramic holder 2 as shown in FIG. 1, and the reactive gas is introduced into the reaction vessel 1 through the reactive gas supply pipe 11.
  • the gas is exhausted from the reaction gas exhaust pipe 12 by the exhaust pump 13.
  • the inside space of the cylindrical support member 3 closed at both ends by the ceramics holder 2 and the reaction vessel 1 can be maintained in an inert gas atmosphere.
  • the reaction gas containing corrosive gas such as halogen in the reaction vessel 1 enters the cylindrical support member 3, and the air, which is an oxidizing atmosphere, enters the cylindrical support member 3 from outside the apparatus. Can be prevented.
  • any gas that does not cause a reaction that degrades the electrode constituent material may be used, but a rare gas group element such as He, Ne, Ar, Kr, Xe, or Rn.
  • a rare gas group element such as He, Ne, Ar, Kr, Xe, or Rn.
  • N 2 gas can be used, and N 2 or Ar is particularly preferable in terms of cost and the like.
  • the inert gas atmosphere in the cylindrical support member at a reduced pressure of less than 0.1 MPa (1 atm), heat transfer from the surface of the cylindrical support member through the surrounding atmosphere is reduced. Can be done.
  • the space between the cylindrical support member and the reaction vessel may be hermetically sealed with an O-ring or the like as in the conventional case, but it is not always necessary to perform the hermetic seal. If the seal between the reaction vessel and the cylindrical support member is hermetically sealed, heat will escape from the cylindrical support member to the reaction vessel more, and the uniformity of the ceramic paste holder will decrease, leading to waste of energy. It is preferable not to seal.
  • the inert gas atmosphere in the cylindrical support member is maintained at a reduced pressure of less than 0.1 IMPa (1 atm), and the space between the reaction vessel and the cylindrical support member is not hermetically sealed with a 0-ring or the like.
  • the escape of heat from the cylindrical support member to the surrounding atmosphere and the reaction vessel is suppressed, and the temperature is forcibly cooled to about 200 ° C or less to protect the 0-ring. This eliminates the necessity, improves the uniformity of the ceramic holder, and drastically reduces wasteful consumption of heat, thus greatly reducing power consumption.
  • the temperature of the portion where the reaction vessel and the cylindrical support member are in contact is forcibly cooled to about 200 ° C or less. No need. Therefore, the temperature of the portion where the reaction vessel and the cylindrical support member is in contact, the heat resistance of the reaction vessel (e.g., A 1 if the melting point 6 6 0 ° under C) may c result if less, ceramic tubular Thermal stress applied in the length direction of the support member is greatly reduced, and the cylindrical support member can be made shorter than before, greatly reducing manufacturing costs and miniaturizing equipment including the reaction vessel. be able to.
  • the heat resistance of the reaction vessel e.g., A 1 if the melting point 6 6 0 ° under C
  • the inert gas supply pipe 4 inserted into the cylindrical support member 3 opens near the ceramic holder 2, and the inert gas exhaust pipe 5 near the bottom of the reaction vessel 1. It is open. Therefore, the atmosphere of the inert gas in the cylindrical support member 3 is less than 0.1 IMPa (1 atm), and is directed from the ceramic holder 2 side where the electrode 8 is present to the bottom side of the reaction vessel 1. As a result, a pressure distribution of the inert gas can be created so that the pressure gradually becomes low.
  • the inert gas supply pipe 4 and the inert gas exhaust pipe 5 both open near the bottom of the reaction vessel 1. Therefore, the inert gas atmosphere in the cylindrical support member 3 is less than 0.1 IMP a (1 atm), and the inert gas atmosphere in the inert gas exhaust pipe 5 is changed from the cylindrical support member 3 side. A pressure distribution of the inert gas can be created so that the pressure gradually decreases toward the exhaust pump 6.
  • the pressure of the inert gas atmosphere in the cylindrical support member 3 near the bottom of the reaction vessel 1 becomes higher than the pressure of the reaction gas in the reaction vessel 1, It is possible to effectively prevent intrusion of the reaction gas from the bottom and air from the exhaust pump 6 side. Even if a small amount of corrosive reaction gas diffuses from the inside of the reaction vessel 1, it is immediately exhausted from the inert gas exhaust pipe 5 through the exhaust pump 6, so that the electrode 8 is always covered with an inert gas atmosphere, and corrosion and oxidation are caused. There is no fear. Therefore, the same effect as in the case of FIG. 1 can be expected in the apparatus of FIG.
  • the inert gas exhaust pipe 5 and the reaction gas exhaust pipe 12 for exhausting the reaction gas supplied into the reaction vessel 1 are merged on the way, and originally installed separately. By sharing the exhaust pump and consolidating it into one exhaust pump 14, installation space can be reduced.
  • the inert gas exhaust pipe 5 and the reaction gas exhaust pipe 12 are partially used. It can have a double structure. Since the pipe structure having the double structure produces an assembling effect, the corrosive reaction gas in the reaction vessel 1 can be effectively prevented from entering the cylindrical support member 3.
  • a partition plate 15 is provided between a ceramic holder 2 and the bottom of a reaction vessel 1 in a cylindrical support member 3.
  • the inert gas supply pipe 4 is opened in the space between the partition plate 15 and the ceramic holder 2, and an inert gas vent 16 is provided through the partition plate 15 to provide an inert gas.
  • the exhaust pipe 5 can be opened between the partition plate 15 and the bottom of the reaction vessel 1.
  • An A 1 N ceramic holder and a cylindrical support member were produced in the same manner as in Example 1 above, but the length of the cylindrical support member was set to 30 Omm as in the conventional case.
  • a 1 N ceramic holder and a tubular support member were produced in the same manner as in Example 1 above.
  • the CVD apparatus shown in FIG. 2, that is, the inert gas supply pipe 4 was closed inside the cylindrical support member 3 near the bottom of the reaction vessel 1 was used in the example. 1 (Fig. 1).
  • the other end of the cylindrical support member 3 was fixed to the bottom of the reaction vessel 1 with a clamp, and no air-tight seal using a 0-ring or the like was performed.
  • the inside of the cylindrical support member 3 was evacuated while supplying N 2 gas, thereby keeping the inside of the cylindrical support member 3 at less than 0.1 IMPa (1 atm).
  • the TiCl 4 + NH 3 is evacuated while flowing into the reaction vessel 1, and the ceramic holder 2 is heated to 600 ° C, thereby depositing TiN on the wafer 10 placed on the workpiece holding surface. did.
  • Example 1 As a result of this Tin vapor deposition test, the power consumption was 100% when Example 1 was set to 100%.
  • five identical devices were fabricated and subjected to a long-term TiN deposition test.Even after 1000 hours, none of the five devices had problems such as cracks in the cylindrical support member or corrosion of the electrodes. .
  • a 1 N ceramic holder and a tubular support member were produced in the same manner as in Example 1 above.
  • the CVD apparatus shown in Fig. 3 that is, the inert gas exhaust pipe 5 and the reaction gas exhaust pipe 12 are connected by a Y-shaped joint and joined, and one downstream
  • the same device as in Example 1 (FIG. 1) was produced except that the exhaust pump 14 was connected.
  • the other end of the cylindrical support member 3 was fixed to the bottom of the reaction vessel 1 with a clamp, and hermetically sealed with a metal seal.
  • the inside of the cylindrical support member 3 was evacuated while supplying N 2 gas, thereby keeping the inside of the cylindrical support member 3 at less than 0.1 IMPa (1 atm).
  • the TiCl 4 + NH 3 is evacuated while flowing into the reaction vessel 1, and the ceramic holder 2 is heated to 600 ° C, thereby depositing TiN on the wafer 10 placed on the workpiece holding surface. did.
  • the power consumption when Example 1 was set to 100% was 120%.
  • none of the five devices had any problems such as cracking of the cylindrical support member or corrosion of the electrodes after 1000 hours. .
  • a 1 N ceramic holder and a tubular support member were produced in the same manner as in Example 1 above. Using these A1N ceramic holders and cylindrical support members, the same CVD apparatus as in Example 3 (FIG. 3) was manufactured. However, the other end of the cylindrical support member 3 was fixed to the bottom of the reaction vessel 1 with a clamp, but the hermetic seal with the 0-ring / metal seal was not performed.
  • the inside of the cylindrical support member 3 was evacuated while supplying N 2 gas, thereby keeping the inside of the cylindrical support member 3 at less than 0.1 IMPa (1 atm).
  • the reaction vessel 1 is evacuated while the flow a T i C 1 4 + NH 3 , by heating the ceramic holder 2 to 600 ° C, T on the wafer 10 placed on the treatment object holding surface iN was deposited.
  • Example 1 As a result of this TiN vapor deposition test, the power consumption was 100% when Example 1 was set to 100%.
  • five identical devices were fabricated and subjected to a long-term TiN deposition test.Even after 1000 hours, none of the five devices had problems such as cracks in the cylindrical support member or corrosion of the electrodes. .
  • Example 1 As a result of this Tin vapor deposition test, the power consumption was 100% when Example 1 was set to 100%.
  • five identical devices were fabricated and subjected to a long-term TiN deposition test.Even after 1000 hours, none of the five devices had problems such as cracks in the cylindrical support member or corrosion of the electrodes. .
  • the inside of the cylindrical support member 3 was evacuated while supplying N 2 gas, thereby keeping the inside of the cylindrical support member 3 at less than 0.1 IMPa (1 atm).
  • the TiCl 4 + NH 3 is evacuated while flowing into the reaction vessel 1, and the ceramic holder 2 is heated to 600 ° C, thereby depositing TiN on the wafer 10 placed on the workpiece holding surface. did.
  • a ceramic holder and a cylindrical support member were produced in the same manner as in Example 1 except that the ceramic material was changed. That is, sintering to silicon nitride (Si 3 N 4 ) powder 3 wt% of yttria as auxiliaries (Y 2 0 3) and 2 weight percent alumina ([alpha] 1 2 0 3) was added, further dispersed and mixed by adding an organic binder and granulated by spray drying. Using the obtained granulated powder, a ceramic holder made of Si 3 N 4 was prepared in the same manner as in Example 1 except that the sintering conditions were 4 hours at 1 ⁇ 50 ° C. in a nitrogen stream. A cylindrical support member was produced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Chemical Vapour Deposition (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

明細書 半導体又は液晶製造装置 技術分野
本発明は、 反応容器内に被処理物を保持して加熱する手段を備えた半導体や液 晶の製造装置に関し、 特に CVD装置、 プラズマ CVD装置、 エッチング装置、 ブラズマエッチング装置等の半導体又は液晶製造装置に関する。 背景技術
半導体ウェハ上でエツチングゃ成膜を行う場合、 反応制御性に優れた枚葉式の 半導体製造装置が一般に使用されている。 半導体ウェハは反応容器内に配置した 保持体の表面上に載せて、 そのまま静置したり、 機械的に固定したり、 又は保持 体に内蔵した電極に電圧を付加して静電力によってチャックしたりして、 保持体 上に固定される。
保持された半導体ウェハは、 CVD (Ch emi c a 1 Vapor D e p o s s it ion)、 プラズマ CVD等、 あるいはエッチング、 プラズマエッチ ング等における成膜速度やエッチング速度を均一に維持するために、 その温度が 厳密に制御される。 その厳密な温度制御のために、 保持体に内蔵された抵抗発熱 体によって保持体を加熱し、 その表面からの伝熱により半導体ウェハを所定の温 度に加熱するようになっている。
保持体は被処理物保持表面以外の部分で筒状部材により支持されて、 反応容器 内に設置されている。 また、 保持体に埋め込まれた抵抗発熱体、 RF電極、 静電 チヤック回路等には、 保持体の被処理物保持表面以外の部分に設けた電極に引出 線が接続されて、 外部から電力が供給される。 尚、 保持体は、 耐熱性、 絶縁性、 耐食性を備えた材料、 例えば窒ィ匕アルミニウムゃ窒ィ匕ケィ素のようなセラミック ス等で構成されている。 筒状部材は、 耐熱性、 耐食性を備えた前記セラミックス、 あるいは Wや Mo又はそれに耐食性被覆を施した金属等で構成されている。 上記した従来の半導体製造装置では、 C V Dやエツチング等に用いる反応ガス としてハロゲン系等の腐食性の高いガスが用いられるので、 抵抗発熱体等の電極 や引出線は保持体に取り付けた筒状部材内に収納し、 それらの両端を保持体と反 応容器に気密シールして腐食性ガスに触れないように保護されている。
しかしながら、 筒状部材内は腐食性ガスから隔離されるものの、 大気圧の空気 という酸化性雰囲気に曝されているため、 電極の酸化が避けられない。 例えば、 保持体を 6 0 0 °Cに加熱して被処理物に C V D反応を行う場合、 保持体裏面に取 り付けられた電極も約 6 0 0 °Cにおいて酸ィ匕性雰囲気に曝されるため、 耐酸化性 シールを施して保護する必要があった。
また、 保持体で発生した熱は被処理物を加熱する以外に、 一部は筒状部材を通 じて無駄に逃げていき、 筒状部材表面から内部空間に満たされた空気への伝熱で 消失していた。 更に、 筒状部材と反応容器の間は 0—リングで気密シールされ、 且つこの 0—リングを保護するために 2 0 0 °C以下まで強制冷却しているため、 この冷却部分で熱が無駄に失われていた。 そのため、 保持体の温度は筒状部材の 取り付け部で大きく低下することとなり、 保持体全表面での均熱性が保ちにくく、 且つ無駄な消費電力量が大きかった。
また、 保持体は例えば 3 0 0〜8 0 0 °Cといった高温に加熱される一方で、 保 持体を支持する筒状部材の端部は上記のごとく 2 0 0 °C以下まで強制冷却される ため、 筒状部材には長さ方向に温度差による熱応力が掛かる。 熱勾配を大きくし 過ぎると、 脆性材料であるセラミックス製の筒状部材が割れてしまうので、 筒状 部材は例えば 3 0 0 mm程度の長さにせざるを得なかった。
金属のように融解と固化によつて作製できず、 成形と焼結によってしか作製で きないセラミツクス製の筒状部材は、 長くなるほど製造歩留まりが大幅に低下し、 また長い筒状部材内に電極の耐酸化シールを施すのは作業上非常に困難であるた め、 歩留まりが低下してコストアップの要因となっていた。 また、 長い筒状部材 を取り付けた保持体を内部に収容するため、 反応容器の小型化も困難であった。 上記した従来の問題点は半導体製造装置だけのものではなく、 被処理物を保持 して加熱するため抵抗発熱体が埋設された保持体を反応容器内に気密に支持して いる液晶製造装置においても、 同様の問題を抱えていた。 発明の開示
本発明は、 このような従来の事情に鑑み、 耐酸化性シールゃ耐腐蝕性シールを 施さなくても保持体裏面に設けた電極の酸ィ匕及び腐食を防ぐことができ、 しかも 保持体の均熱性を保ち且つ無駄な電力消費を抑えると共に、 装置の小型化及び製 造コストの低減を図ることが可能な半導体又は液晶の製造装置を提供することを 目的とする。
上記目的を達成するため、 本発明は、 反応ガスが供給される反応容器内に、 被 処理物を表面上に保持して加熱するセラミックス保持体を備えた半導体又は液晶 の製造装置であって、 一端にセラミックス保持体をその被処理物保持表面以外で 支え、 他端が反応容器の一部に固定されたセラミックス製の筒状支持部材と、 筒 状支持部材の内側空間内に不活性ガスを供給する供給管と、 筒状支持部材の内側 空間内から不活性ガスを排気する排気管及び排気ポンプとを備えることを特徴と する半導体又は液晶製造装置を提供するものである。 反応ガスが供給される反応 容器内は、 8 k P a程度の減圧状態に維持される。
上記本発明による半導体又は液晶製造装置においては、 前記筒状支持部材の内 側空間内における不活性ガス雰囲気が 0 . I MP a ( 1気圧) 未満であることが 好ましい。 更には、 前記筒状支持部材の他端と反応容器の一部との間が気密シ一 ルされていないことが好ましい。
上記本発明における半導体又は液晶製造装置は、 前記不活性ガス供給管がセラ ミックス保持体近くに開口し、 且つ不活性ガス排気管が反応容器底部近くに開口 していて、 筒状支持部材の内側空間内における不活性ガス雰囲気がセラミックス 保持体側から反応容器底部側に向かって徐々に低圧になっていることが好ましい また、 上記本発明における半導体又は液晶製造装置は、 前記不活性ガス供給管 と不活性ガス排気管が共に反応容器底部近くに開口していて、 不活性ガス排気管 内における不活性ガス雰囲気が筒状支持部材側から排気ポンプに向かつて徐々に 低圧になっていることが好ましい。 更に、 上記本発明における半導体又は液晶製造装置は、 前記筒状支持部材内に おいてセラミックス保持体と反応容器底部との間に仕切板を有し、 不活性ガス供 給管が仕切板とセラミックス保持体の間の空間に開口し、 不活性ガス排気管が仕 切板と反応容器底部との間に開口すると共に、 仕切板に不活性ガス通気口を有す ることが好ましい。
上記本発明の半導体又は液晶製造装置においては、 前記筒状支持部材の内側空 間内から不活性ガスを排気する不活性ガス排気管と、 反応容器内から反応ガスを 排気する反応ガス排気管とが途中で合流し、 排気ポンプを共有していることが好 ましい。 更に、 前記筒状支持部材の内側空間内から不活性ガスを排気する不活性 ガス排気管と、 反応容器内から反応ガスを排気する反応ガス排気管とが、 一部で 二重構造になっていてもよい。 図面の簡単な説明
図 1は、 本発明による半導体製造装置の一具体例を示す概略の断面図である。 図 2は、 本発明による半導体製造装置の他の具体例を示す概略の断面図である c 図 3は、 本発明による半導体製造装置で排気ポンプを共有した一具体例を示す 概略の断面図である。
図 4は、 本発明による半導体製造装置で二重構造の排気管を備えた一具体例を 示す概略の断面図である。
図 5は、 本発明による半導体製造装置の別の具体例を示す概略の断面図である c 発明を実施するための最良の形態
本発明の半導体又は液晶製造装置においては、 例えば図 1に示すように、 セラ ミックス製の筒状支持部材' 3でセラミックス保持体 2を反応容器 1内に支持する と共に、 不活性ガス供給管 4と不活性ガス排気管 5を設け、 筒状支持部材 3内に 不活性ガスを供給しながら、 同時に排気ポンプ 6で排気する。 抵抗焭熱体 7に電 力を供するためセラミックス保持体 2の裏面に設けた電極 8、 及び電極 8に接続 した引出線 9は筒状支持部材 3内に収納して、 反応容器 1の一部から系外に引き 出す。 被処理体としてのシリコンウェハ 1 0は、 図 1に示されているようにセラ ミックス保持体 2表面上に保持されており、 反応性ガスは反応性ガス供給管 11 を通して反応容器 1内に導人され、 排気ポンプ 13により反応ガス排気管 12から 排気される。
上記のようにして不活性ガスの供給と排気を行うことにより、 両端をセラミツ クス保持体 2と反応容器 1で閉鎖された筒状支持部材 3の内側空間を不活性ガス 雰囲気に保つことができ、 反応容器 1内のハロゲン等の腐食性ガスを含む反応ガ スが筒状支持部材 3内に侵入すること、 及び装置外から酸化性雰囲気である空気 が筒状支持部材 3内に侵入することを防止できる。
このようにして、 筒状支持部材 3内の雰囲気を、 反応ガスでも空気でもない不 活性ガス雰囲気にすることにより、 セラミックス保持体 2の裏面に設けた電極 8 は不活性ガスで保護され、 高温に曝されても腐食あるいは酸化される恐れがなく なるため、 耐腐食性シールや耐酸化性シールを施す必要がない。
不活性ガスとしては、 電極構成材料を劣化させるような反応を起こさないガス であれば何でも良いが、 H e、 N e、 A r、 K r、 X e、 R nのような希ガス族 元素や、 N 2ガスなどを使用することができ、 特にコストなどの点からみて N 2 か A rが好ましい。
また、 筒状支持部材内の不活性ガス雰囲気を 0 . I MP a ( 1気圧) 未満の減 圧状態に保つことによって、 筒状支持部材の表面から周囲の雰囲気を介した熱の 伝導を減少させることができる。 更に、 従来のように筒状支持部材と反応容器の 間を 0—リング等で気密シールしても構わないが、 必ずしも気密シールする必要 はない。 反応容器と筒状支持部材の問を気密シールすると、 筒状支持部材から反 応容器への熱の逃げが多くなり、 セラミックヅス保持体における均熱性が低下し、 またエネルギーの無駄に繋がるので、 気密シールしない方が好ましい。
従って、 筒状支持部材内の不活性ガス雰囲気を 0 . I M P a ( 1気圧) 未満の 減圧状態に保つこと、 反応容器と筒状支持部材の間を 0—リング等で気密シール しないことにより、 筒状支持部材から周囲の雰囲気や反応容器への熱の逃げが抑 制されると共に、 0—リングを保護するために約 2 0 0 °C以下まで強制冷却する 必要がなくなり、 セラミツクス保持体の均熱性が向上し、 且つ熱の無駄な消費が 大幅に抑えられるため消費電力量も大幅に減少する。
また、 反応容器と筒状支持部材の間を 0—リングで気密シールする必要がない ため、 反応容器と筒状支持部材とが接触する部分の温度を約 2 0 0 °C以下に強制 冷却する必要は無い。 そのため、 反応容器と筒状支持部材とが接する部分の温度 は、 反応容器の耐熱性 (例えば、 A 1なら融点 6 6 0 °C未満) 以下であれば良い c その結果、 セラミックス製の筒状支持部材の長さ方向に掛かる熱応力が大幅に緩 和され、 筒状支持部材を従来よりも短くすることが可能となり、 大幅な製造コス トの低減と反応容器を含む装置の小型化を図ることができる。
次に、 本発明における半導体又は液晶製造装置の幾つかの具体例を、 図面に基 づいて説明する。 まず、 図 1に示す装置では、 筒状支持部材 3内に挿入された不 活性ガス供給管 4がセラミックス保持体 2の近くで開口し、 不活性ガス排気管 5 は反応容器 1の底部近くに開口している。 そのため、 筒状支持部材 3内の不活性 ガス雰囲気が、 0 . I M P a ( 1気圧) 未満であって、 且つ電極 8の存在するセ ラミックス保持体 2側から反応容器 1の底部側に向かって徐々に低圧になるよう に、 不活性ガスの圧力分布を作り出すことができる。
この不活性ガスの圧力分布により、 筒状支持部材 3内への腐食ガスや空気の侵 入が効率的に防止され、 電極 8は常に不活性ガス雰囲気で覆われて腐食ゃ酸ィ匕の 恐れがなくなる。 従って、 電極 8に耐腐食性シールや耐酸化性シールを施す必要 がなくなり、 製造歩留まりも向上するため、 全体のコストを大幅に低減すること ができる。
また、 図 2に示す装置は、 不活性ガス供給管 4と不活性ガス排気管 5が共に反 応容器 1の底部近くに開口している。 そのため、 筒状支持部材 3内の不活性ガス 雰囲気が、 0 . I M P a ( 1気圧) 未満であって、 且つ不活性ガス排気管 5内に おける不活性ガス雰囲気が筒状支持部材 3側から排気ポンプ 6に向かつて徐々に 低圧になるように、 不活性ガスの圧力分布を作り出すことができる。
そのため、 反応容器 1の底部付近における筒状支持部材 3内の不活性ガス雰囲 気の圧力が反応容器 1内における反応ガスの圧力よりも高くなり、 反応容器 1の 底部からの反応ガスの浸入や、 排気ポンプ 6側からの空気の侵入を効果的に防止 することができる。 仮に反応容器 1内から腐蝕性の反応ガスが微量拡散してきて も、 直ちに不活性ガス排気管 5から排気ポンプ 6を通じて排気されるので、 電極 8は常に不活性ガス雰囲気で覆われ、 腐食や酸化の恐れがない。 従って、 図 2の 装置においても、 上記図 1の場合と同様な効果が期待できる。
尚、 反応容器内及び筒状支持部材内を不活性ガスで置換した後は供給した不活 性ガスを排気するだけなので、 排気ポンプはさほど大きな排気能力を必要としな い。 そこで、 図 3に示すように、 不活性ガス排気管 5と、 反応容器 1内に供給さ れた反応ガスを排気する反応ガス排気管 1 2とを途中で合流させ、 本来は別々に 設置する排気ポンプを共有させて、 1台の排気ポンプ 1 4に集約することによつ て、 設置スペースを削減することができる。
また、 不活性ガス排気管と反応ガス排気管とで 1台の排気ポンプを共有する場 合、 図 4に示すように、 更に不活性ガス排気管 5と反応ガス排気管 1 2を一部で 二重構造にすることもできる。 二重構造の配管にすることによってァスビレー夕 効果が生じるため、 反応容器 1内の腐食性の反応ガスが筒状支持部材 3内に侵入 するのを効果的に防ぐことができる。
更に、 本発明における半導体又は液晶製造装置の別の具体例として、 図 5に示 すように、 筒状支持部材 3内においてセラミックス保持体 2と反応容器 1の底部 との間に仕切板 1 5を設け、 不活性ガス供給管 4を仕切板 1 5とセラミックス保 持体 2の間の空間に開口させ、 且つ仕切板 1 5を貫通して不活性ガス通気口 1 6 を設け、 不活性ガス排気管 5を仕切板 1 5と反応容器 1の底部との間に開口させ ることができる。
この図 5に示す装置では、 筒状支持部材 3の内側で仕切板 1 5とセラミックス 保持体 2で区画された狭い空間内に不活性ガスを供給できるので、 セラミックス 保持体 2の裏面に設けられた電極 8がより完全に不活性ガスで保護され、 耐腐食 性や耐酸化性の低い電極 8への極微量の腐食ガスの侵入も防止でき、 電極 8の寿 命をより一層延ばすことができる。 上記において、 本発明を添付の図面を参照し て説明したが、 部品の組合わせ、 配置は本願発明の範囲内で適宜変更できる。 尚、 本発明におけるセラミックス保持体及び筒状支持部材は、 窒化アルミニゥ ム、 窒化ケィ素、 炭化ケィ素、 酸化アルミニウムから選ばれたセラミックス材料 で構成されることが望ましい。 なお、 以下の実施例、 比較例においてに、 被処理 物としてシリコンゥヱハを用いた。 また、 反応ガスが供給される反応容器内は、 8 kP a程度の減圧状態に維持される。 卖施例 1
窒化アルミニウム (A1N)粉末に、 焼結助剤として 0. 5重量%のイツトリ ァ (Y203) を添加し、 更に有機バインダを添加して分散混合した後に、 スプ レ一ドライにより造粒した。 得られた造粒粉末を用いて、 焼結後の寸法が直径 3 5 Ommx厚さ 10 mmとなる形状 Aの成形体を、 一軸プレスにより 2枚成形し た。 また、 同じ造粒粉末を用いて、 焼結後の寸法が外径 80 mm、 内径 75mm、 長さ 10 Ommとなる形状 Bの成形体を、 CIP (冷間静水圧プレス) により 1 枚成形した。
形状 Aの成形体は、 表面に幅 4. 5 mm, 深さ 2. 5 mmの溝を形成した後、
800°Cの窒素気流中で脱脂した。 溝内に Moコイルを這わせて 2枚の成形体を 重ね合わせ、 窒素気流中にて 1900°Cで 2時間、 9. 8 MP a ( 100 kgf /cm2) の圧力でホヅトプレス焼結した。 得られた焼結体の表面をダイヤモン ド砥粒で研磨し、 裏面に Moコイルの端部を露出させて電極を設け、 A1N製の セラミックス保持体とした。
一方、 形状 Bの成形体は、 800°Cの窒素気流中で脱脂し、 窒素気流中にて 1
900°Cで 6時間焼結して、 A 1N製の筒状支持部材とした。 この筒状支持部材 の内部に電極が入るように上記セラミックス保持体をセヅ卜して、 1850°Cで 2時間、 圧力 9. 8MP a (100 kgf /cm2) でホヅトプレス接合した。 その後、 セラミックス保持体の裏面の電極に Mo製の引出線を Agロウで接合し た。
図 1に示すように、 この筒状支持部材 3の一端が接合されたセラミックス保持 体 2を C V D装置の反応容器 1内に入れ、 筒状支持部材 3の他端を反応容器 1の 底部にクランプで固定したが、 0—リング等による気密シ一ルは施さなかった。 筒状支持部材 3内にセラミックス保持体 2の近くまで不活性ガス供給管 4を挿入 し、 途中に排気ポンプ 6を備えた不活性ガス排気管 5は反応容器 1の底部近くに 挿入した。
不活性ガス供給管 4から筒状支持部材 3内に N2ガスを供給しながら、 不活性 ガス排気管 5で排気して、 筒状支持部材 3内を 0. IMP a (1気圧) 未満に保 持した。 反応ガス供給管 11から反応容器 1内に反応ガスとして T i C 14 + N H3を流しながら、 排気ポンプ 13を備えた反応ガス排気管 12で排気し、 引出 線 9から電力を供給して抵抗発熱体 7でセラミツクス保持体 2を 600 °C (熱電 対 17で測定) に加熱することにより、 被処理物保持表面に載置したウェハ 10 上に TiNを蒸着した。
この T iN蒸着テストを、 同じ CVD装置を 5台作製して長期問実施したとこ ろ、 1000時間経過後においても、 5台とも筒状支持部材の割れや電極の腐食 などの不県合は全く生じなかった。 尚、 従来の CVD装置では封止用 0—リング の冷却による熱応力を緩和するため長さ 30 Ommの筒状部材を使用していたの に対して、 本実施例の CVD装置の筒状支持部材は長さ 10 Ommであり、 その 分だけ反応容器を小型化することができた。
v m 1
上記実施例 1と同じ手法で、 A 1 N製のセラミックス保持体と筒状支持部材を 作製したが、 筒状支持部材は長さを従来と同様に 30 Ommとした。
このセラミックス保持体と筒状支持部材を用いて CVD装置を構成し、 長い筒 状支持部材を収納するため反応容器の高さを 25 Ommだけ高くした。 筒状支持 部材の他端は 0—リングを用いて反応容器底部に気密シールし、 水冷で 150°C に保った。 また、 電極部分はガラスシールして耐酸化処理し、 筒状支持部材内は 大気圧の空気雰囲気にした。
実施例 1と同じ方法により、 600。Cで T iN蒸着テストを行った。 上記実施 例 1の消費電力を 100%としたとき、 この比較例 1の消費電力は 180%で あった。 また、 同じ装置を 5台作製し、 長期間の T iN蒸着処理テストを実施し たところ、 500時間経過後に 1台が、 及び 1000時間経過後に 1台が、 電極 のガラスシールの不完全な部分から酸化が進行して電力供給ができなくなった。
輸例 2
上記実施例 1と同じ方法で A 1 N製のセラミックス保持体と筒状支持部材を作 製した。 これらのセラミックス保持体と筒状支持部材を用い、 図 2に示す CVD 装置、 即ち不活性ガス供給管 4を筒状支持部材 3内で反応容器 1の底部近くに閧 口させた以外は実施例 1 (図 1) と同じ装置を作製した。 尚、 筒状支持部材 3の 他端は反応容器 1の底部にクランプで固定し、 0—リング等による気密シールは しなかった。
筒状支持部材 3内に N2ガスを供給しながら排気して、 筒状支持部材 3内を 0. IMP a (1気圧) 未満に保持した。 反応容器 1内には TiCl4 + NH3を流 しながら排気し、 セラミックス保持体 2を 600°Cに加熱することにより、 被処 理物保持表面に載置したウェハ 10上に T iNを蒸着した。
この T i N蒸着テストの結果、 上記実施例 1を 100%としたときの消費電力 は 100%であった。 また、 同じ装置を 5台作製し、 長期間の TiN蒸着処理テ ストを実施したところ、 1000時間経過後においても、 5台とも筒状支持部材 の割れや電極の腐食等の不具合は生じなかった。
輸例 3
上記実施例 1と同じ方法で A 1 N製のセラミックス保持体と筒状支持部材を作 製した。 これらのセラミックス保持体と筒状支持部材を用い、 図 3に示す CVD 装置、 即ち不活性ガス排気管 5と反応ガス排気管 12を Y型ジョイントで接続し て合流させ、 その下流に 1台の排気ポンプ 14を接続した以外は実施例 1 (図 1) と同じ装置を作製した。 尚、 筒状支持部材 3の他端は反応容器 1の底部にク ランプで固定すると共に、 金属シールにより気密シ一ルした。
筒状支持部材 3内に N2ガスを供給しながら排気して、 筒状支持部材 3内を 0. IMP a (1気圧) 未満に保持した。 反応容器 1内には TiCl4 + NH3を流 しながら排気し、 セラミックス保持体 2を 600°Cに加熱することにより、 被処 理物保持表面に載置したウェハ 10上に T iNを蒸着した。 この TiN蒸着テストの結果、 上記実施例 1を 100%としたときの消費電力 は 120%であった。 また、 同じ装置を 5台作製し、 長期間の TiN蒸着処理テ ストを実施したところ、 1000時間経過後においても、 5台とも筒状支持部材 の割れや電極の腐食等の不具合は生じなかった。
実施例 4
上記実施例 1と同じ方法で A 1 N製のセラミックス保持体と筒状支持部材を作 製した。 これらの A1N製のセラミックス保持体と筒状支持部材を用い、 上記実 施例 3 (図 3) と同じ CVD装置を作製した。 ただし、 筒状支持部材 3の他端は 反応容器 1の底部にクランプで固定したが、 0—リングゃ金属シールによる気密 シールはしなかった。
筒状支持部材 3内に N 2ガスを供給しながら排気して、 筒状支持部材 3内を 0. IMP a (1気圧) 未満に保持した。 反応容器 1内には T i C 14 + NH3を流 しながら排気し、 セラミックス保持体 2を 600°Cに加熱することにより、 被処 理物保持表面に載置したウェハ 10上に T i Nを蒸着した。
この T iN蒸着テストの結果、 上記実施例 1を 100%としたときの消費電力 は 100%であった。 また、 同じ装置を 5台作製し、 長期間の TiN蒸着処理テ ストを実施したところ、 1000時間経過後においても、 5台とも筒状支持部材 の割れや電極の腐食等の不具合は生じなかった。
串施例 5
上記実施例 1と同じ方法で A 1 N製のセラミックス保持体と筒状支持部材を作 製した。 これらの A1N製のセラミックス保持体と筒状支持部材を用い、 図 4に 示す CVD装置、 即ち不活性ガス排気管 5と反応ガス排気管 12を反応容器 1の 側壁部から引き出して二重構造とし、 その下流に 1台の排気ポンプ 14を設置し た以外は実施例 2 (図 2) と同じ装置を作製した。 尚、 筒状支持部材 3の他端は 反応容器 1の底部にクランプで固定したが、 0—リング等による気密シ一ルはし なかった。
筒状支持部材 3内に N 2ガスを供給しながら排気して、 筒状支持部材 3内を 0. IMP a (1気圧) 未満に保持した。 反応容器 1内には T i C 14 + NH3を流 しながら排気し、 セラミックス保持体 2を 600°Cに加熱することにより、 被処 理物保持表面に載置したウェハ 10上に T iNを蒸着した。
この T i N蒸着テストの結果、 上記実施例 1を 100 %としたときの消費電力 は 100%であった。 また、 同じ装置を 5台作製し、 長期間の TiN蒸着処理テ ストを実施したところ、 1000時間経過後においても、 5台とも筒状支持部材 の割れや電極の腐食等の不具合は生じなかった。
輸例 B
上記実施例 1と同じ方法で A 1 N製のセラミックス保持体と筒状支持部材を作 製した。 これらの A 1N製のセラミックス保持体と筒状支持部材を用い、 図 5に 示す CVD装置を作製した。 尚、 筒状支持部材 3の他端は反応容器 1の底部にク ランプで固定し、 0—リング等による気密シールはしなかった。
更に具体的に説明すると、 この図 5の CVD装置は、 筒状支持部材 3内に水平 に仕切板 15を設け、 不活性ガス供給管 4は仕切板 15を貫通してセラミヅクス 保持体 2の近くに開口させ、 且つ仕切板 15には不活性ガス通気口 16を設けた が、 その他の構成は図 3の装置と同じである。 尚、 仕切板 15と筒状支持部材 3 の内周壁の間、 仕切板 15と不活性ガス供給管 4及び不活性ガス通気口 16の間 は、 それそれ軟化点が 800°Cのガラスで気密シールした。
筒状支持部材 3内に N 2ガスを供給しながら排気して、 筒状支持部材 3内を 0. IMP a (1気圧) 未満に保持した。 反応容器 1内には TiCl4 + NH3を流 しながら排気し、 セラミックス保持体 2を 600°Cに加熱することにより、 被処 理物保持表面に載置したウェハ 10上に T iNを蒸着した。
この T i N蒸着テストの結果、 上記実施例 1を 100 %としたときの消費電力 は 100%であった。 また、 同じ装置を 5台作製し、 長期間の TiN蒸着処理テ ストを実施したところ、 2000時間経過後においても、 5台とも筒状支持部材 の割れや電極の腐食等の不具合は生じなかった。
施例 7
セラミックス材料を代えた以外は上記実施例 1と同じ方法で、 セラミックス保 持体と筒状支持部材を作製した。 即ち、 窒化ケィ素 (S i3N4)粉末に、 焼結 助剤として 3重量%のイットリア (Y203) と 2重量%のアルミナ (Α120 3) を加え、 更に有機バインダを添加して分散混合し、 スプレードライにより造 粒した。 得られた造粒粉末を用い、 焼結条件を窒素気流中にて 1 Ί 50°Cで 4時 間にした以外は実施例 1と同じ方法により、 S i 3N4製のセラミックス保持体 と筒状支持部材を作製した。
また、 炭化ケィ素 (S i C) 粉末に、 焼結助剤として 2重量%の炭化ホウ素 (B4C) と 1重量%のカーボン (C) を加え、 更に有機バインダを添加して分 散混合し、 スプレードライにより造粒した。 得られた造粒粉末を用い、 焼結条件 をアルゴン気流中にて 2000°Cで 7時間にした以外は実施例 1と同じ方法によ り、 S i C製のセラミックス保持体と筒状支持部材を作製した。
更に、 酸化アルミニウム粉末 (A 1203) 粉末に、 焼結助剤として 2重量% のマグネシア (MgO) をえ、 更に有機バインダを添加して分散混合し、 スプ レードライにより造粒した。 得られた造粒粉末を用い、 焼結条件を窒素気流中に て 1 5 00°Cで 3時間にした以外は実施例 1と同じ方法により、 A 1203製の セラミックス保持体と筒状支持部材を作製した。
上記した S i3N4製、 S i C製、 及び A 1203製の各セラミックス保持体と 各筒状支持部材とを用いて、 それそれ上記実施例 1 (図 1) と同じ CVD装置を 作製した。 尚、 いずれの装置においても、 筒状支持部材 3の他端は反応容器 1の 底部にクランプで固定し、 0—リング等による気密シ一ルはしなかった。
各 CVD装置において、 筒状支持部材 3内に N2ガスを供給しながら排気して、 筒状支持部材 3内を 0. IMPa ( 1気圧) 未満に保持した。 反応容器 1内には T i C 14 + NH3を流しながら排気し、 セラミックス保持体 2を 600°Cにカロ 熱して、 被処理. 物保持表面に載置したウェハ 10上に T iNを蒸着した。
この T iN蒸着テストの結果、 上記実施例 1を 100%としたときの消費電力 は、 いずれの装置においても 100%であった。 また、 それそれ同じ装置を 5台 作製し、 長期間の T iN蒸着処理テストを実施したところ、 1000時間後にお いても、 それそれ各 5台とも筒状支持部材の割れや電極の腐食等の不具合は生じ なかった。 産業上の利用可能性
本発明によれば、 耐酸化性シールゃ耐腐蝕性シールを施さなくてもセラミック ス保持体の裏面に設けた電極の酸化や腐蝕を防く、ことができ、 しかもセラミック ス保持体の均熱性を保ち且つ無駄な電力消費をなくした半導体又は液晶の製造装 置を提供することができ、 しかも装置の小型化及び製造コストの低減を図ること が可能である。

Claims

請求の範囲
1 . 反応ガスが供給される反応容器内に、 被処理物を表面上に保持して加熱する セラミックス保持体を備えた半導体又は液晶の製造装置であって、 一端にセラ ミックス保持体をその被処理物保持表面以外で支え、 他端が反応容器の一部に固 定された筒状支持部材と、 筒状支持部材の内側空間内に不活性ガスを供給する供 給管と、 筒状支持部材の内側空間内から不活性ガスを排気する排気管及び排気ポ ンプとを備えることを特徴とする半導体又は液晶製造装置。
2 . 前記筒状支持部材の内側空間内における不活性ガス雰囲気が 0 . I M P a ( 1気圧) 未満であることを特徴とする、 請求の範囲 1に記載の半導体又は液晶
3 . 前記筒状支持部材の他端と反応容器の一部との間が気密シールされていない ことを特徴とする、 請求の範囲 1又は 2に記載の半導体又は液晶製造装置。
4 . 前記不活性ガス供給管がセラミックス保持体近くに開口し、 且つ不活性ガス 排気管が反応容器底部近くに開口していて、 筒状支持部材の内側空間内における 不活性ガス雰囲気がセラミックス保持体側から反応容器底部側に向かって徐々に 低圧になっていることを特徴とする、 請求の範囲 1〜3のいずれかに記載の半導 体又は液晶製造装置。
5 . 前記不活性ガス供給管と不活性ガス排気管が共に反応容器底部近くに開口し ていて、 不活性ガス排気管内における不活性ガス雰囲気が筒状支持部材側から排 気ポンプに向かって徐々に低圧になっていることを特徴とする、 請求の範囲 1〜 3のいずれかに記載の半導体又は液晶製造装置。
6 . 前記筒状支持部材内においてセラミックス保持体と反応容器底部との間に仕 切板を有し、 不活性ガス供給管が仕切板とセラミックス保持体の間の空間に開口 し、 不活性ガス排気管が仕切板と反応容器底部との間に開口すると共に、 仕切板 に不活性ガス通気口を有することを特徴とする、 請求の範囲 1 ~ 3のいずれかに 記載の半導体又は液晶製造装置。
7 . 前記筒状支持部材の内側空間内から不活性ガスを排気する不活性ガス排気管 と、 反応容器内から反応ガスを排気する反応ガス排気管とが途中で合流し、 排気 ポンプを共有していることを特徴とする、 請求の範囲 1〜 6のいずれかに記載の 半導体又は液晶製造装置。
8 . 前記筒状支持部材の内側空間内から不活性ガスを排気する不活性ガス排気管 と、 反応容器内から反応ガスを排気する反応ガス排気管とが、 一部で二重構造に なっていることを特徴とする、 請求の範囲 7に記載の半導体又は液晶製造装置。
9 . 前記セラミックス保持体及び筒状支持部材が、 窒化アルミニウム、 窒化ケィ 素、 炭化ケィ素、 酸化アルミニウムから選ばれたセラミックズ材料で構成されて いることを特徴とする、 請求の範囲 1〜 8のいずれかに記載の半導体又は液晶製 造装置。
PCT/JP2003/002138 2002-02-27 2003-02-26 Dispositif de production de semi-conducteurs ou de cristaux liquides WO2003072850A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP03743036A EP1484429A1 (en) 2002-02-27 2003-02-26 Semiconductor or liquid crystal producing device
US10/478,278 US7806984B2 (en) 2002-02-27 2003-02-26 Semiconductor or liquid crystal producing device
KR1020037014738A KR101006634B1 (ko) 2002-02-27 2003-02-26 반도체 또는 액정 제조 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002050629A JP2003253449A (ja) 2002-02-27 2002-02-27 半導体/液晶製造装置
JP2002/50629 2002-02-27

Publications (1)

Publication Number Publication Date
WO2003072850A1 true WO2003072850A1 (fr) 2003-09-04

Family

ID=27764286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/002138 WO2003072850A1 (fr) 2002-02-27 2003-02-26 Dispositif de production de semi-conducteurs ou de cristaux liquides

Country Status (7)

Country Link
US (1) US7806984B2 (ja)
EP (1) EP1484429A1 (ja)
JP (1) JP2003253449A (ja)
KR (1) KR101006634B1 (ja)
CN (3) CN1237203C (ja)
TW (1) TWI248130B (ja)
WO (1) WO2003072850A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003253449A (ja) * 2002-02-27 2003-09-10 Sumitomo Electric Ind Ltd 半導体/液晶製造装置
JP4251887B2 (ja) * 2003-02-26 2009-04-08 東京エレクトロン株式会社 真空処理装置
KR100534209B1 (ko) * 2003-07-29 2005-12-08 삼성전자주식회사 반도체소자 제조용 화학기상증착 공정설비
US20060011139A1 (en) * 2004-07-16 2006-01-19 Applied Materials, Inc. Heated substrate support for chemical vapor deposition
US20060075970A1 (en) * 2004-10-13 2006-04-13 Guenther Rolf A Heated substrate support and method of fabricating same
CN101889329B (zh) * 2007-10-31 2012-07-04 朗姆研究公司 长寿命可消耗氮化硅-二氧化硅等离子处理部件
CN101812676B (zh) * 2010-05-05 2012-07-25 江苏综艺光伏有限公司 用于半导体太阳能镀膜的工艺腔室
JP6406811B2 (ja) * 2013-11-20 2018-10-17 国立大学法人名古屋大学 Iii 族窒化物半導体装置の製造装置および製造方法ならびに半導体ウエハの製造方法
JP6270270B2 (ja) 2014-03-17 2018-01-31 株式会社Screenホールディングス 基板処理方法および基板処理装置
US10186444B2 (en) * 2015-03-20 2019-01-22 Applied Materials, Inc. Gas flow for condensation reduction with a substrate processing chuck
FI129040B (fi) 2019-06-06 2021-05-31 Picosun Oy Fluidia läpäisevien materiaalien päällystäminen
WO2021119900A1 (zh) * 2019-12-16 2021-06-24 东莞市中镓半导体科技有限公司 用于GaN材料生长的气动托盘
CN111968901B (zh) * 2020-08-25 2022-08-16 北京北方华创微电子装备有限公司 半导体反应腔室及半导体加工设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0334540A (ja) * 1989-06-30 1991-02-14 Mitsubishi Electric Corp プラズマ処理装置およびその装置におけるウエハ温度制御方法
EP0628644A2 (en) * 1993-05-27 1994-12-14 Applied Materials, Inc. Improvements in or relating to susceptors suitable for use in chemical vapour deposition devices
US5462603A (en) * 1993-06-24 1995-10-31 Tokyo Electron Limited Semiconductor processing apparatus

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5478429A (en) * 1993-01-20 1995-12-26 Tokyo Electron Limited Plasma process apparatus
US5542559A (en) * 1993-02-16 1996-08-06 Tokyo Electron Kabushiki Kaisha Plasma treatment apparatus
JPH07153706A (ja) 1993-05-27 1995-06-16 Applied Materials Inc サセプタ装置
TW262566B (ja) * 1993-07-02 1995-11-11 Tokyo Electron Co Ltd
GB9319025D0 (en) * 1993-09-14 1993-10-27 Ans Karsto Metering & Technolo Flow cobditioner
KR100280772B1 (ko) * 1994-08-31 2001-02-01 히가시 데쓰로 처리장치
KR100505310B1 (ko) * 1998-05-13 2005-08-04 동경 엘렉트론 주식회사 성막 장치 및 방법
TWI220927B (en) * 2000-05-12 2004-09-11 Rong-Seng Chang Method for producing a micro-carrier
US6439244B1 (en) * 2000-10-13 2002-08-27 Promos Technologies, Inc. Pedestal design for a sputter clean chamber to improve aluminum gap filling ability
JP4009100B2 (ja) * 2000-12-28 2007-11-14 東京エレクトロン株式会社 基板加熱装置および基板加熱方法
WO2002071446A2 (en) * 2001-03-02 2002-09-12 Tokyo Electron Limited Method and apparatus for active temperature control of susceptors
US6645344B2 (en) * 2001-05-18 2003-11-11 Tokyo Electron Limited Universal backplane assembly and methods
JP2003253449A (ja) * 2002-02-27 2003-09-10 Sumitomo Electric Ind Ltd 半導体/液晶製造装置
JP3840990B2 (ja) * 2002-03-05 2006-11-01 住友電気工業株式会社 半導体/液晶製造装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0334540A (ja) * 1989-06-30 1991-02-14 Mitsubishi Electric Corp プラズマ処理装置およびその装置におけるウエハ温度制御方法
EP0628644A2 (en) * 1993-05-27 1994-12-14 Applied Materials, Inc. Improvements in or relating to susceptors suitable for use in chemical vapour deposition devices
US5462603A (en) * 1993-06-24 1995-10-31 Tokyo Electron Limited Semiconductor processing apparatus

Also Published As

Publication number Publication date
US20040144322A1 (en) 2004-07-29
CN1740385A (zh) 2006-03-01
KR20040091524A (ko) 2004-10-28
US7806984B2 (en) 2010-10-05
KR101006634B1 (ko) 2011-01-07
CN1522314A (zh) 2004-08-18
CN1237203C (zh) 2006-01-18
JP2003253449A (ja) 2003-09-10
CN1740386A (zh) 2006-03-01
TW200401367A (en) 2004-01-16
TWI248130B (en) 2006-01-21
EP1484429A1 (en) 2004-12-08

Similar Documents

Publication Publication Date Title
TWI308366B (ja)
US9556507B2 (en) Yttria-based material coated chemical vapor deposition chamber heater
KR101759742B1 (ko) 반도체 처리 장치에서 사용되는 히터용 열 차폐물
KR100907131B1 (ko) 반도체 또는 액정 제조 장치
US20080029032A1 (en) Substrate support with protective layer for plasma resistance
JP2001160479A5 (ja) セラミックスヒーターならびにそれを用いた基板処理装置および基板処理方法
WO2003072850A1 (fr) Dispositif de production de semi-conducteurs ou de cristaux liquides
JP2007516921A (ja) 半導体材料処理装置におけるイットリアでコーティングされたセラミック部品及びその部品を製造する方法
JPH09134951A (ja) 静電チャック
KR102245106B1 (ko) 확산 접합 플라즈마 저항성 화학 기상 증착(cvd) 챔버 히터
KR20190117766A (ko) 고온 프레싱에 의해 형성되는 소결된 세라믹 보호 층
JPH05251365A (ja) 耐蝕性部材
JP2005093919A (ja) 静電チャック及びその製造方法
US11776793B2 (en) Plasma source with ceramic electrode plate
JP3423254B2 (ja) 真空処理装置
JP2004111289A (ja) セラミックスヒータ及びその製造方法
JP3861714B2 (ja) セラミックスヒータ及び該ヒータを用いた半導体/液晶製造装置
JPH11278919A (ja) 耐プラズマ部材
JP3941542B2 (ja) セラミックスと金属の気密接合構造及び該構造を有する装置部品
JP2006302884A (ja) セラミックスヒータ及び該ヒータを用いた半導体/液晶製造装置
JP2009234828A (ja) 半導体製造用部品およびその製法
JP2000169268A (ja) 構造体およびその製造方法
JP2000164587A (ja) 半導体製造装置用基板ヒータ

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020037014819

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10478278

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003743036

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20038006030

Country of ref document: CN

WWR Wipo information: refused in national office

Ref document number: 1020037014819

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1020037014819

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003743036

Country of ref document: EP