WO2003071836A1 - Dispositif d'eclairage de lampe a decharge sans electrode, lampe fluorescente sans electrode de type ampoule, et dispositif d'eclairage de lampe a decharge - Google Patents

Dispositif d'eclairage de lampe a decharge sans electrode, lampe fluorescente sans electrode de type ampoule, et dispositif d'eclairage de lampe a decharge Download PDF

Info

Publication number
WO2003071836A1
WO2003071836A1 PCT/JP2003/001616 JP0301616W WO03071836A1 WO 2003071836 A1 WO2003071836 A1 WO 2003071836A1 JP 0301616 W JP0301616 W JP 0301616W WO 03071836 A1 WO03071836 A1 WO 03071836A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
discharge lamp
turn
electrodeless
lighting
Prior art date
Application number
PCT/JP2003/001616
Other languages
English (en)
French (fr)
Inventor
Kenichiro Takahashi
Satoshi Kominami
Koji Miyazaki
Toshiaki Kurachi
Yoko Matsubayashi
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to EP03705211A priority Critical patent/EP1478213A4/en
Priority to US10/477,305 priority patent/US6828740B2/en
Publication of WO2003071836A1 publication Critical patent/WO2003071836A1/ja

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/2806Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps without electrodes in the vessel, e.g. surface discharge lamps, electrodeless discharge lamps
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/282Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices
    • H05B41/2825Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices by means of a bridge converter in the final stage
    • H05B41/2828Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices by means of a bridge converter in the final stage using control circuits for the switching elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/36Controlling
    • H05B41/38Controlling the intensity of light
    • H05B41/39Controlling the intensity of light continuously
    • H05B41/392Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor
    • H05B41/3921Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor with possibility of light intensity variations
    • H05B41/3924Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor with possibility of light intensity variations by phase control, e.g. using a triac
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/36Controlling
    • H05B41/38Controlling the intensity of light
    • H05B41/39Controlling the intensity of light continuously
    • H05B41/392Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor
    • H05B41/3921Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor with possibility of light intensity variations
    • H05B41/3925Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor with possibility of light intensity variations by frequency variation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/36Controlling
    • H05B41/38Controlling the intensity of light
    • H05B41/39Controlling the intensity of light continuously
    • H05B41/392Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor
    • H05B41/3921Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor with possibility of light intensity variations
    • H05B41/3927Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor with possibility of light intensity variations by pulse width modulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S315/00Electric lamp and discharge devices: systems
    • Y10S315/04Dimming circuit for fluorescent lamps

Definitions

  • Electrodeless discharge lamp lighting device bulb-type electrodeless fluorescent lamp and discharge lamp lighting device
  • the present invention relates to an electrodeless discharge lamp lighting device, a bulb-type electrodeless fluorescent lamp, and a discharge lamp lighting device.
  • the present invention relates to a lighting device for dimming a lamp with a dimmer for an incandescent lamp.
  • Fluorescent lamps are widely used from the viewpoints of global environmental protection and economy because they have higher efficiency and longer life than incandescent lamps.
  • light-bulb-type fluorescent lamps in which fluorescent lamps and lighting circuits are integrated, have been attracting attention as energy-saving light sources in houses, hotels, restaurants, etc. It is in.
  • electrodeless bulb-type fluorescent lamps without electrodes have attracted attention as economical light sources because their lifespan is several times longer than conventional bulb-type fluorescent lamps with electrodes, and demand is on the rise. is there.
  • the brightness In homes and hotels, people perform various living activities, such as reading books and enjoying harmony with their families, and in order to create a comfortable light environment that matches these living activities, It is required that the brightness be suitable for each place. In the case of a light bulb, the brightness can be easily changed by using a commercially available light dimmer. Dimming of incandescent lamps involves turning on and off the commercial power supply voltage and changing the on-time to change the brightness, that is, dimming the bulb to input a phase-controlled voltage to the incandescent lamp. A method using an optical device is generally used.
  • An object of the present invention is to solve the above-mentioned problems, and to prevent flickering and difficulty in lighting, to realize a stable lighting control operation, an electrodeless discharge lamp lighting device, a bulb-shaped electrodeless fluorescent lamp, and An object of the present invention is to provide a discharge lamp lighting device.
  • the present invention also provides a method of supplying electric energy throughout the conduction period of the phase-controlled voltage and lighting the discharge lamp to increase the dimming range as compared with the conventional lighting device.
  • the purpose of. Disclosure of the invention is a method of supplying electric energy throughout the conduction period of the phase-controlled voltage and lighting the discharge lamp to increase the dimming range as compared with the conventional lighting device.
  • An electrodeless discharge lamp lighting device includes: an electrodeless discharge lamp; an ACZ DC converter that converts an AC voltage phase-controlled by a dimmer to a DC voltage and outputs the DC voltage; A DCZAC converter for intermittently driving the electrodeless discharge lamp during a lighting period in which the electrodeless discharge lamp is turned on and a light-out period in which the electrodeless discharge lamp is turned off by the high-frequency voltage; An electrodeless discharge lamp lighting device comprising: a D CZ AC conversion unit; and a dimming control unit that outputs a dimming command signal that changes a ratio between a lighting period and a light-off period.
  • the timing of turning on the light and the timing of turning off the turn-off and turning off the intermittent drive of the DCZAC converter are substantially synchronized.
  • the DCZAC conversion unit includes a lighting period in which the high-frequency voltage is applied to the electrodeless discharge lamp for lighting, and a light-off period for stopping generation of the high-frequency voltage and turning off the electrodeless discharge lamp. During the period, the electrodeless discharge lamp is intermittently driven.
  • the DCZAC conversion unit converts the DC voltage into a high-frequency voltage at which the electrodeless discharge lamp lights up and applies the DC voltage to the electrodeless discharge lamp;
  • the non-electrode discharge lamp is intermittently driven during a turn-off period in which the direct-current voltage is converted into a high-frequency voltage at which the discharge lamp does not turn on and is applied to the non-electrode discharge lamp.
  • the DCZAC conversion unit has at least one switching element, and converts the DC voltage to a high-frequency voltage and applies the high-frequency voltage to the electrodeless discharge lamp.
  • the electrodeless lamp is turned on during the lighting period in which the electrodeless discharge lamp is turned on and in the light-out period in which a current smaller than the lighting period is passed through the electrodeless discharge lamp to turn off the electrodeless lamp. Drive the discharge lamp intermittently.
  • the dimming control unit includes a photo cover as a means for transmitting the dimming command signal to the DCZAC conversion unit.
  • a bulb-type electrodeless fluorescent lamp includes: an electrodeless fluorescent lamp; a lighting circuit for applying a high-frequency voltage to the electrodeless fluorescent lamp; and a base electrically connected to the lighting circuit.
  • the electrodeless fluorescent lamp, the lighting circuit, and the base are integrally assembled, the lighting circuit converts an AC voltage phase-controlled by a dimmer into a DC voltage, and outputs the ACZDC converter;
  • a DCZAC conversion unit that converts a DC voltage to a high-frequency voltage, and intermittently drives the electrodeless discharge lamp during a lighting period for lighting the electrodeless discharge lamp and a light-off period for turning off the electrodeless discharge lamp by the high-frequency voltage.
  • a dimming control unit that outputs a dimming command signal that changes a ratio between a lighting period and a light-off period to the DCZAC conversion unit, wherein the dimming control unit includes the phase-controlled switching unit.
  • the dimming control unit includes the phase-controlled switching unit.
  • the dimming control unit includes: a dimming signal input unit configured to input an AC voltage that is phase-controlled by the dimmer; a photocoupler connected to the dimming signal input unit; Preferably, a dimming instruction signal unit for transmitting the dimming instruction signal from a photo power blur to the DCZAC conversion unit is provided.
  • a first discharge lamp lighting device includes: a discharge lamp; an ACZ DC converter that converts an AC voltage phase-controlled by a dimmer into a DC voltage and outputs the DC voltage; DCZAC for intermittently driving the discharge lamp during a lighting period in which the high-frequency voltage is applied to the discharge lamp to turn on the discharge lamp, and an extinguishing period in which the generation of the high-frequency voltage is stopped to extinguish the discharge lamp.
  • a discharge lamp lighting device comprising: a conversion unit; and a dimming control unit that outputs a dimming command signal that changes a ratio between a lighting period and a light-off period to the DCZAC conversion unit, wherein the dimming control unit includes: Detecting the turn-on and turn-off of the phase-controlled AC voltage, the timing of the turn-on and the lighting of the intermittent drive of the DCZAC converter, and the timing of the turn-off and the DCZAC converter. Intermittent drive Maintaining the amount of deviation of the timing of the lamp constant.
  • a second discharge lamp lighting device includes a discharge lamp, an ACZ DC converter that converts an AC voltage phase-controlled by a dimmer into a DC voltage and outputs the DC voltage, and the discharge lamp is lit.
  • a discharge lamp lighting device comprising: a DCZAC converter that intermittently drives the discharge lamp; and a dimming controller that outputs, to the DCAC converter, a dimming command signal that changes a ratio between a lighting period and a light-off period.
  • a third discharge lamp lighting device includes a discharge lamp, an ACZDC converter that converts an AC voltage phase-controlled by a dimmer into a DC voltage and outputs the DC voltage, and at least one switching element.
  • a DCZ AC converter that intermittently drives the discharge lamp during a light-out period in which a current smaller than the light-up period is passed and a light-out period in which the light is turned off;
  • a dimming control unit comprising: a dimming control unit configured to detect turn-on and turn-off of the phase-controlled AC voltage. Maintains the timing of the lighting of the intermittent driving of the said Turn-down-on DCZAC conversion unit, the shift amount of the timing of the turning off of the intermittent driving of the turn ⁇ off and the DCZ AC converting unit constant.
  • the dimming control unit detects turn-on and turn-off of the phase-controlled AC voltage, and turns on the intermittent drive of the turn-on and the DCZ AC conversion unit. And the timing between the turn-off and the turning-off of the intermittent drive of the DCZAC converter is maintained at substantially zero.
  • the dimming control unit includes a photo cover as a unit for transmitting the dimming command signal to the DC / AC conversion unit.
  • the discharge lamp is an electroded fluorescent lamp having electrodes.
  • FIG. 1 is a circuit configuration diagram of a discharge lamp lighting device according to a first embodiment of the present invention.
  • FIG. 2 is a characteristic diagram of a circuit and a lamp in the discharge lamp lighting device according to the first embodiment.
  • FIG. 3 is a circuit configuration diagram of a discharge lamp lighting device according to a third embodiment of the present invention.
  • FIG. 4 is a characteristic diagram of a circuit and a lamp in the discharge lamp lighting device according to the third embodiment. is there.
  • FIG. 5 is a circuit diagram of a discharge lamp lighting device according to a fourth embodiment of the present invention.
  • FIG. 6 is a circuit configuration diagram of a discharge lamp lighting device according to a fifth embodiment of the present invention.
  • FIG. 7 is a schematic sectional view of a discharge lamp lighting device according to a sixth embodiment of the present invention.
  • FIG. 8 is a circuit configuration diagram of a conventional electrode discharge lamp lighting device.
  • FIG. 9 is a circuit configuration diagram of an asynchronous type discharge lamp lighting device.
  • FIG. 10 is a characteristic diagram of a circuit and a lamp in the discharge lamp lighting device according to the second embodiment.
  • FIG. 11 is a characteristic diagram of a circuit and a lamp in the discharge lamp lighting device of FIG.
  • FIG. 12 is a characteristic diagram of another circuit and a lamp in the discharge lamp lighting device according to the first embodiment.
  • This discharge lamp lighting device uses a frequency change method in which dimming is performed by changing the operating frequency of the inverter circuit, and is performed according to the conduction angle of the input phase-controlled voltage, that is, the conduction period (ON period) of the voltage. It changes the brightness of the fluorescent lamp.
  • the discharge lamp lighting device shown in FIG. 8 includes a phase control device 102 connected to the commercial power supply 101, a high frequency generator 103, and a fluorescent lamp 108, and further includes a phase control device. It comprises a detecting means 109 for detecting the conduction angle of the control voltage, and a light detecting section 110 for detecting the light output of the fluorescent lamp.
  • the high-frequency generator 103 includes a high-frequency blocking filter 104, a rectifier 105, a smoothing DC voltage converter 106 that converts a phase-controlled voltage to a smoothed DC voltage, and a DC converter.
  • the inverter unit 107 that converts the conversion voltage to high frequency It is composed of
  • the inverter unit 107 includes a switching unit 171 and an oscillation control unit 172 that generates a signal for controlling the switching unit 107.
  • the detecting means 109 changes the output frequency of the oscillation control section of the inverter section 107 in accordance with the detected conduction angle. By changing the output frequency, the luminous output from the discharge lamp changes.
  • the photodetector 110 changes the output frequency of the oscillation controller 172 according to the amount of photodetection.
  • the phase of AC power from a power supply is controlled by a triac, the full-wave rectified output is supplied to an inverter circuit, and the high-frequency output is supplied to a discharge lamp to limit the lamp current.
  • a phase control method for dimming if the dimming is made deeper by setting the conduction angle of the triac closer to 7 °, phenomena such as the extinguishing of the discharge lamp and flickering will occur.
  • a phase control method is used in a discharge lamp lighting device connected to an electric input through a light bulb dimmer, the discharge lamp extinguishes and flickers are more likely to occur.
  • this phase control method as a dimming method that eliminates the fading and flickering phenomenon that occurs when dimming is deepened, the switching frequency of the inverter circuit is kept constant, and the ratio between the on-time and off-time of the switching element is changed.
  • an intermittent driving method in which dimming is performed by intermittently applying a high voltage to a discharge lamp.
  • Japanese Patent Application Laid-Open Nos. 2-1999796 and 2000-26 It is disclosed in Japanese Patent Application Laid-Open No. 9-92.
  • the dimming command signal is not synchronized with the turn-on and turn-off of the voltage whose phase is controlled by the triac of the light bulb dimmer. Release It was thought that the energy required for lighting the electric lamp was not supplied.
  • synchronization means that the dimming command signal and the turn-on Z-turn-off are temporally coincident, or that they always occur with a fixed offset time.
  • the present inventors have proposed dimming control that substantially synchronizes the phase control voltage turn-on Z-turn-off timing with the dimming command signal turn-on turn-off timing.
  • a flicker-free discharge lamp lighting device that performs stable dimming operation has been realized.
  • FIG. 1 schematically shows a configuration of a discharge lamp lighting device according to a first embodiment of the present invention.
  • the discharge lamp lighting device includes an electrodeless fluorescent lamp 3, a dimmer 2 for controlling the phase of the voltage of the commercial power supply 1, and a turn-on of the voltage phase-controlled by the dimmer 2. And a lighting circuit 4 for controlling lighting of the electrodeless fluorescent lamp 3 according to turn-off.
  • the commercial power supply 1 is, for example, an AC power supply of 60 Hz and 100 V, and is connected to the dimmer 2.
  • the dimmer 2 is a dimmer that uses well-known phase control using triac. A commercially available dimmer for incandescent lamps can be used.
  • the lighting circuit 4 includes an ACZDC converter 5, a DCZAC converter 6, and a dimming controller 7.
  • ACZDC converter 5, DCZAC converter and dimming controller 7 are described in Japanese Patent Application Laid-Open No. H11-111486, respectively. It corresponds to what is expressed by the term detection means.
  • the ACZDC converter 5 converts the phase-controlled voltage supplied from the dimmer 2 into a direct current.
  • the ACZDC conversion unit a known unit may be used. For example, a unit using a diode bridge and a smoothing capacitor may be used.
  • the DCZAC converter 6 includes an oscillating unit 24, a switch circuit 25, a drive circuit 11, MOS FETs 12 and 13, a resonance inductor 14 and resonance capacitors 17 and 18.
  • An induction coil 19 is connected in series to the resonance capacitor 18, and a series circuit of the induction coil 19 and the resonance capacitor 18 is connected in parallel to the resonance capacitor 17.
  • the induction coil 19 and the electrodeless discharge bulb 20 constitute the electrodeless fluorescent lamp 3.
  • the dimming control unit 7 includes a dimming control signal input unit 8 for inputting a voltage phase-controlled by the dimmer 2, a photo power blur 9, and a dimming control for transmitting a dimming command signal to the DCZAC conversion unit 6. And a command signal section 10.
  • the reason why the photo power bra 9 is used in the present invention is that a dimming command signal is transmitted through a switch circuit 25 to a power circuit, that is, a DCZAC conversion circuit, in accordance with a change in the voltage controlled by the dimmer 2. This is to ensure that the signal is transmitted to the drive circuit 11 that drives the switching elements 12 and 13 with good timing without being affected by the above.
  • a photo power bra 9 for this purpose a photo power bra having a fast response time and a fast response time is used.
  • the output voltage of the commercial power supply 1 is phase-controlled by the dimmer 2, and the AC voltage whose phase is controlled by the dimmer 2 is converted to a DC voltage by the ACZDC converter 5.
  • the DC voltage smoothed by the A CZ DC converter 5 is applied to the drive circuit 11 1 of the MOS FETs 12, 13 of the D CZ AC converter 6, the drive frequency f 1 (H z) of the oscillator 24,
  • the MOS FETs 12 and 13 are alternately turned on and off, and converted to a high-frequency voltage.
  • This high-frequency voltage is applied to a resonance circuit including the resonance inductor 14, the resonance capacitors 17 and 18, and the induction coil 19.
  • the lighting circuit 4 can apply a high-frequency voltage to the electrodeless fluorescent lamp 3.
  • the luminous gas (not shown) enclosed in the electrodeless discharge bulb is excited and emits light by the energy supplied by the AC electromagnetic field generated in the electrodeless discharge bulb 20 by the current flowing through the induction coil 19.
  • the luminescent gas for example, mercury, krypton, xenon, or a mixed gas thereof is used.
  • the turn-on and turn-off timings of the voltage whose phase is controlled by the dimmer 2 are detected by the dimmer controller 7 and the period between the turn-on and the turn-off ( That is, during the conduction period of the phase-controlled voltage), the dimming command signal generated by the dimming control unit 7 continues to be transmitted to the switch circuit 25.
  • the switch circuit 25 the ON period or the lighting period of the electrodeless fluorescent lamp
  • the switch circuit is turned on, and the drive circuit 11 of the MOS FETs 12, 13 is turned on.
  • the switch circuit 25 During the period in which the dimming command signal is not transmitted to the switch circuit 25 (the off period or the period during which the electrodeless fluorescent lamp is turned off), the switch circuit is turned off and the MOS FETs 1, 2, 1 3 Drive circuit 11 is turned off. While the switch circuit is on, the MOS FETs 12, 13 alternately turn on and off at the drive frequency f1 (Hz).
  • the ratio of the on-period to the off-period of the switch circuit determined by the dimming instruction signal from the dimmer controller 7 changes.
  • the ratio between the on-period and off-period (referred to as the duty ratio) of the MOS FETs 12 and 13 changes according to the voltage. By changing the duty ratio, the electric energy input to the electrodeless fluorescent lamp 3 is changed, and the dimming of the electrodeless fluorescent lamp 3 is performed.
  • the dimming control unit 7 will now be described in more detail. The operation will be described below with reference to FIGS.
  • the horizontal axis is the time axis, which is a common measure in each figure.
  • FIG. 2A shows the waveform of the voltage that has been phase-controlled by the dimmer 2, and this phase-controlled voltage is first input to the dimming control signal input unit 8 of the dimming control unit 7,
  • the dimming control signal input section 8 performs full-wave rectification, further reduces the voltage to an appropriate voltage (for example, 2 V) for driving the photo power blur 9, and applies the reduced pressure to the photo power blur 9.
  • an appropriate voltage for example, 2 V
  • the full-wave rectified voltage input to the photocabler 9 is turned on, and the rise time of the photopower blur 9 (for example, 20 ju) s) Later, the light emitting diode built in the photo power bracket 9 emits light.
  • a light control command signal is transmitted to the switch circuit 25 from the transistor constituting the re-force power bra 9 by the light emission of the diode via the light control command signal unit 10, whereby the DCZAC conversion unit 6 MOS FETs 12 and 13 are driven at drive frequency f 1 (H z).
  • the ON state of the dimming command signal is maintained until the voltage whose phase is controlled by the dimmer is turned off and off, whereby the light emission of the rephotocoupler 9 falls and the dimming command signal is turned off. .
  • the dimming command signal is turned on via the photobra 9 and when the voltage whose phase is controlled is turned off, the photo The dimming command signal transmitted to the switch circuit 25 via the power bra 9 is turned off, and the driving of the MOS FETs 12, 13 of the DCZAC converter 6 is stopped.
  • FIG. 2B A waveform showing the state where the dimming command signal is repeatedly turned on and off in this manner is shown in FIG. 2B.
  • MOS FET 12 is taken as an example, and the drain current of this MOS FET 12 is The waveform is shown in Fig. 2c with the same time axis as the dimming command signal waveform (b in Fig. 2).
  • the drain current of the MOS FET 13 is the same as that shown in FIG.
  • FIG. 2d shows the emission waveform from the electrodeless discharge lamp. As shown in FIG.
  • the MOS can be accurately synchronized with the turn-on and turn-off of the voltage controlled by the dimmer 2.
  • FET 1 2 and 1 3 drive ON / OFF It was experimentally confirmed that a light emission output from the electrodeless fluorescent lamp 3 corresponding to this was obtained.
  • the synchronization here is a substantial synchronization including a short time delay such as a rise time and a fall time of the photo power blur 9. Since such a short delay is shorter than the period of the input AC voltage, the light emission output is not affected.
  • a MOS FET is used as a switching element, but a power transistor may of course be used.
  • the frequency of the high-frequency voltage applied to the electrodeless fluorescent lamp 3 by the lighting circuit 4 in the bulb-type electrodeless fluorescent lamp of the present embodiment will be briefly described.
  • the frequency is 1 MHz or less (for example, 50 to 50 MHz) in comparison with 13.56 MHz or several MHz in the ISM band which is generally used practically.
  • the frequency range is relatively low at 500 kHz.
  • the reasons for using frequencies in this low frequency range are as follows. First, 1 3. When operating at relatively high frequency regions such as 56MH Z or several MH Z, noise filter for suppressing line N'noizu generated from the high frequency power supply circuit in the lighting circuit (circuit board) and a large In addition, the volume of the high-frequency power supply circuit increases.
  • the noise radiated or propagated from the lamp is high-frequency noise, very strict regulations are imposed on the high-frequency noise by law, so use an expensive shield to clear the regulations. Must be implemented, which is a major obstacle to reducing costs.
  • 50 kH when Z ⁇ operate at 1 MH Z about the frequency domain as a member constituting the high-frequency power supply circuit, using an inexpensive general-purpose products in the electronic component for general electronic equipment being used In addition to this, it is possible to use components having small dimensions, so that cost and size can be reduced, and the advantage is great.
  • the electrodeless fluorescent lamp of the present embodiment is not limited to operation at 1 MHz or less, and can operate in a frequency range of 13.56 MHz or several MHz.
  • the DCZAC is synchronized with the turn-on and turn-off of the voltage controlled by the dimmer 2.
  • the electrodeless fluorescent lamp for dimming can be stably lit, and the flicker due to unstable lighting as described in the section to be solved can be obtained. There is no problem such as lighting.
  • the discharge lamp lighting device described in the first embodiment according to the present invention described above not only provides stable dimming but also reduces the power input during the ON period (conduction period) of the phase-controlled voltage. It is a lighting device that can be used effectively and maximally over the entire period. In other words, because it is not necessarily synchronized with the phase-controlled voltage, the power supply period to the discharge lamp is shorter than the conduction period of the phase-controlled voltage. This lighting device has a wider light control range.
  • the discharge lamp lighting device is similar to the configuration of the first embodiment, and is different from the first embodiment in the dimming control unit 7.
  • the present embodiment is different from the first embodiment in that the photo power bra 9 having a longer rising and falling time than the photo power bra 9 of the first embodiment is used. Therefore, in the discharge lamp lighting device of the present embodiment, the DCZAC conversion unit 6 is intermittently driven in synchronization with the turn-on and turn-off of the phase-controlled voltage with a constant time delay.
  • the certain shift time is the response time of the photo power blur 9 and is, for example, longer than several% of the cycle of the input AC voltage.
  • the horizontal axis is the time axis, which is a common measure in each figure.
  • “A” in FIG. 10 shows the waveform of the voltage whose phase is controlled by the dimmer 2. From this figure, it can be seen that the conduction angle of the triac of the dimmer 2 is close to ⁇ , and that a very deep dimming is being performed.
  • B in FIG. 10 indicates that a dimming command signal sent from the dimming control unit 7 to the DCZ AC conversion unit 6 when a phase-controlled voltage such as a in FIG. Is shown.
  • a phase-controlled voltage such as a in FIG. Is shown.
  • the dimming command signal from the dimming controller 7 is sent to the DCZAC converter 6 with a delay of time ⁇ t.
  • the drain current of the MOS FET 12, which is the switching element of the DCZAC converter 6, becomes as shown in FIG.
  • the drain current of the MOS FET 13 is not shown because it is almost the same as that shown by c in FIG.
  • the electrodeless fluorescent lamp 3 When the drain currents of the MOS FETs 12 and 13 are flowing, the electrodeless fluorescent lamp 3 emits light, and the emission output is as shown in d of FIG. Since the shift time At is constant, the light emission output is always constant, and the electrodeless fluorescent lamp 3 does not flicker. However, the drain currents of the MOS FETs 12 and 13 require a large amount of energy to start the electrodeless fluorescent lamp 3, and a large current flows at the moment of lighting as shown in Fig. 10c.
  • the turn-on of the dimming command signal is delayed by ⁇ t time from the turn-on of the phase control voltage, the rise of the drain current of the MOS FETs 12, 13 is delayed, and the electrodeless fluorescent lamp 3 Not only does the supply time of the supplied high-frequency power decrease and the emission time shorten, but also the drive of the DCZ AC converter 6 stops when the phase control voltage is the highest immediately after the phase control voltage is turned on. Therefore, the emission output of the electrodeless fluorescent lamp 3 is reduced as compared with the case where the shift time ⁇ t is substantially zero.
  • the deviation (time At) between the turn-on and turn-off of the phase-controlled AC voltage and the timing of the intermittent driving of the DC / ZC converter 6 is kept constant. As a result, flickering of the discharge lamp can be prevented.
  • the response time of the photo power blur 9 is used for this timing shift, but the shift time may be provided by using a delay circuit or the like. If the deviation time At is slightly shorter than one cycle of the AC voltage, the intermittent drive of the DCZ AC converter 6 is turned on and off at the timing of the phase-controlled AC voltage turn-on and turn-off. Although it is observed that the discharge lamp is shifted earlier, the flicker of the discharge lamp is also prevented in this case. In consideration of a decrease in the light emission output, it is preferable that the shift amount is small, and it is more preferable that the shift amount is substantially zero.
  • the discharge lamp lighting device according to the third embodiment of the present invention is a discharge lamp lighting device for dimming and lighting an electrodeless fluorescent lamp, and has a configuration similar to that described in the first embodiment, The configuration of the DCZAC converter 6 is different.
  • FIG. 3 schematically shows a lighting circuit of a discharge lamp lighting device according to Embodiment 3 of the present invention.
  • the same components as those of the first embodiment are denoted by the same reference numerals, and duplicate description will be omitted.
  • the DCZAC converter 6 is composed of an oscillator 244, a switch circuit 255, a drive circuit 11, a MOS FET 12, 13, a resonance inductor 14, a resonance capacitor 17, and 18.
  • the oscillation section 244 is composed of an oscillation section A having an oscillation frequency of f1 (Hz) and an oscillation section B having an oscillation frequency of f2 (Hz), and the frequency f2 is represented by the frequency f1 Lower frequency.
  • the drive circuit 11 is connected to the oscillation section A when a dimming command signal is output from the dimming command signal section 10 to the switch circuit 255, and the driving circuit 11 is controlled by the dimming command signal section 10 from the dimming command signal section 10.
  • the optical command signal is not output to the drive circuit 255, the optical circuit is connected to the oscillation unit B.
  • the lighting principle of the discharge lamp is the same as in the first embodiment, and will not be described again.
  • the operation of the dimming control unit 7 with respect to the phase-controlled voltage input from the dimmer 2 to the dimming control unit 7 is basically the same as in the first embodiment, and a detailed description is omitted.
  • Command signal output can be obtained.
  • the dimming command signal is transmitted to the switch circuit 255 through the transistor built in the photo cover 9 .
  • the oscillation in the switch circuit has an oscillation frequency of f 1 (Hz).
  • Section A and the drive circuit 11 are connected, and the MOS FETs 12 and 13 as switching elements are driven alternately at the switching frequency f 1 (H z).
  • f 1 Hz
  • the oscillation frequency of the switch circuit 255 becomes f 2 (H The oscillation section B, z), and the drive circuit 11 are connected, and the MOS FETs 12, 13 as switching elements are alternately driven at the switching frequency f 2 (H z).
  • the frequency f 2 (H z) of the oscillating unit B is set lower than the frequency f 1 (H z) of the oscillating unit A, the induction coil 19 of the electrodeless fluorescent lamp 3 is not used. The flowing high-frequency current is smaller than when the dimming command signal is on.
  • the electrodeless fluorescent lamp 3 is set so as not to be turned on.
  • the voltage of f 1 (H z) is the high frequency voltage at which the electrodeless fluorescent lamp 3 is turned on
  • the voltage of f 2 (H z) is the high frequency voltage at which the electrodeless fluorescent lamp 3 is not turned on.
  • the voltage waveform of the phase-controlled voltage, the waveform of the dimming command signal, the waveform of the drain current of the MOS FET 12, and the emission output of the electrodeless fluorescent lamp 3 are shown. Waveforms are shown in a, b, c, and d of FIG. 4, respectively.
  • the dimming of the electrodeless fluorescent lamp 3 is deepened, and the ON period during which the MOS FETs 12 and 13 of the DCZAC converter 6 are driven is short. That is, even if the duty ratio is reduced, dimming lighting can be performed reliably in synchronization with the phase-controlled voltage.
  • the frequency f 2 (H z) of the oscillator B is set lower than the frequency f 1 (H z) of the oscillator A.
  • the frequency f 2 (H z) of the oscillator B Hz) may be set higher than the frequency f1 (Hz) of the oscillator A.
  • the driving frequency is changed between f 1 and f 2 between the lighting period and the extinguishing period, so that the high-frequency current flowing through the electrodeless discharge bulb 20 during the extinguishing period is changed. It was smaller than the high-frequency current flowing during the lighting period.
  • the drain current is controlled by changing the voltage between the gate and the source of the MOS FETs 12 and 13 between the lighting period and the lighting period, and the high-frequency current flowing through the discharge bulb 20 during the lighting period is reduced.
  • the same effect as in the third embodiment can be obtained even when the amount of the high-frequency current flowing during the lighting period is reduced.
  • Embodiment 4 is an electrodeless discharge lamp lighting device according to another application example of the present invention.
  • the same components as those in the first and third embodiments are denoted by the same reference numerals, and description thereof is omitted.
  • FIG. 5 is a circuit diagram of an electrodeless discharge lamp lighting device according to Embodiment 4 of the present invention.
  • This electrodeless discharge lamp lighting device includes an electrodeless fluorescent lamp 3, a dimmer 2 for controlling the phase of an input voltage, and a turn-on and a turn-off of the voltage phase-controlled by the dimmer 2.
  • the lighting circuit 4 controls the lighting of the electrodeless fluorescent lamp 3 in synchronization with the period, that is, the conduction period.
  • the lighting circuit 4 includes an ACZDC converter 5, a DCZAC converter 6, and a dimming controller 7.
  • the ACZDC converter 5 includes a diode bridge DB1 and an electrolytic capacitor C2.
  • the ACZDC converter 5 may be connected to a resistor for preventing inrush current or a noise prevention filter.
  • the voltage controlled by the dimmer 2 is applied to the ACZDC converter 5 It is rectified by the diode bridge DB 1 and smoothed by the electrolytic capacitor C 2, and this output is sent to the DCZ AC converter 6.
  • the dimming control signal is not sent from the dimming control unit 7 to the DCZAC conversion unit 6, that is, the transistor Q 4 is off, and the DCZAC conversion Let us consider the state in which the MOS FETs 12 and 13 that are the switching elements of section 6 are being driven, and explain this state.
  • the voltage input from the commercial power supply 1 to the dimmer 2 and phase-controlled is rectified by the A CZD C conversion unit 5, and is smoothed by the capacitor C 2, 00 1 1 ⁇ 105 FET 13 of the conversion unit 6 Trigger capacitor C 4 And a capacitor C8 that performs a charge pump circuit function.
  • the charging voltage of the trigger capacitor C4 reaches the Zener diode ZD4
  • a current flows through the resistors R2, R4 and R3, and a gate voltage is supplied between the gate and the source of the MOS FET 13 Therefore, the MOS FET 13 is turned on.
  • the MOS FET 13 When the MOS FET 13 is initially turned on, the voltage of the smoothing capacitor C 2 is lower than the power supply voltage, so the power supply 1 passes through the dimmer 2 and the A CZDC converter 5, and then the resonance capacitor 18 , 17, inductor L 1, induction coil 19, primary winding CT 1 of transformer CT, and current flows through MOS FET 13.
  • the current flowing through the primary winding CT1 of the transformer CT generates an induced voltage in the secondary winding CT3 of the transformer CT, and the gate voltage can be supplied to the MOS FET13. 13 remains on.
  • the current flows through the capacitor 18 and the induction coil 1 connected in parallel with the MOS FET 12, the transformer CT, the inductor L1, the capacitor C17, and the capacitor C17. It flows through 9 series circuits. This current resonates with the inductor L1, the resonance capacitors C18, C17 and the induction coil 19.
  • the ON state and the OFF state are alternately performed at the driving frequency f 1 (H z), for example, 200 (kHz) in the MOS FETs 12 and 13. Can switch.
  • the voltage whose phase is controlled by dimmer 2 (see a in Fig. 4) is divided by resistors R30 and R31 so that the voltage is appropriate for driving the photocoupler 9 and input to diode bridge DB2.
  • the full-wave rectified voltage is applied to the photodiode of the photocoupler 9. Therefore, at the same time when the phase-controlled voltage is turned on, the full-wave rectified voltage is applied to the photodiode of the photo-powered bra 9 and the photo diode emits light. 'A current flows through the transistor and the photocoupler 9 turns on.
  • the voltage applied to the photocabler 9 is zero, and the photopower blur 9 is turned off.
  • a DC voltage is applied to the base of the transistor Q4 via the resistor R35 by the DC power supply circuit (for example, a three-terminal regulator) 40, and the collector current of the transistor Q4 flows.
  • the resistor R38 enters in parallel with the resistor R3, the gate voltage of the MOS FET 13 drops, the MOS FET 12 turns off, and no high-frequency voltage is applied to the electrodeless discharge bulb 20.
  • the electrodeless fluorescent lamp 3 is turned off.
  • the off state of the MOS FET 12 continues until the voltage controlled by the dimmer 2 is turned on again.
  • the MOS FETs 12 and 13 are repeatedly turned on and off in synchronization with the phase-controlled voltage being turned on and off, and the MOS FETs 12 and 13 are turned on and off.
  • the electrodeless fluorescent lamp 3 repeats turning on and off in synchronization with turning off.
  • the connection portion of the resistor R38 inside the DCZ AC converter 6 may be a connection portion between the resistor R6 and the Zener diode ZD3 other than between the two Zener diodes ZD3 and ZD4. In either case, the electrodeless fluorescent lamp 3 is repeatedly turned on and off. Therefore, needless to say, the present embodiment can provide the same effects as those described in the third embodiment.
  • FIG. 6 is a circuit diagram of a discharge lamp lighting device according to the fifth embodiment.
  • the discharge bulb 200 is an electrode, and the configuration of the load resonance circuit for lighting the fluorescent lamp 33 having the electrode is different.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • an LC resonance circuit consisting of a fluorescent lamp 33, a resonance inductor 14, a resonance capacitor 15, and a resonance and residual heat capacitor 16 is connected between the drain and source terminals of MOSFET 13. Have been.
  • a high voltage is generated across the capacitor 16 of the above-described LC resonance circuit as a resonance voltage.
  • the discharge bulb 200 causes breakdown and starts discharging.
  • the discharge valve 200 starts discharging, the current flowing through the discharge valve 200 is limited by the resonance inductor 14 to maintain stable discharge.
  • the configuration and operation of the dimming control unit 7 of the fifth embodiment are the same as those of the first embodiment. It is clear from the description of the first embodiment that the discharge lamp lighting device is configured as shown in FIG. 6 to stably and dimmably control the dimmable general-purpose electrode-equipped fluorescent lamp. And will not be described again.
  • FIG. 7 schematically shows a configuration of an electrodeless bulb-type fluorescent lamp according to the sixth embodiment.
  • the discharge lamp lighting device according to the present embodiment is a non-electrode bulb-type fluorescent lamp, it may have a configuration of an electrode-type bulb-type fluorescent lamp.
  • the electrodeless bulb-type fluorescent lamp shown in FIG. 7 has a concave portion 20a, and is formed of a light-transmitting discharge bulb 20 in which mercury and a rare gas such as argon (not shown) are filled.
  • the electrode fluorescent lamp 3 a base 56 such as E26 type for an incandescent lamp, and a circuit board 5 on which wiring of a lighting circuit (for example, the circuit shown in FIG. 6) is formed and each circuit component is mounted. 4 and a cover 55 for accommodating the circuit board.
  • the generation of discharge plasma for exciting mercury enclosed in the discharge bulb 20 is based on the energy supplied by the AC electromagnetic field generated in the discharge bulb by the induction coil 19. It is done by one.
  • the induction coil 19 is composed of a ferrite core, 19a and a winding 19b, and is arranged in the recess 20a of the discharge bulb.
  • the electrodeless fluorescent lamp 3, the circuit board 54, and the base 56 are electrically connected to each other, and can be screwed into the incandescent lamp socket via the base 56. Power is supplied, and the electrodeless fluorescent lamp 3 is turned on.
  • the AC voltage input through the base 56 is an AC voltage whose phase is controlled by an external phase control device (for example, a dimmer for an incandescent lamp).
  • an external phase control device for example, a dimmer for an incandescent lamp.
  • the discharge lamp may of course be a fluorescent lamp with electrodes instead of an electrodeless fluorescent lamp as in the present embodiment.
  • the bulb-type electrodeless fluorescent lamp in which the electrodeless discharge lamp 3, the lighting circuit, and the base are assembled into a body has been described.
  • the present embodiment is not limited to this, and It may be a discharge lamp lighting device (electrodeless discharge lamp lighting device) in which the fluorescent lamp 3 and the lighting circuit are separate.
  • the shape of the discharge lamp described in Embodiments 1 to 6 may be any shape such as a straight tube, a round tube, a U-shaped tube, etc., provided that it is used for general lighting.
  • the discharge lamp lighting device of the present invention is not limited to a fluorescent lamp for general lighting, but may be, for example, a health line lamp having an erythema effect or an effective spectrum for producing vitamin D, or photosynthesis of plants.
  • a lamp for cultivating a plant having an effective spectrum for morphogenesis may be used.
  • the discharge lamp to be turned on by the discharge lamp lighting device of the present invention may be a discharge lamp such as a germicidal lamp in which a fluorescent substance is not applied to a discharge bulb.
  • the dimming control unit 7 has a configuration that outputs a signal that synchronizes the timing of turning on and the lighting of the intermittent drive of the DCZAC conversion unit 6. This is because the light adjustment operation can be performed more favorably by synchronizing.
  • the configuration shown in FIG. 9 is not intended to synchronize the turn-on and the intermittent drive lighting of the DC / AC converter 6 with the intermittent drive lighting circuit 4 ′. It is.
  • the difference from the configuration of the first embodiment is the configuration of a dimming control unit 7 ′ that generates a dimming control signal and sends a dimming command signal to a DCZ AC conversion unit (inverter circuit) 6.
  • the dimming control unit 7 ′ includes a dimming signal generation unit 74 and a dimming command signal unit 10 that sends a dimming command signal to the DCZ AC conversion unit 6.
  • the output from the dimmer 2 whose phase is controlled by the triac is half-wave rectified through the half-wave rectifier circuit 71 to generate the output voltage (1 20 Hz) and the reference voltage of the reference frequency (1 20 Hz).
  • the output voltage of the triangular wave generating circuit 72 is compared with the output voltage of the comparator 73, and the comparator 73 outputs a dimming signal having a constant frequency and a rectangular wave shape.
  • This dimming signal was sent to the DCZAC conversion unit 6 via the dimming command signal unit 10, and the dimming of the electrodeless fluorescent lamp 3 was performed by changing the on-time and off-time of the DCZAC conversion unit 6.
  • the electrodeless fluorescent lamp 3 was used as the discharge lamp, the switching frequency f1 of the inverter circuit was 200 kHz, and MOS FETs 12 and 13 were used as the switching elements.
  • Fig. 11 shows an example of the experimental results.
  • the horizontal axis is the time axis, which is a common measure in each figure.
  • 11a shows the waveform of the voltage whose phase is controlled by the dimmer 2.
  • FIG. From this figure, it can be seen that the conduction angle of the triac of the dimmer 2 is close to ⁇ , and that a very deep dimming is being performed.
  • B in FIG. 11 indicates that a dimming command signal sent from the dimming control unit 7 to the DCZ AC conversion unit 6 when a phase-controlled voltage such as a in FIG. 10 is input to the lighting circuit 4 ′. Is shown. As can be seen by comparing a and b in Fig. 11, the turn-on of the phase control voltage and the turn-on of the dimming command signal are not synchronized. In other words, the turn-on turn-off timing of the dimming command signal is shifted from the turn-on Z turn-off timing of the phase control voltage, and the shift time ⁇ t varies with time.
  • the drain current of the MOSOS FETs 1, 2, and 13 decreases, and as a result, the high-frequency power supplied to the electrodeless fluorescent lamp 3 decreases, and the lamp lights. Or a state close to the threshold state of turning off the light.
  • the electrodeless fluorescent lamp 3 can barely light up.
  • a discharge lamp lighting device that can supply such electric energy to the electrodeless fluorescent lamp 3.
  • the lighting device As can be seen from the above description, the attached electrodeless fluorescent lamp 3 is almost turned off and occasionally turned on.
  • the electrodeless fluorescent lamp 3 cannot be turned on too quickly. .
  • the phase control voltage, the dimming command signal, and the drain current of the MOS FET 12 The respective waveforms of the luminescence output and the luminescence output are shown in a, b, c and d of FIG. 12, respectively.
  • the switching element of the DCZ AC converter is turned on and off when the voltage controlled by the dimmer 2 is turned on and off. It has been confirmed that the discharge lamp lighting device according to the present invention (FIG. 1), in which the turn-on and turn-off timings are accurately synchronized, has no flicker and has a large luminous output.
  • the discharge lamp lighting device of the present invention when the voltage controlled in phase by the dimmer is input to the electrodeless or electroded fluorescent lamp and the fluorescent lamp is dimmed Synchronize the turn-on and turn-off timing of the phase-controlled voltage with the turn-on and turn-off timing of the dimming command signal for intermittently driving the DC / AC converter. And flickering And a stable dimming operation can be realized.
  • the electrodeless discharge lamp lighting device, the bulb-type electrodeless fluorescent lamp and the discharge lamp lighting device of the present invention when used in connection with an existing incandescent light dimmer, provide stable dimming without flickering. It is useful in that it can be used, and has high industrial applicability.

Description

明 細 書 無電極放電ランプ点灯装置、 電球形無電極蛍光ランプぉよび放電ランプ点灯装置 技術分野
本発明は、 無電極放電ランプ点灯装置、 電球形無電極蛍光ランプ及び放電ランプ点 灯装置に関する。 特に白熱電球用調光器でランプを調光する点灯装置に関する。 背景技術
蛍光ランプは、 白熱電球に比べて効率が高く、 且つ長寿命であることから地球環境 保護並びに経済性の観点から広く普及している。 また近年、 蛍光ランプと点灯回路と が一体化された電球形蛍光ランプが、 住宅、 ホテル、 レス卜ランなどで省エネルギー 光源として注目され、 電球に代えてそのまま利用できる手軽さもあり益々普及する趨 勢にある。
さらに最近、 電極の無い無電極電球形蛍光ランプが、 従来の有電極の電球形蛍光ラ ンプに比べて寿命が数倍も長いことから経済的な光源として注目され、 需要が増加す る傾向にある。
—方、 住宅やホテルでは、 人々は、 読書をしたり、 あるいは家族との団欒を楽しん だり、 と色々な生活行為を行っており、 これらの生活行為に合わせた快適な光環境と するため、 それぞれの場にふさわしい明るさとすることが求められている。 電球の場 合には、 市販の電球用調光器を利用することで容易に明るさを変えることができる。 白熱電球の調光は、 商用電源電圧をオン κオフし、 そのオン期間を変えることによつ て明るさを変える方法、 すなわち位相制御された電圧を白熱電球に入力するために電 球用調光器を利用する方法が一般的である。 一方、 電球形蛍光ランプの場合にも、 電 球の場合と同様に既存の電球用調光器を利用して明るさを変えることが求められてい るが、 蛍光ランプの発光は、 放電によるものであるので、 電球のように供給電力を単 に調整するだけでは、 実際に使用できるレベルの、 調光可能な蛍光ランプを実現する ことは難しい。
最近、 電球の場合と同様に既存の電球用調光器を利用して明るさを変えたいという ユーザーのニーズに応えて、 電球用調光器に接続して調光点灯できる有電極の電球形 蛍光ランプが開発された (特開平 1 1— 1 1 1 4 8 6号公報) 。 しかしながら、 無電 極の電球形蛍光ランプで調光可能なものは、 いまだ開発されていないのが実情である。 また、 調光可能な前記有電極の蛍光ランプを調光点灯する場合、 この蛍光ランプは 市販の電球用調光器に接続して用いられることが多い。 この場合、 市販の電球用調光 器としてはどの電球用調光器を用いても原理的には調光できるはずであるが、 電球用 調光器によってはランプが正常に調光点灯できず、 チラツキを生じたり、 蛍光ランプ が点灯しにくいといった不具合が生じることがあることを本願発明者らは実際の試験 により見つけだした。
本発明は、 上述した課題を解決するためのもので、 チラツキや点灯のしにくさを防 止し、 安定な調光動作を実現する無電極放電ランプ点灯装置、 電球形無電極蛍光ラン プおよび放電ランプ点灯装置を提供することを目的とする。
また本発明は、 位相制御された電圧の導通期間の全期間を通して電気エネルギーを 供給し、 放電ランプを点灯するようにすることで調光範囲を従来の点灯装置に比べて より広くすることを他の目的とする。 発明の開示
本発明に係る無電極放電ランプ点灯装置は、 無電極放電ランプと、 調光器によって 位相制御された交流電圧を直流電圧に変換して出力する A CZ D C変換部と、 前記直 流電圧を高周波電圧に変換し、 当該高周波電圧によって、 前記無電極放電ランプを点 灯させる点灯期間と前記無電極放電ランプを消灯する消灯期間とで前記無電極放電ラ ンプを間欠駆動する D C Z A C変換部と、 前記 D CZ A C変換部に、 点灯期間と消灯 期間との比を変える調光指令信号を出力する調光制御部とを備える無電極放電ランプ 点灯装置であって、 前記調光制御部は、 前記位相制御された交流電圧のターン,オン とターン■オフとを検出し、 前記ターン■オンと前記 D C Z A C変換部の間欠駆動の 点灯とのタイミングと、 前記ターン■オフと前記 DCZAC変換部の間欠駆動の消灯 とのタイミングとを、 それぞれ実質的に同期させる。
ある好適な実施形態において、 前記 DCZAC変換部は、 前記高周波電圧を前記無 電極放電ランプに印加して点灯させる点灯期間と、 前記高周波電圧の発生を停止して 前記無電極放電ランプを消灯する消灯期間とで前記無電極放電ランプを間欠駆動する。 また、 ある好適な実施形態において、 前記 DCZAC変換部は、 前記無電極放電ラ ンプが点灯する高周波電圧に前記直流電圧を変換して前記無電極放電ランプに印加す る点灯期間と、 前記無電極放電ランプが点灯しない高周波電圧に前記直流電圧を変換 して前記無電極放電ランプに印加する消灯期間とで、 前記無電極放電ランプを間欠駆 動する。
さらに、 別の好適な実施形態において、 前記 DCZAC変換部は、 少なくとも 1つ のスィツチング素子を有し、 前記直流電圧を高周波電圧に変換して前記無電極放電ラ ンプに印加する場合に、 前記スイッチング素子のゲート■ ソース間の電圧を変えるこ とによって、 前記無電極放電ランプを点灯させる点灯期間と前記無電極放電ランプに 前記点灯期間よりも少ない電流を流して消灯する消灯期間とで前記無電極放電ランプ を間欠駆動する。
また、 前記調光制御部は、 前記調光指令信号を前記 DCZAC変換部に伝達する手 段としてフォトカブラを備えることが好ましい。
本発明に係る電球形無電極蛍光ランプは、 無電極蛍光ランプと、 前記無電極蛍光ラ ンプに高周波電圧を印加する点灯回路と、 前記点灯回路に電気的に接続された口金と を備え、 前記無電極蛍光ランプと前記点灯回路と前記口金とは一体に組み立てられて おり、 前記点灯回路は、 調光器によって位相制御された交流電圧を直流電圧に変換し て出力する ACZDC変換部と、 前記直流電圧を高周波電圧に変換し、 当該高周波電 圧によって、 前記無電極放電ランプを点灯させる点灯期間と前記無電極放電ランプを 消灯する消灯期間とで前記無電極放電ランプを間欠駆動する DCZAC変換部と、 前 記 DCZAC変換部に、 点灯期間と消灯期間との比を変える調光指令信号を出力する 調光制御部とを含んでおり、 前記調光制御部は、 前記位相制御された交流電圧のター ン■オンとターン■オフとを検出し、 前記ターン■オンと前記 DCZAC変換部の間 欠駆動の点灯とのタイミングと、 前記ターン ·オフと前記 DCZAC変換部の間欠駆 動の消灯とのタイミングとを、 それぞれ実質的に同期させる。
前記調光制御部は、 前記調光制御部は、 前記調光器によって位相制御された交流電 圧を入力する調光信号入力部と、 当該調光信号入力部に接続されたフォトカブラと、 当該フォト力ブラからの前記調光指令信号を前記 D C Z A C変換部に伝達する調光指 令信号部とを備えることが好ましい。
本発明に係る第 1の放電ランプ点灯装置は、 放電ランプと、 調光器によって位相制 御された交流電圧を直流電圧に変換して出力する A CZ DC変換部と、 前記直流電圧 を高周波電圧に変換して、 当該高周波電圧を前記放電ランプに印加して点灯させる点 灯期間と、 前記高周波電圧の発生を停止して前記放電ランプを消灯する消灯期間とで 前記放電ランプを間欠駆動する DCZAC変換部と、 前記 DCZAC変換部に、 点灯 期間と消灯期間との比を変える調光指令信号を出力する調光制御部とを備える放電ラ ンプ点灯装置であって、 前記調光制御部は、 前記位相制御された交流電圧のターン - オンとターン■オフとを検出し、 前記ターン■オンと前記 DCZAC変換部の間欠駆 動の点灯とのタイミングと、 前記ターン■オフと前記 DCZAC変換部の間欠駆動の 消灯とのタイミングとのずれ量を一定に維持する。
本発明に係る第 2の放電ランプ点灯装置は、 放電ランプと、 調光器によって位相制 御された交流電圧を直流電圧に変換して出力する A CZ DC変換部と、 前記放電ラン プが点灯する高周波電圧に前記直流電圧を変換して前記放電ランプに印加する点灯期 間と、 前記放電ランプが点灯しない高周波電圧に前記直流電圧を変換して前記放電ラ ンプに印加する消灯期間とで、 前記放電ランプを間欠駆動する DCZAC変換部と、 前記 DC AC変換部に、 点灯期間と消灯期間との比を変える調光指令信号を出力す る調光制御部とを備える放電ランプ点灯装置であって、 前記調光制御部は、 前記位相 制御された交流電圧のターン■オンとターン■オフとを検出し、 前記ターン ·オンと 前記 DCZAC変換部の間欠駆動の点灯とのタイミングと、 前記ターン■オフと前記 D CZ A C変換部の間欠駆動の消灯とのタイミングとのずれ量を一定に維持する。 本発明に係る第 3の放電ランプ点灯装置は、 放電ランプと、 調光器によって位相制 御された交流電圧を直流電圧に変換して出力する ACZDC変換部と、 少なくとも 1 つのスイッチング素子を有し、 前記直流電圧を高周波電圧に変換して前記放電ランプ に印加する場合に、 前記スイッチング素子のゲート■ ソース間の電圧を変えることに よって、 前記放電ランプを点灯させる点灯期間と前記放電ランプに前記点灯期間より も少ない電流を流して消灯する消灯期間とで前記放電ランプを間欠駆動する DCZ A C変換部と、 前記 DCZAC変換部に、 点灯期間と消灯期間との比を変える調光指令 信号を出力する調光制御部とを備える放電ランプ点灯装置であって、 前記調光制御部 は、 前記位相制御された交流電圧のターン ·オンとターン ·オフとを検出し、 前記タ ーン ·オンと前記 DCZAC変換部の間欠駆動の点灯とのタイミングと、 前記ターン ■オフと前記 DCZ AC変換部の間欠駆動の消灯とのタイミングとのずれ量を一定に 維持する。
好適な実施形態において、 前記調光制御部は、 前記位相制御された交流電圧のター ン■オンとターン 'オフとを検出し、 前記ターン■オンと前記 DCZ AC変換部の間 欠駆動の点灯とのタイミングと、 前記ターン ·オフと前記 DCZAC変換部の間欠駆 動の消灯とのタイミングとの前記ずれ量を実質的にゼロに維持する。
また、 好適な実施形態において、 前記調光制御部は、 前記調光指令信号を前記 DC AC変換部に伝達する手段としてフォトカブラを備える。
さらに、 好適な実施形態において、 前記放電ランプは、 電極を有する有電極蛍光ラ ンプである。 図面の簡単な説明
図 1は、 本発明における実施の形態 1の放電ランプ点灯装置の回路構成図である。 図 2は、 実施の形態 1の放電ランプ点灯装置における回路およびランプの特性図で あ 。
図 3は、 本発明のおける実施の形態 3の放電ランプ点灯装置の回路構成図である。 図 4は、 実施の形態 3の放電ランプ点灯装置における回路およびランプの特性図で ある。
図 5は、 本発明における実施の形態 4の放電ランプ点灯装置の回路図である。 図 6は、 本発明における実施の形態 5の放電ランプ点灯装置の回路構成図である。 図 7は、 本発明における実施の形態 6の放電ランプ点灯装置の模式的な断面図であ る。
図 8は、 従来例における有電極放電ランプ点灯装置の回路構成図である。
図 9は、 非同期タィプの放電ランプ点灯装置の回路構成図である。
図 1 0は、 実施の形態 2の放電ランプ点灯装置における回路およびランプの特性図 である。
図 1 1は、 図 9の放電ランプ点灯装置における回路およびランプの特性図である。 図 1 2は、 実施の形態 1の放電ランプ点灯装置における別の回路およびランプの特 性図である。 発明を実施するための最良の形態
本発明の実施の形態について詳細説明をするに先立ち、 本発明にあたって事前検討 した事項について述べる。
まず、 図 8に示す、 特開平 1 1 — 1 1 1 4 8 6号公報における従来の有電極の放電 ランプ点灯装置について検討した。 この放電ランプ点灯装置は、 インバータ回路の動 作周波数を変えて調光する周波数変化方式を用いており、 入力される位相制御された 電圧の導通角、 すなわち電圧の導通期間 (オン期間) に応じて蛍光ランプの明るさを 変えるものである。
図 8に示した放電ランプ点灯装置は、 商用電源 1 0 1に接続された位相制御装置 1 0 2と、 高周波発生装置 1 0 3と、 蛍光ランプ 1 0 8とを備えており、 さらに位相制 御電圧の導通角を検出する検知手段 1 0 9、 および、 蛍光ランプの光出力を検出する 光検出部 1 1 0を備えている。 また高周波発生装置 1 0 3は、 高周波阻止フィルタ 1 0 4と、 整流装置 1 0 5と、 位相制御された電圧を平滑化直流電圧に変換する平滑化 直流電圧変換部 1 0 6と、 直流化変換電圧を高周波に変換するインバータ部 1 0 7と から構成されている。 インバータ部 1 0 7は、 スイッチング部 1 7 1と、 スィッチン グ部 1 0 7を制御する信号を発する発振制御部 1 7 2とから構成されている。 また検 知手段 1 0 9は、 検知した導通角に応じてインバータ部 1 0 7の発振制御部の出力周 波数を変化させる。 出力周波数を変化させることで放電ランプからの発光出力が変化 する。 一方、 光検出部 1 1 0は、 光検出量に応じて発振制御部 1 7 2の出力周波数を 変化させる。
この周波数変化方式による調光方法では、 インバータのスイッチング周波数 (動作 周波数) をかなり広く変える必要があり、 スイッチング素子を駆動する駆動回路を広 い周波数範囲で応答可能なものにする必要がある。 さらに、 インバータのスィッチン グ周波数を広い範囲で変化させるためにノイズ対策が複雑となり、 コス卜が高くなる ことが指摘されている (特許第 2 8 3 1 0 1 6号公報) 。
また別の調光方法として、 電源からの交流電力をトライアツクで位相制御し、 さら に全波整流した出力をインバータ回路に供給し、 その高周波出力を放電ランプに供給 することでランプ電流を制限し調光する位相制御方式がある。 しかし、 この位相制御 方式では、 トライアツクの導通角を 7Γに近づけて調光を深くしていくと放電ランプの 立ち消えやチラツキ等の現象が生ずる。 このような位相制御方式を電球用調光器を通 した電気入力に接続する放電ランプ点灯装置に用いると、 放電ランプの立ち消えゃチ ラツキが一層発生しゃすくなる。
この位相制御方式において調光を深くしたときに生ずる立ち消えやチラツキ現象を 解消する調光方式として、 インバータ回路のスイッチング周波数を一定にしておき、 スイッチング素子のオン時間と、 オフ時間との比率を変え、 放電ランプに高電圧を間 欠的に印加することによリ調光する間欠駆動方式があり、 たとえば、 特開平 2— 1 9 9 7 9 6号公報、 特開 2 0 0 0 - 2 6 8 9 9 2号公報で開示されている。
しかしながら、 この間欠駆動方式を用いても、 電球用調光器によってはランプがち らついたり点灯しにくいといった不具合が生じることがある。 本願発明者らは、 この 不具合の原因は、 主として調光指令信号が、 電球用調光器のトライアツクにより位相 制御された電圧のターン 'オンと、 ターン 'オフとに同期していないことにより、 放 電ランプの点灯に必要なエネルギーが供給されないためと考えた。 ここで、 同期とは、 調光指令信号とターン■オン Zターン ·オフとが時間的に一致していること、 あるい は常に一定のずれ時間で生じていることである。 特に、 無電極蛍光ランプにあっては、 この無電極蛍光ランプに供給する電気エネルギーをインバータ回路のスイッチング素 子をオン、 オフして間欠駆動する場合、 スイッチング素子をオンして無電極蛍光ラン プを始動させるとき、 瞬時的に大きな電気エネルギーの供給を必要とするが、 調光指 令信号が位相制御された電圧のターン■オン ターン■オフに同期していないと、 ラ ンプの始動毎に電圧の大きさが変わるので、 ランプがちらついてしまうと考えた。 こ のため無電極蛍光ランプにおいては、 トライアツクで位相制御された電圧のターン■ オンのタイミングを、 正確に検知手段にょリ検知し、 これに基づいて発生した調光指 令信号によってインバータ回路のスィツチング素子を位相制御された電圧のターン■ オンのタィミングに同期してオンさせることを思いついた。
以上の検討より、 本発明者らは、 位相制御電圧のターン■オン Zターン■オフのタ イミングと、 調光指令信号のターン■オン ターン■オフのタイミングとを実質的に 同期させる調光制御部を構成することにより、 チラツキを生じず、 安定な調光動作を する放電ランプ点灯装置を実現した。
以下、 図面を参照しながら、 本発明による実施の形態を説明する。 以下の図面にお いては、 簡素化のため、 実質的に同一の機能を有する構成要素を同一の参照符号で示 す。 なお、 本発明は、 以下の実施の形態に限定されない。
(実施の形態 1 )
図 1は、 本発明による実施の形態 1にかかる放電ランプ点灯装置の構成を模式的に 示している。
本実施の形態 1の放電ランプ点灯装置は、 無電極蛍光ランプ 3と、 商用電源 1の電 圧を位相制御する調光器 2と、 前記調光器 2で位相制御された電圧のターン ·オンお よびターン■オフに応じて無電極蛍光ランプ 3を点灯制御する点灯回路 4とで構成さ れている。 商用電源 1は、 例えば 6 0 H z、 1 0 0 Vの交流電源であり、 調光器 2に 接続されている。 調光器 2は、 トライアツクを用いた周知の位相制御を利用した調光 器で、 市販の白熱電球用調光器を用いることができる。
点灯回路 4は、 ACZDC変換部 5と、 DCZAC変換部 6と、 調光制御部 7とで 構成されている。 なお、 ここで言う ACZDC変換部 5、 DCZAC変換部および調 光制御部 7なる用語の概念は、 それぞれ、 特開平 1 1— 1 1 1 486号公報において、 平滑化直流電圧変換部、 インバータ部および検知手段という用語で表現されているも のに相当する。
ACZDC変換部 5は、 調光器 2から供給される位相制御された電圧を直流に変換 する。 この ACZDC変換部としては、 周知のものを利用すれば良く、 例えばダイォ ード■プリッジと平滑用コンデンサなど、 を利用したものを用いることができる。 また DCZAC変換部 6は、 発振部 24、 スィッチ回路 25、 駆動回路 1 1、 MO S FET 1 2, 1 3、 共振用インダクタ 1 4、 共振用コンデンサ 1 7, 1 8とで構成 されている。 共振用コンデンサ 1 8に、 誘導コイル 1 9が直列に接続され、 さらに誘 導コイル 1 9と共振用コンデンサ 1 8との直列回路は、 共振用コンデンサ 1 7に並列 接続されている。 誘導コイル 1 9と無電極放電バルブ 20とで無電極蛍光ランプ 3を 構成している。
また調光制御部 7は、 調光器 2により位相制御された電圧を入力する調光制御信号 入力部 8と、 フォト力ブラ 9と、 調光指令信号を DCZAC変換部 6に伝達する調光 指令信号部 1 0とで構成されている。
本発明においてフォ卜力ブラ 9を用いた理由は、 調光器 2で位相制御された電圧の 変化に応じて、 調光指令信号を、 スィッチ回路 25を介して、 パワー回路、 すなわち DCZAC変換回路の影響を受けること無く、 スイッチング素子 1 2, 1 3を駆動す る駆動回路 1 1にタイミング良く確実に伝達するためである。 なお当然のことながら、 このためのフォト力ブラ 9としては、 立ち上がり時間、 立ち下がり時間の早い高速応 答のフォ卜力ブラを用いている。
以下、 本実施の形態 1の動作について間単に説明する。
商用電源 1の出力電圧は調光器 2で位相制御され、 調光器 2で位相制御された交流 電圧は、 ACZDC変換部 5で直流電圧に変換される。 A CZ D C変換部 5によって平滑化された直流電圧は、 D CZ A C変換部 6の M O S FET 1 2, 1 3の駆動回路 1 1力《、 発振部 24の駆動周波数 f 1 (H z) 、 の出 力で駆動され、 MOS FET 1 2と 1 3が交互にオン、 オフすることにより高周波電 圧に変換される。 この高周波電圧が、 共振用インダクタ 1 4、 共振用コンデンサ 1 7, 1 8、 誘導コイル 1 9からなる共振回路に印加される。 ここで、 無電極蛍光ランプ 3 は、 誘導コイル 1 9と無電極放電バルブ 20とで構成されているので、 点灯回路 4は、 無電極蛍光ランプ 3に高周波電圧を印加するということができる。 誘導コイル 1 9を 流れる電流によって無電極放電バルブ 20内に発生される交流電磁界によって供給さ れるエネルギーにより、 無電極放電バルブ内に封入されている発光ガス (図示せず) が励起され発光する。 発光ガスとしては、 例えば、 水銀、 クリプトン、 キセノンなど、 あるいはこれらの混合ガスが用いられる。
なお、 この場合、 調光器 2で位相制御された電圧のターン 'オンとターン ·オフの タイミングが調光制御部 7で検出され、 このターン■オンとターン■オフとの間の期 間 (すなわち位相制御された電圧の導通期間) 、 調光制御部 7で発生された調光指令 信号が、 スィッチ回路 25に伝達され続ける。 調光指令信号がスィッチ回路 25に伝 達されている期間 (オン期間、 または無電極蛍光ランプの点灯期間) は、 スィッチ回 路がオンとなり、 MOS FET 1 2, 1 3の駆動回路 1 1をオンさせ、 これに対して 調光指令信号がスィッチ回路 25に伝達されていない期間 (オフ期間、 または無電極 蛍光ランプの消灯期間) は、 スィッチ回路が 25オフとなり、 MOS FET 1 2, 1 3の駆動回路 1 1がオフとなる。 スィッチ回路がオンの期間中、 MOS FET 1 2, 1 3は、 駆動周波数 f 1 (H z) で、 交互に、 オン■オフを繰り返す。 調光器 2によ リ位相制御された電圧の導通期間が変わることに応じて、 調光制御部 7からの調光指 令信号によって決まるスィッチ回路のオン期間とオフ期間の比が変わり、 これに応じ て MOS FET 1 2, 1 3のオン期間とオフ期間の比 (デューティ比と呼ぶ) が変わ る。 このデューティー比を変えることで無電極蛍光ランプ 3への電気エネルギー入力 が変わり、 無電極蛍光ランプ 3の調光が行われる。
調光制御部 7の動作について今少し詳しく説明する。 以下、 図 1及び図 2を参照しながら動作を説明する。 図 2の aから dまでの波形を 示す 4つの図において、 横軸は時間軸であり、 各図において共通尺度である。
図 2の aは、 調光器 2で位相制御された電圧の波形を示しており、 この位相制御さ れた電圧は、 先ず調光制御部 7の調光制御信号入力部 8に入力され、 この調光制御信 号入力部 8で全波整流され、 さらにフォト力ブラ 9を駆動するのに適当な電圧 (例え ば 2V) に減圧してフォト力ブラ 9に印加される。 調光器 2で位相制御された電圧が、 ターン■オンすると同時に、 フォトカブラ 9に入力される全波整流された電圧がター ン -オンし、 さらにフォト力ブラ 9の立ち上がり時間 (例えば 20 ju s) 後にフォト 力ブラ 9に内蔵された発光ダイォ一ドが発光する。 このダイォードの発光によリフォ 卜力ブラ 9を構成するトランジスタから、 調光指令信号部 1 0を介して調光指令信号 がスィツチ回路 25に伝達され、 これによつて D CZA C変換部 6の MOS F E T 1 2, 1 3が駆動周波数 f 1 (H z) で駆動される。 この調光指令信号のオン状態は、 調光器で位相制御された電圧がターン ·オフされ、 これによリフォトカブラ 9の発光 が立ち下がり、 調光指令信号がオフ状態となる時間まで持続される。 調光器で位相制 御された電圧が再びターン■オンされると、 フォ卜力ブラ 9を介して調光指令信号が オンされ、 さらに位相制御された電圧がターン 'オフされると、 フォト力ブラ 9を介 してスィッチ回路 25に伝達される調光指令信号がオフされ、 DCZAC変換部 6の MOS FET 1 2, 1 3の駆動が停止する。
このようにして調光指令信号のオン、 オフが繰り返される状態を示す波形が、 図 2 の bに示されている。 この調光指令信号の波形 (図 2の b) と MOS FET 1 2, 1 3の駆動との関係が分かるように、 一例として MOS FET 1 2を取りあげ、 この M OS FET 1 2のドレイン電流の波形を、 調光指令信号の波形 (図 2の b) と時間軸 を共通にして、 図 2の cに示した。 MOS FET 1 3のドレイン電流も、 MOS FE T 1 2に関して図 2の cに示したものと同様である。 また、 図 2の dに、 無電極放電 ランプからの発光波形を示した。 図 2に示したように、 フォト力ブラ 9を利用した調 光制御部 7を設けることにより、 調光器 2により位相制御された電圧のターン■オン およびターン 'オフに正確に同期して MOS FET 1 2、 1 3の駆動が、 オン、 オフ され、 これに呼応した無電極蛍光ランプ 3からの発光出力が得られることが実験的に 確認された。 なお、 ここでの同期とは、 フォト力ブラ 9の立ち上がり時間、 立ち下が リ時間等による短時間の遅れを含んだ実質的な同期のことである。 このような短時間 の遅れは、 入力交流電圧の周期に比べて短いので、 発光出力には影響はない。
なお、 本実施の形態 1の無電極蛍光ランプにおける DCZ AC変換部 6では、 スィ ツチング素子として MOS FETを用いたが、 パワー卜ランジスタを用いたものであ つても勿論良い。
ここで、 本実施の形態の電球形無電極蛍光ランプにおいて点灯回路 4が無電極蛍光 ランプ 3に印加する高周波電圧の周波数について簡単に説明する。 本実施の形態にお ける当該周波数は、 実用的に一般的に使用されている I SM帯の 1 3. 56 MH zま たは数 MH zと比べると、 1 MH z以下 (例えば、 50〜 500 k H z) の比較的低 い周波数の領域となっている。 この低周波数領域の周波数を使用する理由を述べると、 次の通りである。 まず、 1 3. 56MH Zまたは数 MH Zのような比較的高い周波数 領域で動作させる場合、 点灯回路 (回路基板) 内の高周波電源回路から発生するライ ンノィズを抑制するためのノイズフィルタが大型となリ、 高周波電源回路の体積が大 きくなつてしまう。 また、 ランプから放射または伝播されるノイズが高周波ノイズの 場合、 高周波ノイズには非常に厳しい規制が法令にて設けられているため、 その規制 をクリア一するには、 高価なシールドを設けて使用する必要があり、 コストダウンを 図る上で大きな障害となる。 一方、 50 kH Z〜 1 MH Z程度の周波数領域で動作さ せる場合には、 高周波電源回路を構成する部材として、 一般電子機器用の電子部品と して使用されている安価な汎用品を使用することができるとともに、 寸法の小さい部 材を使用することが可能となるため、 コストダウンおよび小型化を図ることができ、 利点が大きい。 ただし、 本実施の形態の無電極蛍光ランプは、 1 MH z以下の動作に 限らず、 1 3. 56MH zまたは数 MH z等の周波数の領域においても動作させ得る ものである。
以上述べたように実施の形態 1の放電ランプ点灯装置を用いることにより、 調光器 2で位相制御された電圧のターン ·オン及びターン■オフに同期させて、 DCZAC 変換部 6を間欠駆動させることにより、 調光用の無電極蛍光ランプを安定して調光点 灯することができ、 解決すべき課題の項で述べたような不安定な点灯によるチラツキ ゃ不点灯といった不具合が生ずることはない。
また、 以上述べた本発明になる実施の形態 1で述べた放電ランプ点灯装置は、 安定 した調光ということだけでなく、 位相制御された電圧のオン期間 (導通期間) に入力 される電力を、 この期間全体に渡って有効に、 最大限利用できる点灯装置である。 換 言すれば、 位相制御された電圧と必ずしも同期していないことにより、 放電ランプへ の電力供給期間が、 位相制御された電圧の導通期間よリも少なくなる従来の調光用点 灯装置に比べて調光範囲が広い点灯装置である。
(実施の形態 2 )
本発明の実施の形態 2に係る放電ランプ点灯装置は、 実施の形態 1の構成と類似し ており、 実施の形態 1とは調光制御部 7が異なっている。
本実施の形態が実施の形態 1と異なっている点は、 フォト力ブラ 9に実施の形態 1 のフォト力ブラ 9よりも立ち上がり及び立ち下がり時間の長いものを用いている点で ある。 従って、 本実施の形態の放電ランプ点灯装置は、 位相制御された電圧のターン ■オン、 ターン■オフに常に一定のずれ時間をもって D CZ A C変換部 6を同期させ て間欠駆動させる。 一定のずれ時間は、 フォト力ブラ 9の応答時間であって、 例えば 入力交流電圧の周期の数%よリも長い時間である。
次に、 図 1 0をもとに本実施の形態の放電ランプ点灯装置の動作と特性について説 明する。
図 1 0 aから dまでの波形を示す図において、 横軸は時間軸であり、 各図において 共通尺度である。 図 1 0の aは、 調光器 2で位相制御された電圧の波形を示している。 この図から調光器 2のトライアツクの導通角は πに近づいておリ、 かなリ深い調光が 行われている状態であることが分かる。
図 1 0の bは、 図 1 0の aのような位相制御された電圧が点灯回路 4に入力された とき、 調光制御部 7から D CZ A C変換部 6に送られる調光指令信号を示している。 図 1 0の aと bとを比較すると分かるように、 位相制御電圧がターン ·オンした後、 調光制御部 7からの調光指令信号は時間 Δ tだけ遅れて DCZAC変換部 6に送られ ている。
これに伴い DCZAC変換部 6のスイッチング素子である MOS FET 1 2のドレ イン電流は、 図 1 0の cに示す通りになる。 MOS FET 1 3のドレイン電流も、 図 1 0の cで示されるものとほぼ同一であるため図示していない。
MOS FET 1 2, 1 3のドレイン電流が流れているときには、 無電極蛍光ランプ 3が発光し、 その発光出力は図 1 0の dに示す通りである。 ずれ時間 Atは一定であ るので、 発光出力も常に一定になり、 無電極蛍光ランプ 3がちらつくことはない。 ただし、 MOS FET 1 2, 1 3のドレイン電流は、 無電極蛍光ランプ 3が始動す るために大きなエネルギーを必要とし、 図 1 0の cに示すように点灯する瞬間大きな 電流が流れる。 調光指令信号のターン■オンが、 位相制御電圧のターン 'オンから△ t時間だけ遅れることにより、 MOS FET 1 2, 1 3のドレイン電流の立ち上がり が遅れ、 その分だけ無電極蛍光ランプ 3に供給される高周波電力の供給時間が減少し 発光時間が短くなるだけでなく、 位相制御電圧がターン■オンした直後の位相制御電 圧がもっとも高い状態で DCZ AC変換部 6の駆動が停止しているため、 ずれ時間△ tが実質的にゼロの場合に比べ、 無電極蛍光ランプ 3の発光出力が低下する。
本実施の形態では、 位相制御された交流電圧のターン 'オン、 ターン 'オフと、 D CZAC変換部 6の間欠駆動の点灯、 消灯のタイミングとのずれ量 (時間 At ) を一 定に維持しているので、 放電ランプのちらつきを防止できる。 このタイミングのずれ は、 本実施の形態ではフォト力ブラ 9の応答時間を利用しているが、 遅延回路などを 用いてずれ時間を設けても構わない。 また、 ずれ時間 Atが交流電圧の一周期よりも 少し短い時間の場合は、 DCZ AC変換部 6の間欠駆動の点灯、 消灯のタイミングは、 位相制御された交流電圧のターン■オン、 ターン■オフよりも前にずれているように 観察されるが、 この場合も放電ランプのちらつきは防止される。 なお、 発光出力の低 下を考慮すると、 ずれ量は小さい方が好ましく、 実質的にゼロであることがより好ま しい。
(実施の形態 3) 本発明に係る実施の形態 3における放電ランプ点灯装置は、 無電極蛍光ランプを調 光点灯する放電ランプ点灯装置であり、 先に実施の形態 1の説明で述べた構成と類似 しているが、 DCZAC変換部 6の構成において異なっている。
図 3は、 本発明の実施の形態 3における放電ランプ点灯装置の点灯回路を模式的に 示したものである。 実施の形態 1 と同一の構成は、 同一の符号を付して重複した説明 を省略する。
図 3において、 DCZAC変換部 6は、 発振部 244、 スィッチ回路 255、 駆動 回路 1 1、 MOS FET 1 2, 1 3, 共振用インダクタ 1 4, 共振用コンデンサ 1 7, 1 8とで構成されている。 なお発振部 244は、 発振周波数が f 1 (H z) の発振部 Aと、 発振周波数が f 2 (H z) の発振部 Bとで構成されており、 周波数 f 2は、 周 波数 f 1よりも低い周波数に設定されている。 駆動回路 1 1は、 調光指令信号部 1 0 から調光指令信号がスイッチ回路 255に出力されるときには発振部 Aと接続され、 また駆動回路 1 1は、 調光指令信号部 1 0から調光指令信号が駆動回路 255に出力 されないときには発振部 Bと接続される構成となっている。
以下本実施の形態 3の動作について簡単に説明する。
本実施の形態 3においても放電ランプの点灯原理は、 実施の形態 1の場合と同じで あり重複して説明しない。
調光器 2から調光制御部 7に入力される位相制御された電圧に対する調光制御部 7 の動作も実施の形態 1の場合と基本的に同じであり詳しい説明を省略する。
調光制御信号入力部 8に入力された位相制御された電圧から、 先に実施の形態 1で 述べたようにフォト力ブラ 9を利用する方法で、 2値化した、 オン、 オフの調光指令 信号出力を得ることができる。
フォトカブラ 9に内蔵されたトランジスタを介して調光指令信号がスィッチ回路 2 55に伝達される、 調光指令信号がオンのとき、 スィッチ回路において、 発振周波数 が f 1 (H z) である発振部 Aと駆動回路 1 1とが接続され、 スイッチング素子たる MOS FET 1 2, 1 3は、 スイッチング周波数 f 1 (H z) で、 交互に、 駆動する。 これにより高周波電圧が発生し、 無電極蛍光ランプ 3を点灯する。 一方、 フォ卜力ブラ 9に内蔵されたトランジスタを介して調光指令信号がスィツチ 回路 255に伝達されない、 調光指令信号がオフのときには、 スィッチ回路 255に おいて、 発振周波数が f 2 (H z) である発振部 Bと駆動回路 1 1 とが接続され、 ス イッチング素子たる MOS FET 1 2と 1 3は、 スイッチング周波数 f 2 (H z) で、 交互に、 駆動する。 ただし、 この場合、 発振部 Bの周波数 f 2 (H z) は、 発振部 A の周波数 f 1 (H z) に比べて低く設定されているため、 無電極蛍光ランプ 3の誘導 コイル 1 9を流れる高周波電流は、 調光指令信号がオンの場合に比べて少ない。 この ように発振部 244の発振周波数の設定にあたっては、 周波数が f 2 (H z) のとき 誘導コイル 1 9を通して電流は流れるが、 無電極蛍光ランプ 3は点灯しないように設 定してある。 f 2 (H z) の周波数では、 放電バルブ 20の内部で放電が生じない、 あるいは発光には不十分な放電しか生じないからである。 つまり、 f 1 (H z) の電 圧が、 無電極蛍光ランプ 3が点灯する高周波電圧であり、 f 2 (H z) の電圧が、 無 電極蛍光ランプ 3が点灯しない高周波電圧である。
実施の形態 3の動作の理解を助けるために、 位相制御された電圧の電圧波形、 調光 指令信号の波形、 MOS FET 1 2のドレイン電流の波形、 および無電極蛍光ランプ 3からの発光出力の波形を、 図 4の a、 b、 c及び dに、 それぞれ示した。
図 2の cと図 4の cとを比較すると、 本実施の形態 3のように無電極蛍光ランプ 3 の消灯時間に、 点灯しない程度の電流を流しておいた場合 (図 4の c) 、 位相制御さ れた電圧がターン■オンされたときの無電極放電ランプからの発光出力は、 実施の形 態 1で述べた消灯時間に電流を流さない場合 (図 2の c) に比べてより少ない電流で 立ち上がつていることが分かる。 これは、 消灯時間においても無電極放電バルブ 20 において電離した発光ガスが存在しているため、 次回に無電極放電バルブ 20を点灯 させるためのエネルギーが少なくなるためのである。 点灯させるためのエネルギーが 少なくなると、 点灯が容易となり、 その結果光束立ち上がリも早くなる (図 4の dの 発光出力の立ち上がリカ 図 2の dと比べて急峻になる) 。
以上述べた本実施の形態 3の構成とすることにより、 無電極蛍光ランプ 3の調光を 深くして、 DCZAC変換部 6の MOS FET 1 2, 1 3が駆動するオン期間が短か く、 すなわちデューティー比を小さく しても、 位相制御された電圧に同期した確実に 調光点灯が可能である。
なお、 本実施の形態では、 発振部 Bの周波数 f 2 (H z) 力 発振部 Aの周波数 f 1 (H z) より低く設定したが、 これと逆に、 発振部 Bの周波数 f 2 (H z) が、 発 振部 Aの周波数 f 1 (H z) より高く設定したものであっても良い。
また、 上記実施の形態 3では、 点灯期間と、 消灯期間とで、 駆動周波数を f 1と、 f 2とに、 それぞれ、 変えることによって、 消灯期間に無電極放電バルブ 20を流れ る高周波電流が点灯期間に流れる高周波電流よりも少なくした。 これと同様に、 点灯 期間と消灯期間とで、 MOS FET 1 2, 1 3のゲート■ ソース間の電圧を変えるこ とよって、 ドレイン電流を制御し、 消灯期間に放電バルブ 20を流れる高周波電流が、 点灯期間に流れる高周波電流よリも少なくなるようにしても実施の形態 3と同様な効 果を得ることができる。
(実施の形態 4)
実施の形態 4は、 本発明の他の応用例に係る無電極放電ランプ点灯装置である。 な お、 実施の形態 1, 3と同一の構成は、 同一の符号を付して説明を省略する。
図 5は、 本発明の実施の形態 4における無電極放電ランプ点灯装置の回路図である。 本無電極放電ランプ点灯装置は、 無電極蛍光ランプ 3と、 入力電圧を位相制御する 調光器 2と、 前記調光器 2によって位相制御された電圧のターン■オンとターン -ォ フとの期間、 すなわち導通期間に同期して、 前記無電極蛍光ランプ 3を点灯制御する 点灯回路 4とから構成されている。
以下、 本実施の形態 4の無電極放電ランプ点灯装置の構成と動作について説明する。 点灯回路 4は、 ACZDC変換部 5と、 DCZAC変換部 6と、 調光制御部 7とで 構成されている。
ACZDC変換部 5は、 ダイオードプリッジ DB 1 と電解コンデンサ C 2とで構成 されている。 この ACZDC変換部 5に、 突入電流防止用の抵抗や雑音防止フィルタ が接続されていても勿論よい。
電源が入力されると、 調光器 2で位相制御された電圧は、 ACZDC変換部 5のダ ィオードブリッジ DB 1で整流され、 さらに電解コンデンサ C 2で平滑化され、 この 出力が DCZ AC変換部 6に送られる。
次に、 DCZAC変換部 6の構成と動作を説明するにあたっては、 先ず、 調光制御 部 7から調光指令信号が DCZAC変換部 6に送られず、 すなわちトランジスタ Q 4 がオフであり、 DCZAC変換部 6のスイッチング素子である MOS FET 1 2, 1 3が、 駆動している状態を考え、 この状態について説明する。
商用電源 1から調光器 2に入力され, 位相制御された電圧は A CZD C変換部 5で 整流され、 平滑コンデンサ C 2, 00 〇変換部6の1\105 FET 1 3のトリガコ ンデンサ C 4及びチャージポンプ回路機能を果たすコンデンサ C 8を充電する。 卜リガコンデンサ C 4の充電電圧がチェナーダイォード Z D 4のチェナー電圧に達 すると、 抵抗 R 2, R4, R3を通して電流が流れ、 MOS FET 1 3のゲート ' ソ ース間にゲート電圧が供給されてえ、 MOS FET 1 3がオン状態になる。
MOS FET 1 3がオン状態になった当初は、 平滑コンデンサ C 2の電圧が電源電 圧より低いため、 電源 1から調光器 2、 さらに A CZDC変換部 5を介して、 共振コ ンデンサ 1 8, 1 7、 インダクタ L 1、 誘導コイル 1 9, トランス CTの一次巻線 C T 1、 MOS FET 1 3を通して電流が流れる。
一方、 卜ランス CTの一次巻線 CT 1を流れる電流によって、 トランス CTの二次 卷線 CT 3に誘導電圧が発生し、 MOS FET 1 3にゲート電圧を供給することがで きるため、 MOS FET 1 3はオン状態を続ける。
しかし、 トランス CTの各卷線を流れる電流が増加すると、 一定時間経過後、 トラ ンス CTのコア自体が磁気飽和し、 卜ランス CTの二次卷線 CT 3の誘導電圧が生じ なくなり、 MO S F Ε Τ 1 3のゲー卜電圧が供給できなくなリ、 MO S F Ε Τ 1 3は オフとなる。
なお、 トランス CTの二次卷線 CT 2に接続される MOS FET 1 3と、 トランス CTの二次卷線 CT 3に接続される MOS FET 1 2のゲート ·ソース間に流れる電 流の方向が異なるため、 MOS F Ε Τ 1 3がオフ状態になると、 MOS FET 1 2の ゲート電圧が上昇する。 したがって、 かかる電圧上昇によって MOS FET 1 2は、 オン状態となる。
MOS FE T 1 2がオン状態になると、 電流は、 MOS FET 1 2、 トランス CT、 インダクタ L 1、 コンデンサ C 1 7, コンデンサ C 1 7に並列に接続された、 コンデ ンサ 1 8と誘導コイル 1 9の直列回路を通して流れる。 この電流は、 インダクタ L 1、 共振コンデンサ C 1 8, C 1 7及び誘導コイル 1 9とで共振する。
さらに、 電流トランス CTの各卷線を流れる電流が増加すると、 再度、 電流トラン ス CTのコア自体が磁気飽和する。 電流トランス CTのコアが磁気飽和すると、 二次 巻線 CT 2の出力が無くなり、 MOS FET 1 2にゲート電圧を供給できなくなる。 こうして MOS FET 1 2はオフ状態となる。
以後、 上述した動作を繰り返すことで、 MOS FET 1 2と MOS FET 1 3にお いて、 駆動周波数 f 1 (H z) 、 例えば 200 (kH z) でオン状態とオフ状態とを、 交互に、 切り替えることができる。
これによつて D CZ A C変換部 6の共振回路に高周波電圧を発生し、 誘導コイル 1 9を介して無電極放電バルブ 20に電磁エネルギーを供給し、 無電極放電バルブ 20 の内部に封入された発光ガスを励起し紫外放射を放射させ、 この紫外放射によって無 電極放電バルブ 20内部に塗布した蛍光体 (図示せず) を励起発光させ、 無電極蛍光 ランプ 3を点灯することができる。
次に、 調光制御部 7から調光指令信号が DCZAC変換部 6に伝達され、 調光点灯 が行われる場合の動作について説明する。
調光器 2で位相制御された電圧 (図 4の a参照) を、 抵抗 R30と R31 とでフォ トカブラ 9の駆動に適切な電圧となるように分圧して、 ダイオード■ブリッジ D B 2 に入力し、 全波整流された電圧がフォトカブラ 9のフォト ·ダイオードに印加される ようになつている。 したがって、 位相制御された電圧がターン ·オンされると同時に フォト力ブラ 9のフォト■ダイオードに全波整流された電圧が印加され、 フォト 'ダ ィオードが発光し、 これによりフォト力ブラ 9のフォト ' トランジスタに電流が流れ、 フォトカブラ 9がオンとなる。
フォト力ブラ 9がオンとなると、 トランジスタ Q 4のベース電位がゼロになり、 ト ランジスタ Q 4のコレクタ電流は流れない。 このため Q 4は、 MOS FET 1 2およ び MOS FET 1 3のオン、 オフ駆動には何ら影響を与えず、 MOS FET 1 2, 1 3には図 4の cに示したようなドレイン電流が流れ、 D C Z A C変換部 6には高周波 電圧が発生し、 無電極蛍光ランプ 3が点灯する。
調光器 2により位相制御された電圧がターン■オンされてフォ卜トランジスタを通 して流れる電流は、 位相制御された電圧がターン■オフされ、 フォト力ブラ 9のフォ 卜 -ダイォードにダイオード ·ブリッジ D B 2を介して電圧が印加されなくなるまで 持続する、 すなわち、 無電極蛍光ランプ 3の点灯が持続する。
調光器 2により位相制御された電圧がターン ·オフされると、 フォトカブラ 9に印 加される電圧はゼロであり、 したがってフォト力ブラ 9はオフ状態となる。 この状態 において、 トランジスタ Q 4のベースには直流電源回路 (例えば 3端子レギユレ一 タ) 40により抵抗 R 35を介して直流電圧が印加され、 Q 4のコレクタ電流が流れ る。 これにより抵抗 R 3と並列に抵抗 R 38が入ることになリ、 MOS FET 1 3の ゲート電圧が下がり、 MOS FET 1 2はオフ状態となり、 無電極放電バルブ 20に は高周波電圧がかからなくなり無電極蛍光ランプ 3は消灯する。 この MOS FET 1 2のオフ状態は、 調光器 2により位相制御された電圧が、 再び、 ターン■オンされる まで続く。
このように、 位相制御された電圧が、 ターン■オン及びターン■オフされるのと同 期して MOS FET 1 2, 1 3がオン、 オフを繰り返し、 さらに MOS F E T 1 2, 1 3がオン、 オフするのと同期して無電極蛍光ランプ 3が点灯と消灯を繰り返す。 な お、 抵抗 R 38の DCZ AC変換部 6内部での接続部分は、 二つのツエナーダイォー ド ZD 3, ZD 4の間以外に、 抵抗 R 6とツエナーダイオード ZD 3との連結部分で もよい。 どちらであっても無電極蛍光ランプ 3がオン、 オフを繰り返すからである。 よって、 本実施の形態によつて先の実施の形態 3で述べた効果と同様な効果が得ら れることは言うまでもない。
(実施の形態 5)
図 6は、 実施の形態 5に係る放電ランプ点灯装置の回路図である。 先に述べた実施 の形態 1と異なる点は、 放電バルブ 2 0 0が有電極であり、 この有電極の蛍光ランプ 3 3を点灯するために負荷共振回路の構成が異なる点だけである。 なお実施の形態 1 と同一の構成は、 同一符号を付して説明を省略する。
図 6において、 M O S F E T 1 3のドレイン端子とソース端子間に蛍光ランプ 3 3、 共振用インダクタ 1 4, 共振用コンデンサ 1 5, 共振兼余熱用のコンデンサ 1 6とで 構成された L C共振回路が接続されている。
上述した L C共振回路のコンデンサ 1 6の両端に共振電圧として高電圧が発生する。 放電バルブ 2 0 0内の 2つの電極への余熱電流によって電極の温度が上昇し、 電極か ら熱電子が発生しゃすくなると、 放電バルブ 2 0 0は絶縁破壊を起こし放電を開始す る。 放電バルブ 2 0 0が放電を始めると共振用インダクタ 1 4により放電バルブ 2 0 0を流れる電流を制限し安定した放電を維持する。
本実施の形態 5の調光制御部 7の構成と動作は、 実施の形態 1の場合と同様である。 放電ランプ点灯装置の構成を図 6のような構成とすることにより、 調光可能な一般の 有電極の蛍光ランプを安定して調光点灯できることは先の実施の形態 1の説明から明 らかであり、 重複して説明しない。
(実施の形態 6 )
次に、 実施の形態 6の放電ランプ点灯装置の構成を説明する。 図 7は、 本実施の形 態 6として無電極の電球形蛍光ランプを取りあげ、 その構成を模式的に示している。 なお、 本実施の形態の放電ランプ点灯装置は、 無電極の電球形蛍光ランプとしたが、 有電極の電球形蛍光ランプの構成とすることもできる。
図 7に示した無電極電球形蛍光ランプは、 凹入部 2 0 aを有し、 水銀と稀ガス例え ばアルゴン (図示せず) を封入した透光性の放電バルブ 2 0で構成された無電極蛍光 ランプ 3と、 例えば白熱電球用 E 2 6型などの口金 5 6と、 点灯回路 (例えば図 6で 示した回路) の構成の配線が形成され各々の回路部品が取り付けられた回路基板 5 4 と、 回路基板を収容するカバー 5 5とを有している。
放電バルブ 2 0の内部に封入した水銀励起のための放電プラズマの生成は、 誘導コ ィル 1 9によって放電バルブ内に発生される交流電磁界によって供給されるエネルギ 一によつて行われる。 誘導コイル 1 9は、 フェライト磁芯と 1 9 aと卷線 1 9 bとで 構成されており、 放電バルブが有する凹入部 2 0 aに配置されている。
無電極蛍光ランプ 3と、 回路基板 5 4と口金 5 6は、 図示していないが、 それぞれ、 互いに電気的に接続されており、 口金 5 6を介して白熱電球用ソケッ卜にねじ込むこ とで電力が供給されて、 無電極蛍光ランプ 3が点灯する。
口金 5 6を通して入力される交流電圧は、 外部の位相制御装置 (例えば、 白熱電球 用調光器等) によって位相制御された交流電圧である。
放電ランプは、 本実施の形態のように無電極蛍光ランプでなく有電極の蛍光ランプ であっても勿論良い。
また、 本実施の形態では、 無電極放電ランプ 3と点灯回路と口金とがー体に組み立 てられた電球形無電極蛍光ランプを示したが、 本実施の形態はこれに限られず、 無電 極蛍光ランプ 3と点灯回路とが別々になっているような放電ランプ点灯装置 (無電極 放電ランプ点灯装置) であってもよい。
(他の実施の形態)
実施の形態 1 ~ 6で述べた放電ランプの形状は、 直管、 丸管、 U字管、 など一般照 明用に供されるものであればどんな形状のものであっても良い。
また、 本発明の放電ランプ点灯装置は、 一般照明用の蛍光ランプに限定されること なく、 例えば紅斑効果やビタミン Dの生成に有効な作用スぺクトルを有する健康線ラ ンプや、 植物の光合成や形態形成に有効な作用スぺクトルを有する植物育成用ランプ を点灯するものであっても勿論良い。
さらに本発明の放電ランプ点灯装置が点灯対象とする放電ランプは、 殺菌ランプの ように放電バルブに蛍光体を塗布しない放電ランプであってもよい。
なお、 上記実施の形態 1では、 調光制御部 7は、 ターン .オンと D C Z A C変換部 6の間欠駆動の点灯とのタイミングを同期させる信号を出力する構成を有しているが、 これは、 同期させた方が良好に調光動作を実行させることができるからである。
図 9に示した構成は、 間欠駆動の点灯回路 4 ' でありながらターン■オンと D CZ A C変換部 6の間欠駆動の点灯とのタイミングを同期させることを意図していないも のである。 上記実施の形態 1の構成と異なるのは、 調光制御信号を発生させ、 DCZ AC変換部 (インバータ回路) 6に調光指令信号を送る調光制御部 7' の構成である。 調光制御部 7' は、 調光信号発生部 74と DCZ AC変換部 6に調光指令信号を送 る調光指令信号部 1 0とで構成されている。 トライアツクで位相制御された調光器 2 からの出力は、 半波整流回路 71を介して半波整流され、 その出力電圧 (1 20H z) と、 基準周波数 (1 20H z) の基準電圧を発生する三角波発生回路 72の出力 電圧とが、 比較器 73で比較され、 比較器 73から周波数が一定で、 矩形波状の調光 信号が出力される。 この調光信号を調光指令信号部 1 0を介して DCZAC変換部 6 に送り、 DCZ AC変換部 6のオン時間とオフ時間とを変えて無電極蛍光ランプ 3の 調光を行った。 放電ランプとしては無電極蛍光ランプ 3を用い、 インバータ回路のス イッチング周波数 f 1は 200 kH zとし、 スイッチング素子としては MOS F E T 1 2, 1 3を用いた。
図 1 1に実験結果の一例を示した。
以下、 図 1 1をもとに図 9の放電ランプ点灯装置の動作と特性について説明する。 図 1 1 aから dまでの波形を示す図において、 横軸は時間軸であり、 各図において共 通尺度である。 図 1 1の aは、 調光器 2で位相制御された電圧の波形を示している。 この図から調光器 2のトライアツクの導通角は πに近づいておリ、 かなリ深い調光が 行われている状態であることが分かる。
図 1 1の bは、 図 1 0の aのような位相制御された電圧が点灯回路 4' に入力され たとき、 調光制御部 7から DCZ AC変換部 6に送られる調光指令信号を示している。 図 1 1の aと bとを比較すると分かるように、 位相制御電圧のターン,オンと、 調光 指令信号のターン 'オンとは同期が取れていない。 つまり、 調光指令信号のターン - オン ターン■オフのタイミングが、 位相制御電圧のターン ·オン Zターン■オフの タイミングからずれており、 しかも、 そのずれる時間△ tが時刻により変動している。
この調光指令信号が図 1 1の bに示すように変動したとき、 MOS FET 1 2 (ま たは 1 3) のドレイン電流が図 1 1の cのように変化し、 その結果無電極蛍光ランプ への電気エネルギーの供給が減少し発光出力が図 1 1の dのように変化し、 チラツキ を生ずる。
調光器 2によりさらに深い調光をしていくと、 MOSOS FET 1 2, 1 3のドレ イン電流が減少し、 その結果、 無電極蛍光ランプ 3に供給される高周波電力が低減し、 点灯するか消灯するかの閾状態に近い状態となる。
今、 位相制御された電圧のターン 'オンのタイミングと、 調光制御部 7' からの調 光信号のターン ·オンのタイミングとが同期している状態では、 無電極蛍光ランプ 3 がかろうじて点灯できるような電気エネルギーを無電極蛍光ランプ 3に供給できる放 電ランプ点灯装置を考える。 この装置において、 図 1 1に示すように調光指令信号の ターン■オンが位相制御電圧のターン■オンとのタイミングがずれ、 そのずれ時間の 長さが変動していくと、 この点灯装置に取り付けた無電極蛍光ランプ 3は上述した説 明から分かるようにほとんど消灯し、 たまに点灯する状態になる。 また深い調光を行 う場合、 位相制御電圧のターン■オンと調光指令信号のターン ·オンのタイミングと のずれ時間△ tが大きくなると、 無電極蛍光ランプ 3がまつたく点灯できない状態と なる。
因みに、 実施の形態 1の放電ランプ点灯装置に図 1 0 aに示す深い調光の位相制御 電圧と同じ電圧を印加したときの、 位相制御電圧、 調光指令信号、 MOS FET 1 2 のドレイン電流及び発光出力の、 各波形を図 1 2の a、 b、 c及び dに、 それぞれ示 した。 図 1 1の dと、 図 1 2の dとを比較して分かるように、 調光器 2により位相制 御された電圧のターン■オンおよびターン■オフに、 DCZ AC変換部のスィッチン グ素子のターン■オン及びターン■オフのタイミングを正確に同期させた本発明にな る放電ランプ点灯装置 (図 1 ) は、 ちらつきが無く、 且つ、 発光出力も多いことを確 認している。
以上説明したように、 本発明になる放電ランプ点灯装置によれば、 調光器により位 相制御された電圧を無電極、 あるいは、 有電極の蛍光ランプに入力し、 蛍光ランプを 調光する場合、 位相制御された電圧のターン■オンおよびターン■オフのタイミング と、 DC/AC変換部を間欠駆動させるための調光指令信号のターン■オンおよびタ ーン■オフのタイミングとを同期させることによりチラツキや、 立ち消えをすること なく安定な調光動作を実現できる。
さらに、 本発明の放電ランプ点灯装置を利用することにより、 従来の点灯装置に比 ベて放電ランプに電気エネルギーをよリ多く供給でき、 放電ランプ発光出力の増大が 図れる。 産業上の利用可能性
本発明の無電極放電ランプ点灯装置、 電球形無電極蛍光ランプおよび放電ランプ点 灯装置は、 既設の白熱電球用の調光器に接続して用いたときに、 ちらつくことなく安 定した調光を行うことができる点で有用であり、 産業上の利用可能性が高い。

Claims

言青求の範囲
1. 無電極放電ランプと、
調光器によって位相制御された交流電圧を直流電圧に変換して出力する A DC 変換部と、
前記直流電圧を高周波電圧に変換し、 当該高周波電圧によって、 前記無電極放電ラ ンプを点灯させる点灯期間と前記無電極放電ランプを消灯する消灯期間とで前記無電 極放電ランプを間欠駆動する D CZ A C変換部と、
前記 DCZAC変換部に、 点灯期間と消灯期間との比を変える調光指令信号を出力 する調光制御部とを備える無電極放電ランプ点灯装置であって、
前記調光制御部は、 前記位相制御された交流電圧のターン■オンとターン ·オフと を検出し、 前記ターン■オンと前記 DCZAC変換部の間欠駆動の点灯とのタイミン グと、 前記ターン■オフと前記 DCZ AC変換部の間欠駆動の消灯とのタイミングと を、 それぞれ実質的に同期させる、 無電極放電ランプ点灯装置。
2. 前記 DCZAC変換部は、 前記高周波電圧を前記無電極放電ランプに印加して 点灯させる点灯期間と、 前記高周波電圧の発生を停止して前記無電極放電ランプを消 灯する消灯期間とで前記無電極放電ランプを間欠駆動する、 請求項 1に記載の無電極 放電ランプ点灯装置。
3. 前記 DC/AC変換部は、 前記無電極放電ランプが点灯する高周波電圧に前記 直流電圧を変換して前記無電極放電ランプに印加する点灯期間と、 前記無電極放電ラ ンプが点灯しない高周波電圧に前記直流電圧を変換して前記無電極放電ランプに印加 する消灯期間とで、 前記無電極放電ランプを間欠駆動する、 請求項 1に記載の無電極 放電ランプ点灯装置。
4. 前記 DCZAC変換部は、 少なくとも 1つのスイッチング素子を有し、 前記直 流電圧を高周波電圧に変換して前記無電極放電ランプに印加する場合に、 前記スイツ チング素子のゲート ·ソース間の電圧を変えることによって、 前記無電極放電ランプ を点灯させる点灯期間と前記無電極放電ランプに前記点灯期間よりも少ない電流を流 して消灯する消灯期間とで前記無電極放電ランプを間欠駆動する、 請求項 1に記載の 無電極放電ランプ点灯装置。
5. 前記調光制御部は、 前記調光指令信号を前記 DCZ AC変換部に伝達する手段 としてフォトカブラを備える、 請求項 1に記載の無電極放電ランプ点灯装置。
6. 無電極蛍光ランプと、
前記無電極蛍光ランプに高周波電圧を印加する点灯回路と、
前記点灯回路に電気的に接続された口金と
を備え、
前記無電極蛍光ランプと前記点灯回路と前記口金とは一体に組み立てられており、 前記点灯回路は、
調光器によって位相制御された交流電圧を直流電圧に変換して出力する A CZD C変換部と、
前記直流電圧を高周波電圧に変換し、 当該高周波電圧によって、 前記無電極放電 ランプを点灯させる点灯期間と前記無電極放電ランプを消灯する消灯期間とで前記無 電極放電ランプを間欠駆動する DCZ AC変換部と、
前記 DC/AC変換部に、 点灯期間と消灯期間との比を変える調光指令信号を出 力する調光制御部と
を含んでおり、
前記調光制御部は、 前記位相制御された交流電圧のターン 'オンとターン 'オフと を検出し、 前記ターン■オンと前記 DCZAC変換部の間欠駆動の点灯とのタイミン グと、 前記ターン■オフと前記 DCZAC変換部の間欠駆動の消灯とのタイミングと を、 それぞれ実質的に同期させる、 電球形無電極蛍光ランプ。
7. 前記調光制御部は、 前記調光器によって位相制御された交流電圧を入力する調 光信号入力部と、 当該調光信号入力部に接続されたフォト力ブラと、 当該フォトカブ ラからの前記調光指令信号を前記 D C A C変換部に伝達する調光指令信号部とを備 える、 請求項 6に記載の電球形無電極蛍光ランプ。
8. 放電ランプと、
調光器によって位相制御された交流電圧を直流電圧に変換して出力する A CZ DC 変換部と、
前記直流電圧を高周波電圧に変換して、 当該高周波電圧を前記放電ランプに印加し て点灯させる点灯期間と、 前記高周波電圧の発生を停止して前記放電ランプを消灯す る消灯期間とで前記放電ランプを間欠駆動する D CZ A C変換部と、
前記 DCZAC変換部に、 点灯期間と消灯期間との比を変える調光指令信号を出力 する調光制御部とを備える放電ランプ点灯装置であって、
前記調光制御部は、 前記位相制御された交流電圧のターン ·オンとターン■オフと を検出し、 前記ターン■オンと前記 DCZAC変換部の間欠駆動の点灯とのタイミン グと、 前記ターン ·オフと前記 DCZAC変換部の間欠駆動の消灯とのタイミングと のずれ量を一定に維持する、 放電ランプ点灯装置。
9. 放電ランプと、
調光器によって位相制御された交流電圧を直流電圧に変換して出力する A CZDC 変換部と、
前記放電ランプが点灯する高周波電圧に前記直流電圧を変換して前記放電ランプに 印加する点灯期間と、 前記放電ランプが点灯しない高周波電圧に前記直流電圧を変換 して前記放電ランプに印加する消灯期間とで、 前記放電ランプを間欠駆動する DCZ AC変換部と、
前記 DCZAC変換部に、 点灯期間と消灯期間との比を変える調光指令信号を出力 する調光制御部とを備える放電ランプ点灯装置であって、
前記調光制御部は、 前記位相制御された交流電圧のターン ·オンとターン■オフと を検出し、 前記ターン ·オンと前記 D C A C変換部の間欠駆動の点灯とのタィミン グと、 前記ターン■オフと前記 DCZAC変換部の間欠駆動の消灯とのタイミングと のずれ量を一定に維持する、 放電ランプ点灯装置。
1 0. 放電ランプと、
調光器によって位相制御された交流電圧を直流電圧に変換して出力する A CZ DC 変換部と、
少なくとも 1つのスイッチング素子を有し、 前記直流電圧を高周波電圧に変換して 前記放電ランプに印加する場合に、 前記スイッチング素子のゲート■ソース間の電圧 を変えることによって、 前記放電ランプを点灯させる点灯期間と前記放電ランプに前 記点灯期間よりも少ない電流を流して消灯する消灯期間とで前記放電ランプを間欠駆 動する DCZAC変換部と、
前記 DCZAC変換部に、 点灯期間と消灯期間との比を変える調光指令信号を出力 する調光制御部とを備える放電ランプ点灯装置であって、
前記調光制御部は、 前記位相制御された交流電圧のターン■オンとターン■オフと を検出し、 前記ターン■オンと前記 DCZAC変換部の間欠駆動の点灯とのタイミン グと、 前記ターン■オフと前記 DCZAC変換部の間欠駆動の消灯とのタイミングと のずれ量を一定に維持する、 放電ランプ点灯装置。
1 1. 前記調光制御部は、 前記位相制御された交流電圧のターン■オンとターン■ オフとを検出し、 前記ターン■オンと前記 DC/ AC変換部の間欠駆動の点灯とのタ イミングと、 前記ターン ·オフと前記 DCZAC変換部の間欠駆動の消灯とのタイミ ングとの前記ずれ量を実質的にゼロに維持する、 請求項 8から 1 0のいずれか一つに 記載の放電ランプ点灯装置。
1 2. 前記調光制御部は、 前記調光指令信号を前記 DCZAC変換部に伝達する手 段としてフォト力ブラを備える、 請求項 8から 1 0の何れか一つに記載の放電ランプ 点灯装置。
1 3. 前記放電ランプは、 電極を有する有電極蛍光ランプである請求項 8から 1 0 の何れか一つに記載の放電ランプ点灯装置。
PCT/JP2003/001616 2002-02-20 2003-02-17 Dispositif d'eclairage de lampe a decharge sans electrode, lampe fluorescente sans electrode de type ampoule, et dispositif d'eclairage de lampe a decharge WO2003071836A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP03705211A EP1478213A4 (en) 2002-02-20 2003-02-17 LIGHTING DEVICE WITH ELECTRODE-FREE DISCHARGE LAMP, ELECTRODEVELESS FLUORESCENT LAMP OF THE LIGHT BULB TYPE AND LIGHTING DEVICE WITH DISCHARGE LAMP
US10/477,305 US6828740B2 (en) 2002-02-20 2003-02-17 Electrodeless discharge lamp operating apparatus, electrodeless compact self-ballasted fluorescent lamp and discharge lamp operating apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002043011 2002-02-20
JP2002-43011 2002-02-20

Publications (1)

Publication Number Publication Date
WO2003071836A1 true WO2003071836A1 (fr) 2003-08-28

Family

ID=27750514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/001616 WO2003071836A1 (fr) 2002-02-20 2003-02-17 Dispositif d'eclairage de lampe a decharge sans electrode, lampe fluorescente sans electrode de type ampoule, et dispositif d'eclairage de lampe a decharge

Country Status (4)

Country Link
US (1) US6828740B2 (ja)
EP (1) EP1478213A4 (ja)
CN (1) CN1579115A (ja)
WO (1) WO2003071836A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004110110A1 (ja) * 2003-06-04 2004-12-16 Matsushita Electric Industrial Co., Ltd. 放電ランプ点灯装置

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4433677B2 (ja) * 2003-02-14 2010-03-17 パナソニック電工株式会社 無電極放電灯点灯装置
US20050134196A1 (en) * 2003-12-18 2005-06-23 Cook Kenneth J. Fluorescent dimming system
US7265503B2 (en) * 2004-04-08 2007-09-04 International Rectifier Corporation Applications of halogen convertor control IC
TWI281772B (en) * 2004-05-04 2007-05-21 Beyond Innovation Tech Co Ltd Synchronous operation device
JP4337731B2 (ja) * 2004-12-22 2009-09-30 ソニー株式会社 照明装置、及び画像表示装置
US7560866B2 (en) * 2005-04-18 2009-07-14 Marvell World Trade Ltd. Control system for fluorescent light fixture
US7414369B2 (en) * 2005-04-18 2008-08-19 Marvell World Trade Ltd. Control system for fluorescent light fixture
KR20080011226A (ko) * 2005-05-10 2008-01-31 코닌클리즈케 필립스 일렉트로닉스 엔.브이. 범용 라인 전압 디밍 방법 및 시스템
US7619447B2 (en) * 2005-09-27 2009-11-17 Marvell World Trade Ltd. High voltage high side transistor driver
DE102007006181A1 (de) * 2007-02-07 2008-08-14 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Elektronisches Vorschaltgerät für eine Lampe
US7288902B1 (en) * 2007-03-12 2007-10-30 Cirrus Logic, Inc. Color variations in a dimmable lighting device with stable color temperature light sources
US8294556B2 (en) * 2007-04-17 2012-10-23 Powerline Control Systems, Inc. Powerline control system and method
US10655837B1 (en) 2007-11-13 2020-05-19 Silescent Lighting Corporation Light fixture assembly having a heat conductive cover with sufficiently large surface area for improved heat dissipation
US8154221B2 (en) * 2007-12-21 2012-04-10 Cypress Semiconductor Corporation Controlling a light emitting diode fixture
US20090200953A1 (en) * 2008-02-08 2009-08-13 Ray James King Methods and apparatus for a high power factor ballast having high efficiency during normal operation and during dimming
US20090200952A1 (en) * 2008-02-08 2009-08-13 Purespectrum, Inc. Methods and apparatus for dimming light sources
US20090200964A1 (en) * 2008-02-08 2009-08-13 King Ray J Methods And Apparatus For Dimmable Ballasts With A High Power Factor
WO2009099645A1 (en) * 2008-02-08 2009-08-13 Purespectrum, Inc. Energy savings circuitry for a lighting ballast
US20090200960A1 (en) * 2008-02-08 2009-08-13 Pure Spectrum, Inc. Methods and Apparatus for Self-Starting Dimmable Ballasts With A High Power Factor
US20090200951A1 (en) * 2008-02-08 2009-08-13 Purespectrum, Inc. Methods and Apparatus for Dimming Light Sources
US20090295300A1 (en) * 2008-02-08 2009-12-03 Purespectrum, Inc Methods and apparatus for a dimmable ballast for use with led based light sources
US8102167B2 (en) 2008-03-25 2012-01-24 Microsemi Corporation Phase-cut dimming circuit
TW200949145A (en) * 2008-05-21 2009-12-01 Gigno Technology Co Ltd Light-emitting apparatus and dimming method
JP2010050049A (ja) * 2008-08-25 2010-03-04 Panasonic Electric Works Co Ltd 放電灯点灯装置及び照明器具
US8049430B2 (en) 2008-09-05 2011-11-01 Lutron Electronics Co., Inc. Electronic ballast having a partially self-oscillating inverter circuit
TW201023494A (en) * 2008-12-09 2010-06-16 Glacialtech Inc AC/DC modulation conversion system and application thereof
US20100225239A1 (en) * 2009-03-04 2010-09-09 Purespectrum, Inc. Methods and apparatus for a high power factor, high efficiency, dimmable, rapid starting cold cathode lighting ballast
US8072158B2 (en) * 2009-03-25 2011-12-06 General Electric Company Dimming interface for power line
US9006992B2 (en) * 2009-04-11 2015-04-14 Innosys, Inc. Low current thyristor-based dimming
JP5773394B2 (ja) 2009-09-28 2015-09-02 コーニンクレッカ フィリップス エヌ ヴェ ソリッドステート照明システムの深調光を提供する方法及び装置
TW201134310A (en) * 2010-03-19 2011-10-01 Darfon Electronics Corp Lamp module
EP2375873B1 (en) * 2010-04-06 2013-05-08 OSRAM GmbH Power supply device for light sources, such as halogen lamps, and related method
CN103052202A (zh) * 2011-10-14 2013-04-17 华琼有限公司 一种调光方法及装置
JP6037164B2 (ja) * 2012-12-07 2016-11-30 東芝ライテック株式会社 電源回路及び照明装置
US9313849B2 (en) 2013-01-23 2016-04-12 Silescent Lighting Corporation Dimming control system for solid state illumination source
US9192001B2 (en) 2013-03-15 2015-11-17 Ambionce Systems Llc. Reactive power balancing current limited power supply for driving floating DC loads
JP6103478B2 (ja) * 2013-03-22 2017-03-29 東芝ライテック株式会社 電源回路及び照明装置
DE102013114761B3 (de) * 2013-12-23 2014-12-24 Insta Elektro Gmbh Schaltung zum Betreiben einer mit Wechselstrom betreibbaren Lampeneinheit sowie Verfahren zum Betreiben einer solchen Lampeneinheit
US9410688B1 (en) 2014-05-09 2016-08-09 Mark Sutherland Heat dissipating assembly
US9380653B1 (en) 2014-10-31 2016-06-28 Dale Stepps Driver assembly for solid state lighting
CN110996467B (zh) * 2019-12-31 2022-01-04 深圳市英可瑞直流技术有限公司 一种照明调光控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0645087A (ja) * 1992-07-27 1994-02-18 Matsushita Electric Works Ltd 無電極放電灯点灯装置
JPH11135290A (ja) * 1997-10-28 1999-05-21 Matsushita Electric Works Ltd 放電灯点灯装置
JP2002015892A (ja) * 2000-06-28 2002-01-18 Matsushita Electric Ind Co Ltd 放電ランプ点灯装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2831016B2 (ja) 1989-01-26 1998-12-02 松下電工株式会社 放電灯点灯装置
US5994848A (en) * 1997-04-10 1999-11-30 Philips Electronics North America Corporation Triac dimmable, single stage compact flourescent lamp
JPH11111486A (ja) 1997-09-30 1999-04-23 Toshiba Lighting & Technology Corp 放電灯点灯装置および照明装置
JP2000268992A (ja) 1999-03-19 2000-09-29 Fuji Electric Co Ltd 放電灯点灯装置
US6486616B1 (en) * 2000-02-25 2002-11-26 Osram Sylvania Inc. Dual control dimming ballast
JP3322261B2 (ja) * 2000-03-27 2002-09-09 松下電器産業株式会社 放電ランプ点灯装置
US6392366B1 (en) * 2001-09-19 2002-05-21 General Electric Company Traic dimmable electrodeless fluorescent lamp

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0645087A (ja) * 1992-07-27 1994-02-18 Matsushita Electric Works Ltd 無電極放電灯点灯装置
JPH11135290A (ja) * 1997-10-28 1999-05-21 Matsushita Electric Works Ltd 放電灯点灯装置
JP2002015892A (ja) * 2000-06-28 2002-01-18 Matsushita Electric Ind Co Ltd 放電ランプ点灯装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1478213A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004110110A1 (ja) * 2003-06-04 2004-12-16 Matsushita Electric Industrial Co., Ltd. 放電ランプ点灯装置

Also Published As

Publication number Publication date
CN1579115A (zh) 2005-02-09
US20040135523A1 (en) 2004-07-15
EP1478213A1 (en) 2004-11-17
EP1478213A4 (en) 2005-03-09
US6828740B2 (en) 2004-12-07

Similar Documents

Publication Publication Date Title
WO2003071836A1 (fr) Dispositif d'eclairage de lampe a decharge sans electrode, lampe fluorescente sans electrode de type ampoule, et dispositif d'eclairage de lampe a decharge
US6998792B2 (en) Electrodeless discharge lamp lighting device, light bulb type electrodeless fluorescent lamp and discharge lamp lighting device
JP4134037B2 (ja) 無電極放電ランプ点灯装置、電球形無電極蛍光ランプおよび放電ランプ点灯装置
US6977472B2 (en) Electrodeless self-ballasted fluorescent lamp and discharge lamp operating device
US9220159B2 (en) Electronic ballast
JP6031669B2 (ja) 低出力照明ユニットを動作させる回路装置及びそれを動作させる方法
US7772783B2 (en) Dimmable electronic ballast for electrodeless discharge lamp and luminaire
JP2003317989A (ja) 無電極放電ランプ点灯装置、電球形無電極蛍光ランプおよび放電ランプ点灯装置
US20110266966A1 (en) Electronic circuit for driving a fluorescent lamp and lighting application
US6528956B2 (en) Electronic ballast for high-intensity discharge lamps
JP4259008B2 (ja) 電球形蛍光ランプ
WO2004110110A1 (ja) 放電ランプ点灯装置
JP3758342B2 (ja) 放電灯点灯装置
JP2004335234A (ja) 無電極放電灯点灯装置及び照明装置
EP1442637A1 (en) Electronic ballast for high-intensity discharge lamps
JP2011054533A (ja) 無電極放電灯点灯装置及び照明器具
TWM350203U (en) Constant power control circuit which can activated by a heated lamp tube
JP2009266602A (ja) 無電極放電灯点灯装置及び照明器具

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10477305

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003705211

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20038014084

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2003705211

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2003705211

Country of ref document: EP