WO2003071626A2 - Structure alvéolaire et procédé de fabrication d'une telle structure. - Google Patents

Structure alvéolaire et procédé de fabrication d'une telle structure. Download PDF

Info

Publication number
WO2003071626A2
WO2003071626A2 PCT/FR2003/000499 FR0300499W WO03071626A2 WO 2003071626 A2 WO2003071626 A2 WO 2003071626A2 FR 0300499 W FR0300499 W FR 0300499W WO 03071626 A2 WO03071626 A2 WO 03071626A2
Authority
WO
WIPO (PCT)
Prior art keywords
layer
metal
honeycomb structure
solidified
honeycomb
Prior art date
Application number
PCT/FR2003/000499
Other languages
English (en)
Other versions
WO2003071626A3 (fr
Inventor
Stéphane REVOL
Original Assignee
Commissariat A L'energie Atomique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique filed Critical Commissariat A L'energie Atomique
Priority to US10/503,589 priority Critical patent/US7115336B2/en
Priority to JP2003570419A priority patent/JP4527402B2/ja
Priority to EP03717404A priority patent/EP1525633A2/fr
Publication of WO2003071626A2 publication Critical patent/WO2003071626A2/fr
Publication of WO2003071626A3 publication Critical patent/WO2003071626A3/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/003Arrangements for modifying heat-transfer, e.g. increasing, decreasing by using permeable mass, perforated or porous materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1103Making porous workpieces or articles with particular physical characteristics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12361All metal or with adjacent metals having aperture or cut
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12479Porous [e.g., foamed, spongy, cracked, etc.]

Definitions

  • the technical field of the present invention relates to that of energy production requiring a high compactness of the components used. More particularly, the invention relates to the cellular structures used in this specific technical field.
  • the cellular structures find particular application in the field of fuel cells, and more particularly in that of fuel cells comprising a membrane as electrolyte as well as bipolar plates, the latter being made of cellular structures.
  • the invention is also applicable to the field of heat exchangers using cellular structures.
  • the present invention also relates to the methods of manufacturing such cellular structures.
  • a fuel cell is an assembly generally comprising a plurality of elementary cells stacked one on the other.
  • an electrochemical reaction is created between two reagents which are introduced continuously into the elementary cells.
  • the fuel usually used is hydrogen or methanol, depending on whether one is respectively in the presence of a cell operating with mixtures of the hydrogen / oxygen type and in the presence of a cell operating with mixtures of the methanol / type oxygen.
  • the fuel is brought into contact with the anode while the oxidant, in this case oxygen, is brought into contact with the cathode.
  • the cathode and the anode are separated by means of an electrolyte of the ion exchange membrane type.
  • an oxidation reaction of the fuel, in general hydrogen represented by the following reaction scheme:
  • Electrodes-membrane-electrode assemblies are stacked on top of each other, in order to obtain a power greater than that supplied by a single one of these assemblies.
  • the junction and the electrical continuity between these assemblies are generally carried out using conductive plates, these plates also being called bipolar plates.
  • bipolar plates being of the alveolar structure type, that the cathode of an assembly can be joined with the anode of an adjacent assembly.
  • These bipolar plates also make it possible to ensure the highest possible electrical conductivities, so as to avoid ohmic drops detrimental to the performance of the fuel cell.
  • Bipolar plates can also perform other functions than that of providing the electrical connection.
  • bipolar plates can also be used to evacuate products at the cathode, by integrating elements for removing excess water.
  • the bipolar plates can also incorporate a heat exchanger serving to prevent overheating within the stack of electrode-membrane-electrode assemblies.
  • bipolar plates may reside in the mechanical strength of the electrode-menbran-electrode assemblies, in particular when the latter are stacked on top of each other. Such an assembly ensures an overall volume of the thin battery, which is entirely compatible with the intended applications, such as for example that relating to an electric vehicle.
  • These channels are usually organized so that the reagents injected into these channels wind over a large part of the surface of the electrode.
  • the means used to obtain a such a result are horizontal sections spaced by bends descending at 180 °. Note that these sections are also capable of recovering and discharging the water produced at the cathode.
  • this particular arrangement of means does not make it possible to obtain a sufficiently large exchange surface to result in an acceptable electrochemical conversion yield for industrial application.
  • the bipolar plate comprises a sealed conductive plate, as well as two parts of metal foam ensuring contact with the electrodes. This particular arrangement makes it possible to be exempt from the presence of machined metal elements and therefore expensive.
  • an additional drawback lies in the impossibility of easily controlling the internal geometry of the honeycomb structure, this resulting in the inability to vary the geometry of the distribution zone in the desired manner.
  • the object of the present invention is therefore to remedy all or part of the drawbacks of the honeycomb structures of the prior art.
  • the invention also aims to provide a honeycomb structure of simple design, and for which it is possible to perfectly control the internal geometry of its different honeycomb areas.
  • Another object of the present invention is to present a method of manufacturing a honeycomb structure such as that achieving the object of the invention mentioned above.
  • the invention firstly relates to a honeycomb structure comprising at least one honeycomb area partially delimited by an associated sealed surface.
  • each alveolar zone is formed by a plurality of metallic layers superimposed parallel to the associated sealed surface, each metallic layer comprising a network of passages opening out on either side of said metallic layer.
  • the invention provides a honeycomb structure of simple design whose internal geometry of the honeycomb areas is easily adaptable according to the needs encountered.
  • the honeycomb structure is indifferently integrated into a fuel cell as a bipolar plate, to a fuel cell as a bipolar plate with integrated exchanger, or even integrated into a heat exchanger.
  • each metal layer is produced by carrying out the following operations: - depositing a layer of metal powder; partial solidification by laser of the layer of metallic powder deposited, causing the formation of solidified parts and non-solidified parts, the solidified parts defining the periphery of the passages of the metal layer.
  • the metal layers are produced successively, the associated sealed surface constituting a support for the first metal layer to be produced, the solidified and non-solidified parts of any metallic layer produced constituting a support for the next metal layer to be made.
  • the networks for passing the metal layers are obtained by eliminating the non-solidified parts of the metal layers.
  • provision may be made for the operation of partial solidification by laser of a layer of deposited metal powder is also capable of joining the solidified parts obtained with the solidified parts of the metal layer on which they rest.
  • the metal layers are preferably made of a material selected from stainless steels, aluminum and its alloys, nickel and its alloys such as Ni-Cr, and a mixture of at least two of the above elements.
  • the metal layers comprise at least one binder such as bronze. This advantageously makes it possible to obtain alloys for which a sintering operation can be carried out at low temperature.
  • FIG. 1 represents a perspective view of a honeycomb structure according to a preferred embodiment of the invention
  • FIG. 2 represents a front view of the honeycomb structure of FIG. 1, in contact with two elements to be connected,
  • FIG. 3 shows a front view of a honeycomb structure according to another preferred embodiment of the invention
  • Figure 4 schematically shows a perspective view of a honeycomb area in manufacturing, after the step of depositing a layer of metal powder
  • FIG. 5 schematically represents a perspective view of a cellular zone during manufacturing, after the step of partial solidification of a layer of deposited metallic powder.
  • honeycomb structure 1 according to a preferred embodiment of the invention, this honeycomb structure being in particular capable of operating with a fuel cell or with a heat exchanger (not shown).
  • the honeycomb structure 1 comprises at least one honeycomb area 2a, 2b intended to be traversed by at least one fluid.
  • the honeycomb structure 1 comprises two honeycomb zones 2a, 2b, each being intended to cooperate with a respective element 16a, l ⁇ b comprising a contact surface 14a, 14b .
  • the elements 16a, 16b visible in FIG. 2 can belong to a heat exchanger or to a fuel cell. Note that it is also possible to propose a honeycomb structure 1 having only one honeycomb area 2a, 2b.
  • the alveolar zones 2a, 2b are partially delimited by associated sealed surfaces 4a, 4b.
  • the first 4a and the second sealed surface 4b belong to a conductive base plate 6, this base plate 6 also being impermeable to the fluids circulating inside the alveolar zones 2a, 2b.
  • Each alveolar zone 2a, 2b is formed by metal layers 8 superimposed parallel to the associated sealed surface 4a, 4b.
  • Each metal layer 8 comprises a network of passages 10 opening on either side of the metal layer 8.
  • each alveolar zone 2a, 2b the metallic layers 8, which are substantially planar, are therefore stacked one on the other, over a large part of the associated sealed surface 4a, 4b.
  • Each metal layer 8 comprises a network of passages comprising a plurality of passages 10, of identical or different shapes, passing through each metal layer 8 along an axis substantially perpendicular to the associated sealed surface 4a, 4b. This particular arrangement of the metal layers 8 therefore leads to the production of voluminal, conductive and porous alveolar zones 2a, 2b.
  • Each of the metal layers 8 may have a network of passages 10 identical to or different from the networks of passages 10 formed on the two directly adjacent metal layers 8.
  • the structure 1 has a thickness “E” of approximately 6 mm, this thickness corresponding to the thickness “e” of the conductive base plate 6 added to the sum of the heights "ha” and “hb” of the two alveolar zones 2a, 2b.
  • the metal layers 8 can be of different thicknesses such as "e '" or "e", these values being preferably less than 0.5 mm, and more specifically between approximately 0.1 mm and 0.2 mm.
  • the honeycomb structure 1 comprises two honeycomb areas 2a, 2b, each being intended to cooperate with a separate surface 14a, 14b belonging respectively to elements 16a, 16b.
  • the elements 16a, 16b can belong to a heat exchanger or to a fuel cell.
  • Each alveolar zone 2a, 2b is respectively supplied by a fluid F x in the alveolar zone 2a, and by a fluid F 2 in the alveolar zone 2b. It should be noted that these fluids Fx and F 2 can themselves be mixtures of several fluids, and that the fluids are preferably supplied continuously.
  • the arrows A and B symbolize respectively • the supplies of fluids F x and F 2 , respectively exerted in the alveolar zones 2a and 2b.
  • the fluids Fi and F 2 circulate in the entire volume of the honeycomb areas 2a, 2b, and diffuse up to the surfaces 14a, 14b with which they must come into contact.
  • the arrows C x and C 2 indicate a main direction of diffusion of the fluids Fi and F 2 in each of the alveolar zones 2a, 2b.
  • the fluids F x and F 2 pass through passages 10 made in the metal layers 8. With such an arrangement of means, the distribution of the fluids Fi and F 2 over the surfaces to contact is guaranteed to be as homogeneous as possible.
  • the evacuation of fluids F x and F 2 is respectively symbolized by the arrows Dj and D 2 .
  • the honeycomb structure 1 is intended to be used in a fuel cell.
  • the two alveolar zones 2a, 2b are reagent distribution zones, and the surfaces 14a, 14b which these distribution zones have to contact are electrode surfaces 16a, 16b each belonging to an electrode-membrane assembly.
  • -electrode (not shown) of a fuel cell.
  • the honeycomb structure 1 is then a bipolar plate for a fuel cell.
  • the distribution zones constituted by the alveolar zones 2a, 2b can also be used for the evacuation of different products, such as water, formed during electrochemical reactions at the electrodes.
  • the alveolar structure may include only one reagent distribution zone. This particular embodiment occurs in cases where only one electrode of a fuel cell is to be supplied with reagent.
  • a first honeycomb structure 100 comprising two honeycomb areas 102a, 102b is juxtaposed with a second honeycomb structure 200 comprising a single honeycomb area 202a.
  • These honeycomb structures 100,200 can be brought into contact with one another, for example by simple pressing, which forms a structure comprising three distinct honeycomb zones 102a, 102b, 202a, the honeycomb region 102a being located in the middle of the other two. being a heat exchange zone and the other two zones 102b, 202a, located at the ends of the assembly, corresponding to the zones for distributing the reagents to the electrodes.
  • the honeycomb structure 1 can also be used in a device of the heat exchanger type, as a heat exchange zone. Its operation is then similar to that of the plates bipolar, and the fluids injected into the alveolar zones 2a, 2b are coolant such as water.
  • the alveolar zones 2a, 2b are distribution zones for cooling liquid, this cooling liquid being intended to be distributed over all of the surfaces 14a, 14b to be cooled, then to evacuate from the alveolar structure 1 in a direction represented by the arrows Di and D 2 of FIG. 1.
  • the invention also relates to a method of manufacturing a honeycomb structure 1, such as that described above.
  • This manufacturing process consists, starting from the conductive base plate 6, in producing at least one alveolar zone 2a, 2b.
  • the first operation consists in depositing a layer of metallic powder 18 on the last metallic layer 8 which has just been deposited. Note that for the production of the first metal layer 8, this first operation consists in depositing a layer of metal powder 18 on the associated sealed surface 4a, 4b.
  • the operation consists in partially solidifying, by laser, the layer of metallic powder deposited 18, so as to obtain solidified parts 20 and non-solidified parts 22.
  • the non-solidified parts 22 consist of powder particles of the metal powder layer 18.
  • the location and the quantities of solidified parts 20 and non-solid parts -solidified 22 are determined according to the network of passages 10 desired on the metal layer 8 in progress. Indeed, the solidified parts 20 define the periphery of the passages 10, while the location of the non-solidified parts 22 corresponds to the desired location for the passages 10 of this metal layer 8.
  • any metal layer 8 has solidified parts 20 and non-solidified parts 22, all of these parts 20, 22 constituting a support for depositing the metal layer 8 next .
  • the layers of metal powder 18 any type of method known from the prior art can be used.
  • the layers of metal powder 18 are deposited mechanically.
  • Examples include selective laser sintering (translated from English “selective laser sintering”), direct powder deposition (translated from English “direct powder deposition”), production and manufacturing methods. rapid (translated from English “rapid fabrication and production”), “laser sintering”, or “microsystem production”.
  • the methods mentioned above use means of the laser type to locally provide sufficient power to sinter or melt part of the layer of metallic powder 18, at a precise and predetermined position. This operation can be carried out several times, in order to have a plurality of solidified parts 20.
  • the alveolar zone 2a, 2b is obtained, consisting of a plurality of solidified parts 20 secured to each other.
  • various modifications can be made by those skilled in the art to the honeycomb structure 1 and the method of manufacturing such a structure which have just been described, only by way of nonlimiting examples.

Abstract

L'invention concerne une structure alvéolaire (1) comprenant au moins une zone alvéolaire (2a,2b) partiellement délimitée par une surface étanche (4a,4b) associée. Selon l'invention, chaque zone alvéolaire (2a,2b) est formée par une pluralité de couches métalliques (8) superposées parallèlement ô la surface étanche associée (4a,4b), chaque couche métallique (8) comprenant un réseau de passages (10) débouchant de part et d'autre de ladite couche métallique (8).L'invention concerne également un procédé de fabrication d'une telle structure alvéolaire (1).Application aux piles ô combustible et aux échangeurs thermiques.

Description

STRUCTURE ALVEOLAIRE ET PROCEDE DE FABRICATION D'UNE
TELLE STRUCTURE
DESCRIPTION
DOMAINE TECHNIQUE
Le domaine technique de la présente invention concerne celui de la production d'énergie nécessitant une forte compacité des composants utilisés. Plus particulièrement, l'invention se rapporte aux structures alvéolaires utilisées dans ce domaine technique spécifique. Les structures alvéolaires trouvent notamment une application dans le domaine des piles à combustible, et plus particulièrement dans celui des piles à combustible comprenant une membrane comme électrolyte ainsi que des plaques bipolaires, ces dernières étant constituées de structures alvéolaires.
En outre, l'invention est également applicable au domaine des échangeurs thermiques mettant en œuvre des structures alvéolaires.
Enfin, la présente invention concerne aussi les procédés de fabrication de telles structures alvéolaires .
ETAT DE LA TECHNIQUE ANTERIEURE
Dans ce domaine, on connaît les piles à combustible utilisant des structures alvéolaires. En effet, une pile à combustible est un ensemble comportant généralement une pluralité de cellules élémentaires empilées les unes sur les autres. Dans chacune des cellules élémentaires de la pile à combustible, une réaction électrochimique se crée entre deux réactifs qui sont introduits de manière continue dans les cellules élémentaires. Le combustible habituellement utilisé est l'hydrogène ou le méthanol, suivant que l'on se trouve respectivement en présence d'une pile fonctionnant avec des mélanges du type hydrogène/oxygène et en présence d'une pile fonctionnant avec des mélanges du type méthanol/oxygène .
Le combustible est amené au contact de l'anode tandis que le comburant, en l'occurrence l'oxygène, est amené au contact de la cathode.
La cathode et l'anode sont séparées par l'intermédiaire d'un électrolyte du type membrane échangeuse d' ions . Au niveau de l'anode, il se produit une réaction d'oxydation du combustible, en général l'hydrogène, représentée par le schéma réactionnel suivant :
2H2 → 4H+ + 4e" De la même manière, au niveau de la cathode, il se produit une réaction de réduction de l'oxydant, en général l'oxygène, selon le schéma réactionnel suivant :
02 + 4H+ + 4e" → 2H20 On assiste alors à une réaction électrochimique dont l'énergie créée est convertie en énergie électrique . Des protons H+ circulent de 1 ' anode en direction de la cathode en traversant l' électrolyte, pour rejoindre un circuit extérieur afin de concourir à la production d'énergie électrique. Dans un même temps, au niveau de la cathode, on assiste à une production d'eau qui est évacuée en continu de l'ensemble électrode-membrane- électrode .
Dans les piles à combustible de l'art antérieur, plusieurs ensembles électrode-membrane- électrode sont empilés les uns sur les autres, afin d'obtenir une puissance supérieure à celle fournie par un seul de ces ensembles. La jonction et la continuité électrique entre ces ensembles s'effectuent généralement à l'aide de plaques conductrices, ces plaques étant également appelées plaques bipolaires.
C'est donc à l'aide de ces plaques bipolaires, étant du type structure alvéolaire, que l'on peut joindre la cathode d'un ensemble avec l'anode d'un ensemble adjacent. Ces plaques bipolaires permettent en outre d'assurer les plus grandes conductivités électriques possibles, de manière à éviter les chutes ohmiques préjudiciables au rendement de la pile à combustible. Les plaques bipolaires peuvent également remplir d'autres fonctions que celle d'assurer la jonction électrique.
En effet, on peut par exemple procéder, par l'intermédiaire de ces plaques bipolaires, à l'alimentation continue en réactifs de l'anode d'un premier ensemble, et de la cathode d'un second ensemble adjacent .
De plus, les plaques bipolaires peuvent aussi servir à l'évacuation des produits au niveau de la cathode, en intégrant des éléments d'élimination de l'eau en excès.
Les plaques bipolaires peuvent en outre incorporer un échangeur thermique servant à éviter toute surchauffe au sein de l'empilement d'ensembles électrode-membrane-électrode.
Notons enfin qu'une autre fonction de ces plaques bipolaires peut résider dans la tenue mécanique des ensembles électrode-menbrane-électrode, notamment lorsque ces derniers sont empilés les uns sur les autres. Un tel assemblage assure un volume global de la pile de faible épaisseur, ce qui est tout à fait compatible avec les applications prévues, comme par exemple celle concernant un véhicule électrique.
Selon les dispositifs et les procédés de l'art antérieur, il existe trois méthodes distinctes pour réaliser la distribution des réactifs.
On note tout d'abord une méthode utilisant des canaux usinés sur les extrémités des plaques bipolaires . Ces canaux sont prévus pour assurer une distribution la plus homogène possible des réactifs sur une surface de l'électrode avec laquelle ils sont en contact .
Ces canaux sont habituellement organisés de sorte que les réactifs injectés dans ces canaux serpentent sur une grande partie de la surface de l'électrode. Les moyens mis en œuvre pour obtenir un tel résultat sont des tronçons horizontaux espacés par des coudes descendant à 180°. Notons que ces tronçons sont également susceptibles de récupérer et d'évacuer l'eau produite au niveau de la cathode. Cependant, il a été constaté que cet agencement particulier de moyens ne permettait pas d'obtenir une surface d'échange suffisamment importante pour aboutir à un rendement de conversion électrochimique acceptable en vue d'une application industrielle.
Pour pallier cet inconvénient, une deuxième méthode a été proposée dans l'art antérieur.
Il s'agit dans cette méthode d'utiliser une mousse métallique à forte porosité pour adjoindre aux pièces métalliques dans lesquelles sont pratiqués des usinages, cette mousse métallique permettant d'assurer une bonne distribution des réactifs ainsi que l'évacuation des différents produits.
Ce type de méthode est notamment décrit dans le document US 5 482 792. Deux feuilles de quelques millimètres d'épaisseur sont respectivement positionnées contre l'anode et contre la cathode, et font également la jonction avec les extrémités de la plaque bipolaire. Néanmoins, le fait d'adjoindre une mousse métallique au niveau de la plaque bipolaire contribue à créer une résistance importante, ce qui entraîne une diminution de la conduction électrique au sein de l'ensemble. Même si le problème afférent à la conduction électrique peut être partiellement résolu en compressant la mousse métallique, il s'avère en tout état de cause que des problèmes de corrosion persistent, notamment en raison de la présence de nombreux défauts comme des ruptures de brins au sein de la mousse métallique.
Selon une troisième méthode connue de l'art antérieur, décrite dans le document US 6 146 780, la plaque bipolaire comprend une plaque conductrice étanche, ainsi que deux parties en mousse métallique assurant le contact avec les électrodes. Cette disposition particulière permet de s'exonérer de la présence d'éléments métalliques usinés et par conséquent coûteux.
En revanche, d'autres inconvénients subsistent lors de l'utilisation de tels dispositifs.
En effet, en utilisant des mousses métalliques comme zones de distribution des réactifs et d'évacuation des différents produits, on ne peut pas contrôler correctement la périodicité de la structure du type mousse métallique.
De plus, un inconvénient supplémentaire réside dans l'impossibilité de contrôler de façon aisée la géométrie interne de la structure alvéolaire, ceci se traduisant par l'incapacité de faire varier la géométrie de la zone de distribution de la façon voulue .
Il reste enfin à préciser que l'on retrouve certains des inconvénients précités dans les structures alvéolaires utilisées dans des échangeurs thermiques de l'art antérieur. EXPOSE DE L'INVENTION
Le but de la présente invention est donc de remédier à tout ou partie des inconvénients des structures alvéolaires de l'art antérieur. L'invention a également pour but de proposer une structure alvéolaire de conception simple, et pour laquelle il est possible de contrôler parfaitement la géométrie interne de ses différentes zones alvéolaires . Un autre but de la présente invention est de présenter un procédé de fabrication d'une structure alvéolaire telle que celle atteignant le but de l'invention mentionné ci-dessus.
Pour ce faire, l'invention a tout d'abord pour objet une structure alvéolaire comprenant au moins une zone alvéolaire partiellement délimitée par une surface étanche associée. Selon l'invention, chaque zone alvéolaire est formée par une pluralité de couches métalliques superposées parallèlement à la surface étanche associée, chaque couche métallique comprenant un réseau de passages débouchant de part et d'autre de ladite couche métallique.
Avantageusement, l'invention propose une structure alvéolaire de conception simple dont la géométrie interne des zones alvéolaires est facilement adaptable suivant les besoins rencontrés.
Dans ce type de structure alvéolaire, on ne rencontre aucune difficulté liée à des assemblages d'éléments provoquant des discontinuités mécaniques, thermiques ou électriques au sein de la plaque bipolaire. Préférentiellement, la structure alvéolaire est indifféremment intégrée à une pile à combustible en tant que plaque bipolaire, à une pile à combustible en tant que plaque bipolaire à échangeur intégré, ou encore intégrée à un échangeur thermique.
La présente invention a également pour objet un procédé de fabrication d'une telle structure alvéolaire. Selon ce procédé, chaque couche métallique est réalisée en effectuant les opérations suivantes : - dépôt d'une couche de poudre métallique ; solidification partielle par laser de la couche de poudre métallique déposée, entraînant la formation de parties solidifiées et de parties non- solidifiées, les parties solidifiées définissant le pourtour des passages de la couche métallique.
De manière préférentielle, pour chaque zone alvéolaire, les couches métalliques sont réalisées successivement, la surface étanche associée constituant un support de la première couche métallique à effectuer, les parties solidifiées et non-solidifiées d'une couche métallique quelconque effectuée constituant un support pour la couche métallique suivante à réaliser.
Préférentiellement , pour chaque zone alvéolaire, lorsque toutes les couches métalliques ont été réalisées, les réseaux de passages des couches métalliques sont obtenus en éliminant les parties non- solidifiées des couches métalliques.
De plus, on peut prévoir que l'opération de solidification partielle par laser d'une couche de poudre métallique déposée est également apte à solidariser les parties solidifiées obtenues avec les parties solidifiées de la couche métallique sur laquelle elles reposent.
Les couches métalliques sont de préférence constituées d'un matériau pris parmi les aciers inoxydables, l'aluminium et ses alliages, le nickel et ses alliages tel que le Ni-Cr, et un mélange d'au moins deux des éléments précités.
De plus, les couches métalliques comprennent au moins un liant tel que le bronze. Ceci permet avantageusement d'obtenir des alliages pour lesquels une opération de frittage est réalisable à basse température .
D'autres avantages et caractéristiques de l'invention apparaîtront dans la description non limitative détaillée ci-dessous.
BRÈVE DESCRIPTION DES DESSINS
La description sera faite au regard des dessins annexés parmi lesquels : la figure 1 représente une vue en perspective d'une structure alvéolaire selon un mode préféré de réalisation de l'invention,
- la figure 2 représente une vue de face de la structure alvéolaire de la figure 1, en contact avec deux éléments à relier,
- la figure 3 représente une vue de face d'une structure alvéolaire selon un autre mode de réalisation préféré de l'invention, la figure 4 représente schématiquement une vue en perspective d'une zone alvéolaire en fabrication, après l'étape de dépôt d'une couche de poudre métallique, et la figure 5 représente schématiquement une vue en perspective d'une zone alvéolaire en fabrication, après l'étape de solidification partielle d'une couche de poudre métallique déposée.
EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PRÉFÉRÉS
En référence aux figures 1 et 2, on voit une structure alvéolaire 1 selon un mode préféré de réalisation de l'invention, cette structure alvéolaire étant notamment susceptible de fonctionner avec une pile à combustible ou avec un échangeur thermique (non représentés) .
La structure alvéolaire 1 selon l'invention, comprend au moins une zone alvéolaire 2a, 2b destinée à être parcourue par au moins un fluide. Selon le mode préféré de réalisation de l'invention représenté sur les figures 1 et 2, la structure alvéolaire 1 comprend deux zones alvéolaires 2a, 2b, chacune étant destinée à coopérer avec un élément respectif 16a, lβb comprenant une surface à contacter 14a, 14b. Les éléments 16a, 16b visibles sur la figure 2 peuvent appartenir à un échangeur thermique ou à une pile à combustible. Notons qu'il est également possible de proposer une structure alvéolaire 1 n'ayant qu'une seule zone alvéolaire 2a, 2b.
Les zones alvéolaires 2a, 2b sont partiellement délimitées par des surfaces étanches associées 4a, 4b. La première 4a ainsi que la seconde surface étanche 4b appartiennent à une plaque de base 6 conductrice, cette plaque de base 6 étant également étanche aux fluides circulant à l'intérieur des zones alvéolaires 2a, 2b.
Chaque zone alvéolaire 2a, 2b est formée par des couches métalliques 8 superposées parallèlement à la surface étanche associée 4a, 4b. Chaque couche métallique 8 comprend un réseau de passages 10 débouchant de part et d'autre de la couche métallique 8.
Dans chaque zone alvéolaire 2a, 2b, les couches métalliques 8, sensiblement planes, sont donc empilées les unes sur les autres, sur une large partie de la surface étanche associée 4a, 4b. Chaque couche métallique 8 comprend un réseau de passages comportant une pluralité de passages 10, de formes identiques ou différentes, traversant chaque couche métallique 8 selon un axe sensiblement perpendiculaire à la surface étanche associée 4a, 4b. Cet agencement particulier des couches métalliques 8 conduit donc à l'obtention de zones alvéolaires 2a, 2b volumiques, conductrices et poreuses .
Chacune des couches métalliques 8 peut présenter un réseau de passages 10 identique ou différent des réseaux de passages 10 pratiqués sur les deux couches métalliques 8 directement adjacentes.
De préférence et en référence à la figure
2, la structure 1 présente une épaisseur « E » d'environ 6 mm, cette épaisseur correspondant à l'épaisseur « e » de la plaque de base 6 conductrice ajoutée à la somme des hauteurs « ha » et « hb » des deux zones alvéolaires 2a, 2b.
De plus, toujours en référence à la figure 2, les couches métalliques 8 peuvent être d'épaisseurs différentes telles que « e' » ou << e' ' », ces valeurs étant de préférence inférieures à 0,5 mm, et plus spécifiquement comprises entre environ 0,1 mm et 0,2 mm.
Ainsi, en faisant varier d'une part les épaisseurs « e' » et « e' ' » des couches métalliques 8, et d'autre part la répartition et la géométrie des réseaux de passages 10, on peut obtenir des zones alvéolaires 2a, 2b de porosité ouverte moyenne comprise entre une valeur strictement supérieure à 0% et 90%. En fonctionnement et en référence aux figures 1 et 2, la structure alvéolaire 1 comprend deux zones alvéolaires 2a, 2b, chacune étant destinée à coopérer avec une surface distincte 14a, 14b appartenant respectivement à des éléments 16a, 16b. Les éléments 16a, 16b peuvent appartenir à un échangeur thermique ou à une pile à combustible. Chaque zone alvéolaire 2a, 2b est respectivement alimentée par un fluide Fx dans la zone alvéolaire 2a, et par un fluide F2 dans la zone alvéolaire 2b. Il est à préciser que ces fluides Fx et F2 peuvent eux-mêmes être des mélanges de plusieurs fluides, et que les alimentations en fluides se font de préférence de manière continue.
Les flèches A et B symbolisent •respectivement les alimentations en fluides Fx et F2, respectivement exercées dans les zones alvéolaires 2a et 2b. Lors de leur introduction dans la structure alvéolaire 1, les fluides Fi et F2 circulent dans la totalité du volume des zones alvéolaires 2a, 2b, et se diffusent jusqu'aux surfaces 14a, 14b avec lesquelles ils doivent entrer en contact. Les flèches Cx et C2 indiquent une direction principale de diffusion des fluides Fi et F2 dans chacune des zones alvéolaires 2a, 2b .
Pour arriver jusqu'aux surfaces 14a, 14b à contacter, les fluides Fx et F2 passent au travers des passages 10 pratiqués dans les couches métalliques 8. Avec un tel agencement de moyens, la répartition des fluides Fi et F2 sur les surfaces à contacter est assurée d'être la plus homogène possible. L'évacuation des fluides Fx et F2 est respectivement symbolisée par les flèches Dj et D2.
Selon une première application de l'invention, la structure alvéolaire 1 est destinée à être utilisée dans une pile à combustible. Dans ce cas précis, les deux zones alvéolaires 2a, 2b sont des zones de distribution de réactif, et les surfaces 14a, 14b que doivent contacter ces zones de distribution sont des surfaces d'électrodes 16a, 16b appartenant chacune à un ensemble électrode-membrane-électrode (non représenté) d'une cellule de pile à combustible. La structure alvéolaire 1 est alors une plaque bipolaire pour pile à combustible.
Au même titre que dans les plaques bipolaires de l'art antérieur, les zones de distribution constituées par les zones alvéolaires 2a, 2b peuvent également servir pour l'évacuation de différents produits, comme l'eau, formés lors de réactions électrochimiques aux électrodes.
Notons également que la structure alvéolaire 1, selon les besoins rencontrés, peut ne comprendre qu'une seule zone de distribution de réactif. Cette réalisation particulière se présente dans les cas où une seule électrode d'une pile à combustible est à alimenter en réactif.
De plus, en référence à la figure 3 et selon une seconde application de la présente invention, en combinant deux structures alvéolaires 100 et 200, on peut obtenir une plaque bipolaire comprenant un échangeur de chaleur intégré .
En effet, une première structure alvéolaire 100 comprenant deux zones alvéolaires 102a, 102b est juxtaposée à une seconde structure alvéolaire 200 comprenant une seule zone alvéolaire 202a. On peut mettre ces structures alvéolaires 100,200 en contact l'une de l'autre, par exemple par simple pressage, ce qui forme une structure comprenant trois zones alvéolaires distinctes 102a, 102b, 202a, la zone alvéolaire 102a se situant au milieu des deux autres étant une zone échangeuse de chaleur et les deux autres zones 102b, 202a, situées aux extrémités de l'ensemble, correspondant aux zones de distribution des réactifs aux électrodes .
Selon une troisième application de l'invention, la structure alvéolaire 1 peut également être utilisée dans un dispositif du type échangeur thermique, en tant que zone échangeuse de chaleur. Son fonctionnement est alors semblable à celui des plaques bipolaires, et les fluides injectés dans les zones alvéolaires 2a, 2b sont du liquide de refroidissement tel que 1 ' eau.
Dans une telle application, les zones alvéolaires 2a, 2b sont des zones de distribution de liquide de ref oidissement, ce liquide de refroidissement étant destiné à se répartir sur la totalité des surfaces 14a, 14b à refroidir, puis à évacuer de la structure alvéolaire 1 selon une direction représentée par les flèches Di et D2 de la figure 1.
L'invention concerne également un procédé de fabrication d'une structure alvéolaire 1, telle que celle décrite ci-dessus. Ce procédé de fabrication consiste, à partir de la plaque de base 6 conductrice, à réaliser au moins une zone alvéolaire 2a, 2b.
En référence aux figures 4 et 5, pour aboutir à une des zones alvéolaires 2a, 2b, on réitère plusieurs fois deux opérations successives, permettant d'aboutir à la réalisation d'une couche métallique 8. En référence à la figure 4, la première opération consiste à déposer une couche de poudre métallique 18 sur la dernière couche métallique 8 qui vient d'être déposée. Notons que pour la réalisation de la première couche métallique 8, cette première opération consiste à déposer une couche de poudre métallique 18 sur la surface étanche associée 4a, 4b.
Dans un second temps, l'opération consiste à solidifier partiellement, par laser, la couche de poudre métallique déposée 18, de manière à obtenir des parties solidifiées 20 et des parties non-solidifiées 22. Il est précisé que les parties non-solidifiées 22 sont constituées par des particules de poudre de la couche de poudre métallique 18. L'emplacement et les quantités de parties solidifiées 20 et de parties non-solidifiées 22 sont déterminés en fonction du réseau de passages 10 désiré sur la couche métallique 8 en cours de réalisation. En effet, les parties solidifiées 20 définissent le pourtour des passages 10, tandis que l'emplacement des parties non-solidifiées 22 correspond à l'emplacement voulu pour les passages 10 de cette couche métallique 8.
Pour chaque zone alvéolaire 2a, 2b, on réitère donc cette succession des deux étapes, et cela autant de fois qu'il y a de couches métalliques 8 constituant la zone alvéolaire 2a, 2b concernée.
Notons qu'après la réalisation d'une couche métallique 8 quelconque, cette dernière dispose de parties solidifiées 20 et de parties non-solidifiées 22, l'ensemble de ces parties 20,22 constituant un support pour réaliser le dépôt de la couche métallique 8 suivante .
Pour déposer les couches de poudre métallique 18, on peut avoir recours à tout type de méthode connu de l'art antérieur. Préférentiellement, on déposera mécaniquement les couches de poudre métallique 18.
Afin de réaliser l'étape de solidification partielle de la couche de poudre métallique déposée 18, on utilise des procédés connus de l'art antérieur et mettant en œuvre des moyens du type laser.
On peut citer à titre d' exemple les méthodes de frittage sélectif laser (traduit de l'anglais « sélective laser sintering ») , de dépôt direct de poudre (traduit de l'anglais « direct powder déposition ») , de production et de fabrication rapide (traduit de l'anglais « rapide fabrication and production ») , de « frittage laser », ou encore de « production de microsystème ».
De manière générale, les méthodes mentionnées ci-dessus utilisent des moyens du type laser pour apporter localement une puissance suffisante pour fritter ou faire fondre une partie de la couche de poudre métallique 18, à une position précise et prédéterminée. Cette opération peut être réalisée plusieurs fois, afin de disposer d'une pluralité de parties solidifiées 20.
Il est alors impératif d'effectuer un positionnement précis des moyens du type laser par rapport à la couche de poudre métallique 18 destinée à subir l'opération de solidification partielle, de sorte que cette couche de poudre métallique 18 se situe dans une zone focale des moyens du type laser. Ainsi, dans certains cas rencontrés, on est en mesure de solidifier une partie de la couche de poudre 18, sans solidifier la/les parties non-solidifiées 22 de la couche métallique 8 sur laquelle elle repose.
Notons qu'il est possible de réaliser ce procédé à l'aide de moyens du type CAO, ces derniers permettant d'ajuster, au cours du déroulement du procédé, les positions relatives des moyens du type laser et des différentes couches de poudre métallique 18.
Il est également à préciser que l'opération de solidification partielle par laser d'une couche de poudre métallique 18 permet également de solidariser les parties solidifiées 20 obtenues, avec la/les parties solidifiées de la couche métallique 8 sur laquelle elles reposent. Cette caractéristique est aussi valable pour la première couche métallique 8 réalisée, les parties solidifiées 20 obtenues étant solidarisées avec la surface étanche associée 4a, 4b de la plaque 6.
Lorsque l'ensemble des couches métalliques 8 destinées à former une zone alvéolaire 2a, 2b ont été réalisées, on dispose alors d'un bloc comprenant exclusivement des parties solidifiées 20 et des parties non-solidifiées 22. Ainsi, pour obtenir les réseaux de passages 10 se situant au niveau des parties non- solidifiées 22, il est nécessaire d'éliminer la poudre constituant ces parties 22. Cette élimination peut tout simplement être effectuée par évacuation des grains de poudre,, ces derniers pouvant facilement s'extraire du bloc en créant au fur et à mesure de leur extraction, les réseaux de passages 10 des couches métalliques 8.
Après l'élimination de l'ensemble des parties non-solidifiées 22, la zone alvéolaire 2a, 2b est obtenue, constituée d'une pluralité de parties solidifiées 20 solidarisées entre elles. Bien entendu, diverses modifications peuvent être apportées par l'homme du métier à la structure alvéolaire 1 et au procédé de fabrication d'une telle structure qui viennent d'être décrits, uniquement à titre d'exemples non limitatifs.

Claims

REVENDICATIONS
1. Structure alvéolaire (1) comprenant au moins une zone alvéolaire (2a, 2b) partiellement délimitée par une surface étanche (4a, 4b) associée, caractérisée en ce que chaque zone alvéolaire (2a, 2b) est formée par une pluralité de couches métalliques (8) superposées parallèlement à la surface étanche associée (4a, 4b), chaque couche métallique (8) comprenant un réseau de passages (10) débouchant de part et d'autre de ladite couche métallique (8) .
2. Structure alvéolaire (1) selon la revendication 1, caractérisée en ce qu'elle est intégrée à une pile à combustible en tant que plaque bipolaire.
3. Structure alvéolaire (1) selon la revendication 1, caractérisée en ce qu'elle est intégrée à une pile à combustible en tant que plaque bipolaire à échangeur intégré .
4. Structure alvéolaire (1) selon la revendication 1, caractérisée en ce qu'elle est intégrée à un échangeur thermique .
5. Procédé de fabrication d'une structure alvéolaire (1) selon l'une quelconque des revendications précédentes, caractérisé en ce que chaque couche métallique (8) est réalisée en effectuant les opérations suivantes :
- dépôt d'une couche de poudre métallique (18) ; solidification partielle par laser de la couche de poudre métallique (18) déposée, entraînant la formation de parties solidifiées (20) et de parties non-solidifiées (22) , lesdites parties solidifiées (20) définissant le pourtour des passages (10) de la couche métallique (8) .
6. Procédé selon la revendication 5, caractérisé en ce que pour chaque zone alvéolaire
(2a, 2b), les couches métalliques (8) sont réalisées successivement, la surface étanche associée (4a, 4b) constituant un support de la première couche métallique (8) à effectuer, les parties solidifiées (20) et non- solidifiées (22) d'une couche métallique (8) quelconque effectuée constituant un support pour la couche métallique (8) suivante à réaliser.
7. Procédé selon la revendication 5 ou la revendication 6, caractérisé en ce que pour chaque zone alvéolaire (2a, 2b), lorsque toutes les couches métalliques (8) ont été réalisées, les réseaux de passages (10) des couches métalliques (8) sont obtenus en éliminant les parties non-solidifiées (22) des couches métalliques (8) .
8. Procédé selon l'une quelconque des revendications 5 à 7, caractérisé en ce que l'opération de solidification partielle par laser d'une couche de poudre métallique déposée (18) est également apte à solidariser les parties solidifiées (20) obtenues avec les parties solidifiées (20) de la couche métallique (8) sur laquelle elles reposent.
9. Procédé selon l'une quelconque des revendications 5 à 7, caractérisé en ce que l'opération de solidification par laser de la première couche de poudre métallique déposée (18) est également apte à solidariser les parties solidifiées (20) obtenues avec la surface étanche associée (4a, 4b) sur laquelle elles reposent .
10. Procédé de fabrication selon l'une quelconque des revendications 5 à 9, caractérisé en ce que les couches métalliques (8) sont constituées d'un matériau pris parmi les aciers inoxydables, l'aluminium et ses alliages, le nickel et ses alliages tel que le
Ni-Cr, et un mélange d'au moins deux des éléments précités .
11. Procédé de fabrication selon la revendication 10, caractérisé en ce que les couches métalliques (8) comprennent au moins un liant tel que le bronze .
PCT/FR2003/000499 2002-02-19 2003-02-17 Structure alvéolaire et procédé de fabrication d'une telle structure. WO2003071626A2 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/503,589 US7115336B2 (en) 2002-02-19 2003-02-17 Honeycomb structure and method for production of said structure
JP2003570419A JP4527402B2 (ja) 2002-02-19 2003-02-17 肺胞状構造およびその製造方法
EP03717404A EP1525633A2 (fr) 2002-02-19 2003-02-17 STRUCTURE ALV&Eacute;OLAIRE ET PROC&Eacute;D&Eacute; DE FABRICATION D UNE TELLE STRUCTURE.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR02/02074 2002-02-19
FR0202074A FR2836282B1 (fr) 2002-02-19 2002-02-19 Structure alveolaire et procede de fabrication d'une telle structure

Publications (2)

Publication Number Publication Date
WO2003071626A2 true WO2003071626A2 (fr) 2003-08-28
WO2003071626A3 WO2003071626A3 (fr) 2005-02-24

Family

ID=27636300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2003/000499 WO2003071626A2 (fr) 2002-02-19 2003-02-17 Structure alvéolaire et procédé de fabrication d'une telle structure.

Country Status (6)

Country Link
US (1) US7115336B2 (fr)
EP (1) EP1525633A2 (fr)
JP (1) JP4527402B2 (fr)
CN (1) CN1332465C (fr)
FR (1) FR2836282B1 (fr)
WO (1) WO2003071626A2 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2880199A1 (fr) * 2004-12-23 2006-06-30 Commissariat Energie Atomique Procede de fabrication d'un ensemble pour pile a combustible
US8359744B2 (en) 2004-12-14 2013-01-29 Sustainable Engine Sytems Ltd. Heat exchanger
WO2022058300A1 (fr) * 2020-09-17 2022-03-24 Robert Bosch Gmbh Pile à combustible pour système de pile à combustible, système de pile à combustible et procédé de fabrication d'une pile à combustible

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR876M (fr) 1960-10-12 1961-10-16
US20100061520A1 (en) * 2006-07-07 2010-03-11 Koninklijke Philips Electronics N. V. Grid for selective transmission of electromagnetic radiation with structural element built by selective laser sintering
US7866377B2 (en) * 2006-12-20 2011-01-11 The Boeing Company Method of using minimal surfaces and minimal skeletons to make heat exchanger components
US7810552B2 (en) * 2006-12-20 2010-10-12 The Boeing Company Method of making a heat exchanger
US7866372B2 (en) * 2006-12-20 2011-01-11 The Boeing Company Method of making a heat exchanger core component
US8826938B2 (en) * 2008-01-22 2014-09-09 Control Components, Inc. Direct metal laser sintered flow control element
US8236461B2 (en) * 2008-02-26 2012-08-07 Yong Gao Type of fuel cell bipolar plates constructed with multiple pass flow channels that contract, expand, deflect and split reactant flows for improving reactant flow distribution, diffusion and water management
US8309274B2 (en) * 2009-05-15 2012-11-13 GM Global Technology Operations LLC Separator plates formed by photopolymer based processes
EP2527776A1 (fr) * 2011-05-24 2012-11-28 Thermal Corp. Dispositif capillaire pour une utilisation dans un tuyau de chauffage et procédé de fabrication d'un tel dispositif capillaire
CN104716362B (zh) * 2013-12-15 2017-01-25 中国科学院大连化学物理研究所 一种基于蜂窝金属的管带式换热器及其应用
US10634054B2 (en) 2014-10-21 2020-04-28 United Technologies Corporation Additive manufactured ducted heat exchanger
CN105525992B (zh) 2014-10-21 2020-04-14 联合工艺公司 具有增材制造整流罩的增材制造管道式换热器系统
DE102014226567A1 (de) 2014-12-19 2016-06-23 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Herstellung einer Bipolarplatte
WO2018108546A2 (fr) * 2016-12-12 2018-06-21 Robert Bosch Gmbh Procédé de fabrication d'une plaque bipolaire, plaque bipolaire pour pile à combustible et pile à combustible
CN106984822A (zh) * 2017-03-08 2017-07-28 窦鹤鸿 3d打印合金材料蜂窝叠层镂空结构及采用其制造的车构件
DE102017004671A1 (de) * 2017-05-16 2018-11-22 Degner Gmbh & Co. Kg Vorrichtung zum Kühlen, Wärmen oder Wärmeübertragen
DE102018204602A1 (de) * 2018-03-27 2019-10-02 Robert Bosch Gmbh Gasverteilerstruktur für eine Brennstoffzelle
US10677087B2 (en) 2018-05-11 2020-06-09 General Electric Company Support structure for geared turbomachine
US10823003B2 (en) 2018-05-25 2020-11-03 General Electric Company System and method for mitigating undesired vibrations at a turbo machine
US11493407B2 (en) 2018-09-28 2022-11-08 Ge Avio S.R.L. Torque measurement system
US20210293483A1 (en) * 2020-03-23 2021-09-23 General Electric Company Multifurcating heat exchanger with independent baffles

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19740502A1 (de) * 1997-09-15 1999-03-18 Fraunhofer Ges Forschung Verfahren zur Herstellung von Bauteilen mit einem oberflächennahen Durchfluß- und Verteilungssystem für Flüssigkeiten und/oder Gase
US6112804A (en) * 1995-10-31 2000-09-05 Massachusetts Institute Of Technology Tooling made by solid free form fabrication techniques having enhanced thermal properties

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE521719A (fr) * 1952-07-26
US3384154A (en) * 1956-08-30 1968-05-21 Union Carbide Corp Heat exchange system
US3616125A (en) * 1970-05-04 1971-10-26 Gen Motors Corp Airfoil structures provided with cooling means for improved transpiration
JPS5596892A (en) * 1979-01-18 1980-07-23 Hisaka Works Ltd Heat transfer plate for plate type evaporator
US4232728A (en) * 1979-02-26 1980-11-11 Union Carbide Corporation Method for enhanced heat transfer
US4541879A (en) * 1982-07-15 1985-09-17 Rohr Industries, Inc. Method of manufacture of noise suppression panel
US5192623A (en) * 1990-10-23 1993-03-09 Lockhart Industries Laminated structural panels and the method of producing them
US5295530A (en) * 1992-02-18 1994-03-22 General Motors Corporation Single-cast, high-temperature, thin wall structures and methods of making the same
US5424139A (en) * 1994-01-10 1995-06-13 Lydall, Inc. Metal heat insulator
US5745834A (en) * 1995-09-19 1998-04-28 Rockwell International Corporation Free form fabrication of metallic components
US5776624A (en) * 1996-12-23 1998-07-07 General Motors Corporation Brazed bipolar plates for PEM fuel cells
JPH10308227A (ja) * 1997-05-07 1998-11-17 Fuji Electric Co Ltd 固体高分子電解質型燃料電池
WO1999009594A1 (fr) * 1997-08-20 1999-02-25 Frank Baxmann Dissipateur de chaleur fritte
US6066285A (en) * 1997-12-12 2000-05-23 University Of Florida Solid freeform fabrication using power deposition
JP3508604B2 (ja) * 1998-04-08 2004-03-22 三菱マテリアル株式会社 高強度スポンジ状焼成金属複合板の製造方法
JP4529205B2 (ja) * 1999-11-30 2010-08-25 株式会社豊田中央研究所 燃料電池用セパレータおよびこれを備えた燃料電池
DE10039596C2 (de) * 2000-08-12 2003-03-27 Omg Ag & Co Kg Geträgerte Metallmembran, Verfahren zu ihrer Herstellung und Verwendung
JP3700642B2 (ja) * 2001-12-11 2005-09-28 日産自動車株式会社 燃料電池
US6838202B2 (en) * 2002-08-19 2005-01-04 General Motors Corporation Fuel cell bipolar plate having a conductive foam as a coolant layer
CA2448592C (fr) * 2002-11-08 2011-01-11 Howmedica Osteonics Corp. Surface poreuse produite par laser

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6112804A (en) * 1995-10-31 2000-09-05 Massachusetts Institute Of Technology Tooling made by solid free form fabrication techniques having enhanced thermal properties
DE19740502A1 (de) * 1997-09-15 1999-03-18 Fraunhofer Ges Forschung Verfahren zur Herstellung von Bauteilen mit einem oberflächennahen Durchfluß- und Verteilungssystem für Flüssigkeiten und/oder Gase

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8359744B2 (en) 2004-12-14 2013-01-29 Sustainable Engine Sytems Ltd. Heat exchanger
FR2880199A1 (fr) * 2004-12-23 2006-06-30 Commissariat Energie Atomique Procede de fabrication d'un ensemble pour pile a combustible
WO2006070150A3 (fr) * 2004-12-23 2006-08-31 Commissariat Energie Atomique Procede de fabrication d'un ensemble pour pile a combustible
US8282989B2 (en) 2004-12-23 2012-10-09 Commissariat A L'energie Atomique Method for manufacturing an assembly for a fuel cell
WO2022058300A1 (fr) * 2020-09-17 2022-03-24 Robert Bosch Gmbh Pile à combustible pour système de pile à combustible, système de pile à combustible et procédé de fabrication d'une pile à combustible

Also Published As

Publication number Publication date
FR2836282A1 (fr) 2003-08-22
EP1525633A2 (fr) 2005-04-27
WO2003071626A3 (fr) 2005-02-24
US7115336B2 (en) 2006-10-03
FR2836282B1 (fr) 2004-04-02
US20050221150A1 (en) 2005-10-06
CN1689180A (zh) 2005-10-26
JP2006505895A (ja) 2006-02-16
JP4527402B2 (ja) 2010-08-18
CN1332465C (zh) 2007-08-15

Similar Documents

Publication Publication Date Title
WO2003071626A2 (fr) Structure alvéolaire et procédé de fabrication d&#39;une telle structure.
EP1866990B1 (fr) PlLE A COMBUSTIBLE A MEMBRANE POLYMERE
EP3183379B1 (fr) Procédé d&#39;électrolyse ou de co-électrolyse à haute température, procédé de production d&#39;électricité par pile à combustible sofc, interconnecteurs, réacteurs et procédés de fonctionnement associés
CA2699881C (fr) Electrolyseur haute temperature a dispositif d&#39;homogeneisation de la temperature
EP1131854A1 (fr) Plaques bipolaires pour pile a combustible et pile a combustible comprenant ces plaques
EP2580797B1 (fr) Procede de fabrication de cellules electrochimiques elementaires pour systemes electrochimiques producteurs d&#39;energie ou d&#39;hydrogene, notamment du type sofc et eht
FR2858465A1 (fr) Structures poreuses utilisables en tant que plaques bipolaires et procedes de preparation de telles structures poreuses
FR2819107A1 (fr) Procede de fabrication d&#39;un assemblage d&#39;elements de base pour un etage de pile a combustible
CA2560761C (fr) Pile a combustible a electrolyte solide a structure etanche
EP1528614B1 (fr) Structure pour pile à combustible
EP3482866B1 (fr) Procédé utilisant un laser pour le soudage entre deux matériaux métalliques ou pour le frittage de poudre(s), application à la réalisation de plaques bipolaires pour piles pemfc
FR3023981A1 (fr) Plaque bipolaire pour reacteur electrochimique a zone d&#39;homogeneisation compacte et a faible differentiel de pression
FR2911219A1 (fr) Plaque bipolaire pour pile a combustible a membrane polymere
EP3195392B1 (fr) Plaque de guidage d&#39;ecoulement d&#39;un fluide pour reacteur electrochimique et ensemble comportant cette plaque
FR2975228A1 (fr) Pile a combustible avec collecteurs a joints injecteurs individuels
WO2005015669A2 (fr) Pile a combustible comportant des collecteurs de courant integres a l’empilement electrode-membrane-electrode
FR2911218A1 (fr) Plaque de distribution metal-graphite souple pour une pile a combustible.
FR2918799A1 (fr) Substrat poreux etanche pour piles a combustible planaires et packaging integre.
WO2019186051A1 (fr) Plaque bipolaire a canaux ondules
EP3985766B1 (fr) Plaque bipolaire de cellule électrochimique à pertes de charge réduites
EP1501144B1 (fr) Cellule de pile à combustible à forte surface active
EP4016677A1 (fr) Procédé de fabrication d&#39;un guide d&#39;écoulement pour réacteur électrochimique
EP4191714A1 (fr) Guide d&#39;écoulement pour réacteur électrochimique et procédé de fabrication associé
EP4016678A1 (fr) Procédé de fabrication d&#39;un guide d&#39;écoulement à canal structuré pour réacteur électrochimique
FR2836285A1 (fr) Plaque bipolaire pour pile a combustible

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): CN JP US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REEP Request for entry into the european phase

Ref document number: 2003717404

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2003717404

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2003570419

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20038041359

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2003717404

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10503589

Country of ref document: US