WO2018108546A2 - Procédé de fabrication d'une plaque bipolaire, plaque bipolaire pour pile à combustible et pile à combustible - Google Patents

Procédé de fabrication d'une plaque bipolaire, plaque bipolaire pour pile à combustible et pile à combustible Download PDF

Info

Publication number
WO2018108546A2
WO2018108546A2 PCT/EP2017/080959 EP2017080959W WO2018108546A2 WO 2018108546 A2 WO2018108546 A2 WO 2018108546A2 EP 2017080959 W EP2017080959 W EP 2017080959W WO 2018108546 A2 WO2018108546 A2 WO 2018108546A2
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
plate
electrode
profile
bipolar plate
Prior art date
Application number
PCT/EP2017/080959
Other languages
German (de)
English (en)
Other versions
WO2018108546A3 (fr
Inventor
Friedrich Kneule
Nicolas Maier
Markus Siebert
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2018108546A2 publication Critical patent/WO2018108546A2/fr
Publication of WO2018108546A3 publication Critical patent/WO2018108546A3/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to a method for producing a bipolar plate for a fuel cell.
  • the invention further relates to a bipolar plate for a
  • a fuel cell comprising a first distribution region defined by a first separation plate for distributing a fuel to a first electrode and a second distribution region defined by a second separation plate for distributing an oxidant to a second electrode.
  • the invention also relates to a fuel cell, which comprises at least one membrane electrode unit with a first electrode and a second electrode, which are separated from one another by a membrane, and at least one bipolar plate.
  • a fuel cell is a galvanic cell, which is the chemical
  • Reaction energy of a continuously supplied fuel and an oxidizing agent converts into electrical energy.
  • a fuel cell is therefore an electrochemical energy converter.
  • known fuel cells in particular hydrogen (H2) and oxygen (02) in water (H20), electrical energy and heat are converted.
  • An electrolyzer is an electrochemical energy converter which splits water (H20) into hydrogen (H2) and oxygen (02) by means of electrical energy.
  • proton exchange membrane PEM
  • PEM proton exchange membrane
  • Proton exchange membrane fuel cells further include an anode and a cathode.
  • the fuel is supplied to the anode of the fuel cell and catalytically oxidized to protons with release of electrons.
  • the protons pass through the membrane to the cathode.
  • the emitted electrons are discharged from the fuel cell and flow through an external circuit to the cathode.
  • the oxidant is supplied to the cathode of the fuel cell and it reacts by absorbing the electrons from the external circuit and protons that have passed through the membrane to the cathode to water. The resulting water is discharged from the fuel cell.
  • the gross reaction is:
  • a voltage is applied between the anode and the cathode of the fuel cell.
  • a plurality of fuel cells can be arranged mechanically one behind the other to form a fuel cell stack and electrically connected.
  • the bipolar plates have, for example, channel-like structures for distributing the fuel and the oxidizing agent to the electrodes.
  • the channel-like structures also serve to dissipate the water formed during the reaction.
  • the bipolar plates may further include structures for passing a cooling liquid through the fuel cell to dissipate heat.
  • AI is a fuel cell with a
  • each of the two plate halves has a distribution region which is provided for distributing the reaction gases.
  • the bipolar plate has a meandering
  • the meandering channel serves to introduce hydrogen or oxygen into the fuel cell.
  • a method for producing a bipolar plate for a fuel cell which comprises a first limited by a separating plate
  • Distribution area for distributing a fuel to a first electrode and a limited by a partition plate second distribution area for distributing an oxidizing agent to a second electrode can also be used in other electrochemical energy converters, for example in an electrolyzer.
  • the two distribution areas can be limited in each case by a separate partition plate or by a common.
  • a profile is produced in at least one of the distribution regions by printing a printing material onto the separating plate.
  • Distribution area are formed. As a result, the flow through the distribution area can be influenced.
  • the profile is produced in the second distribution region, which serves to distribute the oxidizing agent to the second electrode and to dissipate water formed in the reaction.
  • the profile can also, alternatively or additionally, in the first distribution area for distribution of a
  • the printing material is applied by screen printing on the separating plate. According to another advantageous embodiment of the invention, the printing material is applied by means of 3D printing on the separating plate.
  • the printing material which is printed on the separating plate porous.
  • the profile produced in the distribution area is also porous.
  • the printing material which is printed on the separating plate is electrically conductive.
  • the profile produced in the distribution region is also electrically conductive and can conduct the electrons released in the electrochemical reaction in the fuel cell.
  • a bipolar plate for a fuel cell which comprises a first distribution area bounded by a separation plate for distributing a fuel to a first electrode and a second distribution area delimited by a separation plate for distributing an oxidizing agent to a second electrode.
  • the bipolar plate can also be used in others
  • electrochemical energy converters for example in an electrolyzer
  • the two distribution areas can be limited in each case by a separate partition plate or by a common.
  • a profile is provided in at least one of the distribution regions, which profile is produced by printing a printing material onto the separating plate.
  • suitable arrangement and design of the profile can be selectively formed channels in the distribution area. This is the result
  • the profile has pillars extending from the divider plate through the distribution area to one of the electrodes.
  • the profile has pillars extending from the divider plate through the distribution area to one of the electrodes.
  • other contours are conceivable.
  • the profile is provided in the second distribution region, which serves to distribute the oxidizing agent to the second electrode and to dissipate water formed during the reaction.
  • a profile can also, alternatively or additionally, be provided in the first distribution area for distributing a fuel to the first electrode.
  • the columns of the profile are generated from an electrically conductive printing material and provide an electrically conductive connection between the partition plate and the electrode forth.
  • the pillars of the profile can guide the electrons released in the electrochemical reaction in the fuel cell.
  • the profile is produced from a porous printing material.
  • a fuel cell which comprises at least one membrane-electrode unit with a first electrode and a second electrode, which are separated from one another by a membrane, and at least one bipolar plate according to the invention.
  • the fuel cell is constructed in such a way that in each case a bipolar plate connects to the membrane electrode unit on both sides.
  • the gas supplied to the distribution region via a supply channel can first be distributed uniformly over the entire active area of the electrode at a low pressure loss. Through a suitable ducting all areas of the electrode can be supplied with gas evenly. Due to the adjustability of the porosity of the printing material, the internal water discharge can be realized similar to a foam structure.
  • the printing material can be made of suitable materials, so that the corrosion protection is included. The costs for producing the bipolar plate can be kept low via an automated manufacturing process.
  • FIG. 1 shows a schematic representation of a fuel cell stack with a plurality of fuel cells
  • Figure 2 is an enlarged schematic representation of a bipolar plate of
  • FIG. 3 shows a schematic sectional illustration along the section line A - A of the bipolar plate from FIG. 2 according to a first embodiment
  • FIG. 4 shows a schematic sectional view along the section line A - A of the bipolar plate from FIG. 2 according to a second embodiment
  • Figure 5 is a perspective view of a profile of the bipolar plate
  • Figure 6 is a perspective view of a profile of the bipolar plate
  • FIG. 1 shows a schematic illustration of a fuel cell stack 5 with a plurality of fuel cells 2.
  • Each fuel cell 2 has a membrane electrode unit 10 which comprises a first electrode 21, a second electrode 22 and a membrane 18.
  • the two electrodes 21, 22 are arranged on mutually opposite sides of the membrane 18 and thus separated from each other by the membrane 18.
  • the first electrode 21 will also be referred to below as the anode 21 and the second electrode 22 will also be referred to below as the cathode 22.
  • the membrane 18 is formed as a polymer electrolyte membrane.
  • the membrane 18 is permeable to hydrogen ions, ie H + ions.
  • Each fuel cell 2 also has two bipolar plates 40, which connect to the membrane electrode unit 10 on both sides.
  • each of the bipolar plates 40 may be regarded as belonging to two fuel cells 2 arranged adjacent to one another.
  • the bipolar plates 40 each include a first distribution region 50 for distributing a fuel, which faces the anode 21.
  • Bipolar plates 40 also each include a second distribution region 60 for distributing the oxidizing agent facing the cathode 22.
  • the second distribution region 60 simultaneously serves to dissipate water formed in a reaction in the fuel cell 2.
  • the bipolar plates 40 further comprise a third distribution region 70, which is arranged between the first distribution region 50 and the second distribution region 60.
  • the third distribution area 70 serves to pass a
  • the first distribution region 50 and the third distribution region 70 are separated from one another by a first separation plate 75.
  • the second distribution region 60 and the third distribution region 70 are separated from one another by a second separation plate 76.
  • the partition plates 75, 76 of the bipolar plates 40 are formed here as thin metal sheets.
  • Distributed area 60 passed to the cathode 22.
  • the fuel present
  • Hydrogen is catalytically added to the anode 21 with the release of electrons
  • Protons oxidized The protons pass through the membrane 18 to the cathode 22.
  • the emitted electrons are derived from the fuel cell 2 and from the fuel cell stack 5 and flow via an external circuit to the cathode 22.
  • the oxidant in this case atmospheric oxygen, reacts by receiving the electrons from the external circuit and protons that have passed through the membrane 18 to the cathode 22, to water.
  • FIG 2 shows an enlarged schematic representation of a bipolar plate 40 of the fuel cell stack 5 of Figure 1, which is arranged between two membrane electrode units IO.
  • a bipolar plate 40 of the fuel cell stack 5 of Figure 1 which is arranged between two membrane electrode units IO.
  • Metallic sheet formed first partition plate 75 is bent several times and repeatedly touches the second partition plate 76.
  • the second partition plate 76 is formed as a flat thin metal sheet. Gaps between the first partition plate 75 and the second partition plate 76 together form the third distribution area 70 for passing the coolant.
  • a profile 80 is provided which, for example, has a plurality of columns 82.
  • the pillars 82 of the profile 80 extend from the second separation plate 76 through the second distribution region 60 to the cathode 22 of the adjacent membrane electrode assembly 10.
  • the columns 82 of the profile 80 are produced by printing a printing material on the second partition plate 76.
  • the printing material is for example by means of
  • FIG. 3 shows a schematic sectional illustration along the section line A-A through the bipolar plate 40 from FIG. 2 according to a first embodiment.
  • the profile 80 comprises a plurality of columns 82, which in the present case have a rectangular, in particular square cross-section.
  • the columns 82 are arranged such that corners of adjacent columns 82 touch, and that between each four columns 82, a free space is formed.
  • the columns 82 of the profile 80 are in the present case produced from a porous printing material.
  • the columns 82 of the profile 80 are also porous and thus permeable to the incoming oxidant.
  • the oxidizing agent flows through the second distribution region 60 and also the columns 82 of the profile 80 therein in a flow direction 44, which is indicated by corresponding arrows.
  • FIG. 4 shows a schematic sectional illustration along the section line A-A through the bipolar plate 40 from FIG. 2 according to a second embodiment.
  • the profile 80 comprises a plurality of columns 82, which in the present case have a rectangular, in particular square cross-section.
  • the columns 82 are presently arranged such that corners of adjacent columns 82 partially contact, but between the columns 82 free flow channels are formed.
  • the flow channels in this case have bends, so only partially straight.
  • Flow channels in the second distribution region 60 in a flow direction 44 which is indicated by corresponding arrows.
  • Figure 5 shows a perspective view of a profile 80 of the bipolar plate 40 of Figure 2 according to a first embodiment.
  • the profile 80 has a plurality of columns 82, which are parallel to each other from the second
  • the columns 82 of the profile 80 in this case have a circular cross-section and are spaced from each other on the second partition plate 76.
  • Figure 6 shows a perspective view of a profile 80 of the bipolar plate 40 of Figure 2 according to a second embodiment.
  • the profile 80 has a plurality of columns 82, which are parallel to each other from the second
  • the columns 82 of the profile 80 in this case have an oval or drop-shaped cross section and are spaced from each other on the second partition plate 76. Between the columns 82 thus gaps are provided, which can be flowed through by the oxidizing agent.
  • the columns 82 of the profile 80 may have other cross sections in addition to the cross sections shown here.
  • cross sections shown here triangular, hexagonal or other polygonal cross sections for the columns 82 of the profile 80 are conceivable.
  • other versions of the profile 80 are conceivable instead of or in addition to columns.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

L'invention concerne un procédé de fabrication d'une plaque bipolaire (40), destinée à une pile à combustible, comprenant une première zone de distribution (50) délimitée par une plaque de séparation (75, 76) et destinée à distribuer un combustible à une première électrode et une seconde zone de distribution (60) délimitée (60) par une plaque de séparation (75, 76) et destinée à distribuer un agent oxydant à une seconde électrode (22). Pour cela, un profil (80) est généré dans au moins l'une des zones de distribution (50, 60) par pression d'un matériau de pression sur la plaque de séparation (75, 76). L'invention concerne également une plaque bipolaire (40) destinée à une pile à combustible générique. Un profil (80) est prévu dans au moins une des zones de distribution (50, 60) de la plaque bipolaire (40), lequel profil est généré par pression d'un matériau de pression sur la plaque de séparation (75, 76). En outre, l'invention concerne une pile à combustible comprenant au moins une unité à électrodes et membrane (10), comprenant une première électrode (21) et une seconde électrode (22) séparées par une membrane (18), et au moins une plaque bipolaire (40) selon l'invention.
PCT/EP2017/080959 2016-12-12 2017-11-30 Procédé de fabrication d'une plaque bipolaire, plaque bipolaire pour pile à combustible et pile à combustible WO2018108546A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016224674.7 2016-12-12
DE102016224674 2016-12-12

Publications (2)

Publication Number Publication Date
WO2018108546A2 true WO2018108546A2 (fr) 2018-06-21
WO2018108546A3 WO2018108546A3 (fr) 2018-08-09

Family

ID=60515398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2017/080959 WO2018108546A2 (fr) 2016-12-12 2017-11-30 Procédé de fabrication d'une plaque bipolaire, plaque bipolaire pour pile à combustible et pile à combustible

Country Status (1)

Country Link
WO (1) WO2018108546A2 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019185416A1 (fr) * 2018-03-27 2019-10-03 Robert Bosch Gmbh Structure de répartiteur de gaz pour une pile à combustible
CN110492125A (zh) * 2019-07-26 2019-11-22 珠海格力电器股份有限公司 一种板结构、双板装置及具有其的燃料电池
WO2020007677A1 (fr) * 2018-07-06 2020-01-09 Robert Bosch Gmbh Procédé et dispositif de fabrication d'un demi-plaque bipolaire pour pile à combustible
CN111640963A (zh) * 2020-06-16 2020-09-08 陕西中丰新能源有限公司 一种电池极板制作工艺
CN112366333A (zh) * 2020-09-21 2021-02-12 中国科学院大连化学物理研究所 一种带气液分配流场的导电分隔板的3d打印加工方法
CN113328113A (zh) * 2021-05-28 2021-08-31 广东省科学院新材料研究所 一种固体氧化物燃料电池/电解池连接体的制备方法
WO2021248508A1 (fr) * 2020-06-09 2021-12-16 深圳市雄韬电源科技股份有限公司 Plaque bipolaire de pile à combustible et son procédé de préparation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012221730A1 (de) 2012-11-28 2014-05-28 Robert Bosch Gmbh Verfahren zum Abdichten eines Kühlmittelraums einer Bipolarplatte einer Brennstoffzelle sowie Brennstoffzelle
DE102014207594A1 (de) 2014-04-23 2015-10-29 Robert Bosch Gmbh Bipolarplatte für eine Elektrolyse- oder Brennstoffzelle

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9808524D0 (en) * 1998-04-23 1998-06-17 British Gas Plc Fuel cell flow-field structure formed by layer deposition
US6261710B1 (en) * 1998-11-25 2001-07-17 Institute Of Gas Technology Sheet metal bipolar plate design for polymer electrolyte membrane fuel cells
DE10113001A1 (de) * 2001-03-17 2002-10-10 Bayerische Motoren Werke Ag Brennstoffzelle mit optimierter Reaktandenverteilung
FR2836282B1 (fr) * 2002-02-19 2004-04-02 Commissariat Energie Atomique Structure alveolaire et procede de fabrication d'une telle structure
US7261124B2 (en) * 2004-09-10 2007-08-28 General Motors Corporation Bipolar plate channel structure with knobs for the improvement of water management in particular on the cathode side of a fuel cell
JP5011362B2 (ja) * 2009-09-30 2012-08-29 株式会社日立製作所 燃料電池用バイポーラープレートおよび燃料電池
DE102013108413B4 (de) * 2013-08-05 2021-05-20 Gerhard Hautmann Verfahren zum Herstellen eines Brennstoffzellenstapels sowie Brennstoffzellenstapel und Brennstoffzelle/Elektrolyseur
DE102015224835A1 (de) * 2015-12-10 2017-06-14 Volkswagen Aktiengesellschaft Verfahren zum Herstellen einer Brennstoffzelle, eine mit dem Verfahren herstellbare Brennstoffzelle sowie Brennstoffzellenstapel
DE102016213057A1 (de) * 2016-07-18 2018-01-18 Robert Bosch Gmbh Verfahren zur Herstellung einer Bipolarplatte für eine Brennstoffzelle und Brennstoffzelle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012221730A1 (de) 2012-11-28 2014-05-28 Robert Bosch Gmbh Verfahren zum Abdichten eines Kühlmittelraums einer Bipolarplatte einer Brennstoffzelle sowie Brennstoffzelle
DE102014207594A1 (de) 2014-04-23 2015-10-29 Robert Bosch Gmbh Bipolarplatte für eine Elektrolyse- oder Brennstoffzelle

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019185416A1 (fr) * 2018-03-27 2019-10-03 Robert Bosch Gmbh Structure de répartiteur de gaz pour une pile à combustible
WO2020007677A1 (fr) * 2018-07-06 2020-01-09 Robert Bosch Gmbh Procédé et dispositif de fabrication d'un demi-plaque bipolaire pour pile à combustible
CN110492125A (zh) * 2019-07-26 2019-11-22 珠海格力电器股份有限公司 一种板结构、双板装置及具有其的燃料电池
CN110492125B (zh) * 2019-07-26 2020-10-30 珠海格力电器股份有限公司 一种板结构、双板装置及具有其的燃料电池
WO2021248508A1 (fr) * 2020-06-09 2021-12-16 深圳市雄韬电源科技股份有限公司 Plaque bipolaire de pile à combustible et son procédé de préparation
CN111640963A (zh) * 2020-06-16 2020-09-08 陕西中丰新能源有限公司 一种电池极板制作工艺
CN112366333A (zh) * 2020-09-21 2021-02-12 中国科学院大连化学物理研究所 一种带气液分配流场的导电分隔板的3d打印加工方法
CN112366333B (zh) * 2020-09-21 2022-03-25 中国科学院大连化学物理研究所 一种带气液分配流场的导电分隔板的3d打印加工方法
CN113328113A (zh) * 2021-05-28 2021-08-31 广东省科学院新材料研究所 一种固体氧化物燃料电池/电解池连接体的制备方法
CN113328113B (zh) * 2021-05-28 2022-07-12 广东省科学院新材料研究所 一种固体氧化物燃料电池/电解池连接体的制备方法

Also Published As

Publication number Publication date
WO2018108546A3 (fr) 2018-08-09

Similar Documents

Publication Publication Date Title
WO2018108546A2 (fr) Procédé de fabrication d'une plaque bipolaire, plaque bipolaire pour pile à combustible et pile à combustible
DE102014210358A1 (de) Brennstoffzellenstapel mit einer dummyzelle
WO2018114948A1 (fr) Plaque bipolaire pour pile à combustible et pile à combustible
WO2018108552A1 (fr) Plaque bipolaire pour pile à combustible et pile à combustible
DE102021203040A1 (de) Protonen-austausch-membran-brennstoffzelle
WO2017215872A1 (fr) Procédé de fabrication d'une plaque bipolaire pour une pile à combustible et pile à combustible
DE102008052945A1 (de) Brennstoffzellenstapel
WO2018130388A1 (fr) Procédé de fabrication d'une plaque bipolaire, plaque bipolaire pour une pile à combustible et pile à combustible
WO2018114271A1 (fr) Plaque bipolaire pour pile à combustible et pile à combustible
EP1525634B1 (fr) Plaque bipolaire pour pile a combustible
WO2022111922A1 (fr) Plaque bipolaire pour cellule électrochimique, agencement de cellules électrochimiques et procédé de fonctionnement dudit agencement de cellules électrochimiques
WO2018108548A1 (fr) Plaque bipolaire pour une pile à combustible et pile à combustible
WO2018233921A1 (fr) Pile à combustible
DE102020215014A1 (de) Bipolarplatte für eine elektrochemische Zelle und elektrochemische Zelle
WO2022111924A1 (fr) Plaque bipolaire pour cellule électrochimique, agencement de cellules électrochimiques et procédé d'utilisation d'un agencement de cellules électrochimiques
EP3516719A1 (fr) Pile à combustible
DE102016205010A1 (de) Bipolarplatte, Brennstoffzelle und ein Kraftfahrzeug
WO2018108547A1 (fr) Pile à combustible
DE102020215024A1 (de) Bipolarplatte für eine elektrochemische Zelle, Anordnung elektrochemischer Zellen und Verfahren zur Herstellung der Bipolarplatte
DE102020215013A1 (de) Bipolarplatte für eine elektrochemische Zelle, Verfahren zur Herstellung der Bipolarplatte, Anordnung elektrochemischer Zellen und Verfahren zum Betrieb der Anordnung elektrochemischer Zellen
WO2020152084A1 (fr) Plaque bipolaire pour pile à combustible et pile à combustible
WO2018108553A1 (fr) Plaque bipolaire pour pile à combustible et pile à combustible
DE102020203683A1 (de) Vorrichtung zur Mediendurchführung und Verfahren zur Herstellung
DE102022205239A1 (de) Zellenstapel mit einer Anzahl elektrochemischer Zellen
DE102020205272A1 (de) System umfassend einen Brennstoffzellenstapel und eine Spannvorrichtung und Verfahren zum Spannen des Systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17807854

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17807854

Country of ref document: EP

Kind code of ref document: A2