WO2003067268A1 - Capacity load type probe, and test jig using the same - Google Patents

Capacity load type probe, and test jig using the same Download PDF

Info

Publication number
WO2003067268A1
WO2003067268A1 PCT/JP2003/001277 JP0301277W WO03067268A1 WO 2003067268 A1 WO2003067268 A1 WO 2003067268A1 JP 0301277 W JP0301277 W JP 0301277W WO 03067268 A1 WO03067268 A1 WO 03067268A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
capacity
metal
signal
power supply
Prior art date
Application number
PCT/JP2003/001277
Other languages
French (fr)
Japanese (ja)
Inventor
Wasuke Yanagisawa
Makoto Nakakoji
Ryo Horie
Takuto Yoshida
Original Assignee
Yokowo Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokowo Co., Ltd. filed Critical Yokowo Co., Ltd.
Priority to US10/503,669 priority Critical patent/US7233156B2/en
Priority to JP2003566566A priority patent/JP4707322B2/en
Priority to AU2003207078A priority patent/AU2003207078A1/en
Priority to DE60317638T priority patent/DE60317638T2/en
Priority to EP03703239A priority patent/EP1482313B1/en
Publication of WO2003067268A1 publication Critical patent/WO2003067268A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06772High frequency probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06716Elastic
    • G01R1/06722Spring-loaded

Definitions

  • the present invention is intended for high-frequency and high-speed applications, such as amplifier circuits and mixer circuits incorporated in mobile phones (an analog device with a high frequency is called a high frequency, and a digital device with a very small pulse width and pulse interval is called a high speed. The same shall apply hereinafter) when inspecting high-frequency / high-speed devices for inspecting semiconductor wafers, ICs, or modules, etc., while ensuring the connection between the device to be inspected and the inspection equipment, and exogenous noise.
  • TECHNICAL FIELD The present invention relates to a capacity-loaded probe capable of minimizing the effect of a probe and an inspection jig using the probe. Yes)
  • a spring-loaded RF signal provided in the metal block 1 (used to include both high frequency and high speed) Probe 3
  • power supply It is configured to be connected to the respective electrode terminals 21 to 23 of the device 20 via an inspection jig having a probe 4 for grounding and a probe 5 for grounding.
  • reference numeral 6 denotes a wiring board formed of a printed circuit board or the like and forming a power supply wiring on the input side.
  • the RF signal probe 3 has a coaxial structure, and a structure having no room for picking up noise is considered.
  • a circuit board (an anti-print) 6 on the input side of the power supply probe 4 is connected to a path-pass filter 6 1 consisting of a coil L and a capacitor C LC circuit as shown in Fig. 12 (b).
  • the input signal terminal is not limited to the RF signal, and various mid- to low-frequency signals ranging from a signal close to the DC level to 100 MHz are input to the input signal terminal for inspection. Even if RF noise is input to these middle and low frequency signal terminals, accurate inspection cannot be performed. Even if these medium and low frequency input signal probes are formed in a coaxial structure, they are mixed on the device side or on the inspection equipment side: RF noise will be directly input to the terminal of the device under test, As mentioned above, accurate inspection cannot be performed.
  • connection to the device under test is made less likely to be affected by noise picked up by wiring connected to the device.
  • a contact probe having a movable pin that expands and contracts via a spring is provided in a metal block and brought into contact with the metal probe. This makes it possible to eliminate the gap between the device to be inspected and the metal block and to make a reliable connection, making it difficult to pick up noise.
  • RF signal probes have been attempted to have a coaxial structure even in a metal block.
  • An object of the present invention is to provide a capacitance-loaded probe which is hardly affected by a voltage drop at a power supply terminal due to inductance while using a thin probe for connection to a power supply terminal.
  • Another object of the present invention is to reduce the noise in accordance with the signal input to the terminal of a device that is highly integrated with high frequency and high speed, thereby enabling accurate inspection without being affected by noise. And a jig for a device such as a high-frequency / high-speed device using the probe. Disclosure of the invention
  • a capacity-loaded probe includes: a metal pipe; and a movable pin that is provided in the metal pipe so as to be electrically connected to the metal pipe, and that has a variable protruding length protruding from at least one end of the metal pipe.
  • a dielectric layer provided on an outer periphery of the metal pipe; and a first metal film provided on an outer peripheral surface of the dielectric layer, wherein a capacitance is formed between the movable pin and the first metal film.
  • the movable pin means a pin whose tip can move along the axial direction, for example, such that when the lead wire is held and pressed by a spring or the like, the tip is contracted by the spring or the like.
  • the test device under test is RF (including both high frequency with high analog frequency and high speed with short pulse of digital short pulse, and those with analog or pulse repetition of about 1 GHz or more.
  • the voltage drop occurs when the output switches between low and high currents, for example, due to the inductance of the power supply port. It can be made as small as possible. This is based on the fact that the capacity is added to compensate for the charging and discharging of the inductance and the capacity.
  • the capacitance of the power supply probe and the signal probe is increased.
  • the RF noise mixed into the power supply line and the signal line can be reliably reduced by the capacity, and a highly reliable inspection can be performed without being affected by noise.
  • the dielectric layer is made of a dielectric cylinder
  • the first metal film is formed on an outer peripheral surface of the dielectric cylinder
  • a second metal film is provided on an inner peripheral surface of the dielectric cylinder.
  • the dielectric layer is electrically connected to the metal pipe via the second metal film, or the dielectric layer is formed of a thin film directly sworded on the outer peripheral surface of the metal pipe.
  • a structure in which the first metal film is formed may be used. It is provided on the inner and outer walls of the dielectric cylinder.
  • the metal film is formed by, for example, electroless plating.
  • the dielectric layer can be formed by, for example, sputtering or vacuum evaporation while rotating a metal pipe, or a liquid obtained by dissolving a dielectric material in an organic solvent or the like. It can also be formed by a sol-gel method in which it is applied to the outer periphery of a metal pipe, dried and fired.
  • the capacity provided on the outer periphery of the metal pipe may be formed to have two or more types of capacities.
  • An inspection jig has a metal block and a movable pin having a movable tip with a movable protruding length.
  • the metal block is arranged so that the distal end of the movable pin protrudes from one surface of the metal protrude.
  • a plurality of power supply and signal probes provided therethrough, and a denominated wedge is pressed against the one surface side of the metal block, and each electrode terminal of the device to be inspected and a tip of the probe.
  • a RF noise bypass capacitor is formed around at least part of the power supply probe and signal probe, so that RF noise can be reduced immediately before the power supply terminal and signal terminal of the device under test.
  • This makes it possible to bypass the power supply and signal probes, and even if the RF noise that could not be completely removed remains on the wiring board (printed circuit board) side, the bypass capacitor can be used. Completely removed.
  • noise penetration from the power supply and mid-low frequency signal probes connected to the device via the movable pins is completely eliminated, enabling accurate inspections that are not affected by noise.
  • the capacitance-loaded probe for the power supply probe the voltage drop at the power supply terminal caused by a current change inside the device can be suppressed, and within 10% of the general power supply voltage allowable range. Can be suppressed.
  • At least some of the signal probes connected to the signal input terminal of the device under test have at least some of the probes in accordance with the repetition of the sine wave or pulse of the signal applied to the input terminal.
  • the attenuation is small for the signal of the repetition and larger than the repetition
  • a capacitance-loaded probe with a capacity that has the capacity to attenuate frequency noise even if the device receives various signals from the DC level to RF at the signal input, the Since RF noise can be removed according to the input signal without attenuating the input signal, very high-precision inspection can be performed.
  • the repetition of a sine wave or a pulse means its frequency in the case of an analog signal, and its high and / or repeating speed in the case of a digital signal.
  • the power probe connected to the power terminal of the device under test is a capacitance-loaded probe having a capacitance of 5 OpF or more, more preferably 100 pF or more, so that the input signal
  • the power supply voltage hardly drops by more than 10% against changes, and high-frequency noise of 400 MHz or more (200 MHz or more if 10 OpF or more) can be attenuated by 1 OdB or more.
  • High: RF This is preferable because noise can be further attenuated and noise can be almost completely eliminated.
  • 1 (a) and 1 (b) are a plan explanatory view and a partial sectional side view showing an embodiment of an inspection jig according to the present invention.
  • 2 (a) and 2 (b) are a cross-sectional explanatory view of the capacitance-loaded probe shown in FIG. 1 and a perspective explanatory view of a dielectric tube thereof.
  • Fig. 3 shows the frequency characteristics of the insertion loss due to the simulation when the capacity of the probe is varied.
  • Fig. 4 shows the frequency characteristics of the measured insertion loss at 470 pF as an example.
  • FIG. 5 is an equivalent circuit diagram when a capacitance-loaded probe is used as a power supply probe.
  • FIG. 6 (a) to 6 (c) show the state of voltage drop at the power supply terminal when the capacitance is 100 OpF and 10 OpF, compared with the case where there is no capacitance and the stray capacitance is only 0.5 pF. It is a result of the simulation performed.
  • FIG. 7 is an explanatory cross-sectional view showing another embodiment of the capacitance-loaded probe.
  • FIG. 8 is an explanatory sectional view showing still another example of the capacitance-loaded probe.
  • FIG. 9 is a partial cross-sectional explanatory view showing another example of a structure for fixing a probe to a metal block.
  • FIGS. 10 (a) and 10 (b) are a cross-sectional explanatory diagram and an equivalent circuit diagram showing still another embodiment of the capacitive loaded probe.
  • FIGS. 11 (a) to 11 (c) are diagrams illustrating the voltage drop at the power supply terminal that occurs when a switching waveform is output.
  • FIGS. 12 (a) and 12 (b) are diagrams showing a configuration example of a conventional inspection jig for a high-frequency / high-speed device.
  • the jig according to the present invention connects the device under test 20 to an unillustrated device, and as shown in FIGS. 1 (a) and 1 (b), a side view of a plane and a partial cross section thereof is shown.
  • the probe has a movable pin 11 with a movable protruding length at the tip, and a signal probe 3, a power probe 4 and a ground so that the tip of the movable pin 11 protrudes from one side of the metal block 1.
  • a plurality of probes such as a probe 5 are provided through the metal block 1.
  • the device 20 to be inspected is pressed against one surface of the metal probe 1, and the electrode terminals 21 to 24 of the device 20 to be inspected come into contact with the tips of the probes 3 to 5, respectively. Then, the characteristic inspection of the inspection device 20 is performed.
  • at least a part of the plurality of probes is a capacitance-loaded probe having a capacitance formed by providing a dielectric layer and a metal film on the outer periphery of the probe.
  • FIG. 2 (a) a cross-sectional view of one embodiment of this capacity-loading type propellant 10 protrudes into the metal pipe 13 from at least one end of the metal pipe 13.
  • the movable pins 11 and 12 are provided so as to be electrically connected to the metal pipe 13 so that the protruding length of the tip can be made variable, and a dielectric layer 15 is provided on the outer periphery of the metal pipe 13.
  • the first metal film 17 is provided on the outer peripheral surface of the dielectric layer 15. Thereby, a capacitance is formed between the movable pin 11 and the first metal film 17.
  • a dielectric cylinder 15 in which a dielectric is formed in a cylindrical shape is used as a dielectric layer for forming the capacity 18.
  • the second metal film 16 and the first metal film 17 are provided on the inner peripheral wall and the outer peripheral wall of the dielectric cylinder 15 by electroless plating or the like, so that the capacity 18 is formed.
  • the first and second metal films 17 and 16 are provided on both surfaces of the dielectric tube 15, no gap is formed on both surfaces of the dielectric, so that the function of capacitance can be sufficiently achieved. I'm wearing The second metal film 16 is electrically connected to the metal pipe 13.
  • the dielectric cylinder 15 has, for example, an inner diameter D 1 of about 0.3 mm, an outer diameter D 2 of about 0.6 mm, and a length L of, as shown in FIG. It is formed to a size of about 6 mm.
  • the number of electrode terminals increases with the increase in integration of ICs and other devices.
  • the power supply terminal is about 1/4
  • the ground terminal is about 1/4
  • the rest is used for signal input / output terminals such as RF signals.
  • Figure 3 shows the results.
  • Figure 3 shows the insertion loss with respect to the frequency when the capacity of the capacity shown in Fig. 2 (a) is variously changed on the vertical axis (downward).
  • the capacity of the capacity is 10 pF, 50
  • the cases of pF, 100 pF, 530 pF, and 106 pF are shown, respectively. Note that no capacity indicates the frequency characteristics of a conventional probe that is not a capacitance-loaded probe.
  • an insertion loss of about 10 dB has a great effect on noise removal, and an insertion loss of about 20 dB can almost completely eliminate the effect of noise.
  • Fig. 3 if it is 160 pF, it is about 25 MHz Noise of the above frequencies can be removed, and if it is 50 MHz or more, it can be almost completely removed.
  • 10 dB For RF noise above 1 GHz, 10
  • the insertion loss up to 0 GHz is less than 2 dB, indicating that there is almost no RF noise removal effect.
  • the capacitance is 5 OpF, for example, there is almost no attenuation in the tens of MHz band, and significant attenuation is observed above 1 GHz.
  • the frequency of the input signal is several tens. If the signal is below MHz, a signal loaded with RF noise is input by using a probe loaded with a capacity of about 50 pF to produce a reliable signal.
  • the present inventors have found that they can do this. In other words, the signal probe does not attenuate the signal in accordance with the frequency of the input signal than the coaxial probe, and the capacity of the capacitor is large enough to attenuate only higher frequency noise.
  • the present inventors have found that it is preferable to use a probe loaded with.
  • the material of the dielectric layer 15 is changed to use a material having a different relative permittivity, or by changing the thickness of the dielectric layer 15 or the length of the probe.
  • the capacity can be changed. For example, if barium titanate (dielectric constant 2200), which is often used as ceramics, and ceramics with a relative dielectric constant of about 38, which is called high dielectric constant ceramics, are used, Figs. 2 (a) and 2 ( By forming a probe having the structure shown in b) and the dimensions shown in Table 1, a probe having the above capacity can be formed.
  • the capacitance can be freely adjusted by further changing the material and thickness of the dielectric. In particular, by forming the dielectric from a thin film as described later, the thickness can be made extremely thin, and the capacitance can be increased. 0 1 Example of capacitor formation
  • a capacitance-loaded probe was formed with the 530 pF capacity shown in Table 1, and the insertion loss versus frequency was measured. The result is shown in FIG.
  • the actual capacitance was 470 pF as a result of forming with the dimensions shown in Table 1.
  • Fig. 4 shows that, as in Fig. 3, an input loss of about 15 dB was already obtained at 50 MHz, and an input loss of almost 20 dB or more was obtained at 200 MHz or higher, indicating that noise could be almost completely removed.
  • Fig. 4 shows that, as in Fig. 3, an input loss of about 15 dB was already obtained at 50 MHz, and an input loss of almost 20 dB or more was obtained at 200 MHz or higher, indicating that noise could be almost completely removed.
  • Fig. 3 shows that, as in Fig. 3, an input loss of about 15 dB was already obtained at 50 MHz, and an input loss of almost 20 dB or more was obtained at 200 MHz or higher, indicating that noise could be almost completely
  • instruction 1 is lGHz, 27.59 5 dB
  • instruction 2 is 5 GHz, 33.877 dB
  • instruction 3 is 10 GHz
  • instruction 4 is 15 GHz
  • instruction 5 is 20 GH z, each showing 39.06 OdB.
  • the present inventors have found that the voltage drop at the power supply terminal occurs during the transition time of the output due to the signal change due to the inductance component of the power supply probe, and an accurate test can be performed. I found that there may be no.
  • the voltage drop could be suppressed to 10% or less, which is not a problem.
  • this capacitance-loaded probe is used as a power probe, The effect of preventing voltage drop at the power supply terminal
  • the voltage fluctuation at the power supply terminal is larger than that at 1000 pF, but it is still about 0.18V. Approximately 10%, which is generally the limit of fluctuation, can be sufficiently cleared. In other words, by using a probe loaded with a capacitance of 10 OpF or more as a power supply probe, voltage fluctuations can be suppressed to a level that does not hinder even a very rapid change in current.
  • the use of the capacitance-loaded probe as a power supply probe can prevent a voltage fluctuation at the power supply terminal.
  • one of the viewpoints is that the inductance of the power supply probe and the loaded load can be prevented. It is considered that the voltage is compensated by the action of charging and discharging with the increased capacity. As a result, even if the output of the device under test is instantaneously changed from low to high or from high to low due to the signal, Since voltage fluctuations at the power supply terminal can be suppressed, there is no possibility of causing an operation error or forced reset of the device under test, and a very stable test can be performed.
  • signal probes have various signal lines, ranging from those near DC level to RF signals of 1 GHz or more, and 1 GHz for low-frequency signal lines of about 100 MHz or less.
  • the above RF noise may be superimposed, and it is desired to remove these noises selectively. Therefore, by using a capacitance-loaded probe in which the capacitance is selected for each signal terminal according to the frequency of the applied signal, noise can be reliably removed and a highly reliable inspection can be performed.
  • barium titanate relative dielectric constant of about 700 to 2000
  • strontium titanate are used as the dielectric material used in such a capacitor loaded capacitor.
  • fired ceramics such as high dielectric constant ceramics (relative dielectric constant of about 10 to 50) and alumina (relative dielectric constant of 9 to 10) can be used.
  • Ceramics such as high dielectric constant ceramics (relative dielectric constant of about 10 to 50) and alumina (relative dielectric constant of 9 to 10) can be used.
  • Made of a material with a large relative permittivity, such as barium titanate or strontium titanate allows the use of high-frequency power even for extremely small power supply probes with inner and outer diameters of 0.3 mm, 0.6 mm and a length of about 6 mm. This is preferable because a large capacitance of about 100 OpF or more can be formed to almost completely bypass noise, and even low-frequency noise can be easily removed.
  • a thin film can be directly formed on the outer surface of the metal pipe 13 without using a dielectric tube.
  • a film forming material include, in addition to the materials described above, lead titanate, lead zirconate titanate ( ⁇ ; relative dielectric constant of about 700 to 1000), lanthanum lead zirconate titanate (PLZT), titanic acid Bismuth-based compounds such as barium strontium (BST; dielectric constant of about 1000 to 3000), bismuth strontium tantalate (SB ⁇ ), and bismuth titanate (BIT; dielectric constant of 150 to 220) can be used.
  • BST barium strontium
  • SB ⁇ bismuth strontium tantalate
  • BIT bismuth titanate
  • the current does not flow through the capacitor, so the conductivity of the electrodes does not matter much.
  • a gap with a small dielectric constant is used. Since a portion is formed to reduce the capacity, it is preferable that a metal film is provided in close contact with the inner peripheral surface and the outer peripheral surface of the dielectric cylinder 15.
  • the inside of the dielectric tube 15 is also plated with Ni or the like by electroless plating, and then, if necessary, the second conductive film 16 is provided by plating with silver or gold.
  • a first conductive film 17 is formed on the surface by electroless plating or the like.
  • the inner peripheral surface has a very small diameter of about 0.3 mm, it is difficult for the plating liquid to penetrate.However, the plating liquid is also applied to the inner wall by, for example, evacuating or stirring the plating liquid by ultrasonic waves. It can be sucked up by capillary action, and can be damaged.
  • FIG. 7 shows an example in which a dielectric thin film 15a is formed directly on the surface of a metal pipe 13 without using a dielectric cylinder as a dielectric layer of a capacitor. That is, this In the example, a dielectric material is directly attached to the outer surface of the metal pipe 13 by sputtering, vacuum deposition, laser ablation, or the like, or the dielectric material is dissolved in an organic solvent and applied to the outer surface of the metal pipe 13. However, the sol-gel method of firing and the like directly increases the outer surface of the metal pipe 13. According to such a direct film formation method, a very thin film of about 5 to 20 / m can be formed, so that a very large capacity can be formed.
  • the withstand voltage of the insulating film is about 50 V even when the thickness of the PZT is 10 / m, for example, and there is no practical problem.
  • a PZT with a specific dielectric constant of 730 was formed to a thickness of 10 zm, and as a result, the probe was Despite the length of 1/6, a large capacity of 124 OpF was obtained.
  • a film When a film is formed by a sputtering method or a vacuum evaporation method, the film can be formed over the entire surface by rotating the metal pipe 13 while rotating.
  • a dielectric film can be formed by applying a solution for a dielectric, drying and firing.
  • the movable pins 11 and 12 are held by a spring 14 in a metal pipe 13 with a narrow opening at the tip, and the tip is pressed. As a result, the spring 14 is contracted by contraction.
  • movable pins 11 and 12 are provided on both sides, and both the fiber distribution board 6 and the device to be machined 20 are pressed by springs 14.
  • the wiring board 6 side is fixed by a metal body 19, and if it is securely brought into contact with the wiring ⁇ 1 by direct soldering or the like, the device under test 20 side Only the movable pin 11 may be provided.
  • the movable pins 11 and 1 2 have a structure in which the end of the spring 14 is cut obliquely so that the movable pins 11 and 1 2
  • the spring 14 contracts obliquely and is pressed into contact with the narrow opening of the metal pipe 13, and the electric signal transmitted to the movable pin 11 has electric resistance instead of the thin spring 14. Since the signal is transmitted through the small metal pipe 13, the impedance can be reduced as much as possible, and the RF noise can be reduced.
  • a constricted portion is provided on the side, so that the movable pins 11 and 12 can be formed so as not to fall out.
  • the movable pins 11 of the signal probe 3 and the grounding probe 5 are formed in the same manner.
  • the metal block 1 holds probes 3 to 5 for signals and power, and is made of a metal plate such as aluminum or brass. A through hole is formed in the metal plate, and the inside of the through hole is formed. These probes are inserted.
  • the signal probe 3 is for low and medium frequency signals of, for example, 100 MHz or less, use a capacitance-loaded probe in the same way as shown in Fig. 2 (a), and use it according to the frequency of the input signal.
  • the capacity can be adjusted and used.
  • a structure with only a spring-loaded movable pin consisting of a metal pipe and a spring and a movable pin installed inside the metal pipe may be used, as shown in Fig. 2 (a).
  • the structure is such that a metal pipe is inserted into the through hole of the metal block 1 via a dielectric material around it, and the relationship between the outer diameter of the metal pipe and the inner diameter of the through hole of the metal block 1 is coaxial. It is preferable to form the structure so as to have a dimension that composes the structure, since it is possible to prevent RF noise from being introduced via the movable pin without attenuating the RF signal.
  • the end of the RF signal probe 3 opposite to the connection end to the device under test 20 is connected to a coaxial cable 7 such as semi-rigid.
  • the wiring board 6 supplies power to the device under test 20 and the like.
  • Wiring is formed on the substrate, and its terminals are appropriately formed at locations corresponding to the terminals of the device under test.
  • a single-pass filter is formed between the power supply terminal and the ground terminal on the wiring board 6, or a chip capacitor is connected.
  • a signal wiring is formed in this wiring counter 6 and connected to the coaxial cable via the wiring. May be.
  • the holding plate 8 is made of an acrylic plate or the like, is made of a thin electrically insulating material of about 0.1 to 0.2 mm, and is provided with a through hole from which the movable pin 11 of each probe projects, which is not shown. It is fixed with screws. As a result, the metal pipe or insulator of each probe is fixed so as not to protrude from the metal block 1.
  • the movable pin 11 protruding from the holding plate 8 has a BGA type inspection target. Although shown as an example formed in a matrix so as to correspond to noise 20, the number of signal probes, power supply probes, and grounding probes and their arrangement are to be tested. It is formed according to the power supply terminal of the device under test 20, and for example, an input / output RF signal probe, a power supply probe, and a grounding probe may be formed one by one.
  • one end of the probe is fixed by the holding plate 8, but it is not always necessary to use the holding plate. That is, as shown in FIG. 9, a step portion for fixing the end of the probe is provided in the through-hole into which the probe of the metal probe 1 is inserted, and the second metal block 1 a similarly formed with the step portion is provided. , The movable pin 11 can be moved while the probe 10 is fixed by fixing the probe 10 from both sides and fixing the probe to the metal block 1 with screws (not shown) from the second metal block 1a side. .
  • the capacity formed on the outer periphery of the metal pipe 13 is one kind of capacity.
  • the first metal film is divided. by to length and MM 2, M 3 different length of the metal film 1 7 a, 1 7 b, 1 7 c, as shown in FIG. 1 0 (b), of different capacity capacity evening 18a, 18b and 18c can be formed. It it Capacity evening C u -C 1 3 capacity is distributed to the capacity size was proportional to the capacity of the entire length M in the length of the respective lengths M 1 ⁇ M 3 of.
  • the device to be inspected is contacted by the movable pin, there is no exposed portion of the lead in the contact portion with the electrode terminal of the device to be inspected, and the power supply electrode terminal of the device to be inspected.
  • a capacitor is formed around the power probe to be
  • RF noise can be removed just before input to the power supply terminal of the device under test, and the test can be performed in a noise-free state.
  • the capacitance is formed on the power supply probe immediately before contact, noise can be eliminated very effectively, and the voltage drop at the power supply terminal during high-speed switching waveform output should be minimized. Can be.
  • a probe equipped with a capacity that attenuates the RF noise without attenuating the signal at the signal port before inputting it can be used. Also, the noise superimposed on the signal component can be effectively removed before entering the terminal of the device under test.
  • the power probe may be configured such that only the side in contact with the device under test is a movable pin and the other end is directly connected by soldering, etc.
  • the movable pin may be provided only on the contact side with the device under test, and the other end may be fixed.
  • no grounding probe is provided, for example, anisotropic conductive rubber that has a large number of thin metal wires buried in rubber and conducts only in the vertical direction and is insulated in the horizontal direction is used. It is also possible to have a structure in which the metal block 1 and the ground terminal of the device under test are directly connected via the metal block.
  • a contact probe having a movable pin that can reliably contact an electrode terminal or the like of a device to be inspected only by pressing is provided with a direct capacity, a high-frequency / high-speed device
  • By adjusting the capacitance of the signal terminal it is possible to attenuate only the noise without deteriorating the signal.
  • a very stable test is accurate It is possible to greatly improve the reliability of high-frequency and high-speed devices; ( ⁇ .
  • the present invention relates to an amplifier circuit, a mixer circuit, a filter circuit, an IC, a module, a high-speed digital processing processor (DSP (digital signal processor) s CPU (central processing unit), (field programmable gate array)), high-speed memory, serial-parallel conversion IC (SER ZDES (serializer / de-serializer)), etc. be able to.
  • DSP digital signal processor
  • CPU central processing unit
  • SER ZDES serial-parallel conversion IC
  • SER ZDES serial-parallel conversion IC

Abstract

A movable pin (11) having a movable projection length at the front end is disposed and a plurality of probes, such as a signal probe (3) and a power supply probe (4), are disposed to extend through a metal block (1) to allow the front end of the movable pin to project at one surface side of the metal block (1). A test subject device (20) is pressed against one surface side of the metal block (1) to contact the electrode terminals (21-24) of the test subject device with the front ends of the individual probes, thereby testing the test subject device for its characteristics. At least some of these probes are formed around the outer periphery thereof with a dielectric layer and a metal film, thereby providing a capacitor load type probe having a capacitor formed therein. As a result, noise elimination can be reliably effected, and using it as a power supply probe makes it possible to suppress voltage drop across the power supply terminals even if the output varies.

Description

m 糸田 β  m Itoda β
容量装荷型プローブおよびそれを用いた 治具 技術分野 Capacitively loaded probe and jig using it
本発明は、 たとえば携帯電話機に組み込まれる増幅回路やミキサ回路など、 高 周波'高速用 (アナログで周波数の高いものを高周波といい、 デジタルでパルス 幅およびパルス間隔が非常に小さいものを高速という、 以下同じ) の半導体ゥェ ハ、 i c、 またはモジュールなどを検査する高周波'高速用デバイスを検査する 場合などに、 その被検査デノ イスと検査装置との接続を確実にしながら、 外来ノ ィズの影響を極力小さくすることができる容量装荷型プローブおよびそれを用い た検査治具に関する。 有〕  The present invention is intended for high-frequency and high-speed applications, such as amplifier circuits and mixer circuits incorporated in mobile phones (an analog device with a high frequency is called a high frequency, and a digital device with a very small pulse width and pulse interval is called a high speed. The same shall apply hereinafter) when inspecting high-frequency / high-speed devices for inspecting semiconductor wafers, ICs, or modules, etc., while ensuring the connection between the device to be inspected and the inspection equipment, and exogenous noise. TECHNICAL FIELD The present invention relates to a capacity-loaded probe capable of minimizing the effect of a probe and an inspection jig using the probe. Yes)
たとえば、 半導体ウェハ、 I Cあるいはモジュールなどの高周波や高速のデバ ィスを検査する場合、 リードなどが露出しているとその部分でノィズを拾いやす いため、 たとえば特開 2 0 0 1—9 9 8 8 9号公報にも開示され、 図 1 2 ( a) に示されるように、 金属ブロック 1内に設けられるスプリング入りの R F信号用 (高周波および高速の両方を含む意味で使用) プローブ 3、 電源用プローブ 4お よび接地用プローブ 5を有する検査治具を介して被 デバイス 2 0の各電極端 子 2 1〜2 3と接続されるように構成されている。 このような検査治具で、 R F 信号は同軸ケーブル 7を介して、 R F信号用プローブ 3に接続され、 スプリング の縮みにより被検査デバイス 2 0と金属プロヅク 1上の薄い押え板 8との間に間 隙が生じないようにすると共に、 スプリングにより R F信号用プローブ 3と被検 査デバイス 2 0の電極端子との接触を確実にして信号を入出力させることにより、 できるだけノイズを拾わないような構成になっている。 なお、 図 1 2 ( a) にお いて、 6はプリント基板などからなり、 入力側の電源配線を形成する配線 ¾反を 示している。  For example, when inspecting high-frequency or high-speed devices such as semiconductor wafers, ICs or modules, if the leads and the like are exposed, it is easy to pick up noise at those parts. As shown in Fig. 12 (a), as shown in Fig. 12 (a), a spring-loaded RF signal provided in the metal block 1 (used to include both high frequency and high speed) Probe 3, power supply It is configured to be connected to the respective electrode terminals 21 to 23 of the device 20 via an inspection jig having a probe 4 for grounding and a probe 5 for grounding. With such an inspection jig, the RF signal is connected to the RF signal probe 3 via the coaxial cable 7, and the spring is compressed, so that the RF signal is connected between the device 20 to be inspected and the thin holding plate 8 on the metal work 1. A configuration that minimizes noise by preventing gaps and ensuring that the RF signal probe 3 and the electrode terminal of the device under test 20 are in contact with the electrode terminals of the device under test 20 by means of springs to input and output signals It has become. In FIG. 12A, reference numeral 6 denotes a wiring board formed of a printed circuit board or the like and forming a power supply wiring on the input side.
このような構造にしても、 高周波または高速用では、 ノイズを拾いやすく、 金 属ブロック 1内のスプリング入りプローブの部分でノイズを拾うことがあり、 前 述の特開 2 0 0 1 - 9 9 8 8 9号公報では、 R F信号用プローブ 3を同軸構造に することを開示し、 ノイズを拾う余地のない構造が考えられている。 一方、 電源 端子 2 3に高周波や高速のノイズが乗っても、 電源電圧がそのノイズにより振ら れることになり、 増幅器などは発振したりして正確な測定をすることができない。 そのため、 電源用プローブ 4の入力側の配線基板 (プリント 反) 6に、 たとえ ば図 1 2 ( b) に示されるようなコイル Lとキャパシ夕 Cの L C回路からなる口 一パスフィル夕 6 1を形成したり、 電源用プローブ 4の入力側と配線基板 (プリ ント 反) 6上のアースとの間にチヅプコンデンサ (パイパスコンデンサ) を接 続することにより、 電源配線に乗った高周波 ·高速のノイズを除去する方法が用 いられている。 Even with such a structure, high-frequency or high-speed applications can easily pick up noise, and the spring-loaded probe inside the metal block 1 may pick up noise. The aforementioned Japanese Patent Application Laid-Open No. 2001-99889 discloses that the RF signal probe 3 has a coaxial structure, and a structure having no room for picking up noise is considered. On the other hand, even if high-frequency or high-speed noise is applied to the power supply terminal 23, the power supply voltage fluctuates due to the noise, and an amplifier or the like oscillates and cannot perform accurate measurement. For this reason, a circuit board (an anti-print) 6 on the input side of the power supply probe 4 is connected to a path-pass filter 6 1 consisting of a coil L and a capacitor C LC circuit as shown in Fig. 12 (b). By connecting or connecting a chip capacitor (bypass capacitor) between the input side of the power supply probe 4 and the ground on the printed circuit board (anti-print) 6, the high-frequency and high-speed A method of removing noise is used.
—方、 入力信号端子には、 R F信号に限らず、 端子によって、 D Cレベルに近 い信号から 1 0 0 MH zにおよぶ種々の中低周波の信号が入力されて検査がなさ れる。 これらの中低周波の信号端子に対して R Fノイズが入力されても、 正確な 検査をすることができない。 これらの中低周波入力信号用プロ一ブを同軸構造に 形成しても、 デバイス側または検査装置側で混入した: R Fノイズは、 そのまま被 検査デバイスの端子に入力されてしまうことになるため、 前述のように、 正確な 検査をすることができなくなる。  On the other hand, the input signal terminal is not limited to the RF signal, and various mid- to low-frequency signals ranging from a signal close to the DC level to 100 MHz are input to the input signal terminal for inspection. Even if RF noise is input to these middle and low frequency signal terminals, accurate inspection cannot be performed. Even if these medium and low frequency input signal probes are formed in a coaxial structure, they are mixed on the device side or on the inspection equipment side: RF noise will be directly input to the terminal of the device under test, As mentioned above, accurate inspection cannot be performed.
前述のように、 高周波用や高速用のデバイスを検査する 1«治具では、 そのデ ノ イスに接続される配線などにより拾うノイズの影響を受け難くするため、 被検 查デバイスとの接続部を、 スプリングを介して伸縮する可動ピンを有するコン夕 クトプローブを金属プロック内に設けて接触させる構造とされている。 これによ り、 被検査デバイスと金属ブロックとの間隙をなくして確実に接続することがで き、 ノイズを拾い難くなる。 さらには、 R F信号用プローブは、 前述のように、 金属ブロック内においても同軸構造にすることが試みられている。一方で、 近年 の高周波および高速化の進展と共に、 回路の高集積ィ匕およびパッケージの小型ィ匕 は目覚しいものがあり、 端子数(電極数) の増加および端子間ピッチの縮小化に より、 金属プロックを使用していない構造では影響を受けやすいのは当然として も、 金属ブロック内の電源プローブであっても非常にノィズが重畳されやすい状 況になり、 金属ブロック内の電源プロ一ブへの入力側に口一パスフィル夕ゃチッ プコンデンサを設ける構造では、 完全には、 ノイズの影響を受けない正確な: |« をすることができないという問題がある。 As described above, high-frequency and high-speed devices are inspected. 1 In jigs, the connection to the device under test is made less likely to be affected by noise picked up by wiring connected to the device. A contact probe having a movable pin that expands and contracts via a spring is provided in a metal block and brought into contact with the metal probe. This makes it possible to eliminate the gap between the device to be inspected and the metal block and to make a reliable connection, making it difficult to pick up noise. Furthermore, as described above, RF signal probes have been attempted to have a coaxial structure even in a metal block. On the other hand, with the development of high frequency and high speed in recent years, high integration of circuits and miniaturization of packages have been remarkable, and with the increase in the number of terminals (the number of electrodes) and the reduction in the pitch between terminals, metal Not only is the structure not using a block easily affected, but even in the case of a power supply probe in a metal block, the noise is very likely to be superimposed. Mouth-pass filling on the input side The problem with the structure with a capacitor is that it is not possible to perform accurate: | «completely without being affected by noise.
さらに、 近年の高周波 ·高速用デバイスの進化により、 入力信号の変化により 出力がローからハイになったり、 ノ、ィから口一になったりする過渡期にデバイス の演算エラーや強制リセットを引き起こすなど検査に異常が出やすいことを見出 し、 本発明者らはその原因を鋭意検討を重ねて調べた結果、 出力電圧が変化する 過渡時間が早くなり、 それに伴い、 その電圧変化によって発生する電源電流の瞬 時的変化が電源端子の電圧降下を引き起こすことに基づいていることを見出した すなわち、 電源電流がステヅプ状に増加すると、 前述の図 1 2 ( a) に示される ような構造で、 長さが 4 mm程度の電源用プローブ 4では、 プローブが細いため Furthermore, with the recent evolution of high-frequency and high-speed devices, changes in the input signal may cause the output to go from low to high, or the transition from no to i may cause device operation errors or forced resets. The present inventors have found that abnormalities are likely to occur in the inspection, and as a result of intensive studies on the cause, the present inventors have found that the transient time during which the output voltage changes is shortened, and the power supply generated by the voltage change accordingly It has been found that the instantaneous change in the current is based on causing a voltage drop at the power supply terminal.In other words, when the power supply current increases in a step-like manner, the structure shown in FIG. With the power probe 4 with a length of about 4 mm, the probe is thin.
2 nH程度のインダク夕ンス を有しており、 また、 プローブ周辺の浮遊容量 として、 C 2 = 0 . 5 p Fを想定すると、 図 1 1 ( a) に示されるような等価回 路になる (図 1 1 ( a) で、 C 2は、 キャパシ夕が接続されている訳ではないが、 浮遊容量を等価回路で示している) 。 その結果、 たとえば図 1 1 (b ) に示され るように、 電流 I iが 1 0 mAから、 A2 = 5 0 mAにステップ状(立上り 時間 0の理想的状態) に変化すると、 電圧は、 図 1 1 ( c ) に示されるように、It has an inductance of about 2 nH, and assuming that C 2 = 0.5 pF as the stray capacitance around the probe, the equivalent circuit as shown in Fig. 11 (a) is obtained. (in Figure 1 1 (a), C 2 is not necessarily capacity evening are connected, shows a stray capacitance in the equivalent circuit). As a result, so that shown for example in FIG. 1 1 (b), from the 1 0 mA current I i, the changes to A 2 = 5 0 mA stepwise (ideal state of rise time 0), the voltage , As shown in Figure 11 (c),
3 Vから 1 . 7 V程度まで低下しており、 それが原因で検査データに支障が生じ ることを見出した。 The voltage dropped from 3 V to about 1.7 V, which was found to cause problems in the test data.
本発明は、 このような問題を解決するためになされたもので、 高周波 ·高速化 と共に高集積化、 パヅケージの小型化による m@プローブ間ピヅチの縮小化が図 られるデバイスを検査する場合でも、 電源端子への接続に細いプローブを用いな がら、 ィンダクタンスによる電源端子での電圧降下の影響を殆ど受けることのな い容量装荷型プローブを提供することを目的とする。  The present invention has been made in order to solve such a problem. Even when testing a device in which high frequency, high speed, high integration, and miniaturization of the package are required to reduce the pitch between m @@ probes, An object of the present invention is to provide a capacitance-loaded probe which is hardly affected by a voltage drop at a power supply terminal due to inductance while using a thin probe for connection to a power supply terminal.
本発明の他の目的は、 高周波'高速化と共に高集積化されるデバイスでも、 そ の端子に入力される信号に応じてノイズを低減させることにより、 ノイズの影響 を受けることなく正確な検査をすることができる容量装荷型プローブおよびそれ を用いた高周波 ·高速用デバイスなどの 装置用の^ ¾治具を提供することに める。 発明の開示 Another object of the present invention is to reduce the noise in accordance with the signal input to the terminal of a device that is highly integrated with high frequency and high speed, thereby enabling accurate inspection without being affected by noise. And a jig for a device such as a high-frequency / high-speed device using the probe. Disclosure of the invention
本発明による容量装荷型プローブは、 金属パイプと、 該金属パイプ内に該金属 パイプと電気的に接続して設けられ、 少なくとも前記金属パイプの一端部から突 出する突出長を可変とし得る可動ピンと、 前記金属パイプの外周に設けられる誘 電体層と、 該誘電体層の外周面に設けられる第 1の金属膜とからなり、 前記可動 ピンと前記第 1の金属膜との間にキャパシタンスが形成されている。  A capacity-loaded probe according to the present invention includes: a metal pipe; and a movable pin that is provided in the metal pipe so as to be electrically connected to the metal pipe, and that has a variable protruding length protruding from at least one end of the metal pipe. A dielectric layer provided on an outer periphery of the metal pipe; and a first metal film provided on an outer peripheral surface of the dielectric layer, wherein a capacitance is formed between the movable pin and the first metal film. Have been.
ここに可動ピンとは、 たとえばリ一ド線がスプリングなどにより保持されて押 し付ければスプリングなどによりその先端が縮むような、 先端が軸方向に沿って 移動し得るピンを意味する。  Here, the movable pin means a pin whose tip can move along the axial direction, for example, such that when the lead wire is held and pressed by a spring or the like, the tip is contracted by the spring or the like.
このようなコンタクトプローブの外周面にキャパシ夕が形成されていることに より、 電源端子や信号端子に接続するプローブとして使用する場合に、 電源端子 での電圧の降下を防止したり、 ノイズを除去することができる。 すなわち、 被検 査デパイスが、 R F (アナログの周波数が高い高周波やデジタルのショートパル スでパルス間隔が小さい高速の両方を含む意味であり、 アナログまたはパルスの 繰返しが 1 G Hz程度以上のものを意味する、 以下同じ) 用であると、 電源用プ 口一プのインダク夕ンスにより、 たとえば出力がローからハイなどの電流の切替 り時に電圧降下が生じるが、 このキャパシ夕によりその電圧降下を支障がない程 度に小さくすることができる。 これは、 キャパシ夕が付加されることにより、 ィ ンダク夕とキャパシ夕との充放電による補償がなされることに基づいている。 さらに、 電源端子や、 入力信号で D Cレベルに近い信号もしくはサイン波ゃパ ルスの繰返しの小さい中低周波信号の信号端子に接続する場合に、 電源用プロ一 ブゃ信号用プローブにキャパシ夕が形成されていることにより、 電源ラインや信 号ラインに混入した R Fノイズをキャパシ夕により確実に落すことができ、 ノィ ズの影響を受けないで、 信頼性の高い検査をすることができる。  By forming a capacitor on the outer peripheral surface of such a contact probe, when used as a probe connected to a power supply terminal or signal terminal, it prevents voltage drop at the power supply terminal or eliminates noise. can do. In other words, the test device under test is RF (including both high frequency with high analog frequency and high speed with short pulse of digital short pulse, and those with analog or pulse repetition of about 1 GHz or more. In other words, the voltage drop occurs when the output switches between low and high currents, for example, due to the inductance of the power supply port. It can be made as small as possible. This is based on the fact that the capacity is added to compensate for the charging and discharging of the inductance and the capacity. In addition, when connecting to the power supply terminal or the signal terminal of a signal near the DC level of the input signal or the signal terminal of a low-medium-frequency signal with a small repetition of sine wave pulse, the capacitance of the power supply probe and the signal probe is increased. By being formed, the RF noise mixed into the power supply line and the signal line can be reliably reduced by the capacity, and a highly reliable inspection can be performed without being affected by noise.
具体的には、 前記誘電体層が誘電体筒からなり、 該誘電体筒の外周面に前記第 1の金属膜が形成され、 該誘電体筒の内周面に第 2の金属膜が設けられ、 該第 2 の金属膜を介して前記金属パイプと電気的に接続されたり、 前記誘電体層が、 前 記金属パイプの外周面に直接劍莫された薄膜からなり、 該薄膜上に前記第 1の金 属膜が形成される構造でもよい。 なお、 誘電体筒の内壁および外壁に設けられる 金属膜は、 たとえば無電解メツキなどにより形成される。 また、 薄膜で誘電体層 を形成するには、 たとえば金属パイプを回転させながらスパッ夕リングや真空蒸 着などによっても形成することができるし、 誘電体材料を有機溶媒などに溶解し た液を金属パイプの外周に塗布して乾燥、 焼成させるゾルゲル法によっても形成 することができる。 Specifically, the dielectric layer is made of a dielectric cylinder, the first metal film is formed on an outer peripheral surface of the dielectric cylinder, and a second metal film is provided on an inner peripheral surface of the dielectric cylinder. And the dielectric layer is electrically connected to the metal pipe via the second metal film, or the dielectric layer is formed of a thin film directly sworded on the outer peripheral surface of the metal pipe. A structure in which the first metal film is formed may be used. It is provided on the inner and outer walls of the dielectric cylinder. The metal film is formed by, for example, electroless plating. To form a dielectric layer with a thin film, the dielectric layer can be formed by, for example, sputtering or vacuum evaporation while rotating a metal pipe, or a liquid obtained by dissolving a dielectric material in an organic solvent or the like. It can also be formed by a sol-gel method in which it is applied to the outer periphery of a metal pipe, dried and fired.
前記金属パイプの外周に設けられるキャパシ夕は、 2種類以上の容量を有する ように形成することもできる。  The capacity provided on the outer periphery of the metal pipe may be formed to have two or more types of capacities.
本発明による検査治具は、 金属ブロックと、 先端部の突出長が可動する可動ピ ンを有し、 前記金属プロヅクの一面側に前記可動ピンの先端部が突出するように、 該金属プロックを貫通して設けられる電源用および信号用の複数のプローブとを 具備し、 前記金属ブロックの前記一面側に被鐘デノ Wスが押し付けられ、 該被 検査デバイスの各電極端子と前記プローブの先端部とを接触させて前記被検査デ ノ スの特性検査をする検査治具であって、 前記複数のプロ一ブのうちの少なく とも一部のプローブは、 該プローブの外周に誘電体層と金属膜が設けられること によりキャパシ夕が形成された容量装荷型プローブからなっている。  An inspection jig according to the present invention has a metal block and a movable pin having a movable tip with a movable protruding length. The metal block is arranged so that the distal end of the movable pin protrudes from one surface of the metal protrude. A plurality of power supply and signal probes provided therethrough, and a denominated wedge is pressed against the one surface side of the metal block, and each electrode terminal of the device to be inspected and a tip of the probe A jig for making a characteristic inspection of the inspected laser by contacting the probe with at least one of the plurality of probes, wherein at least some of the plurality of probes have a dielectric layer and an outer periphery of the probe. It consists of a capacitance-loaded probe on which a metal film is provided to form a capacity.
この構造にすることにより、 電源用プローブや信号用プローブの少なくとも一 部の周囲に R Fノイズをバイパスするキャパシ夕が形成されているため、 被 デバイスの電源端子や信号端子の直前で、 R Fノィズをパイパスさせることがで き、 電源用や信号用のプローブにノイズが乗るどころか、 配線基板 (プリント基 板)側で完全に除去しきれなかった RFノイズが残っていても、 バイパス用キヤ パシ夕を介して完全に除去される。 その結果、 可動ピンを介してデバイスに接続 される電源用や中低周波の信号用のプローブからのノィズの侵入は完全になくな り、 ノイズの影響を受けない正確な検査をすることができる。 さらに、 電源用プ ロープに容量装荷型プローブが用いられることにより、 デバイス内部の電流変化 によって発生する電源端子における電圧の降下を抑えることができ、 一般的な電 源電圧許容範囲の 1 0 %以内に抑えることができる。  With this structure, a RF noise bypass capacitor is formed around at least part of the power supply probe and signal probe, so that RF noise can be reduced immediately before the power supply terminal and signal terminal of the device under test. This makes it possible to bypass the power supply and signal probes, and even if the RF noise that could not be completely removed remains on the wiring board (printed circuit board) side, the bypass capacitor can be used. Completely removed. As a result, noise penetration from the power supply and mid-low frequency signal probes connected to the device via the movable pins is completely eliminated, enabling accurate inspections that are not affected by noise. . Furthermore, by using a capacitance-loaded probe for the power supply probe, the voltage drop at the power supply terminal caused by a current change inside the device can be suppressed, and within 10% of the general power supply voltage allowable range. Can be suppressed.
前記被検査デノ イスの信号入力端子と接続される信号用プロ一ブのうち少なく とも一部のプローブには、 該入力端子に印カ卩される信号の正弦波またはパルスの 繰返しに応じて、 該繰返しの信号に対しては減衰が小さく、 該繰返しより大きい 周波数のノイズを減衰させる容量を有するキャパシ夕が形成された容量装荷型プ 口一ブが用いられることにより、 信号入力に D Cレベルから R Fまで種々の信号 が入力されるデバイスであっても、 その入力信号に応じて、 入力信号を減衰させ ることなく、 RFノイズを除去することができるため、 非常に精度の高い検査を することができる。 ここに正弦波またはパルスの繰返しとは、 アナログ信号の場 合にはその周波数を、 デジタル信号の場合には、 そのハイ、 口一の繰返し早さを 意味する。 At least some of the signal probes connected to the signal input terminal of the device under test have at least some of the probes in accordance with the repetition of the sine wave or pulse of the signal applied to the input terminal. , The attenuation is small for the signal of the repetition and larger than the repetition By using a capacitance-loaded probe with a capacity that has the capacity to attenuate frequency noise, even if the device receives various signals from the DC level to RF at the signal input, the Since RF noise can be removed according to the input signal without attenuating the input signal, very high-precision inspection can be performed. Here, the repetition of a sine wave or a pulse means its frequency in the case of an analog signal, and its high and / or repeating speed in the case of a digital signal.
前記被検査デバイスの電源端子に接続される電源用プローブに、 容量が 5 Op F以上、 さらに好ましくは 100 p F以上のキャパシ夕が接続された容量装荷型 プローブが用いられることにより、 入力信号の変化に対しても電源電圧が 10% 以上降下することは殆どなく、 また、 400MHz以上 (10 OpF以上であれ ば、 200 MHz以上) の高周波ノイズを 1 OdB以上減衰させることができ、 高い: R Fノイズはさらに大きく減衰させることができ、 殆ど完全にノィズを除去 することができるため好ましい。 図面の簡単な説明  The power probe connected to the power terminal of the device under test is a capacitance-loaded probe having a capacitance of 5 OpF or more, more preferably 100 pF or more, so that the input signal The power supply voltage hardly drops by more than 10% against changes, and high-frequency noise of 400 MHz or more (200 MHz or more if 10 OpF or more) can be attenuated by 1 OdB or more. High: RF This is preferable because noise can be further attenuated and noise can be almost completely eliminated. BRIEF DESCRIPTION OF THE FIGURES
図 1 (a)および 1 (b) は、 本発明による検査治具の一実施形態を示す平面 説明図および一部断面の側面説明図である。  1 (a) and 1 (b) are a plan explanatory view and a partial sectional side view showing an embodiment of an inspection jig according to the present invention.
図 2 (a)および 2 (b) は、 図 1に示される容量装荷型プローブの断面説明 図およびその誘電体筒の斜視説明図である。  2 (a) and 2 (b) are a cross-sectional explanatory view of the capacitance-loaded probe shown in FIG. 1 and a perspective explanatory view of a dielectric tube thereof.
図 3は、 プローブに装荷するキャパシ夕の容量を変ィ匕させたときの、 シミュレ —シヨンによる挿入損失の周波数特性である。  Fig. 3 shows the frequency characteristics of the insertion loss due to the simulation when the capacity of the probe is varied.
図 4は、 一例として 470 p Fの場合の実測による挿入損失の周波数特性であ る。  Fig. 4 shows the frequency characteristics of the measured insertion loss at 470 pF as an example.
図 5は、 電源用プロ一プに容量装荷型プローブを用いたときの等価回路図であ る。  FIG. 5 is an equivalent circuit diagram when a capacitance-loaded probe is used as a power supply probe.
図 6 (a)〜6 (c) は、 容量が 100 OpFと 10 OpFの場合の電源端子 における電圧降下の状態を、 キャパシ夕がなく浮遊容量 0.5 p F程度だけの場 合と比較して示したシミュレーションの結果である。 図 7は、 容量装荷型プローブの他の実施形態を示す断面説明図である。 Figures 6 (a) to 6 (c) show the state of voltage drop at the power supply terminal when the capacitance is 100 OpF and 10 OpF, compared with the case where there is no capacitance and the stray capacitance is only 0.5 pF. It is a result of the simulation performed. FIG. 7 is an explanatory cross-sectional view showing another embodiment of the capacitance-loaded probe.
図 8は、 容量装荷型プローブのさらに他の例を示す断面説明図である。  FIG. 8 is an explanatory sectional view showing still another example of the capacitance-loaded probe.
図 9は、 プローブを金属プロックに固定する他の構造例を示す部分断面説明図 である。  FIG. 9 is a partial cross-sectional explanatory view showing another example of a structure for fixing a probe to a metal block.
図 1 0 ( a) および 1 0 ( b ) は、 容量装荷型プローブのさらに他の実施形態 を示す断面説明図および等価回路図である。  FIGS. 10 (a) and 10 (b) are a cross-sectional explanatory diagram and an equivalent circuit diagram showing still another embodiment of the capacitive loaded probe.
図 1 1 ( a) 〜1 1 ( c ) は、 スイッチング波形出力時に発生する電源端子に おける電圧の降下を説明する図である。  FIGS. 11 (a) to 11 (c) are diagrams illustrating the voltage drop at the power supply terminal that occurs when a switching waveform is output.
図 1 2 ( a) および 1 2 ( b ) は、 従来の高周波'高速用デバイスの検査治具 の構成例を示す図である。 発明を実施するための最良の形態  FIGS. 12 (a) and 12 (b) are diagrams showing a configuration example of a conventional inspection jig for a high-frequency / high-speed device. BEST MODE FOR CARRYING OUT THE INVENTION
つぎに、 図面を参照しながら本発明の容量装荷型プローブおよびそれを用いた 検査治具について説明をする。 本発明による 治具は、 被検査デバイス 2 0と 図示しない^装置とを接続するもので、 図 1 ( a ) および 1 ( b) にその平面 および一部断面の側面説明図が示されるように、 先端部の突出長が可動する可動 ピン 1 1を有し、 金属ブロック 1の一面側に可動ピン 1 1の先端部が突出するよ うに、 信号用プロ一ブ 3、 電源用プローブ 4および接地用プローブ 5など複数の プローブが、 金属ブロック 1を貫通して設けられている。 そして、 この金属プロ ヅク 1の一面側に被検査デバィス 2 0が押し付けられ、 その被検査デバィス 2 0 の各電極端子 2 1〜2 4とそれそれプロ一プ 3〜 5の先端部とを接触させて被検 査デノ イス 2 0の特性検査がなされる。 本発明では、 この複数のプローブのうち の少なくとも一部のプローブは、 そのプローブの外周に誘電体層と金属膜が設け られることによりキャパシ夕が形成された容量装荷型プローブからなっている。 この容量装荷型プロ一プ 1 0は、 図 2 ( a) にその一実施形態の断面説明図が 示されるように、 金属パイプ 1 3内に、 その金属パイプ 1 3の少なくとも一端部 から突出する先端部の突出長を可変とし得るように、 可動ピン 1 1、 1 2がその 金属パイプ 1 3と電気的に接続して設けられ、 その金属パイプ 1 3の外周に誘電 体層 1 5が設けられ、 誘電体層 1 5の外周面に第 1の金属膜 1 7が設けられるこ とにより、 可動ピン 1 1と第 1の金属膜 1 7との間にキャパシタンスが形成され ている。 Next, a capacitance-loaded probe of the present invention and an inspection jig using the same will be described with reference to the drawings. The jig according to the present invention connects the device under test 20 to an unillustrated device, and as shown in FIGS. 1 (a) and 1 (b), a side view of a plane and a partial cross section thereof is shown. The probe has a movable pin 11 with a movable protruding length at the tip, and a signal probe 3, a power probe 4 and a ground so that the tip of the movable pin 11 protrudes from one side of the metal block 1. A plurality of probes such as a probe 5 are provided through the metal block 1. The device 20 to be inspected is pressed against one surface of the metal probe 1, and the electrode terminals 21 to 24 of the device 20 to be inspected come into contact with the tips of the probes 3 to 5, respectively. Then, the characteristic inspection of the inspection device 20 is performed. In the present invention, at least a part of the plurality of probes is a capacitance-loaded probe having a capacitance formed by providing a dielectric layer and a metal film on the outer periphery of the probe. As shown in FIG. 2 (a), a cross-sectional view of one embodiment of this capacity-loading type propellant 10 protrudes into the metal pipe 13 from at least one end of the metal pipe 13. The movable pins 11 and 12 are provided so as to be electrically connected to the metal pipe 13 so that the protruding length of the tip can be made variable, and a dielectric layer 15 is provided on the outer periphery of the metal pipe 13. The first metal film 17 is provided on the outer peripheral surface of the dielectric layer 15. Thereby, a capacitance is formed between the movable pin 11 and the first metal film 17.
このキャパシ夕 1 8を形成するための誘電体層として、 図 2に示される例では、 誘電体を筒状に形成した誘電体筒 1 5が用いられている。 そして、 誘電体筒 1 5 の内周壁および外周壁に第 2および第 1の金属膜 1 6、 1 7が無電解メツキなど により設けられることにより、 キャパシ夕 1 8が形成されている。 この誘電体筒 1 5の両面に第 1および第 2の金属膜 1 7、 1 6が設けられることにより、 誘電 体の両面に空隙が生じなくなり、 キャパシ夕ンスの機能を充分に奏するようにな つている。第 2の金属膜 1 6は、 金属パイプ 1 3と電気的に接続されている。 誘電体筒 1 5は、 図 2 ( b ) にその斜視説明図が示されるように、 たとえば内 径 D 1が 0 . 3 mm程度、 外径 D 2が 0 · 6 mm程度、 長さ Lが 6 mm程度の大き さに形成される。 これは、 前述のように、 I Cなどの高集積化に伴い、 電極端子 数が増大し、 最近では、 チップの周囲のみに電極端子を設けるのではなく、 B G A (ball grid array) パッケージによりチヅプ全面に形成されるようになり、 しかも電極端子数が多い場合には、 1 c m2当り 4 0 0個程度の電極端子数が設 けられるため、 プローブの間隔も非常に小さくなるからである。 これらの電極端 子数のうち、 電源端子が 1 /4程度、 接地端子が 1 /4程度、 残りが R F信号な ど、 信号の入出力端子とされている。 In the example shown in FIG. 2, a dielectric cylinder 15 in which a dielectric is formed in a cylindrical shape is used as a dielectric layer for forming the capacity 18. Then, the second metal film 16 and the first metal film 17 are provided on the inner peripheral wall and the outer peripheral wall of the dielectric cylinder 15 by electroless plating or the like, so that the capacity 18 is formed. By providing the first and second metal films 17 and 16 on both surfaces of the dielectric tube 15, no gap is formed on both surfaces of the dielectric, so that the function of capacitance can be sufficiently achieved. I'm wearing The second metal film 16 is electrically connected to the metal pipe 13. The dielectric cylinder 15 has, for example, an inner diameter D 1 of about 0.3 mm, an outer diameter D 2 of about 0.6 mm, and a length L of, as shown in FIG. It is formed to a size of about 6 mm. This is because, as described above, the number of electrode terminals increases with the increase in integration of ICs and other devices. Recently, not only electrode terminals are provided around the chip, but the entire chip is provided by a BGA (ball grid array) package. This is because when the number of electrode terminals is large and the number of electrode terminals is large, about 400 electrode terminals are provided per cm 2, so that the distance between the probes is very small. Of these electrode terminals, the power supply terminal is about 1/4, the ground terminal is about 1/4, and the rest is used for signal input / output terminals such as RF signals.
このキャパシ夕 1 8の効果を調べるため、 本発明者らは、 この構造のプローブ 外周面にキャパシ夕を形成した容量装荷型プローブを接続した場合の周波数に対 する挿入損失、 すなわちノイズ除去程度をシミュレーションにより調べた。 その 結果を図 3に示す。 図 3は、 図 2 ( a) に示されるキャパシ夕の容量を種々変え たときの周波数に対する挿入損失を縦軸 (下向き) に示したもので、 キャパシ夕 の容量を 1 0 p F、 5 0 p F、 1 0 0 p F、 5 3 0 p F、 および 1 0 6 0 p Fと した場合をそれそれ示している。 なお、 キャパシ夕なしは、 容量装荷型プロ一ブ ではない従来のプローブの周波数特性を示している。  In order to examine the effect of this capacity 18, the inventors of the present invention determined the insertion loss with respect to the frequency when a capacitance-loaded probe having a capacity was connected to the outer surface of the probe of this structure, that is, the degree of noise reduction. Investigated by simulation. Figure 3 shows the results. Figure 3 shows the insertion loss with respect to the frequency when the capacity of the capacity shown in Fig. 2 (a) is variously changed on the vertical axis (downward). The capacity of the capacity is 10 pF, 50 The cases of pF, 100 pF, 530 pF, and 106 pF are shown, respectively. Note that no capacity indicates the frequency characteristics of a conventional probe that is not a capacitance-loaded probe.
一般に、 1 0 d B程度の挿入損失があれば、 ノィズ除去に大きな効果があり、 2 O d B程度の挿入損失があれば、 ノィズの影響を殆ど完全に除去することがで きることから、 図 3から明らかなように、 1 0 6 0 p Fあれば、 2 5 MH z程度 以上の周波数のノイズを除去することができ、 50MHz以上であれば、 殆ど完 全に除去することができる。 また、 1 GHz以上の RFノイズに対しては、 10In general, an insertion loss of about 10 dB has a great effect on noise removal, and an insertion loss of about 20 dB can almost completely eliminate the effect of noise. As can be seen from Fig. 3, if it is 160 pF, it is about 25 MHz Noise of the above frequencies can be removed, and if it is 50 MHz or more, it can be almost completely removed. For RF noise above 1 GHz, 10
OpFあれば、 完全にノイズの影響をなくすることができ、 50pF以上あれば、 充分にノイズを減衰させることができることが分る。 これに対して、 従来のキヤ パシ夕なし (浮遊容量は 0.5pF程度あると考えられる) のプローブでは、 2It can be seen that OpF can completely eliminate the effects of noise, and that 50PF or more can sufficiently attenuate noise. On the other hand, the conventional probe without capacities (stray capacitance is considered to be about 0.5 pF) has
0GHzまでの挿入損失は、 2dB以下であり、 殆ど RFノイズの除去効果がな いことが分る。 The insertion loss up to 0 GHz is less than 2 dB, indicating that there is almost no RF noise removal effect.
一方、 たとえば容量が 5 OpFであれば、 数十 MHz帯では殆ど減衰せず、 1 GH z以上では大幅な減衰が見られ、 たとえば信号を入力する信号用プローブで、 入力信号の周波数が数十 MH z以下の信号であれば、 50 p F程度の容量を有す るキャパシ夕が装荷されたプロ一プを用いることにより、 R Fノイズを除去した 信号を入力して信頼性のあるネ鐘をすることができることを、 本発明者らは見出 した。 すなわち、 信号用プローブには、 その入力信号の周波数に応じて、 同軸構 造のプローブにするよりも、 信号は減衰しないで、 それより高い周波数のノイズ のみを減衰させる大きさの容量のキャパシ夕を装荷したプローブを用いる方が好 ましいことを、 本発明者らは見出した。  On the other hand, if the capacitance is 5 OpF, for example, there is almost no attenuation in the tens of MHz band, and significant attenuation is observed above 1 GHz. For example, in the case of a signal probe for inputting a signal, the frequency of the input signal is several tens. If the signal is below MHz, a signal loaded with RF noise is input by using a probe loaded with a capacity of about 50 pF to produce a reliable signal. The present inventors have found that they can do this. In other words, the signal probe does not attenuate the signal in accordance with the frequency of the input signal than the coaxial probe, and the capacity of the capacitor is large enough to attenuate only higher frequency noise. The present inventors have found that it is preferable to use a probe loaded with.
このような容量を変ィ匕させるには、 誘電体層 15の材料を変えて、 比誘電率の 異なるものを使用したり、 誘電体層 15の厚さまたはプローブの長さを変えるこ とにより、 容量を変ィ匕させることができる。 たとえば、 セラミックスとしてよく 用いられているチタン酸バリウム (比誘電率 2200) と高誘電率セラミックス と称されている比誘電率が 38程度のセラミックスを用いれば、 図 2 (a)およ び 2 (b) に示される構造で、 表 1に示されるような寸法のプローブを形成する ことにより、 上記容量のプロ一ブを形成することができる。 しかし、 さらに誘電 体の材質や厚さを変えることにより、 容量を自由に調整することができる。 とく に、 後述するように誘電体を薄膜により形成することにより、 その厚さを非常に 薄くすることができ、 容量を大きくすることができる。 0 1 キャパシタの形成例In order to change such a capacitance, the material of the dielectric layer 15 is changed to use a material having a different relative permittivity, or by changing the thickness of the dielectric layer 15 or the length of the probe. The capacity can be changed. For example, if barium titanate (dielectric constant 2200), which is often used as ceramics, and ceramics with a relative dielectric constant of about 38, which is called high dielectric constant ceramics, are used, Figs. 2 (a) and 2 ( By forming a probe having the structure shown in b) and the dimensions shown in Table 1, a probe having the above capacity can be formed. However, the capacitance can be freely adjusted by further changing the material and thickness of the dielectric. In particular, by forming the dielectric from a thin film as described later, the thickness can be made extremely thin, and the capacitance can be increased. 0 1 Example of capacitor formation
Figure imgf000012_0001
Figure imgf000012_0001
実際に、 表 1に示される 530 p Fのキャパシ夕の寸法で容量装荷型プローブ を形成して、 周波数に対する挿入損失を測定した。 その結果が図 4に示されてい る。 なお、 表 1に示される寸法で形成した結果、 実際の容量は 470 pFであつ た。 図 4から、 図 3と同様に、 50MHzで既に 15dB程度揷入損失が得られ、 200MHz以上ではほぼ 20 dB以上の揷入損失が得られ、 ノイズを殆ど完全 に除去できることを示している。 なお、 図 4で、 指示 1は lGHz、 27.59 5dBを、 指示 2は 5GHz、 33.877 dBを、 指示 3は 10GHz、 27. 66 ldBを、 指示 4は 15GHz、 34.276 d Bを、 指示 5は 20 GH z、 39.06 OdBをそれそれ示している。  In fact, a capacitance-loaded probe was formed with the 530 pF capacity shown in Table 1, and the insertion loss versus frequency was measured. The result is shown in FIG. The actual capacitance was 470 pF as a result of forming with the dimensions shown in Table 1. Fig. 4 shows that, as in Fig. 3, an input loss of about 15 dB was already obtained at 50 MHz, and an input loss of almost 20 dB or more was obtained at 200 MHz or higher, indicating that noise could be almost completely removed. In Fig. 4, instruction 1 is lGHz, 27.59 5 dB, instruction 2 is 5 GHz, 33.877 dB, instruction 3 is 10 GHz, 27.66 ldB, instruction 4 is 15 GHz, 34.276 dB, and instruction 5 is 20 GH z, each showing 39.06 OdB.
このように、 500 pF程度あれば、 充分低い周波数から高い周波数まで大き な揷入損失を得られるため、 電源用プロ一ブゃ D Cレベルに近い繰返しの小さい (低い周波数) 入力信号に対しては、 充分である。 しかし、 前述の図 3に示され るように、 100 p Fあれば、 200MHz以上で、 十分の挿入損失があり、 電 源用プローブとして実用的である。  As described above, if the input power is about 500 pF, a large input loss can be obtained from a sufficiently low frequency to a high frequency. Therefore, for a power supply probe, a low repetition rate (low frequency) input signal close to a DC level can be obtained. It is enough. However, as shown in Fig. 3 above, with 100 pF, there is a sufficient insertion loss at 200 MHz and above, making it practical as a power supply probe.
一方、 前述のように、 本発明者らは、 電源用プローブのインダク夕ンス成分に より、 信号変ィ匕により出力の過渡時間に、 電源端子における電圧の降下が生じて、 正確な検査を行えない場合があることを見出した。 そして、 この電源用プローブ に容量装荷型プローブを用いることにより、 電圧降下を問題とならない 10%以 下に抑えることができた。 この容量装荷型プローブを電源用プローブに用いた場 合に、 電源端子における電圧降下を防止することができる効果について説明をす る On the other hand, as described above, the present inventors have found that the voltage drop at the power supply terminal occurs during the transition time of the output due to the signal change due to the inductance component of the power supply probe, and an accurate test can be performed. I found that there may be no. By using a capacitance-loaded probe as the power supply probe, the voltage drop could be suppressed to 10% or less, which is not a problem. When this capacitance-loaded probe is used as a power probe, The effect of preventing voltage drop at the power supply terminal
容量装荷型プローブを電源用プローブとして用いた場合、 被検査デバィスとの 接続部の等価回路は図 5に示されるようになる。 この電源電圧 を 3 Vd c (直流) とし、 1^=0.10、 L i-SnHとし、 C iを 1000 p Fと 100 pFとした場合に、 前述の図 11 (b) に示されるように、 電流を 10mAから、 50mAにステップ状(立上り時間 0の理想的状態) に変ィ匕させたときの電源端 子における電圧 V2をシミュレーションにより調べた。 その結果を図 6 (a) お よび図 6 (b) にそれそれ示す。 なお、 図 6 (c) は、 キャパシ夕が装荷されな い (0.5 pFの浮遊容量を想定している) ^ のプローブを用いたときの電圧 降下を示す図で、 図 11 (c) に示したものを、 図 6 (a) および 6 (b) と同 じスケールで示したもので、 シミュレ一ションの条件は同じである。 When a capacitance-loaded probe is used as a power supply probe, the equivalent circuit of the connection to the device under test is as shown in Fig. 5. When this power supply voltage is 3 Vdc (direct current), 1 ^ = 0.10, Li-SnH, and Ci are 1000 pF and 100 pF, as shown in FIG. current from 10 mA, was examined by simulation voltage V 2 at the power supply end terminal of when is Heni spoon stepwise (ideal state of rise time 0) to 50 mA. The results are shown in Figs. 6 (a) and 6 (b). Fig. 6 (c) shows the voltage drop when using a probe with no capacity loaded (assuming a stray capacitance of 0.5 pF), as shown in Fig. 11 (c). Are shown on the same scale as in Figures 6 (a) and 6 (b), with the same simulation conditions.
図 6 (a) 〜6 (c) から明らかなように、 キャパシ夕なし (浮遊容量 0.5 pFを想定) の従来のプローブを用いた場合には、 1.32V (44%) という 大幅な電圧降下が現れるのに対して、 1000 p Fの容量のキャパシ夕が装荷さ れることにより、 電圧が安定するまでの時間は長くなるものの、 電圧の変化量は 0.06V程度で、 2%程度と非常に変ィ匕量を小さくすることができる。 なお、 長時間電圧が脈動しても、 その変化量が小さいため、 何ら影響を受けない。 また、 10 OpFのキャパシ夕を装荷した場合でも、 図 6 (b) に示されるように、 電 源端子における電圧の変動は 1000 p Fの場合に比べれば大きくなるが、 それ でも 0.18V程度で、 6%程度と小さく、 一般に変動の限度とされる 10%を 充分にクリアすることができる。 すなわち、 電源用プローブに 10 OpF以上の 容量を装荷したプローブを用いることにより、 非常に急激な電流の変化に対して も、 電圧変動を支障がない程度に抑えることができる。  As is clear from Figs. 6 (a) to 6 (c), when a conventional probe with no capacitance (assuming a stray capacitance of 0.5 pF) is used, a large voltage drop of 1.32V (44%) occurs. On the other hand, when a capacity of 1000 pF is loaded, the time required for the voltage to stabilize is prolonged, but the amount of change in the voltage is about 0.06 V, which is a very small change of about 2%. The dangling amount can be reduced. Even if the voltage pulsates for a long time, it is not affected at all because the amount of change is small. Also, even when a capacity of 10 OpF is loaded, as shown in Fig. 6 (b), the voltage fluctuation at the power supply terminal is larger than that at 1000 pF, but it is still about 0.18V. Approximately 10%, which is generally the limit of fluctuation, can be sufficiently cleared. In other words, by using a probe loaded with a capacitance of 10 OpF or more as a power supply probe, voltage fluctuations can be suppressed to a level that does not hinder even a very rapid change in current.
このように、 容量装荷型プローブを電源用プローブとして用いることにより、 電源端子における電圧の変動を防止することができるのは、 たとえば一つの見方 として、 電源用プローブの有するインダク夕ンスと、 装荷された容量との充放電 の作用により電圧が補償されるためと考えられる。 その結果、 信号により被 デバイスの出力が瞬時的にローからハイ、 あるいはハイからローに変ィ匕しても、 電源端子における電圧の変動を抑制することができるため、 被検査デバイスの演 算エラ一や強制リセットを引き起こす可能性を皆無にすることができ、 非常に安 定した検査をすることができる。 なお、 高周波 ·高速用デバイスでは、 配線によ る引き回しをできるだけ少なくするため、 前述のように、 1個のデバイスに対し ても、 電源端子は非常に沢山形成される。 そのため、 1個の電源用プローブでこ の大きさの容量が確保されなくても、 並列となる沢山の電源プローブにより、 装 荷される容量を大きくすることができる。 また、 逆に全ての電源用プロ一ブに容 量装荷型プローブを用いなくても、 電源用プローブによる電圧の降下抑制および ノィズ除去の効果を奏することができる。 As described above, the use of the capacitance-loaded probe as a power supply probe can prevent a voltage fluctuation at the power supply terminal. For example, one of the viewpoints is that the inductance of the power supply probe and the loaded load can be prevented. It is considered that the voltage is compensated by the action of charging and discharging with the increased capacity. As a result, even if the output of the device under test is instantaneously changed from low to high or from high to low due to the signal, Since voltage fluctuations at the power supply terminal can be suppressed, there is no possibility of causing an operation error or forced reset of the device under test, and a very stable test can be performed. In high-frequency / high-speed devices, as described above, a large number of power supply terminals are formed even for a single device, in order to minimize the routing by wiring. Therefore, even if a single power supply probe does not have this large capacity, the capacity to be loaded can be increased by using many power supply probes in parallel. Conversely, even without using a capacity-loaded probe for all power supply probes, the effect of suppressing voltage drop and eliminating noise by the power supply probe can be achieved.
前述のように、 このような容量装荷型プローブ 1 0を電源用プローブ 4として 用い、 電源ライン上のノイズを落としたり、 電源電圧の変動を防止するためには、 容量が大きいほど低い周波数のノイズでも挿入損失が大きくて減衰させることが でき、 さらに高い周波数での挿入損失はより大きくなると共に、 電源端子におけ る電圧の変動を小さくすることができるため好ましい。 しかし、 前述のように、 ノイズ除去および電圧変動のいずれの目的にも、 1 0 0 p F以上の容量があれば 全く問題はないが、 5 O p F程度以上あれば充分である。 なお、 プロ一ブ自身は、 前述のように、 高集積ィ匕に伴い太さを余り大きくすることはできず、 むしろ細く することが要求され、 キャパシ夕の面積を余り増やすことはできない。 そのため、 誘電体層 1 5として、 比誘電率ができるだけ大きい誘電体を用いることが好まし い。  As described above, by using such a capacitance-loaded probe 10 as the power supply probe 4, in order to reduce noise on the power supply line and to prevent fluctuations in the power supply voltage, the higher the capacitance, the lower the frequency of the noise. However, it is preferable because the insertion loss is large and can be attenuated, and the insertion loss at a higher frequency is further increased, and the voltage fluctuation at the power supply terminal can be reduced. However, as described above, there is no problem if a capacitance of 100 pF or more is used for both noise removal and voltage fluctuation, but about 5 OpF or more is sufficient. As described above, the probe itself cannot be made too large in thickness due to high integration, but rather needs to be made thinner, so that the capacity area cannot be increased too much. Therefore, it is preferable to use a dielectric material having a relative permittivity as large as possible as the dielectric layer 15.
一方、 信号用プローブでは、 種々の信号ラインがあり、 D Cレベルに近いもの から、 1 GH z以上の R F信号まで種々あり、 1 0 0 MH z程度以下の中低周波 信号ラインにも 1 GH z以上の R Fノイズが重畳される場合があり、 選択的にこ れらのノイズを除去することが望まれる。 そのため、 印加される信号の周波数に 応じて、 信号端子ごとに容量を選定した容量装荷型プローブを用いることにより、 確実にノィズを除去することができて、 信頼性の高い検査をすることができる。 このような容量装荷型キャパシタに用いる誘電体としては、 たとえば前述の誘 電体筒を用いる場合には、 チタン酸バリウム (比誘電率 7 0 0〜2 0 0 0 0程 度)、 チタン酸ストロンチウム (比誘電率 1 5 0 0〜4 0 0 0程度) のような比 誘電率の大きいものの他に 高誘電率セラミックス (比誘電率 10~50程度) や、 アルミナ (比誘電率 9〜10)のような焼成したセラミックス類を用いるこ とができる。 チタン酸バリウムやチタン酸ストロンチウムなど比誘電率の大きい 材料により形成されることにより、 内外径がそれそれ 0.3mm、 0.6 mmで長 さが 6 mm程度の非常に小さな電源用プロ一ブでも、 高周波ノイズを殆ど完全に バイパスさせる 100 OpF程度以上の大きな容量を形成することができ、 低い 周波数のノイズでも容易に除去することができるため好ましい。 On the other hand, signal probes have various signal lines, ranging from those near DC level to RF signals of 1 GHz or more, and 1 GHz for low-frequency signal lines of about 100 MHz or less. The above RF noise may be superimposed, and it is desired to remove these noises selectively. Therefore, by using a capacitance-loaded probe in which the capacitance is selected for each signal terminal according to the frequency of the applied signal, noise can be reliably removed and a highly reliable inspection can be performed. . For example, when the above-described dielectric cylinder is used, barium titanate (relative dielectric constant of about 700 to 2000) and strontium titanate are used as the dielectric material used in such a capacitor loaded capacitor. (Relative dielectric constant: about 150 to 400) In addition to high dielectric constant ceramics, fired ceramics such as high dielectric constant ceramics (relative dielectric constant of about 10 to 50) and alumina (relative dielectric constant of 9 to 10) can be used. Made of a material with a large relative permittivity, such as barium titanate or strontium titanate, allows the use of high-frequency power even for extremely small power supply probes with inner and outer diameters of 0.3 mm, 0.6 mm and a length of about 6 mm. This is preferable because a large capacitance of about 100 OpF or more can be formed to almost completely bypass noise, and even low-frequency noise can be easily removed.
また、 後述するように、 誘電体筒を用いないで、 たとえば金属パイプ 13の外 表面に直接薄膜を β¾摸することもできる。 このような成膜材料としては、 前述の 材料の他にも、 チタン酸鉛、 チタン酸ジルコン酸鉛 (ΡΖΤ;比誘電率 700〜 1000程度) 、 チタン酸ジルコン酸ランタン鉛 (PLZT)、 チタン酸バリウ ムストロンチウム (BST;比誘電率 1000-3000程度) 、 タンタル酸ビ スマスストロンチウム (SB Τ)、 ビスマスチタネート (BIT ;比誘電率 15 0〜220) などのビスマス系化合物などを用いることができる。 これらの材料 は比誘電率も大きく、 5〜20 / m程度の薄膜で形成し得るため、 より容量の大 きいキャパシ夕を形成しやすい。  Further, as described later, for example, a thin film can be directly formed on the outer surface of the metal pipe 13 without using a dielectric tube. Examples of such a film forming material include, in addition to the materials described above, lead titanate, lead zirconate titanate (ΡΖΤ; relative dielectric constant of about 700 to 1000), lanthanum lead zirconate titanate (PLZT), titanic acid Bismuth-based compounds such as barium strontium (BST; dielectric constant of about 1000 to 3000), bismuth strontium tantalate (SBΤ), and bismuth titanate (BIT; dielectric constant of 150 to 220) can be used. These materials have a large relative dielectric constant and can be formed in a thin film of about 5 to 20 / m, so it is easy to form larger capacity capacitors.
前述の誘電体筒タイプで形成する場合、 キャパシ夕は、 電流が流れないため、 電極の導電率はあまり問題にならないが、 誘電体と «用金属とが密着していな いと誘電率の小さい空隙部が形成され、 容量を下げることになるため、 誘電体筒 15の内周面および外周面には金属膜が密着して設けられることが好ましい。 そ のため、 誘電体筒 15の内部にも無電解メツキなどにより Niなどをメヅキをし、 さらに必要によりその上に銀や金などをメツキすることにより第 2の導電膜 16 が設けられ、 外周面にも同様に無電解メッキなどにより第 1の導電膜 17が形成 されている。 内周面は、 直径が 0.3 mm程度と非常に小さいため、 メツキ液が 浸透しにくいが、 たとえば真空引きをしたり、 超音波によりメツキ液を撹拌した りすることにより、 内壁にもメヅキ液が毛細管現象により吸い上がり、 メツキを することができる。  In the case of the dielectric cylinder type described above, the current does not flow through the capacitor, so the conductivity of the electrodes does not matter much. However, if the dielectric and the metal are not in close contact, a gap with a small dielectric constant is used. Since a portion is formed to reduce the capacity, it is preferable that a metal film is provided in close contact with the inner peripheral surface and the outer peripheral surface of the dielectric cylinder 15. For this reason, the inside of the dielectric tube 15 is also plated with Ni or the like by electroless plating, and then, if necessary, the second conductive film 16 is provided by plating with silver or gold. Similarly, a first conductive film 17 is formed on the surface by electroless plating or the like. Since the inner peripheral surface has a very small diameter of about 0.3 mm, it is difficult for the plating liquid to penetrate.However, the plating liquid is also applied to the inner wall by, for example, evacuating or stirring the plating liquid by ultrasonic waves. It can be sucked up by capillary action, and can be damaged.
キャパシ夕の誘電体層として、 誘電体筒を用いないで、 金属パイプ 13の表面 に直接誘電体薄膜 15 aを形成した例が、 図 7に示されている。 すなわち、 この 例では、 金属パイプ 1 3の外表面に直接誘電碰料をスパッタリング、 真空蒸着、 レーザアブレーシヨンなどにより付着させたり、 誘電 料を有機溶媒に溶解し て金属パイプ 1 3の外表面に塗布し、 焼成するゾルゲル法などにより、 金属パイ プ 1 3の外表面に直接 莫するものである。 このような直接成膜する方法によれ ば、 5〜2 0 /m程度の非常に薄い膜を形成することができるため、 非常に大き な容量のキャパシ夕を形成することができる。 しかもその絶縁膜の耐圧は、 たと えば P Z Tで 1 0 /m厚の場合でも、 5 0 V程度あり、 実用上全く問題がない。 たとえば長さが 1 mmで、 外径が ø 0 . 3 mmの金属パイプ 1 3を用いて、 比誘 電率が 7 3 0の P Z Tを 1 0 zm厚形成した結果、 プローブが前述の例の 1 / 6 の長さでありながら、 1 2 4 O p Fの大容量のキャパシ夕が得られた。 FIG. 7 shows an example in which a dielectric thin film 15a is formed directly on the surface of a metal pipe 13 without using a dielectric cylinder as a dielectric layer of a capacitor. That is, this In the example, a dielectric material is directly attached to the outer surface of the metal pipe 13 by sputtering, vacuum deposition, laser ablation, or the like, or the dielectric material is dissolved in an organic solvent and applied to the outer surface of the metal pipe 13. However, the sol-gel method of firing and the like directly increases the outer surface of the metal pipe 13. According to such a direct film formation method, a very thin film of about 5 to 20 / m can be formed, so that a very large capacity can be formed. In addition, the withstand voltage of the insulating film is about 50 V even when the thickness of the PZT is 10 / m, for example, and there is no practical problem. For example, using a metal pipe 13 with a length of 1 mm and an outer diameter of ø0.3 mm, a PZT with a specific dielectric constant of 730 was formed to a thickness of 10 zm, and as a result, the probe was Despite the length of 1/6, a large capacity of 124 OpF was obtained.
スパヅタリング法または真空蒸着法などにより成膜する場合には、 金属パイプ 1 3を回転させながら «すれば全面に形成することができる。 また、 ゾルゲル 法であれば、 誘電体用溶液を塗布して乾燥、 焼成すれば誘電体膜を形成すること ができる。  When a film is formed by a sputtering method or a vacuum evaporation method, the film can be formed over the entire surface by rotating the metal pipe 13 while rotating. In the case of the sol-gel method, a dielectric film can be formed by applying a solution for a dielectric, drying and firing.
可動ピン 1 1、 1 2は、 図 2 ( a) に示されるように、 先端部の開口部が細く された金属パイプ 1 3内にスプリング 1 4により保持され、 その先端部が押えら れることにより、 スプリング 1 4の縮みにより引つ む構造になっている。 図 2 ( a) に示される例では、 両側に可動ピン 1 1、 1 2が設けられ、 配纖板 6側 と被 ί錢デバイス 2 0側の両方ともスプリング 1 4により押し付けられる構造に なっているが、 図 8に示されるように、 配線基板 6側は、 金属体 1 9による固定 として、 直接ハンダ付けなどにより配線 ¾1反6と確実に接触させておけば、 被検 査デバイス 2 0側のみに可動ピン 1 1が設けられる構造でもよい。  As shown in Fig. 2 (a), the movable pins 11 and 12 are held by a spring 14 in a metal pipe 13 with a narrow opening at the tip, and the tip is pressed. As a result, the spring 14 is contracted by contraction. In the example shown in FIG. 2 (a), movable pins 11 and 12 are provided on both sides, and both the fiber distribution board 6 and the device to be machined 20 are pressed by springs 14. However, as shown in Fig. 8, the wiring board 6 side is fixed by a metal body 19, and if it is securely brought into contact with the wiring 反 1 by direct soldering or the like, the device under test 20 side Only the movable pin 11 may be provided.
また、 可動ピン 1 1、 1 2は、 図 2 ( a) に示されるように、 そのスプリング 1 4側端部が斜めに切断された構造にしておくことにより、 可動ピン 1 1、 1 2 が押されてスプリング 1 4が縮む状態では、 斜めに傾いて金属パイプ 1 3の細い 開口部に押しつけられて接触し、 可動ピン 1 1に伝わる電気信号は、 細いスプリ ング 1 4ではなく電気抵抗が小さい金属パイプ 1 3を介して伝達するため、 イン ピーダンスを少しでも低減させることができ、 R Fノイズを乗りにくくすること ができる。 さらに、 図 2 ( a) には図示されていないが、 金属パイプ 1 3の端部 側には、 くびれ部が設けられ、 可動ピン 1 1、 1 2が抜け落ちない構造に形成す ることができる。 なお、 信号用プロ一ブ 3、 接地用プロ一ブ 5の可動ピン 1 1も 同様に形成される。 As shown in Fig. 2 (a), the movable pins 11 and 1 2 have a structure in which the end of the spring 14 is cut obliquely so that the movable pins 11 and 1 2 When the spring 14 is pressed and contracted, the spring 14 contracts obliquely and is pressed into contact with the narrow opening of the metal pipe 13, and the electric signal transmitted to the movable pin 11 has electric resistance instead of the thin spring 14. Since the signal is transmitted through the small metal pipe 13, the impedance can be reduced as much as possible, and the RF noise can be reduced. In addition, although not shown in FIG. A constricted portion is provided on the side, so that the movable pins 11 and 12 can be formed so as not to fall out. The movable pins 11 of the signal probe 3 and the grounding probe 5 are formed in the same manner.
金属ブロック 1は、 信号用や電源用などのプローブ 3〜 5を保持するもので、 たとえばアルミニウムや真鍮などの金属板からなっており、 その金属板に貫通孔 を形成して、 その貫通孔内にこれらのプローブが挿入されている。  The metal block 1 holds probes 3 to 5 for signals and power, and is made of a metal plate such as aluminum or brass. A through hole is formed in the metal plate, and the inside of the through hole is formed. These probes are inserted.
信号用プローブ 3は、 たとえば 1 0 0 MH z以下の中低周波信号用であれば、 図 2 ( a) に示されるのと同様に、 容量装荷型プローブを用い、 入力信号の周波 数に応じて、 その容量を調整して使用することができる。 一方、 1 GH z以上の R F信号用では、 図 2 ( a) に示されるのと同様に、 金属パイプとその内部に設 けられるスプリングおよび可動ピンとからなるスプリング入り可動ピンだけの構 造でもよいが、 その周囲に誘電体を介して金属ブロック 1の貫通孔内に金属パイ プが揷入される構造にすると共に その金属パイプの外径と金属プロック 1の貫 通孔内径との関係が同軸構造を構成する寸法に形成することにより、 R F信号を 減衰させることなく、 可動ピンを介して R Fノイズが乗るのを防止することがで きるため好ましい。 この R F信号用プロ一ブ 3の被検査デバイス 2 0との接続端 部と反対側は、 セミリジッドなどの同軸ケーブル 7に接続されている。  If the signal probe 3 is for low and medium frequency signals of, for example, 100 MHz or less, use a capacitance-loaded probe in the same way as shown in Fig. 2 (a), and use it according to the frequency of the input signal. The capacity can be adjusted and used. On the other hand, for RF signals of 1 GHz or higher, a structure with only a spring-loaded movable pin consisting of a metal pipe and a spring and a movable pin installed inside the metal pipe may be used, as shown in Fig. 2 (a). However, the structure is such that a metal pipe is inserted into the through hole of the metal block 1 via a dielectric material around it, and the relationship between the outer diameter of the metal pipe and the inner diameter of the through hole of the metal block 1 is coaxial. It is preferable to form the structure so as to have a dimension that composes the structure, since it is possible to prevent RF noise from being introduced via the movable pin without attenuating the RF signal. The end of the RF signal probe 3 opposite to the connection end to the device under test 20 is connected to a coaxial cable 7 such as semi-rigid.
配線基板 6は、 被検査デバイス 2 0に電源の供給などを行うもので、 基板上に 配線が形成されて、 その端子が被検査デバイスの端子と対応する場所に、 適切に 形成されている。 この場合、 前述のように、 配線基板 6上の電源端子と接地端子 間に、 口一パスフィル夕が形成されたり、 チップコンデンサが接続されたりして いる。 また、 前述の信号用プローブ 3の他端部側に同軸ケーブル 7が直接接続さ れる代りに、 この配線 ¾反 6に信号用配線を形成しておき、 その配線を介して同 軸ケーブルに接続してもよい。  The wiring board 6 supplies power to the device under test 20 and the like. Wiring is formed on the substrate, and its terminals are appropriately formed at locations corresponding to the terminals of the device under test. In this case, as described above, a single-pass filter is formed between the power supply terminal and the ground terminal on the wiring board 6, or a chip capacitor is connected. Also, instead of the coaxial cable 7 being directly connected to the other end of the signal probe 3 described above, a signal wiring is formed in this wiring counter 6 and connected to the coaxial cable via the wiring. May be.
押え板 8は、 アクリル板などからなり、 0 . l〜0 . 2 mm程度の薄い電気的絶 縁性材料からなり、 各プローブの可動ピン 1 1が突出する貫通孔が設けられ、 図 示しないビスにより固定されている。 これにより、 各プローブの金属パイプや絶 縁体が金属ブロック 1から飛び出ないように固定されている。 図 1 ( a) に示さ れる例では、 この押え板 8から突出する可動ピン 1 1が B GAタイプの被検査デ ノ イス 2 0に対応するように、 マトリクス状に形成された例で示されているが、 信号用プローブ、 電源用プロ一ブ、 接地用プローブの数やその配置は、 検査をし ようとする被検査デバイス 2 0の電源端子に応じて形成され、 たとえば入出力用 の R F信号用プローブ、 電源用プローブおよび接地用プロ一ブが各 1本づつで形 成される場合もある。 The holding plate 8 is made of an acrylic plate or the like, is made of a thin electrically insulating material of about 0.1 to 0.2 mm, and is provided with a through hole from which the movable pin 11 of each probe projects, which is not shown. It is fixed with screws. As a result, the metal pipe or insulator of each probe is fixed so as not to protrude from the metal block 1. In the example shown in FIG. 1 (a), the movable pin 11 protruding from the holding plate 8 has a BGA type inspection target. Although shown as an example formed in a matrix so as to correspond to noise 20, the number of signal probes, power supply probes, and grounding probes and their arrangement are to be tested. It is formed according to the power supply terminal of the device under test 20, and for example, an input / output RF signal probe, a power supply probe, and a grounding probe may be formed one by one.
図 1 (b ) に示される例では、 プローブの一端部を押え板 8により固定する構 造であつたが、 必ずしも押え板を使用する必要はない。 すなわち、 図 9に示され るように、 金属プロヅク 1のプローブが挿入される貫通孔にプローブの端部を固 定する段差部を設け、 同様に段差部を形成した第 2の金属プロック 1 aによりプ ローブを両側から挟み込み、 第 2の金属プロヅク 1 a側から図示しないネジなど により金属ブロック 1に固定することにより、 プローブ 1 0を固定しながら、 可 動ピン 1 1を可動させることもできる。  In the example shown in FIG. 1 (b), one end of the probe is fixed by the holding plate 8, but it is not always necessary to use the holding plate. That is, as shown in FIG. 9, a step portion for fixing the end of the probe is provided in the through-hole into which the probe of the metal probe 1 is inserted, and the second metal block 1 a similarly formed with the step portion is provided. , The movable pin 11 can be moved while the probe 10 is fixed by fixing the probe 10 from both sides and fixing the probe to the metal block 1 with screws (not shown) from the second metal block 1a side. .
また、 前述の例では、 金属パイプ 1 3の外周に形成されるキャパシ夕は 1種類 のキャパシ夕であったが、 たとえば図 1 0 ( a) に示されるように、 第 1の金属 膜を分断して長さが M M2、 M3の異なる長さの金属膜 1 7 a、 1 7 b、 1 7 cとすることにより、 図 1 0 (b ) に示されるように、 異なる容量のキャパシ夕 1 8 a, 1 8 b、 1 8 cを形成することができる。 それそれのキャパシ夕 C u 〜C 1 3の容量は、 全体の長さ Mでの容量をそれぞれの長さ M1〜M3の長さに比 例した大きさの容量に分配される。 その結果、 前述の信号用プローブとして、 信 号の周波数に応じた容量が要求される場合に、 長さの異なる金属膜 1 7 a〜 1 7 cのうち、 所望の容量の金属膜のみを金属ブロック 1と接触させるようにするこ とにより所望の容量のキャパシ夕として使用することもできる。 キャパシ夕を形 成する誘電体の材質や厚さにより、 その高周波特性は異なってくるので、 信号周 波数に応じた所望の容量を選ぶときに、 その周波数特性も変ィ匕してくる。 あるい は、 全ての金属膜を金属ブロックと接触させることにより、 一つの誘電 質で は成し得なかつた周波数特性を得ることもできる。 In the above example, the capacity formed on the outer periphery of the metal pipe 13 is one kind of capacity. However, for example, as shown in FIG. 10 (a), the first metal film is divided. by to length and MM 2, M 3 different length of the metal film 1 7 a, 1 7 b, 1 7 c, as shown in FIG. 1 0 (b), of different capacity capacity evening 18a, 18b and 18c can be formed. It it Capacity evening C u -C 1 3 capacity is distributed to the capacity size was proportional to the capacity of the entire length M in the length of the respective lengths M 1 ~M 3 of. As a result, when a capacitance according to the frequency of the signal is required as the signal probe described above, only the metal film having the desired capacitance among the metal films 17 a to 17 c having different lengths is made of metal. By contacting with block 1, it can be used as a capacity of desired capacity. Since the high-frequency characteristics differ depending on the material and thickness of the dielectric material forming the capacitance, when selecting a desired capacitance according to the signal frequency, the frequency characteristics also change. Alternatively, by bringing all the metal films into contact with the metal block, it is possible to obtain a frequency characteristic that cannot be achieved with one dielectric.
本発明によれば、 可動ピンにより被検査デバイスに接触させているため、 被検 査デバイスの電極端子との接触部分にリ一ドの露出部分がない上に、 被検査デバ イスの電源電極端子に接触させる電源用プローブの周囲にキャパシ夕が形成され ているため、 被検査デノ Wスの電源端子に入力される直前のところで R Fノイズ を除去することができ、 ノイズフリーの状態で検査をすることができる。 すなわ ち、 高周波'高速用デバイスを検査する場合、 僅かな長さのリードでもノイズを 拾いやすいため、 できるだけ被検査デバイスの近くでノイズを落す必要があるが、 本発明では、 被検査デバィスと接触する直前の電源用プローブにキャパシ夕が形 成されているため、 非常に効果的にノイズを解消することができると共に、 高速 スイッチング波形出力時に発生する電源端子における電圧降下を最小限に抑える ことができる。 According to the present invention, since the device to be inspected is contacted by the movable pin, there is no exposed portion of the lead in the contact portion with the electrode terminal of the device to be inspected, and the power supply electrode terminal of the device to be inspected. A capacitor is formed around the power probe to be As a result, RF noise can be removed just before input to the power supply terminal of the device under test, and the test can be performed in a noise-free state. In other words, when testing high-frequency / high-speed devices, it is necessary to reduce the noise as close as possible to the device under test, since it is easy to pick up noise even with a short lead length. Since the capacitance is formed on the power supply probe immediately before contact, noise can be eliminated very effectively, and the voltage drop at the power supply terminal during high-speed switching waveform output should be minimized. Can be.
さらに、 信号端子においても、 信号の周波数に応じて、 その入力前の信号用プ 口一ブに信号を減衰させず、 R Fノイズを減衰させる容量のキャパシ夕が装荷さ れたプローブを用いることにより、 信号成分に重畳されたノイズを、 被検査デバ イスの端子に入る前に有効に除去することもできる。  In addition, at the signal terminals, according to the frequency of the signal, a probe equipped with a capacity that attenuates the RF noise without attenuating the signal at the signal port before inputting it can be used. Also, the noise superimposed on the signal component can be effectively removed before entering the terminal of the device under test.
その結果、 高周波 ·高速デバイスの増幅器を発振させたり、 正確なデバイスの 検査を行えないという問題を解決し、 電源用端子および信号用端子からも完全に ノイズを除去することができ、 非常に安定した正確な検査をすることができる。 なお、 前述のように、 電源用プロ一ブは被検査デバイスと接触する側のみを可 動ピンとして、 他端側は直接ハンダ付けなどにより接続する構造にしてもよいが、 接地用プローブも同様に被検査デバイスとの接触側のみに可動ピンを設ける構造 にして、 他端側は固定する構造でもよい。 また、 接地用プロ一ブは設けられない で、 たとえば細い金属細線が多数ゴム内に植立されて縦方向のみに導電し、 横方 向には絶縁される異方性の導電性ゴムなどを介して、 金属プロック 1と被検査デ ノ 'ィスの接地端子とを直接接続する構造にすることもできる。  As a result, the problem of oscillating the amplifier of high-frequency and high-speed devices and the inability to perform accurate device inspections has been solved, and noise has been completely removed from the power supply terminal and signal terminal, making it extremely stable. Accurate inspection can be done. As described above, the power probe may be configured such that only the side in contact with the device under test is a movable pin and the other end is directly connected by soldering, etc. Alternatively, the movable pin may be provided only on the contact side with the device under test, and the other end may be fixed. In addition, since no grounding probe is provided, for example, anisotropic conductive rubber that has a large number of thin metal wires buried in rubber and conducts only in the vertical direction and is insulated in the horizontal direction is used. It is also possible to have a structure in which the metal block 1 and the ground terminal of the device under test are directly connected via the metal block.
本発明によれば、 被検査デバィスの電極端子などに押圧のみで確実に接触させ ることができる可動ピンを有するコンタクト用のプローブに、 直接キャパシ夕が 設けられているため、 高周波 ·高速用デバイスの特性検査をする場合に、 被難 デバイスとの接触を確実にしながら、 電源端子の電圧降下を防止することができ ると共に、 電源端子や信号端子からのノイズの侵入を防止することができる。 し かも、 信号端子でも、 その容量を調整することにより、 信号を劣化させず、 ノィ ズのみを減衰させることができる。 その結果、 非常に安定した検査を正確にする ことができ、 高周波 ·高速用デバイスの; (βの信頼性を大幅に向上させることが できる。 産業上の利用の可能性 According to the present invention, since a contact probe having a movable pin that can reliably contact an electrode terminal or the like of a device to be inspected only by pressing is provided with a direct capacity, a high-frequency / high-speed device When performing the characteristic inspection, it is possible to prevent the voltage drop of the power supply terminal and to prevent the noise from entering from the power supply terminal and the signal terminal while ensuring the contact with the device to be damaged. By adjusting the capacitance of the signal terminal, it is possible to attenuate only the noise without deteriorating the signal. As a result, a very stable test is accurate It is possible to greatly improve the reliability of high-frequency and high-speed devices; (β.
本発明は、 携帯電話機などの電気機器などに組み込まれる増幅回路やミキサ回 路、 フィル夕回路、 IC、 モジュール、 高速デジタル処理 IC (DSP (digital signal processor )s CPU(central processing unit)、 F P GA(field programmable gate array))、 高速メモリ、 シリアルパラレル変換 I C (SER ZD E S (serializer/de-serializer)) など、 とくに高周波 ·高速用デバイスの 検査を、 プローブを接触させることにより行う分野で利用することができる。 The present invention relates to an amplifier circuit, a mixer circuit, a filter circuit, an IC, a module, a high-speed digital processing processor (DSP (digital signal processor) s CPU (central processing unit), (field programmable gate array)), high-speed memory, serial-parallel conversion IC (SER ZDES (serializer / de-serializer)), etc. be able to.

Claims

言青求の範囲 Scope of word blue
1 金属パイプと、 該金属パイプ内に該金属パイプと電気的に接続して設けら れ、 少なくとも前記金属パイプの一端部から突出する突出長を可変とし得る可動 ビンと、 前記金属パイプの外周に設けられる誘電体層と、 該誘電体層の外周面に 設けられる第 1の金属膜とからなり、 前記可動ピンと前記第 1の金属膜との間に キャパシタンスが形成されてなる容量装荷型プロ一ブ。  (1) a metal pipe, a movable bin provided in the metal pipe so as to be electrically connected to the metal pipe, and having at least a variable projection length protruding from one end of the metal pipe; A capacitor loaded type capacitor comprising: a dielectric layer provided; and a first metal film provided on an outer peripheral surface of the dielectric layer, wherein a capacitance is formed between the movable pin and the first metal film. Bu.
2 前記誘電体層が誘電体筒からなり、 該誘電体筒の外周面に前記第 1の金属 膜が形成され、 該誘電体筒の内周面に第 2の金属膜が設けられ、 該第 2の金属膜 を介して前記金属パイプと電気的に接続されてなる請求項 1記載の容量装荷型プ ローブ。 ,  (2) the dielectric layer is formed of a dielectric tube, the first metal film is formed on an outer peripheral surface of the dielectric tube, a second metal film is provided on an inner peripheral surface of the dielectric tube, 2. The capacitively-loaded probe according to claim 1, wherein the probe is electrically connected to the metal pipe via a second metal film. ,
3 前記誘電体層が、 前記金属パイプの外周面に直接成膜された薄膜からなり、 該薄膜上に前記第 1の金属膜が形成されてなる請求項 1記載の容量装荷型プロ一 ブ。  3. The capacity-loaded probe according to claim 1, wherein the dielectric layer is formed of a thin film directly formed on an outer peripheral surface of the metal pipe, and the first metal film is formed on the thin film.
4 前記金属パイプの外周に設けられるキャパシ夕が、 2種類以上の容量を有 するように形成されてなる請求項 1記載の容量装荷型プローブ。  4. The capacity-loaded probe according to claim 1, wherein the capacity provided on the outer periphery of the metal pipe is formed to have two or more types of capacities.
5 金属ブロックと、 先端部の突出長が可動する可動ピンを有し、 前記金属ブ 口ヅクの一面側に編 3可動ピンの先端部が突出するように、 該金属プロヅクを貫 通して設けられる電源用および信号用の複数のプローブとを具備し、 前記金属ブ 口ヅクの前記一面側に被検査デバイスが押し付けられ、 該被検査デバイスの各電 極端子と前記プローブの先端部とを接触させて前記被検査デバイスの特性検査を する検査治具であって、 前記複数のプローブのうちの少なくとも一部のプローブ は、 該プロ一プの外周に誘電体層と金属膜が設けられることによりキャパシ夕が 形成された容量装荷型プローブからなる^ ¾治具。  (5) A metal block and a movable pin having a movable distal end with a movable length, and the knitting (3) is provided on one surface side of the metal block so as to penetrate the metal block so that the distal end of the movable pin projects. A plurality of probes for power supply and signal; and a device to be inspected is pressed against the one surface side of the metal block, and each electrode terminal of the device to be inspected is brought into contact with a tip portion of the probe. An inspection jig for inspecting characteristics of the device under test, wherein at least a part of the plurality of probes has a capacity provided by providing a dielectric layer and a metal film on an outer periphery of the probe. ^ ¾ Jig consisting of a capacity-loaded probe with an evening formed.
6 前記被検査デバイスの信号入力端子と接続される信号用プローブのうち少 なくとも一部のプローブには、 該入力端子に印加される信号の正弦波またはパル スの繰返しに応じて、 該繰返しの信号に対しては減衰が小さく、 該繰返しより大 きい周波数のノイズを減衰させる容量を有するキャパシ夕が形成された容量装荷 型プローブが用いられてなる請求項 5記載の »治具。 7 前記被検査デバイスの電源端子に接続される電源用プローブに、 容量が 5 O p F以上のキャパシ夕が接続された容量装荷型プローブが用いられてなる請求 項 5記載の 1½治具。 6 At least some of the signal probes connected to the signal input terminal of the device under test have the repetition in accordance with the repetition of the sine wave or pulse of the signal applied to the input terminal. 6. The jig according to claim 5, wherein a capacitance-loaded probe is used which is provided with a capacity having a capacity to attenuate noise of a frequency higher than the repetition, with a small attenuation for the signal. 7. The jig according to claim 5, wherein the power probe connected to the power terminal of the device to be inspected is a capacitance-loaded probe to which a capacitor having a capacity of 5 O pF or more is connected.
8 前記被検査デバイスの電源端子に接続される電源用プローブに、 容量が 1 0 0 p F以上のキャパシ夕が接続された容量装荷型プローブが用いられてなる請 求項 7記載の検査治具。  8. The inspection jig according to claim 7, wherein a capacitance-loaded probe having a capacity of 100 pF or more is connected to a power probe connected to a power terminal of the device under test. .
PCT/JP2003/001277 2002-02-07 2003-02-06 Capacity load type probe, and test jig using the same WO2003067268A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US10/503,669 US7233156B2 (en) 2002-02-07 2003-02-06 Capacity load type probe, and test jig using the same
JP2003566566A JP4707322B2 (en) 2002-02-07 2003-02-06 Capacity loaded probe and inspection jig using the same
AU2003207078A AU2003207078A1 (en) 2002-02-07 2003-02-06 Capacity load type probe, and test jig using the same
DE60317638T DE60317638T2 (en) 2002-02-07 2003-02-06 PROBE FROM CAPACITY LOAD TYPE AND TEST DEVICE CONTAINING THIS PROBE
EP03703239A EP1482313B1 (en) 2002-02-07 2003-02-06 Capacity load type probe, and test jig using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-31389 2002-02-07
JP2002031389 2002-02-07

Publications (1)

Publication Number Publication Date
WO2003067268A1 true WO2003067268A1 (en) 2003-08-14

Family

ID=27677932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/001277 WO2003067268A1 (en) 2002-02-07 2003-02-06 Capacity load type probe, and test jig using the same

Country Status (8)

Country Link
US (1) US7233156B2 (en)
EP (1) EP1482313B1 (en)
JP (1) JP4707322B2 (en)
AU (1) AU2003207078A1 (en)
DE (1) DE60317638T2 (en)
MY (1) MY139934A (en)
TW (1) TWI278631B (en)
WO (1) WO2003067268A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1422530A2 (en) * 2002-11-19 2004-05-26 Yokowo Co., Ltd. Inspection jig for radio frequency device, and contact probe incorporated in the jig
JP2005127891A (en) * 2003-10-24 2005-05-19 Yokowo Co Ltd Inductor loaded inspecting probe
WO2005120130A1 (en) * 2004-06-03 2005-12-15 Olympus Corporation Electrostatic capacity type ultrasonic vibrator, manufacturing method thereof, and electrostatic capacity type ultrasonic probe
EP1686385A1 (en) * 2003-11-05 2006-08-02 NHK Spring Co., Ltd. Conductive contact holder and conductive contact unit
EP1695100A2 (en) * 2003-12-18 2006-08-30 Lecroy Corporation Resistive probe tips
WO2006118220A1 (en) * 2005-04-28 2006-11-09 Nhk Spring Co., Ltd. Conductive contact holder and conductive contact unit
WO2007097356A1 (en) * 2006-02-21 2007-08-30 Luzcom Inc. Ultrafine coaxial line and ultrafine coaxial barrel and production method for them
JP2008145238A (en) * 2006-12-08 2008-06-26 Micronics Japan Co Ltd Electrical connection apparatus and electric connection device using it
JP2020504309A (en) * 2017-01-12 2020-02-06 フォームファクター, インコーポレイテッド Vertical probe head shield

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080106292A1 (en) * 2006-11-02 2008-05-08 Corad Technology, Inc. Probe card having cantilever probes
US20080238461A1 (en) * 2007-04-02 2008-10-02 Ken Skala Multi-type test interface system and method
US7816932B2 (en) * 2008-02-21 2010-10-19 Teradyne, Inc. Test system with high frequency interposer
US20100181847A1 (en) * 2009-01-22 2010-07-22 Shen-Yu Huang Method for reducing supply voltage drop in digital circuit block and related layout architecture
US8536889B2 (en) * 2009-03-10 2013-09-17 Johnstech International Corporation Electrically conductive pins for microcircuit tester
US20130002285A1 (en) 2010-03-10 2013-01-03 Johnstech International Corporation Electrically Conductive Pins For Microcircuit Tester
TWI534432B (en) 2010-09-07 2016-05-21 瓊斯科技國際公司 Electrically conductive pins for microcircuit tester
US9007082B2 (en) 2010-09-07 2015-04-14 Johnstech International Corporation Electrically conductive pins for microcircuit tester
US8723542B2 (en) * 2011-04-25 2014-05-13 Cheng Uei Precision Industry Co., Ltd. Testing jig for pogo pin connector
KR102016427B1 (en) 2013-09-10 2019-09-02 삼성전자주식회사 Pogo pin and probe card including the same
KR101552553B1 (en) * 2014-09-23 2015-10-01 리노공업주식회사 A contact probe for the test device
JP2016212040A (en) * 2015-05-13 2016-12-15 富士通コンポーネント株式会社 contact
KR101906575B1 (en) * 2016-11-29 2018-10-11 리노공업주식회사 Camera module test device
CN106840768B (en) * 2017-01-19 2024-01-30 中国科学院南京土壤研究所 Organic pollutant in-situ curing and collecting device and application thereof
JP6663084B2 (en) * 2017-07-13 2020-03-11 日本発條株式会社 Probe unit
CN108982926A (en) * 2018-07-25 2018-12-11 天地融电子(天津)有限公司 A kind of test fixture
TWI680300B (en) * 2019-03-18 2019-12-21 中華精測科技股份有限公司 Probe card device and conductive probe thereof
KR102235724B1 (en) * 2020-04-10 2021-04-02 주식회사 메가터치 Metal material manufacturing method for electronic component, the metal material and pogo pin manufactured by the metal material

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5834364A (en) * 1981-08-24 1983-02-28 Nissan Motor Co Ltd Probe
JPS58175273A (en) * 1982-04-07 1983-10-14 沖電気工業株式会社 Coaxial movable contact probe
JPS6156981A (en) * 1984-08-27 1986-03-22 Nec Corp Semiconductor inspecting device
JPS6296578U (en) * 1985-12-05 1987-06-19
JPH01128536A (en) * 1987-11-13 1989-05-22 Hitachi Ltd Probe for measuring semiconductor element
JPH02133280U (en) * 1989-04-06 1990-11-06
JPH06216205A (en) * 1993-01-13 1994-08-05 Tokyo Electron Yamanashi Kk Probe card interface device
JPH07260878A (en) * 1994-03-18 1995-10-13 Fujitsu Ltd Test station
JPH10213593A (en) * 1997-01-29 1998-08-11 Alps Electric Co Ltd Contact and connecting jig using the same
JP2001042002A (en) * 1999-07-30 2001-02-16 Advantest Corp Contact board for calibrating timing of semiconductor device tester and probe touching contact board
JP2001099889A (en) * 1999-09-29 2001-04-13 Yokowo Co Ltd Inspection equipment for high frequency circuit

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4724180A (en) 1985-08-05 1988-02-09 Teradyne, Inc. Electrically shielded connectors
US5512838A (en) * 1992-09-03 1996-04-30 Hewlett-Packard Company Probe with reduced input capacitance
US5532613A (en) * 1993-04-16 1996-07-02 Tokyo Electron Kabushiki Kaisha Probe needle
KR0138618B1 (en) * 1993-08-04 1998-06-15 이노우에 아끼라 Vertical probe tester card with coaxial probes
US6046597A (en) * 1995-10-04 2000-04-04 Oz Technologies, Inc. Test socket for an IC device
JPH10213583A (en) 1997-01-28 1998-08-11 Wako Pure Chem Ind Ltd Urine test paper feeding device
JP2000266779A (en) * 1999-03-18 2000-09-29 Toshiba Corp Multiprobe unit
US6700397B2 (en) * 2000-07-13 2004-03-02 The Micromanipulator Company, Inc. Triaxial probe assembly
US6784679B2 (en) * 2002-09-30 2004-08-31 Teradyne, Inc. Differential coaxial contact array for high-density, high-speed signals
JP4251855B2 (en) * 2002-11-19 2009-04-08 株式会社ヨコオ Manufacturing method of inspection jigs for high frequency and high speed devices
US6727716B1 (en) * 2002-12-16 2004-04-27 Newport Fab, Llc Probe card and probe needle for high frequency testing

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5834364A (en) * 1981-08-24 1983-02-28 Nissan Motor Co Ltd Probe
JPS58175273A (en) * 1982-04-07 1983-10-14 沖電気工業株式会社 Coaxial movable contact probe
JPS6156981A (en) * 1984-08-27 1986-03-22 Nec Corp Semiconductor inspecting device
JPS6296578U (en) * 1985-12-05 1987-06-19
JPH01128536A (en) * 1987-11-13 1989-05-22 Hitachi Ltd Probe for measuring semiconductor element
JPH02133280U (en) * 1989-04-06 1990-11-06
JPH06216205A (en) * 1993-01-13 1994-08-05 Tokyo Electron Yamanashi Kk Probe card interface device
JPH07260878A (en) * 1994-03-18 1995-10-13 Fujitsu Ltd Test station
JPH10213593A (en) * 1997-01-29 1998-08-11 Alps Electric Co Ltd Contact and connecting jig using the same
JP2001042002A (en) * 1999-07-30 2001-02-16 Advantest Corp Contact board for calibrating timing of semiconductor device tester and probe touching contact board
JP2001099889A (en) * 1999-09-29 2001-04-13 Yokowo Co Ltd Inspection equipment for high frequency circuit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1482313A4 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1422530A2 (en) * 2002-11-19 2004-05-26 Yokowo Co., Ltd. Inspection jig for radio frequency device, and contact probe incorporated in the jig
EP1422530A3 (en) * 2002-11-19 2005-01-19 Yokowo Co., Ltd. Inspection jig for radio frequency device, and contact probe incorporated in the jig
JP2005127891A (en) * 2003-10-24 2005-05-19 Yokowo Co Ltd Inductor loaded inspecting probe
EP2345900A3 (en) * 2003-11-05 2011-09-21 Nhk Spring Co., Ltd. Conductive-contact holder and conductive-contact unit
EP1686385A4 (en) * 2003-11-05 2009-12-30 Nhk Spring Co Ltd Conductive contact holder and conductive contact unit
EP2345901A3 (en) * 2003-11-05 2011-09-21 NHK Spring Co., Ltd. Impedance corrected conductive-contact holder and conductive-contact unit
US7748989B2 (en) 2003-11-05 2010-07-06 Nhk Spring Co., Ltd. Conductive-contact holder and conductive-contact unit
EP1686385A1 (en) * 2003-11-05 2006-08-02 NHK Spring Co., Ltd. Conductive contact holder and conductive contact unit
EP1695100A4 (en) * 2003-12-18 2009-12-30 Lecroy Corp Resistive probe tips
EP1695100A2 (en) * 2003-12-18 2006-08-30 Lecroy Corporation Resistive probe tips
WO2005120130A1 (en) * 2004-06-03 2005-12-15 Olympus Corporation Electrostatic capacity type ultrasonic vibrator, manufacturing method thereof, and electrostatic capacity type ultrasonic probe
US8398551B2 (en) 2004-06-03 2013-03-19 Olympus Corporation Capacitive ultrasonic transducer, production method thereof, and capacitive ultrasonic probe
WO2006118220A1 (en) * 2005-04-28 2006-11-09 Nhk Spring Co., Ltd. Conductive contact holder and conductive contact unit
US8087956B2 (en) 2005-04-28 2012-01-03 Nhk Spring Co., Ltd. Conductive contact holder and conductive contact unit
WO2007097356A1 (en) * 2006-02-21 2007-08-30 Luzcom Inc. Ultrafine coaxial line and ultrafine coaxial barrel and production method for them
JP2008145238A (en) * 2006-12-08 2008-06-26 Micronics Japan Co Ltd Electrical connection apparatus and electric connection device using it
JP2020504309A (en) * 2017-01-12 2020-02-06 フォームファクター, インコーポレイテッド Vertical probe head shield

Also Published As

Publication number Publication date
JPWO2003067268A1 (en) 2005-06-02
US20050088189A1 (en) 2005-04-28
US7233156B2 (en) 2007-06-19
EP1482313A4 (en) 2005-10-12
TWI278631B (en) 2007-04-11
DE60317638T2 (en) 2008-10-30
MY139934A (en) 2009-11-30
AU2003207078A1 (en) 2003-09-02
DE60317638D1 (en) 2008-01-03
EP1482313B1 (en) 2007-11-21
EP1482313A1 (en) 2004-12-01
TW200303423A (en) 2003-09-01
JP4707322B2 (en) 2011-06-22

Similar Documents

Publication Publication Date Title
WO2003067268A1 (en) Capacity load type probe, and test jig using the same
JP4251855B2 (en) Manufacturing method of inspection jigs for high frequency and high speed devices
US6184576B1 (en) Packaging and interconnection of contact structure
US3963986A (en) Programmable interface contactor structure
US4731577A (en) Coaxial probe card
US6232669B1 (en) Contact structure having silicon finger contactors and total stack-up structure using same
US6727716B1 (en) Probe card and probe needle for high frequency testing
US6466043B2 (en) Contact structure for electrical communication with contact targets
US4764723A (en) Wafer probe
KR100795127B1 (en) Wafer probe
KR100855208B1 (en) High performance tester interface module
US20010026166A1 (en) Probe contactor and production method thereof
JP2004325305A (en) Ic socket
US20030195713A1 (en) Systems and methods for wideband active probing of devices and circuits in operation
JP2009085948A (en) Inspection socket
JP2001099889A (en) Inspection equipment for high frequency circuit
US6992495B2 (en) Shielded probe apparatus for probing semiconductor wafer
US20030193341A1 (en) Systems and methods for wideband differential probing of variably spaced probe points
US7786741B2 (en) Measuring tip for high-frequency measurement
JPS5822872B2 (en) High frequency connector
JP2005049163A (en) Test jig and probe for test apparatus of device for high frequency and high speed
GB2197081A (en) Coplanar waveguide probe
JP2010122139A (en) High-frequency probe card
JP4251854B2 (en) Inspection jig for high frequency and high speed devices
WO1986006495A1 (en) A coplanar waveguide probe

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2003566566

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2003703239

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10503669

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2003703239

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2003703239

Country of ref document: EP