WO2003066216A1 - Mikrofluidik-system - Google Patents

Mikrofluidik-system Download PDF

Info

Publication number
WO2003066216A1
WO2003066216A1 PCT/DE2003/000278 DE0300278W WO03066216A1 WO 2003066216 A1 WO2003066216 A1 WO 2003066216A1 DE 0300278 W DE0300278 W DE 0300278W WO 03066216 A1 WO03066216 A1 WO 03066216A1
Authority
WO
WIPO (PCT)
Prior art keywords
microfluidic
sensors
fluid paths
parallel
microfluidic system
Prior art date
Application number
PCT/DE2003/000278
Other languages
English (en)
French (fr)
Inventor
Fritz Breimesser
Jörg HASSEL
Ingeborg Lades
Arno Steckenborn
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to DE10390346T priority Critical patent/DE10390346D2/de
Priority to AU2003212192A priority patent/AU2003212192A1/en
Priority to JP2003565634A priority patent/JP4287748B2/ja
Priority to EP03708012A priority patent/EP1472002A1/de
Publication of WO2003066216A1 publication Critical patent/WO2003066216A1/de
Priority to US10/910,467 priority patent/US7527767B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/432Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction with means for dividing the material flow into separate sub-flows and for repositioning and recombining these sub-flows; Cross-mixing, e.g. conducting the outer layer of the material nearer to the axis of the tube or vice-versa
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/433Mixing tubes wherein the shape of the tube influences the mixing, e.g. mixing tubes with varying cross-section or provided with inwardly extending profiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/433Mixing tubes wherein the shape of the tube influences the mixing, e.g. mixing tubes with varying cross-section or provided with inwardly extending profiles
    • B01F25/4338Mixers with a succession of converging-diverging cross-sections, i.e. undulating cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation
    • B01F35/21Measuring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0093Microreactors, e.g. miniaturised or microfabricated reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00783Laminate assemblies, i.e. the reactor comprising a stack of plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00851Additional features
    • B01J2219/00869Microreactors placed in parallel, on the same or on different supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00851Additional features
    • B01J2219/00871Modular assembly
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00873Heat exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00889Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/0095Control aspects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/0095Control aspects
    • B01J2219/00952Sensing operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/0095Control aspects
    • B01J2219/00952Sensing operations
    • B01J2219/00954Measured properties
    • B01J2219/00957Compositions or concentrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/0095Control aspects
    • B01J2219/00952Sensing operations
    • B01J2219/00954Measured properties
    • B01J2219/00961Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/0095Control aspects
    • B01J2219/00952Sensing operations
    • B01J2219/00954Measured properties
    • B01J2219/00963Pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/0095Control aspects
    • B01J2219/00952Sensing operations
    • B01J2219/00954Measured properties
    • B01J2219/00966Measured properties pH
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/14Process control and prevention of errors
    • B01L2200/143Quality control, feedback systems
    • B01L2200/146Employing pressure sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/14Process control and prevention of errors
    • B01L2200/143Quality control, feedback systems
    • B01L2200/147Employing temperature sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0663Whole sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502746Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means for controlling flow resistance, e.g. flow controllers, baffles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1009Characterised by arrangements for controlling the aspiration or dispense of liquids
    • G01N35/1016Control of the volume dispensed or introduced
    • G01N2035/1018Detecting inhomogeneities, e.g. foam, bubbles, clots
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/11Automated chemical analysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/25Chemistry: analytical and immunological testing including sample preparation
    • Y10T436/2575Volumetric liquid transfer

Definitions

  • the invention relates to a microfluidic system with similar parallel fluid paths.
  • microfluidic systems promise enormous improvements in terms of quality, speed and cost compared to macroscopic systems, since the reaction and residence times in the fluid paths are very short and only very small amounts of substances are used with high precision and reproducibility and processed.
  • reaction and residence times in the fluid paths are very short and only very small amounts of substances are used with high precision and reproducibility and processed.
  • the fluid paths must be connected in parallel (numbering-up).
  • the parallel connection can take place in that several similar microchannels are formed and connected in parallel in microfluidic components, for example a mixer, or in that entire microfluidic components or systems composed of microfluidic components are connected several times in parallel.
  • Suitable methods of microtechnology e.g. etching, LIGA technology or micromechanics
  • etching, LIGA technology or micromechanics can be used to produce the parallel fluid paths with the same high precision, so that the same process conditions, such as pressure, temperature, mass flow, etc., prevail in all fluid paths connected in parallel the same products should be obtained from all parallel fluid paths and should be able to be combined without loss of quality.
  • microfluidic systems tend to operationally change the effective flow resistance both due to local fluctuations in the viscosity of the fluid and due to blockages in the fluid paths, which leads to a further change. operating status and progressive constipation up to a total failure of the system. While in macroscopic systems, for example, the mass flow can be measured easily and almost without interference and a flow control can be given up, this is not possible with reasonable effort for parallelized microfluidic systems for the individual fluid paths.
  • the invention is therefore based on the object of enabling function monitoring of parallelized microfluidic systems.
  • the object is achieved in that, in the microfluidic system of the type specified at the outset, sensors are assigned to the individual fluid paths at the same points in each case to record a physical or chemical quantity that can be influenced by the fluid flow in the fluid paths, and that the sensors are connected to an evaluation device which diagnoses a change in the operating state of the microfluidic system from deviations in the quantities detected by the sensors.
  • the same digits are to be understood as equivalent digits in relation to the size to be recorded; for example, in a channel without a branch, the flow of the fluid is the same everywhere, while the pressure z. B. due to the current-related
  • Pressure drop may be different.
  • the physical parameters can be pressure, temperature and flow, the chemical parameters, for example, the pH value.
  • the fluid paths of the parallelized microfluidic system are of the same design, the same process conditions prevail in all parallel fluid paths at the same locations in the fault-free state of the system, so that the sensors each record the same value of the physical or chemical quantity. If, on the other hand, a size differs in value from the other sizes recorded, so this indicates a malfunction in the associated fluid path. Different measures can then be drawn depending on the system or application. For safety reasons, the entire system or only the fluid path in question can be switched off, and a replacement fluid path that has not been used until then can be switched on instead of the fluid path that was switched off. Another possibility is to initiate a winding process in order to eliminate the disturbance in the fluid path in question. If the process is to be continued without interruption, changes in global sizes such as B.
  • the process conditions are changed.
  • the distribution of the flow in the individual parallel fluid paths can be corrected by actuating micro-control valves in the individual fluid paths or by a local shift in the effective area, that is to say, for example, by a local temperature change; the latter is particularly indicated in strongly exothermic or endothermic reactions, since such reactions tend to accelerate the change to a high degree without correction.
  • the fluid paths which are monitored at the same points with the sensors, can be parallel microchannels in a microfluidic component, for example a microreactor.
  • the monitoring relates to the microfluidic components or systems connected in parallel; that is, the monitored fluid paths are in each case the fluid-carrying structures in the individual microfluidic components connected in parallel, whereby of course the fluid-carrying structures in turn can also have parallel microchannels which, as mentioned above, can be monitored in the same way.
  • the sensors can be pressure sensors, for example, which record the pressures at the same locations in the fluid paths.
  • the inlet pressure or outlet pressure of the fluid at the inlet or outlet of the parallel circuit can serve as the reference pressure, so that in the event of a blockage of the fluid path it can be determined whether the blockage is in the area between the inlet and the location of the pressure measurement or between the location of the Pressure measurement and the output lies.
  • the sensors can be temperature sensors that record the temperatures in the vicinity of the parallel fluid paths at the same locations. If the mass flows through the fluid paths are borrowed, there are temperature differences which indicate a change in the operating state.
  • Another possibility of monitoring is to record the mechanical stresses in the vicinity of the parallel fluid paths. Due to pressure and / or temperature differences in the individual fluid paths, different mechanical stresses can arise at the different locations.
  • sensors of the same type can also be provided at different locations for each fluid path, or different sensors for detecting different physical or chemical variables, in order to be able to localize errors more precisely and to make monitoring more reliable overall.
  • one microfluidic component can advantageously work as a master and the other parallel microfluidic components can work as slaves, with the slaves each having a sensor system that is reduced compared to the master and which connected to the sensors Evaluation device Diagnoses changes in the operating state of the slaves compared to the master.
  • the master is equipped with the complete sensor system to fully control a process or sub-process, the sensor system of the slaves is reduced to a minimum.
  • the settings made by the master as part of process control, e.g. Control commands for control valves, for example, are taken over by the slaves so that the same operating conditions as for the master are set there.
  • the evaluation device connected to the sensors then only monitors whether the operating states of the slaves differ from those of the master. With a parallelized microfluidic system, this can significantly reduce the effort for the sensors.
  • FIG. 1 shows a microfluidic component with parallel microchannels which are monitored by sensors and an evaluation device connected to them
  • FIG. 2 shows a parallelized microfluidic composed of a large number of microfluidic components.
  • FIG. 1 shows a microfluidic component, here a mixer or reactor, in which several parallel microchannels 5 of the same type are formed between two inputs 2 and 3 for two fluids to be mixed and an output 4 for the product produced by mixing, in which the two merged Fluids are mixed in successive mixing stages 6 and react if necessary.
  • Each of the microchannels 5 contains, for example, a pressure sensor 7 halfway in the middle.
  • the pressure sensors 7 and two further pressure sensors 8 and 9 for measuring the inlet and outlet pressures of the microfluidic component 1 are connected to an evaluation device 10. In the trouble-free operating state, the same process conditions prevail in the individual microchannels 5, so that the pressures detected by the sensors 7 are in each case the same.
  • the pressures detected by the sensors 7 each correspond to half of the total pressure drop across the microchannels 5. Is one of the microchannels 5, for example, at the point labeled 29 completely blocked, the associated pressure sensor 7 detects the same pressure as the pressure sensor 8, so that the pressure difference between the assigned sensor 7 and the sensor 8 corresponds to zero and between the sensor 7 and the sensor 9 corresponds to the total pressure drop across the microchannels 5.
  • the evaluation device 10 can therefore diagnose changes in the operating state of the microfluidic component 1 from deviations in the pressures detected by the sensors 7 and localize faults in the individual microchannels 5.
  • microchannels 5 can be compensated for, for example, by additionally heating the microfluidic component 1 at the location of the microchannel 5 in question.
  • the microchannels 5 additional channels 30 of a heat exchanger 31 can be assigned, which can be switched individually via micro valves, not shown here, and thus enable different heating or cooling of the individual microchannels 5.
  • FIG. 2 shows a parallelized microfluidic system, in which a first system with successive micro- fluidic components 11, 12, 13 further similar systems with microfluidic components 14, 15, 16 and 17, 18, 19 are connected in parallel.
  • the microfluidic components 11, 14, 17 are each of the same design; the same applies accordingly to the microfluidic components 12, 15, 18 or 13, 16, 19.
  • the microfluidic components 11, 14, 17 each have a sensor 20, for example a temperature sensor, at the same point, which is connected to a Evaluation device 21 is connected.
  • the other microfluidic components 12, 15, 18 and 13, 16, 19 are also provided with sensors 22 and 23, which are connected to evaluation devices 24 and 25, respectively.
  • the process relationships in the parallel microfluidic components e.g.
  • Deviation of the temperature in question from the temperatures detected at the other microfluidic components 11 and 14 diagnoses a change in the operating state of the microfluidic component 17.
  • the microfluidic components 13, 16, 19 are, for. B. to mixers or reactors, the sensors 23, for example, monitor the pH of the mixed fluids and thus their mixing ratio.
  • the evaluation devices 21, 24 and 25 are part of a device 26 for controlling and regulating the process taking place in the microfluidic system.
  • the system consisting of microfluidic components 11, 12 and 13 is designed as a master, while the systems consisting of microfluidic components 14, 15, 16 and 17, 18, 19 work as slaves.
  • Microfluidic components 11, 12, 13 of the master are equipped with a complete sensor system 27 and report the detected th process states to the device 26.
  • the microfluidic components 14, 15, 16 and 17, 18, 19 of the slaves are only equipped with a reduced sensor system, which is roughly expressed here in that they have no process states to the Report facility 26.
  • the device 26 On the basis of the process states detected by the sensor system 27 of the master, the device 26 generates control commands 28 for the microfluidic components 11, 12, 13 of the master as well as for the microfluidic components 14, 15, 16 and 17, 18, 19 of the slaves , The same operating states as those in the master are thus set in the microfluidic components of the slaves.
  • the evaluation devices 21, 24, 25 then only monitor whether the operating states in the microfluidic components of the slaves differ from those of the master.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Organic Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Micromachines (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

Um bei einem Mikrofluidik-System mit gleichartigen parallelen Fluidpfaden eine Funktionsüberwachung zu ermöglichen, sind den einzelnen Fluidpfaden (5) an jeweils den gleichen Stellen Sensoren (7) zur Aufnahme einer durch den Fluidstrom in den Fluidpfaden (5) beeinflussbaren physikalischen Größe zugeordnet und die Sensoren (7) an einer Auswerteeinrichtung (10) angeschlossen, die aus Abweichungen der von den Sensoren (7) erfassten Größen eine Veränderung des Betriebszustandes des Mikrofluidik-Systems diagnostiziert.

Description

Beschreibung
Mi rofluidik-System
Die Erfindung betrifft e n Mikrofluidik-System mit gleichartigen parallelen Fluidpfaden.
Mikrofluidik-Systeme versprechen bei der Durchfuhrung von chemischen oder biochemischen Analyse- und Syntheseprozessen enorme Verbesserungen bezüglich Qualität, Schnelligkeit und Kostenaufwand gegenüber makroskopischen Systemen, da die Re- aktions- und Verweilzeiten in den Fluidpfaden sehr kurz sind und nur sehr geringe Substanzmengen hochgenau und reproduzierbar eingesetzt und verarbeitet werden. Um insbesondere bei industrieller Anwendung den Anforderungen an Menge,
Durchsatz und Produktivität zu genügen, müssen die Fluid- pfade, gegebenenfalls in hoher Anzahl, parallel geschaltet werden (numbering-up) . Die Parallelschaltung kann e nach Anwendungsfall dadurch geschehen, dass in Mikrofluidik- Bauteilen, beispielsweise einem Mischer, jeweils mehrere gleichartige Mikrokanale ausgebildet und parallel geschaltet sind, oder dass ganze Mikrofluidik-Bauteile bzw. aus Mikro- fluidik-Bauteilen zusammengesetzte Systeme mehrfach parallel geschaltet werden. Durch geeignete Verfahren der Mikrotechnik (z. B. Atzverfahren, LIGA-Technik oder Mikromechanik) können die parallelen Fluidpfade mit hoher Präzision gleichartig hergestellt werden, so dass in allen parallel geschalteten Fluidpfaden jeweils dieselben Prozessverhaltnisse, wie Druck, Temperatur, Massendurchfluss usw., herrschen sollten und daher aus allen parallelen Fluidpfaden jeweils die gleichen Produkte erhalten werden und ohne Qualitatsverluste zusammengeführt werden können.
Jedoch neigen Mikrofluidik-Systeme zu betriebsbedingten Ver- anderungen des effektiven Durchflusswiderstandes sowohl durch lokale Schwankungen der Viskosität des Fluids als auch durch Verstopfungen der Fluidpfade, was zu einer weiteren Verande- rung des Betriebszustandes und zu einer fortschreitenden Verstopfung bis hin zu einem Totalausfall des Systems fuhren kann. Wahrend in makroskopischen Systemen beispielsweise der Massendurchfluss ohne weiteres und nahezu störungsfrei gemes- sen und einer Durchflussregelung aufgegeben werden kann, ist dies bei parallelisierten Mikrofluidik-Systemen für die einzelnen Fluidpfade mit vertretbarem Aufwand nicht möglich.
Der Erfindung liegt daher die Aufgabe zugrunde, eine Funkti- onsüberwachung von parallelisierten Mikrofluidik-Systemen zu ermöglichen.
Gemäß der Erfindung wird die Aufgabe dadurch gelost, dass bei dem Mikrofluidik-System der eingangs angegebenen Art den ein- zelnen Fluidpfaden an jeweils den gleichen Stellen Sensoren zur Aufnahme einer durch den Fluidstrom in den Fluidpfaden beeinflussbaren physikalischen oder chemischen Große zugeordnet sind und dass die Sensoren an einer Auswerteeinrichtung angeschlossen sind, die aus Abweichungen der von den Sensoren erfassten Großen eine Veränderung des Betriebszustandes des Mikrofluidik-Systems diagnostiziert. Unter den gleichen Stellen sind in Bezug auf die zu erfassende Große jeweils gleichwertige Stellen zu verstehen; so ist beispielsweise in einem Kanal ohne Abzweig der Durchfluss des Fluids überall gleich, wahrend der Druck z. B. aufgrund des stromungsbedingten
Druckabfalls unterschiedlich sein kann. Bei den physikalischen Großen kann es sich insbesondere um Druck, Temperatur und Durchfluss, bei den chemischen Großen beispielsweise um den ph-Wert handeln.
Da die Fluidpfade des parallelisierten Mikrofluidik-Systems gleichartig ausgebildet sind, herrschen im störungsfreien Zustand des Systems in allen parallelen Fluidpfaden an den jeweils gleichen Stellen jeweils dieselben Prozessverhaltnis- se, so dass die Sensoren jeweils denselben Wert der physikalischen oder chemischen Große erfassen. Weicht dagegen eine Große von den anderen erfassten Großen wertemaßig ab, so zeigt dies eine Störung in dem zugeordneten Fluidpfad an. Je nach System bzw. Anwendung können dann unterschiedliche Maßnahmen ausgelost werden. So kann aus Sicherheitsgründen das gesamte System oder auch nur der betreffende Fluidpfad ab- geschaltet werden, wobei anstelle des abgeschalteten Fluid- pfades ein bis dahin nicht benutzter Ersatz-Fluidpfad zugeschaltet werden kann. Eine weitere Möglichkeit besteht in der Einleitung eines Spulvorganges, um die Störung in dem betreffenden Fluidpfad zu beseitigen. Soll der Prozess ohne Unter- brechung fortgeführt werden, so können durch Änderungen globaler Großen, wie z. B. des Gesamtdruckes oder des Gesamtmassendurchflusses die Prozessbedingungen verändert werden. Alternativ kann die Verteilung des Durchflusses in den einzelnen parallelen Fluidpfaden durch Betätigung von Mikro- stellventilen in den einzelnen Fluidpfaden oder durch eine lokale Verschiebung der Wirkungsflache, also beispielsweise durch eine lokale Temperaturveranderung, korrigiert werden; letztere ist insbesondere bei stark exothermen oder endothermen Reaktionen angezeigt, da solche Reaktionen ohne Korrektur in hohem Maße zu einer Beschleunigung der Veränderung neigen.
Bei den Fluidpfaden, die an jeweils den gleichen Stellen mit den Sensoren überwacht werden, kann es sich um parallele Mikrokanale in einem Mikrofluidik-Bauteil, beispielsweise einem Mikroreaktor, handeln.
Bei Mikrofluidik-Systemen, in denen ganze Mikrofluidik-Bau- teile bzw. aus Mikrofluidik-Bauteilen zusammengesetzte Sys- teme parallelgeschaltet sind, bezieht sich die Überwachung auf die jeweils parallel geschalteten Mikrofluidik-Bauteile bzw. Systeme; d. h. die überwachten Fluidpfade sind dann jeweils die fluidfuhrenden Strukturen in den einzelnen parallel geschalteten Mikrofluidik-Bauteilen, wobei natürlich auch die fluidfuhrenden Strukturen ihrerseits parallele Mikrokanale aufweisen können, die, wie oben erwähnt, auf dieselbe Art und Weise überwacht werden können. Bei den Sensoren kann es sich beispielsweise um Drucksensoren handeln, die an den jeweils gleichen Stellen in den Fluidpfaden die Drücke erfassen. Als Referenzdruck kann dabei der Eingangsdruck oder Ausgangsdruck des Fluids an dem Eingang bzw. Ausgang der Parallelschaltung dienen, so dass im Falle einer Verstopfung des Fluidpfades feststellbar ist, ob die Verstopfung in dem Bereich zwischen dem Eingang und der Stelle der Druckmessung oder zwischen der Stelle der Druckmessung und dem Ausgang liegt.
Alternativ kann es sich bei den Sensoren um Temperatursensoren handeln, die die Temperaturen in der Umgebung der parallelen Fluidpfade an den jeweils gleichen Stellen erfassen. Sind die Massendurchflüsse durch die Fluidpfade unterschied- lieh, so ergeben sich Temperaturunterschiede, welche eine Veränderung des Betriebszustandes anzeigen.
Eine weitere Möglichkeit der Überwachung besteht in der Erfassung der mechanischen Spannungen in der Umgebung der pa- rallelen Fluidpfade. Aufgrund von Druck- und/oder Temperaturunterschieden in den einzelnen Fluidpfaden können an den unterschiedlichen Stellen unterschiedliche mechanische Spannungen entstehen.
Natürlich können für jeden Fluidpfad auch mehrere gleichartige Sensoren an unterschiedlichen Stellen oder auch unterschiedliche Sensoren zur Erfassung unterschiedlicher physikalischer oder chemischer Größen vorgesehen werden, um Fehler genauer lokalisieren zu können und die Überwachung insgesamt zuverlässiger zu machen.
Bei der Parallelschaltung von Mikrofluidik-Bauteilen bzw. Systemen von Mikrofluidik-Bauteilen können in vorteilhafter Weise jeweils ein Mikrofluidik-Bauteil als Master und die übrigen parallelen Mikrofluidik-Bauteile als Slaves arbeiten, wobei die Slaves jeweils eine gegenüber dem Master reduzierte Sensorik aufweisen und die an den Sensoren angeschlossene Auswerteeinrichtung Veränderungen des Betriebszustandes der Slaves gegenüber dem Master diagnostiziert. Wahrend der Master jeweils mit der kompletten Sensorik ausgestattet ist, um einen Prozess oder Teilprozess vollständig zu steuern, ist die Sensorik der Slaves auf ein Mindestmaß reduziert. Die von dem Master im Rahmen der Prozesssteuerung vorgenommenen Einstellungen, z. B. Steuerbefehle für Stellventile, werden von den Slaves übernommen, so dass dort dieselben Betπebszustan- de wie bei dem Master eingestellt werden. Die an den Sensoren angeschlossene Auswerteeinrichtung überwacht dann nur noch, ob die Betriebszustande der Slaves gegenüber denen des Masters abweichen. Dadurch lasst sich bei einem parallelisierten Mikrofluidik-System der Aufwand für die Sensorik erheblich reduzieren.
Zur weiteren Erläuterung der Erfindung wird im Folgenden auf die Figuren der Zeichnung Bezug genommen; im Einzelnen zeigen:
Figur 1 ein Mikrofluidik-Bauteil mit parallelen Mikrokana- len, die von Sensoren und einer daran angeschlossenen Auswerteeinrichtung überwacht werden und
Figur 2 ein aus einer Vielzahl von Mikrofluidik-Bauteilen zusammengesetztes parallelisiertes Mikrofluidik-
System, bei dem die jeweils parallelen Mikroflui- dik-Bauteile mit Hilfe von Sensoren und einer daran angeschlossenen Auswerteeinrichtung überwacht werden.
Figur 1 zeigt ein Mikrofluidik-Bauteil, hier einen Mischer oder Reaktor, in dem zwischen zwei Eingängen 2 und 3 für zwei zu mischende Fluide und einem Ausgang 4 für das durch Mischen erzeugte Produkt mehrere gleichartige parallele Mikrokanale 5 ausgebildet sind, in denen die beiden zusammengeführten Fluide in aufeinanderfolgenden Mischstufen 6 gemischt werden und dabei gegebenenfalls reagieren. Jeder der Mikrokanale 5 enthalt beispielsweise auf halbem Wege in der Mitte jeweils einen Drucksensor 7. Die Drucksensoren 7 und zwei weitere Drucksensoren 8 und 9 zur Messung der Eingangs- und Ausgangsdrucke des Mikrofluidik-Bauteils 1 sind an einer Auswerteeinrichtung 10 angeschlossen. Im störungsfreien Betriebszustand herrschen in den einzelnen Mikrokanalen 5 jeweils die gleichen Prozessverhaltnisse, so dass die mit den Sensoren 7 erfassten Drucke jeweils gleich sind. Bezogen auf den mit dem Drucksensor 8 erfassten Ein- gangsdruck oder den mit dem Drucksensor 9 erfassten Ausgangsdruck entsprechen die mit den Sensoren 7 erfassten Drucke jeweils der Hälfte des gesamten Druckabfalls über die Mikrokanale 5. Ist einer der Mikrokanale 5 beispielsweise an der mit 29 bezeichneten Stelle vollständig verstopft, so erfasst der zugehörige Drucksensor 7 denselben Druck wie der Drucksensor 8, so dass die Druckdifferenz zwischen dem zugeordneten Sensor 7 und dem Sensor 8 Null und zwischen dem Sensor 7 und dem Sensor 9 dem gesamten Druckabfall über die Mikrokanale 5 entspricht. Die Auswerteeinrichtung 10 kann also aus Abweichungen der von den Sensoren 7 erfassten Drucke Veränderungen des Betriebszustandes des Mikrofluidik-Bauteils 1 diagnostizieren und Störungen in den einzelnen Mikrokanalen 5 lokalisieren. Werden, wie hier nicht gezeigt ist, zwischen allen Mischstufen 6 jeweils Drucksensoren 7 angeordnet, so können Störungen noch genauer lokalisiert werden. Die Auswirkung einer beginnenden, d. h. noch nicht vollständigen Verstopfung in einem der Mikrokanale 5 kann beispielsweise dadurch kompensiert werden, dass das Mikrofluidik-Bauteil 1 an der Stelle des betreffenden Mikrokanals 5 zusätzlich erwärmt wird. Dazu können z. B. den Mikrokanalen 5 weitere Kanäle 30 eines Wärmetauschers 31 zugeordnet sein, die über hier nicht gezeigte Mikroventile einzeln schaltbar sind und so eine unterschiedliche Erwärmung bzw. Kühlung der einzelnen Mikrokanale 5 ermöglichen.
Figur 2 zeigt ein parallelisiertes Mikrofluidik-System, bei dem zu einem ersten System mit aufeinanderfolgenden Mikro- fluidik-Bauteilen 11, 12, 13 weitere gleichartige Systeme mit Mikrofluidik-Bauteilen 14, 15, 16 bzw. 17, 18, 19 parallelgeschaltet sind. Die Mikrofluidik-Bauteile 11, 14, 17 sind jeweils gleichartig ausgebildet; dasselbe gilt entsprechend für die Mikrofluidik-Bauteile 12, 15, 18 bzw. 13, 16, 19. Die Mikrofluidik-Bauteile 11, 14, 17 weisen an jeweils der gleichen Stelle jeweils einen Sensor 20, beispielsweise einen Temperatursensor, auf, der an einer Auswerteeinrichtung 21 angeschlossen ist. Entsprechend sind auch die anderen Mikro- fluidik-Bauteile 12, 15, 18 bzw. 13, 16, 19 mit Sensoren 22 bzw. 23 versehen, die an Auswerteeinrichtungen 24 bzw. 25 angeschlossen sind. Solange das Mikrofluidik-System fehlerfrei arbeitet, sind die Prozessverhältnisse in den jeweils parallelen Mikrofluidik-Bauteilen, z. B. 11, 14, 17, gleich, so dass die zugeordneten Sensoren 20 jeweils dieselbe physikalische Größe, hier Temperatur, erfassen. Im Falle eines Fehlers in einem der Mikrofluidik-Bauteile, z. B. 17, wird sich aufgrund des veränderten Massendurchflusses durch das betreffende Mikrofluidik-Bauteil 17 die dort erfasste Tempe- ratur ändern, so dass die Auswerteeinrichtung 21 aus der
Abweichung der betreffenden Temperatur gegenüber den an den anderen Mikrofluidik-Bauteilen 11 und 14 erfassten Temperaturen eine Veränderung des Betriebszustandes des Mikrofluidik- Bauteils 17 diagnostiziert. Bei den Mikrofluidik-Bauteilen 13, 16, 19 handelt es sich z. B. um Mischer bzw. Reaktoren, wobei die Sensoren 23 beispielsweise den pH-Wert der gemischten Fluide und damit ihr Mischungsverhältnis überwachen.
Bei dem gezeigten Ausführungsbeispiel sind die Auswerteein- richtungen 21, 24 und 25 Bestandteil einer Einrichtung 26 zur Steuerung und Regelung des in dem Mikrofluidik-System ablaufenden Prozesses. Das aus den Mikrofluidik-Bauteilen 11, 12 und 13 bestehende System ist dabei als Master ausgebildet, während die aus den Mikrofluidik-Bauteilen 14, 15, 16 bzw. 17, 18, 19 bestehenden Systeme als Slaves arbeiten. Die
Mikrofluidik-Bauteile 11, 12, 13 des Masters sind mit einer vollständigen Sensorik 27 ausgestattet und melden die erfass- ten Prozesszustande an die Einrichtung 26. Gegenüber dem Master sind die Mikrofluidik-Bauteile 14, 15, 16 bzw. 17, 18, 19 der Slaves lediglich mit einer reduzierten Sensorik ausgestattet, was hier grob vereinfacht dadurch ausgedruckt ist, dass sie keine Prozesszustande an die Einrichtung 26 melden. Aufgrund der von der Sensorik 27 des Masters erfassten Prozesszustande erzeugt die Einrichtung 26 Steuerbefehle 28 gleichermaßen für die Mikrofluidik-Bauteile 11, 12, 13 des Masters wie auch für die Mikrofluidik-Bauteile 14, 15, 16 bzw. 17, 18, 19 der Slaves. In den Mikrofluidik-Bauteilen der Slaves werden somit dieselben Betriebszustande wie in denen des Masters eingestellt. Die Auswerteeinrichtungen 21, 24, 25 überwachen dann nur noch, ob die Betriebszustande in den Mikrofluidik-Bauteilen der Slaves von denen des Masters ab- weichen.

Claims

Patentansprüche
1. Mikrofluidik-System mit gleichartigen parallelen Fluidpfaden, d a du r ch g e k e nn z e i c h n e t , dass den einzelnen Fluidpfaden (5) an jeweils den gleichen Stellen Sensoren (7) zur Aufnahme einer durch den Fluidstrom in den Fluidpfaden (5) beeinflussbaren physikalischen oder chemischen Große zugeordnet sind und dass die Sensoren (7) an einer Auswerteeinrichtung (10) angeschlossen sind, die aus Abweichungen der von den Sensoren (7) erfassten Großen eine Veränderung des Betriebszustandes des Mikrofluidik-Systems diagnostiziert .
2. Mikrofluidik-System nach Anspruch 1, d a d u r c h g e - ke nn z e i c h n e t , dass die Fluidpfade parallele Mikrokanale (5) eines Mikrofluidik-Bauteils (1) sind.
3. Mikrofluidik-System nach Anspruch 1, d a d u r c h g e ke nn z e i c h n e t , dass die Fluidpfade jeweils fluid- fuhrende Strukturen in gleichartigen parallelgeschalteten Mikrofluidik-Bauteilen (11 bis 19) sind.
4. Mikrofluidik-System nach einem der vorangehenden Ansprüche, da du r c h g e ke n n z e i c h n e t , dass die Sensoren (7) an den jeweils gleichen Stellen Drucke in den Fluidpfaden (5) erfassen.
5. Mikrofluidik-System nach einem der vorangehenden Ansprüche, da du r c h g e ke n n z e i c h n e t , dass die Sensoren (20) an den jeweils gleichen Stellen Temperaturen erfassen.
6. Mikrofluidik-System nach einem der vorangehenden Ansprüche, da du rc h ge ke nn z e i chn e t , dass die Sen- soren an den jeweils gleichen Stellen mechanische Spannungen erfassen.
7. Mikrofluidik-System nach einem der vorangehenden Ansprüche, da du r c h g e ken n z e i c h n e t , dass bei der Parallelschaltung von Mikrofluidik-Bauteilen (z. B. 11, 14, 17) jeweils ein Mikrofluidik-Bauteil (11) als Master und die übrigen parallelen Mikrofluidik-Bauteile (14, 17) als Slaves arbeiten, wobei die Slaves jeweils eine gegenüber dem Master reduzierte Sensorik aufweisen und die an den Sensoren (20) angeschlossene Auswerteeinrichtung (21) Veränderungen des Be- triebszustände der Slaves gegenüber dem des Masters diagnos- tiziert.
PCT/DE2003/000278 2002-02-04 2003-01-31 Mikrofluidik-system WO2003066216A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE10390346T DE10390346D2 (de) 2002-02-04 2003-01-31 Mikrofluidik-System
AU2003212192A AU2003212192A1 (en) 2002-02-04 2003-01-31 Microfluidic system
JP2003565634A JP4287748B2 (ja) 2002-02-04 2003-01-31 マイクロフルイディクシステム
EP03708012A EP1472002A1 (de) 2002-02-04 2003-01-31 Mikrofluidik-system
US10/910,467 US7527767B2 (en) 2002-02-04 2004-08-04 Micro-fluidic system with sensors respectively assigned to plural fluid paths

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10204414A DE10204414A1 (de) 2002-02-04 2002-02-04 Mikrofluidik-System
DE10204414.7 2002-02-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/910,467 Continuation US7527767B2 (en) 2002-02-04 2004-08-04 Micro-fluidic system with sensors respectively assigned to plural fluid paths

Publications (1)

Publication Number Publication Date
WO2003066216A1 true WO2003066216A1 (de) 2003-08-14

Family

ID=27674549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2003/000278 WO2003066216A1 (de) 2002-02-04 2003-01-31 Mikrofluidik-system

Country Status (6)

Country Link
US (1) US7527767B2 (de)
EP (1) EP1472002A1 (de)
JP (1) JP4287748B2 (de)
AU (1) AU2003212192A1 (de)
DE (2) DE10204414A1 (de)
WO (1) WO2003066216A1 (de)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1336432A2 (de) * 2002-02-15 2003-08-20 Syrris Limited Ein Mikroreaktor
EP1669757A1 (de) * 2003-09-24 2006-06-14 Olympus Corporation System zur umsetzung von biologischem material
JP2006189259A (ja) * 2004-12-28 2006-07-20 Aloka Co Ltd 配管状態検出方法および装置
JP2006239638A (ja) * 2005-03-07 2006-09-14 Ebara Corp 混合器および混合方法
JP2006526763A (ja) * 2003-04-07 2006-11-24 グラクソ グループ リミテッド 微小流体系
EP1767263A2 (de) * 2005-09-27 2007-03-28 FUJIFILM Corporation Mikrochip und Verfahren zum Mischen von Flüssigkeiten und Verfahren zur Blutanalyse unter Verwendung eines solchen Mikrochips
JP2007536542A (ja) * 2004-05-06 2007-12-13 シーメンス アクチエンゲゼルシヤフト マイクロ流体システム
EP1992404A2 (de) * 2007-05-15 2008-11-19 Corning Incorporated Mikrofluidische Vorrichtungen und Verfahren für Reaktionen nicht mischbarer Flüssigkeiten
WO2011123040A1 (en) 2010-03-31 2011-10-06 Ge Healthcare Bio-Sciences Ab A parallel separation system

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008080306A (ja) * 2006-09-29 2008-04-10 Hitachi Ltd 化学合成装置
FR2907228B1 (fr) * 2006-10-13 2009-07-24 Rhodia Recherches & Tech Dispositif d'ecoulement fluidique,ensemble de determination d'au moins une caracteristique d'un systeme physico-chimique comprenant un tel dispositif,procede de determination et procede de criblage correspondants
EP1977687A1 (de) * 2007-04-05 2008-10-08 Koninklijke Philips Electronics N.V. Hydrogelbasierte Vorrichtung zur Erkennung eines Umweltzustands
DK2295096T3 (en) * 2009-09-11 2016-05-23 Hoffmann La Roche Micro-fluid chambers for use in liquid drug delivery systems
JP5885548B2 (ja) 2012-03-12 2016-03-15 株式会社神戸製鋼所 多流路機器の運転方法及び多流路機器
KR101404000B1 (ko) 2013-04-16 2014-06-10 케이맥(주) 바이오칩용 플로우 모듈
DE102014221499A1 (de) * 2014-10-23 2016-04-28 Robert Bosch Gmbh Verfahren und Vorrichtung zum Testen eines mikrofluidischen Systems
DE102019134804A1 (de) * 2019-12-17 2021-06-17 Reseatech Gmbh Messanordnung mit einem mikromechanischen Sensor zum Erfassen von Eigenschaften eines strömenden Fluids
DE102021204570A1 (de) 2021-05-06 2022-11-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Dosierkopf und Fluidiksystem zur Aufnahme und Dosierung wenigstens eines Mediums
FR3126773B1 (fr) * 2021-09-08 2023-09-01 Elvesys Systeme de mesure de debit de liquide dans une canalisation micro-fluidique

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3430288A1 (de) * 1984-08-17 1986-02-27 Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt e.V., 5000 Köln Verfahren fuer eine aktive kompensationsregelung einer beliebigen anzahl parallel betriebener zylinder zur erreichung synchroner bewegungen
US5810297A (en) * 1996-04-29 1998-09-22 Basuthakur; Sibnath Satellite cluster attitude/orbit determination and control system and method
WO2000017946A2 (en) 1998-09-22 2000-03-30 Celanese International Corporation Method of evaluating a reaction for thermal runaway within a shell and tube reactor
US6086740A (en) 1998-10-29 2000-07-11 Caliper Technologies Corp. Multiplexed microfluidic devices and systems
WO2001029435A1 (en) 1999-10-20 2001-04-26 The University Of Sheffield Fluidic flow control and fluidic device
EP1096261A2 (de) * 1999-10-30 2001-05-02 DaimlerChrysler AG Verfahren zur Strommessung an einer mehrfachen Stromverteilung
WO2001041916A1 (de) * 1999-12-08 2001-06-14 INSTITUT FüR MIKROTECHNIK MAINZ GMBH Modulares mikroreaktionssystem
EP1123734A2 (de) 2000-02-03 2001-08-16 Cellular Process Chemistry Inc. Miniaturisierter Reaktionsapparatus

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61225594A (ja) * 1985-03-30 1986-10-07 Toshiba Corp 熱交換器の流量コントロ−ル方式
CA2134478C (en) * 1992-05-01 2001-12-18 Peter Wilding Microfabricated detection structures
US5948684A (en) * 1997-03-31 1999-09-07 University Of Washington Simultaneous analyte determination and reference balancing in reference T-sensor devices
US6001231A (en) * 1997-07-15 1999-12-14 Caliper Technologies Corp. Methods and systems for monitoring and controlling fluid flow rates in microfluidic systems
CN1277564A (zh) * 1998-08-28 2000-12-20 布克-盖耶股份公司 通过横流渗滤将一种混合物分离成固态和液态成分的方法
DE19957490C2 (de) * 1998-11-20 2002-05-23 Sepiatec Gmbh Verfahren und Vorrichtung zur parallelen flüssigchromatographischen Trennung von Substanzen
DE60032113T2 (de) * 2000-02-11 2007-06-28 Stmicroelectronics S.R.L., Agrate Brianza Integrierte Vorrichtung zur mikrofluidischen Temperaturregelung und dessen Herstellungsverfahren
AU2001249071B2 (en) * 2000-02-23 2005-09-08 Caliper Life Sciences, Inc. Multi-reservoir pressure control system
JP2002031638A (ja) * 2000-07-17 2002-01-31 Mitsubishi Chemicals Corp 生体試料検出用チップ及び生体試料検出方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3430288A1 (de) * 1984-08-17 1986-02-27 Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt e.V., 5000 Köln Verfahren fuer eine aktive kompensationsregelung einer beliebigen anzahl parallel betriebener zylinder zur erreichung synchroner bewegungen
US5810297A (en) * 1996-04-29 1998-09-22 Basuthakur; Sibnath Satellite cluster attitude/orbit determination and control system and method
WO2000017946A2 (en) 1998-09-22 2000-03-30 Celanese International Corporation Method of evaluating a reaction for thermal runaway within a shell and tube reactor
US6086740A (en) 1998-10-29 2000-07-11 Caliper Technologies Corp. Multiplexed microfluidic devices and systems
WO2001029435A1 (en) 1999-10-20 2001-04-26 The University Of Sheffield Fluidic flow control and fluidic device
EP1096261A2 (de) * 1999-10-30 2001-05-02 DaimlerChrysler AG Verfahren zur Strommessung an einer mehrfachen Stromverteilung
WO2001041916A1 (de) * 1999-12-08 2001-06-14 INSTITUT FüR MIKROTECHNIK MAINZ GMBH Modulares mikroreaktionssystem
EP1123734A2 (de) 2000-02-03 2001-08-16 Cellular Process Chemistry Inc. Miniaturisierter Reaktionsapparatus

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1336432A3 (de) * 2002-02-15 2006-01-11 Syrris Limited Ein Mikroreaktor
EP1336432A2 (de) * 2002-02-15 2003-08-20 Syrris Limited Ein Mikroreaktor
JP4647589B2 (ja) * 2003-04-07 2011-03-09 グラクソ グループ リミテッド 微小流体系
JP2006526763A (ja) * 2003-04-07 2006-11-24 グラクソ グループ リミテッド 微小流体系
EP1669757A1 (de) * 2003-09-24 2006-06-14 Olympus Corporation System zur umsetzung von biologischem material
EP1669757A4 (de) * 2003-09-24 2007-03-28 Olympus Corp System zur umsetzung von biologischem material
JP4660541B2 (ja) * 2004-05-06 2011-03-30 シーメンス アクチエンゲゼルシヤフト マイクロ流体システム
JP2007536542A (ja) * 2004-05-06 2007-12-13 シーメンス アクチエンゲゼルシヤフト マイクロ流体システム
JP2006189259A (ja) * 2004-12-28 2006-07-20 Aloka Co Ltd 配管状態検出方法および装置
JP2006239638A (ja) * 2005-03-07 2006-09-14 Ebara Corp 混合器および混合方法
EP1767263A3 (de) * 2005-09-27 2008-09-17 FUJIFILM Corporation Mikrochip und Verfahren zum Mischen von Flüssigkeiten und Verfahren zur Blutanalyse unter Verwendung eines solchen Mikrochips
EP1767263A2 (de) * 2005-09-27 2007-03-28 FUJIFILM Corporation Mikrochip und Verfahren zum Mischen von Flüssigkeiten und Verfahren zur Blutanalyse unter Verwendung eines solchen Mikrochips
EP1992404A2 (de) * 2007-05-15 2008-11-19 Corning Incorporated Mikrofluidische Vorrichtungen und Verfahren für Reaktionen nicht mischbarer Flüssigkeiten
EP1992404A3 (de) * 2007-05-15 2008-12-03 Corning Incorporated Mikrofluidische Vorrichtungen und Verfahren für Reaktionen nicht mischbarer Flüssigkeiten
EP2314370A3 (de) * 2007-05-15 2012-03-28 Corning Incorporated Mikrofluidische Vorrichtung für Reaktionen nicht mischbarer Flüssigkeiten
WO2009009130A1 (en) * 2007-07-11 2009-01-15 Corning Incorporated Microfluidic devices and methods for immiscible liquid-liquid reactions
WO2011123040A1 (en) 2010-03-31 2011-10-06 Ge Healthcare Bio-Sciences Ab A parallel separation system
EP2552585B1 (de) * 2010-03-31 2016-05-25 GE Healthcare BioProcess R&D AB Paralleles trennsystem

Also Published As

Publication number Publication date
AU2003212192A1 (en) 2003-09-02
DE10204414A1 (de) 2003-09-04
JP4287748B2 (ja) 2009-07-01
US7527767B2 (en) 2009-05-05
EP1472002A1 (de) 2004-11-03
DE10390346D2 (de) 2005-01-05
US20050054111A1 (en) 2005-03-10
JP2005517161A (ja) 2005-06-09

Similar Documents

Publication Publication Date Title
EP1472002A1 (de) Mikrofluidik-system
WO2000062919A1 (de) Modulares chemisches mikrosystem
EP1239951B1 (de) Modulares mikroreaktionssystem
EP1866066B1 (de) Mischersystem, Reaktor und Reaktorsystem
WO2007012632A1 (de) Mikrofluidiksystem
WO2000012903A1 (de) Miniaturisierter fluidstromschalter
DE10122491A1 (de) Vorrichtung und Verfahren zur parallelen Durchführung von Experimenten
EP1450943A1 (de) Mikroreaktorsystem
EP2158041B1 (de) Mikrofluidiksystem zum mischen von mindestens zwei ausgangsstoffen
EP2617487A1 (de) Mikroreaktor für katalytische Reaktionen
DE69833360T2 (de) Verteilerartige Durchflussdetektoranordnung
WO2008055585A1 (de) Vorrichtung und verfahren zur kontinuierlichen überführung und analyse von fluiden
EP3170517B1 (de) Sensorvorrichtung und eine sensorvorrichtung beinhaltendes system
WO2004070488A1 (de) Mikrofluidik-einrichtung
DE102010050599B4 (de) Vorrichtung und Verfahren zur Testung von Katalysatoren mit verbesserter Prozessdruckeinstellung
WO2004101138A1 (de) Vorrichtung zur durchführung chemischer syntheseprozesse mit unabhängiger modularisierung bezüglich der mengenmässigen kapazität und der anzahl möglicher prozessschritte
EP3839444A1 (de) Intelligente sicherheitsarmatur mit schliesseinheit und sensorbaugruppe und steuerverfahren einer intelligenten sicherheitsarmatur
AT521586B1 (de) Gasmischvorrichtung zur Linearisierung oder Kalibrierung von Gasanalysatoren
AT521524B1 (de) Gasmischvorrichtung zur Kalibrierung von Gasanalysatoren
DE10218280C1 (de) Integriertes Misch- und Schaltsystem für die Mikroreaktionstechnik
WO2006100296A1 (de) Verfahrenstechnische, insbesondere mikroverfahrenstechnische anlage
EP1622715A1 (de) Mikroverfahrenschnischer baustein
DE102005060280B4 (de) Integrierbarer Mikromischer sowie dessen Verwendung
DE102006022558A1 (de) Technische, insbesondere verfahrenstechnische Anlage
DE102021204571A1 (de) Dosierkopf und Dosiersystem zur Aufnahme und Dosierung eines Mediums

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003708012

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2003565634

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10910467

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2003708012

Country of ref document: EP

REF Corresponds to

Ref document number: 10390346

Country of ref document: DE

Date of ref document: 20050105

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 10390346

Country of ref document: DE