WO2003064345A1 - Procede de production de plaque de verre a film mince et plaque de verre - Google Patents

Procede de production de plaque de verre a film mince et plaque de verre Download PDF

Info

Publication number
WO2003064345A1
WO2003064345A1 PCT/JP2002/000747 JP0200747W WO03064345A1 WO 2003064345 A1 WO2003064345 A1 WO 2003064345A1 JP 0200747 W JP0200747 W JP 0200747W WO 03064345 A1 WO03064345 A1 WO 03064345A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
film
glass
glass plate
fine particles
Prior art date
Application number
PCT/JP2002/000747
Other languages
English (en)
French (fr)
Inventor
Koichiro Kiyohara
Kiyotaka Ichiki
Toru Yamamoto
Masato Hyodo
Masahiro Hirata
Original Assignee
Nippon Sheet Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Company, Limited filed Critical Nippon Sheet Glass Company, Limited
Priority to PCT/JP2002/000747 priority Critical patent/WO2003064345A1/ja
Priority to EP20020711244 priority patent/EP1486468A1/en
Priority to US10/503,201 priority patent/US20050144981A1/en
Publication of WO2003064345A1 publication Critical patent/WO2003064345A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/001General methods for coating; Devices therefor
    • C03C17/002General methods for coating; Devices therefor for flat glass, e.g. float glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/007Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character containing a dispersed phase, e.g. particles, fibres or flakes, in a continuous phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/245Oxides by deposition from the vapour phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3417Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials all coatings being oxide coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/47Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
    • C03C2217/475Inorganic materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/77Coatings having a rough surface

Definitions

  • the present invention relates to a method for producing a glass sheet with a thin film, and more particularly to a method for producing a glass sheet with a thin film having a surface having irregularities. Furthermore, the present invention relates to a glass plate manufactured by this method.
  • a thin film on a glass plate is formed so that its surface becomes smooth.
  • the surface of the thin film may be intentionally provided with irregularities.
  • irregularities For example, it is known that when the surface of a hydrophilic thin film is provided with irregularities, the hydrophilic property of the film is improved.
  • Japanese Patent Application Laid-Open No. 62-444733 discloses that when a silicon dioxide film is formed on a glass plate by a so-called chemical vapor deposition method (CVD method), it is generated by a partial reaction of a film forming gas.
  • CVD method chemical vapor deposition method
  • a method is disclosed in which silicon dioxide particles are mixed into a film to provide irregularities on the surface of the silicon dioxide film.
  • the silicon-containing gas (monosilane), the oxidizing gas (oxygen), and the separation gas (nitrogen) are supplied from individually prepared nozzles, and the monosilane and oxygen react in the space above the glass plate.
  • the temperature of the illustrated glass sheet is 520 ° C.
  • 5.7 L / min is exemplified as the total supply flow rate of each gas.
  • the exhaust flow rate at this time is 22 L / min, and the distance between the nozzle and the glass plate is 2 cm.
  • silicon dioxide particles with a diameter of about 100 to 400 nm were generated, and a silicon dioxide film having a radius of about 500 nm and a height of about 300 nm was obtained. Has been described.
  • the present invention provides a new method for producing a glass sheet with a thin film, which forms fine particles while forming a thin film from a film forming gas, mixes the fine particles into the thin film, and forms unevenness using the fine particles.
  • the purpose is to do.
  • a first method a new method of generating fine particles by using an alkali component in glass and mixing the fine particles into a thin film. That is, in the first method for producing a glass sheet with a film of the present invention, a film-forming gas containing a chlorine-containing compound is supplied on a glass sheet containing an aluminum component or on a glass ribbon in a glass sheet manufacturing process. And forming a thin film on the glass plate or the glass ribbon by forming a thin film on the glass ribbon. Fine particles The surface of the thin film is provided with irregularities by being mixed into or adhered to the surface of the thin film.
  • the inventor has further found, as a second method, a method of mixing fine particles while reducing the reactivity of a film-forming gas containing a silicon-containing compound by, for example, adding an organic gas or using a silicon-containing organic compound.
  • the second method for producing a coated glass sheet of the present invention comprises the steps of: supplying a film-forming gas onto a glass sheet or onto a glass ribbon in a glass sheet producing step; and forming a thin film on the glass sheet or on the glass ribbon.
  • a method for producing a glass plate with a thin film comprising: forming a silicon-containing film by supplying a film-forming gas containing a silicon-containing inorganic compound and an organic gas to form silicon-containing fine particles; The method is characterized in that the fine particles are attached to the surface of the silicon-containing film.
  • the reactivity of the film-forming gas decreases, so that the particle size of the fine particles tends to decrease.
  • the silicon-containing fine particles have appropriate properties as crystal growth nuclei. That is, in the second method, a crystalline film in which crystal grains grown from the silicon-containing fine particles are locally large is formed on the surface of the silicon-containing film to which the silicon-containing fine particles have adhered, so that the surface of the thin film is formed. Irregularities can be provided. In other words, if silicon-containing fine particles are used as crystal growth nuclei to form further thin films, sufficiently large irregularities can be obtained.
  • the second method has the following concept. That is, in the case where a film-forming gas is supplied to a glass plate or a glass ribbon and the gas is reacted to form fine particles, the gas is gently reacted, and the conditions for supplying and exhausting the gas are appropriately adjusted. Thereby, fine particles can be more uniformly adhered to the surface of the thin film formed on the glass surface.
  • a film forming apparatus fine particles are formed gently from a supply part of a film forming gas to an exhaust part, and the particles are sequentially dropped on a glass plate or a glass lipon, so that the fine particles can be arranged more uniformly on the surface of the thin film. That's what it means.
  • the fine particles serve as a nucleus to grow crystals, thereby forming uniform and large surface irregularities. .
  • FIG. 1 is a cross-sectional view showing one embodiment of a glass plate with a thin film manufactured by the method of the present invention.
  • FIG. 2 is a cross-sectional view showing another embodiment of the glass sheet with a thin film manufactured by the method of the present invention.
  • FIG. 3 is a diagram showing a configuration of an example of an apparatus used in the method of the present invention.
  • FIG. 4 is a cross-sectional view of one example of the method used in the method of the present invention.
  • FIG. 5 is a diagram illustrating a state in which the glass plate with a thin film manufactured according to the example is observed with a scanning electron microscope.
  • FIG. 6 is a diagram showing a state in which a glass plate with a thin film manufactured according to another example is observed with a scanning electron microscope.
  • the alkali glass component (alkali metal such as sodium and potassium) in the glass and the chlorine contained in the film-forming gas are heated to a temperature at which fine particles of alkali metal chloride are generated. Is preferably maintained. This temperature is preferably at least 600 ° C., for example, at 600 to 720 ° C.
  • At least one chlorine-containing compound is used as the film-forming gas.
  • the chlorine-containing compound may be appropriately selected depending on the type of the film to be formed.
  • tin oxide tetrachloride when a tin oxide film is formed, tin tetrachloride, monobutyltin trichloride, dimethyltin dichloride, dibutyltin dichloride, dioctyltin dichloride, or the like can be used.
  • organotin compounds organotin chlorides
  • titanium oxide film titanium tetrachloride or the like can be used.
  • zinc oxide film zinc dichloride or the like can be used.
  • ITO tin-doped indium oxide
  • a reactive gas such as an oxidizing gas is usually added to the film-forming gas.
  • an oxidizing gas oxygen, water vapor, dry air, carbon dioxide, carbon monoxide, nitrogen dioxide, ozone, or the like can be used.
  • gases may be added to the film forming gas in order to adjust the characteristics (for example, electrical characteristics) of the film.
  • the thin film to which the chloride fine particles are adhered can be used even in a state where the fine particles are exposed on the surface and the fine particles themselves form a convex portion.
  • chloride typically sodium chloride
  • a thin film containing chloride fine particles may be used as the first thin film, and a second thin film covering the fine chloride particles may be formed on the first thin film.
  • a thin film may be further stacked on the second thin film.
  • FIG. 1 is a cross-sectional view of an example of a glass sheet with a thin film manufactured by the first method.
  • a tin oxide film 2 is formed as a first thin film.
  • chloride fine particles 5 generated when this film is formed by the CVD method adhere to the surface.
  • the chloride microparticles 5 are attached with their lower ends below the surface of the membrane 2.
  • Such a condition suggests that the fine particles adhered during the film formation by the CVD method.
  • not all the fine particles generated by applying the first method are mixed as shown in the figure. As long as the surface is provided with irregularities, the chloride fine particles may be mixed into the inside of the film 2.
  • a second thin film (silicon oxide film 3) and a third thin film (fluorine-doped tin oxide film 4 (hereinafter referred to as “Sn ⁇ 2 : F film”) are formed on the tin oxide film 2.
  • Sn ⁇ 2 : F film fluorine-doped tin oxide film 4
  • projections 9 reflecting the shape and size of the fine particles 5.
  • the size of the chloride fine particles is as follows. It is preferable that the diameter is about 100 nm to 500 nm, and the height is about 50 nm to 200 nm, and that the distribution density of the chloride fine particles (in other words, the distribution density of the projections) is glass. It is preferable that the number of particles is about 100 to 100,000 per surface 100 m 2.
  • the size and distribution density of the chloride fine particles are controlled by controlling the composition ratio of the deposition gas, the supply amount, the glass temperature, and the like. As far as the present inventor has confirmed, the chloride fine particles have a shape reflecting the rock salt type crystal structure as shown in the figure. In many cases.
  • the film is usually formed in the coater while adjusting the supply amount and the exhaust amount to an appropriate range.
  • the exhaust amount is set to be larger than the air supply amount so that impurities are not mixed into the film.
  • the balance between the supply amount and the exhaust amount is adjusted so that the chloride fine particles are mixed into the film or adhere to the film surface.
  • the behavior of fine particles generated in the gas phase is greatly affected by the size of the space above the glass, specifically, the height from the glass surface to the lower end of the coater.
  • the height of this space (hereinafter, simply referred to as “space height J”) and the ratio of the exhaust amount to the supply amount (displacement amount / air supply amount; hereinafter, “exhaust amount”) (Referred to as “bias”) may be controlled to an appropriate range for mixing or adhering fine particles to the film. This range depends on the type of film, the selected raw material, the film formation temperature, etc., but in general, it is preferable to set the exhaust bias to 1.0 to 1.5 or 3.0 to 5.0.
  • the height is preferably 8 mm to 10 mm.
  • the glass temperature may be about 500 to 700 ° C.
  • fine particles of a silicon compound typically, silicon oxide
  • a film-forming gas that is supplied in a premixed state by adding an organic gas or using a silicon-containing organic compound.
  • Monosilane, disilane, trisilane, monochlorosilane and the like can be used as the silicon-containing inorganic compound.
  • a film-forming gas containing a silicon-containing organic compound may be used instead of the film-forming gas containing the silicon-containing inorganic compound and the organic gas.
  • the silicon-containing organic compound for example, 1,2-dimethylsilane, 1,1,2-trimethyldisilane, 1,1,2′2-tetramethyldisilane, tetramethylorthosilicate, tetraethyl Orthosilicate (TEOS) and the like.
  • the organic gas is preferably an organic compound having a carbon-carbon unsaturated bond, for example, ethylene, acetylene, or the like. ⁇ containing inorganic compound represented by monosilane (S i H 4) are highly reactive, but double or triple bond between the carbon has an action to suppress the reactivity.
  • the organic gas is expressed by a molar ratio in the film forming gas, and is expressed by carbon-carbon unsaturated bond per silicon atom. 02 00747
  • a reactive gas such as an oxidizing gas is further added to the film forming gas.
  • the gas exemplified above may be used as the oxidizing gas.
  • other gases may be added to adjust the characteristics of the coating.
  • Fine particles produced by this method act as crystal growth nuclei with high selectivity, although the detailed reason is not clear at this stage. Therefore, when a crystalline film is further formed on the silicon oxide film on which the fine particles adhere to the surface, crystal grains locally grow larger. Such high selectivity cannot be obtained from the chloride fine particles produced by the first method.
  • FIG. 2 is a cross-sectional view of an example of a glass sheet with a thin film manufactured by the second method.
  • a silicon oxide film 3 is formed as a first thin film.
  • silicon oxide fine particles 6 generated when this film is formed by the CVD method adhere to the film surface.
  • some of the fine particles may be buried in the silicon oxide film.
  • the silicon oxide fine particles 6 tend to have a smaller particle size due to the addition of the organic gas (or the use of the silicon-containing organic compound) as compared with a case where no organic gas is added.
  • the fine particles 5 serve as growth nuclei, and the tin oxide crystal locally grows abnormally.
  • a relatively large convex portion 7 is formed above the fine particles, and the particle size of the fine particles themselves is JP02 / 00747
  • the convex portion 7 generally has a dome-shaped appearance.
  • the presence of the fine particles is not necessarily confirmed under the convex portion in the cross section. It is not possible (not necessarily the cross section where the particles are present).
  • the distribution and particle size of the fine particles can be confirmed by observing the surface of the silicon oxide film before forming the crystalline film (for example, observation by a scanning electron microscope (SEM)). SEM observation of the film surface before and after the formation of the crystalline film has experimentally confirmed that there is a strong correlation between the generation of fine particles on the surface of the silicon oxide film and the generation of protrusions on the surface of the crystalline film. You.
  • the silicon oxide fine particles particularly suitable as nuclei for forming the dome-shaped projections as shown in the drawing have a particle diameter of 100 nm or less, for example, 5 nm or less. It was about 40 nm.
  • the size and distribution density of the projections can be adjusted by controlling the thickness of the crystalline film, the component ratio of the gas forming the silicon oxide film, and the supply amount.
  • the exhaust bias and the space height may be controlled to an appropriate range so that fine particles are mixed into the film.
  • This range depends on the selected raw material, film forming temperature, film forming method (online film forming or off-line film forming), but in the case of online film forming, the exhaust bias is generally 1.0 to: L 5 or 3.0 to 5.0 is preferred.
  • online film formation refers to a method in which the above-mentioned thin film is continuously formed on a glass ribbon in a float glass manufacturing process.
  • offline film formation refers to a method of forming a thin film once into a plate shape and then forming an appropriate film.
  • Exhaust by ⁇ scan is 1.0 to 1.
  • the exhaust bias is preferably 1.0 to 2.0 or 3.5 to 6.0 for the same reason as described above.
  • the space height is preferably 8 mm to 12 mm for on-line film formation, and 15 to 25 mm for off-line film formation.
  • Fig. 3 shows an embodiment of an apparatus for forming a thin film on a glass ribbon surface by the CVD method in the float method.
  • a predetermined number of coaters flow directly from a melting furnace 11 into a tin float tank 12, and are formed immediately above a glass ribbon 10 which is formed into a belt shape in a tin bath 15 and moves.
  • 16 three coaters 16a, 16b, 16c in the illustrated form
  • the number and arrangement of the coaters may be appropriately selected according to the type and thickness of the film to be formed.
  • Raw materials that have been adjusted and vaporized in advance are supplied from these coaters, and a film is continuously formed on the top surface of the glass ribbon 10.
  • the first thin film, the second thin film, and the third thin film can be continuously laminated.
  • the temperature of the glass ribbon 10 can be controlled by a heater and a cooler (not shown) arranged in the tin float tank 12 so that the temperature becomes a predetermined temperature immediately before the coater 16.
  • the glass lipon 10 on which the thin film is formed is pulled up by the roll 17 and is cooled in the annealing furnace 13.
  • a high glass temperature specifically, a temperature of about 600-750 ° C, and more particularly, a temperature of about 60-750 ° C can be obtained.
  • Glass ribbon 1 The temperature of 0 may be controlled while measuring with a radiation thermometer.
  • the application of the present invention is not limited to online film formation.
  • the present invention can also be implemented by offline film formation.
  • FIG. 4 is an example of a coater that can be used for implementing the present invention.
  • the coater 20 is installed such that its lower end is separated from the surface of the glass lipon 10 by a distance (height) H.
  • a film 23 is supplied from a supply nozzle 21 to a space 23 between the coater and the glass surface, and a predetermined amount of gas is supplied onto the glass ribbon 10 by a reaction such as thermal decomposition and oxidation of the film formed gas in this space.
  • a film is formed.
  • the gas after film formation is exhausted from an exhaust nozzle 22 arranged so as to sandwich a supply nozzle before and after the glass ribbon transport direction (the direction of the arrow in the figure). It is not necessary to provide a nozzle for separating the components of the film-forming gas to be supplied to this coater; it is sufficient to provide a single supply nozzle.
  • the glass plate with a thin film having the irregularities obtained as described above can be used for various applications by utilizing the irregularities.
  • the use of the glass sheet with a thin film is not particularly limited, but hydrophilic glass and the like are particularly suitable.
  • the surface temperature of the glass ribbon immediately before the coater located at the most upstream side was set to 680 ° C, and a film forming gas composed of dimethyltin dichloride (DMT), oxygen, and nitrogen was supplied at 500 L / min. Supplied in proportions.
  • the exhaust bias of this coater was 1.2, and the space height was 8 mm.
  • a tin oxide film having a thickness of about 23 nm was formed on the top surface of the glass lipon.
  • a mixed gas consisting of monosilane, ethylene, and oxygen was supplied from a coater on the downstream side.
  • the exhaust bias and the space height of the rice coater were set within the range conventionally applied, and were controlled so that even if silicon oxide fine particles were generated, they would not be mixed in the film.
  • a mixed gas consisting of dimethyltin dichloride, oxygen, steam, nitrogen, and hydrogen fluoride was supplied from a coater further downstream. And this, on the tin oxide film, a film thickness of about 2 5 nm of the silicon oxide film, a film thickness of about 3 20 nm for S n 0 2: was F film in this order. This glass lipon was cut further downstream to obtain a glass plate with a thin film.
  • a glass plate with a thin film was obtained in the same manner as in Example 1 except that the glass temperature when forming the tin oxide film in contact with the surface of the glass ribbon was set at 580 ° C.
  • a glass plate with a thin film was obtained in the same manner as in Example 1 except that the exhaust bias when the tin oxide film was formed in contact with the surface of the glass ribbon was set to 2.0.
  • a glass plate with a thin film was obtained in the same manner as in Example 2 except that the exhaust bias when the tin oxide film was formed in contact with the surface of the glass ribbon was set to 2.0.
  • Example 1 1 ⁇ 2 Comparative Example 1 a 0.7 Comparative Example 1 b 0.7 Example 2 8.8 Comparative Example 2 5.2
  • the haze ratio reflects the degree of unevenness of the film surface, it is convenient for comparing the state of the film surface.
  • the thickness of the tin oxide film which is a crystalline film
  • the haze ratio increases because the crystal grains increase.
  • Table 1 even when the thickness of the tin oxide film was the same, a remarkable difference was found in the haze ratio between the example and the comparative example.
  • the convex portions were scattered on the film surface.
  • Comparative Example 1a the glass temperature was too low to generate chloride fine particles from the chlorine-containing compound used, and in Comparative Examples lb and 2, it is considered that chloride fine particles were quickly discharged out of the system. .
  • Example 3 and Comparative Example 3 a film was formed on a glass ribbon in the same manner as described above.
  • Example 4 and Comparative Example 4 a film was formed on a glass plate.
  • a specific film forming method will be described.
  • the surface temperature of the glass ribbon immediately before the coater located on the most upstream side was set at 650 ° C. From this coater, a film-forming gas consisting of dimethyltin dichloride (DMT), oxygen, and nitrogen was supplied, and the top of the glass ribbon was turned on. A tin oxide film having a thickness of about 23 nm was formed on the surface.
  • the exhaust bias and space height of this coater were set within the range conventionally applied, and the generated chloride fine particles were controlled so as not to be mixed in the film.
  • a film forming gas consisting of monosilane, ethylene, and oxygen was supplied from a coater on the downstream side.
  • the exhaust bias of this coater was 1.2, and the space height was 12 mm.
  • the molar ratio of ethylene to monosilane in the deposition gas was set to 6.
  • a silicon oxide film with a thickness of about 25 nm A film was formed.
  • Example 4 A glass plate with a thin film was obtained in the same manner as in Example 3, except that the exhaust bias when forming the silicon oxide film was 2.4 and the space height was 6 mm. (Example 4)
  • Glass substrates with thin films were manufactured by off-line film formation.
  • a 3 mm thick glass plate cut in advance to a size of 150 mm X 15 Omm is loaded into an open-air transfer furnace and transported under the coater. From this coater, monosilane, ethylene, and oxygen are removed. Was supplied.
  • a coater having the same structure as that shown in FIG. 4 was used.
  • the exhaust bias of this coater was 1.5 and the space height was 25 mm.
  • the molar ratio of ethylene to monosilane in the film forming gas was 6.
  • a silicon oxide film having a thickness of about 30 nm was formed on the surface of the glass plate.
  • a glass plate with a thin film was obtained in the same manner as in Example 4, except that the exhaust bias for forming the silicon oxide film was 3.1 and the space height was 13 mm.
  • the haze ratio of each glass plate with a thin film thus obtained was measured in the same manner as described above. The results are shown in (Table 2).
  • FIG. 6 shows an SEM photograph of the surface of the thin film formed in Example 4.
  • TEM transmission electron microscope
  • Example 4 a glass plate with a thin film on which only a silicon oxide film was formed was produced. SEM observation of the surface of this film confirmed that fine particles having a particle size of about 5 to 40 nm were scattered. The fine particles were silicon oxide fine particles. On the other hand, it was formed in the same manner as in Comparative Example 4. Such fine particles did not exist on the surface of the silicon oxide film. In Comparative Example 4, the same applies to Comparative Example 3, but it is considered that the generated fine particles were quickly discharged out of the system.
  • the glass sheet with the thin film manufactured by the method of the present invention has a feature that chloride fine particles and silicon-containing fine particles are mixed in the film.
  • Chloride particles are mixed into the film (without contact with the glass plate) or adhere to the film surface, and the chloride particles form projections on the film surface (Example: Fig. 1), and (The surface is substantially flat.)
  • the form in which a dome-shaped convex portion is formed on the surface of a crystalline film grown from a silicon oxide film by local growth of crystal grains eg, Fig. 2 It is considered to be an example of a structure that can be realized for the first time by the method of the invention.
  • a glass plate with a thin film having a convex surface can be efficiently produced by generating fine particles together with the film formation by the CVD method and mixing the fine particles with the thin film.
  • the method of the present invention is also suitable for production on a commercial scale without a sharp reaction in the deposition gas.

Description

明 細 書 薄膜付きガラス板の製造方法おょぴそのガラス板 技術分野
本発明は、 薄膜付きガラス板の製造方法に関し、 特に、 表面に凹凸が 付与された薄膜付きガラス板の製造方法に関する。 さらには、 この方法 により製造されたガラス板に関する。
背景技術
一般に、 ガラス板上の薄膜は、 その表面が平滑になるように形成され る。 しかし、 意図的に、 薄膜の表面に凹凸が付与される場合もある。 例 えば、 親水性薄膜の表面に凹凸を付与すると、 膜の親水特性が向上する ことが知られている。
凹凸の付与には、 微粒子の混入、 処理液による表面処理など、 様々な 方法が提案されている。 また、 形成する薄膜が結晶性被膜であれば、 結 晶粒の成長に伴って、 その表面には囬凸が形成される。 したがって、 結 晶粒の成長を制御すれば、凹凸の大きさや形状をある程度は調整できる。 この方法は、 新たな原料や工程を必要とすることがない点では優れてい る。 しかし、 形成できる凹凸の大きさや被膜の種類に限界がある。
特開昭 6 2 - 4 4 5 7 3号公報には、いわゆる化学蒸着法(C V D法) によりガラス板上に二酸化珪素膜を形成する際に、 成膜ガスの部分的反 応により生成させた二酸化珪素粒子.を膜に混入することにより、 二酸化 珪素膜の表面に凹凸を付与する方法が開示されている。 この方法では、 珪素含有気体 (モノシラン) 、 酸化性ガス (酸素) および分離用ガス (窒 素) 力、 それぞれ個別に用意されたノズルから供給され、 ガラス板上の 空間でモノシランと酸素とが反応して二酸化珪素の膜および粒子が生成 する。 例示されているガラス板の温度は 5 2 0 °Cである。 各ガスの供給 流量の合計としては、 5 . 7 L /分が例示されている。 このときの排気 流量は 2 2 L /分であり、 ノズルとガラス板との間の距離は 2 c mであ る。 この条件では、 直径約 1 0 0〜4 0 0 n mの二酸化珪素粒子が生成 し、 半径約 5 0 0 n m、 高さ約 3 0 0 n mの凸部を有する二酸化珪素膜 が得られたことが記載されている。
上記公報に記載の方法は、 気相で微粒子を生成させ、 これを薄膜に混 入することとしているため、 別途用意した微粒子を混入させる必要など もなく、 製造効率に優れている。 しかしながら、 この方法では、 窒素な どの分離用ガスとともに供給しても、 ガラス板表面において、 モノシラ ンと酸素との反応が局部的に激しく進行する。 このため、 二酸化珪素粒 子の粒径および分布が制御しがたく、 特に成膜面積が大きい商業的規模 での製造に適した方法ではない。 その一方、 凹凸を付与した薄膜を有す るガラス板 (例えば親水性ガラス) の需要は拡大の一途を迪つている。 発明の開示
そこで、 本発明は、 被膜形成ガスから薄膜を形成しながら微粒子を生 成させ、 これを薄膜に混入し、 この微粒子を利用して凹凸を形成する新 たな薄膜付きガラス板の製造方法を提供することを目的とする。
本発明者は、 鋭意検討した結果、 第 1の方法として、 ガラス中のアル カリ成分を利用して微粒子を生成させ、 この微粒子を薄膜に混入する新 たな方法を見出した。 すなわち、 本発明の第 1の被膜付きガラス板の製 造方法は、 アル力リ成分を含有するガラス板上またはガラス板製造工程 におけるガラスリボン上に、 塩素含有化合物を含む被膜形成ガスを供給 して、 前記ガラス板上または前記ガラスリボン上に薄膜を形成する薄膜 付きガラス板の製造方法であって、 前記薄膜を形成しながら、 前記アル カリ成分を含む塩化物微粒子を生成させ、 この塩化物微粒子を前記薄膜 の内部に混入、 または表面に付着させることにより、 前記薄膜の表面に 凹凸を付与することを特徴とする。
本発明者は、 さらに第 2の方法として、 例えば有機ガスの添加や珪素 含有有機化合物の使用によつて珪素含有化合物を含む被膜形成ガスの反 応性を低下させながら微粒子を混入する方法を見出した。 すなわち、 本 発明の第 2の被膜付きガラス板の製造方法は、 ガラス板上またはガラス 板製造工程におけるガラスリボン上に、 被膜形成ガスを供給して、 前記 ガラス板上または前記ガラスリボン上に薄膜を形成する薄膜付きガラス 板の製造方法であって、 珪素含有無機化合物と有機ガスとを含む被膜形 成ガスを供給して珪素含有膜を形成しながら、 珪素含有微粒子を生成さ せ、 この珪素含有微粒子を前記珪素含有膜の表面に付着させることを特 徴とする。
上記第 2の方法では、 被膜形成ガスの反応性が低くなるため、 微粒子 の粒径は小さくなる傾向を示す。 しかし、 本発明者は、 さらに、 上記珪 素含有微粒子が、結晶成長核として適切な特性を有することを見出した。 すなわち、 上記第 2の方法では、 珪素含有微粒子が付着した珪素含有膜 の表面に、 前記珪素含有微粒子から成長した結晶粒が局部的に大きい結 晶性被膜を形成することにより、 薄膜の表面に凹凸を付与することがで きるようになる。 つまり、 珪素含有微粒子を結晶成長核として利用して さらに薄膜を形成すれば、 十分に大きな凹凸を得ることができるという ことである。
また、 この第 2の方法には、 以下の概念が内在する。 すなわち、 被膜 形成ガスをガラス板またはガラスリボンに供給し、 そのガスを反応させ て微粒子を形成する場合において、 ガスを緩やかに反応させ、 かつ、 ガ スの供給と排気の条件を適宜調整することにより、 ガラス表面に形成す る薄膜の表面に微粒子をより均一に付着させることができる。 換言すれ ば、 被膜形成装置において被膜形成ガスの供給部から排気部に渡って、 微粒子を緩やかに形成させ、 それをガラス板またはガラスリポン上へと 順次降らせることにより、 薄膜の表面により均一に微粒子を配置できる ということである。 そして、 このように均一に配置された微粒子の上に さらに結晶性薄膜を形成することにより、 微粒子が核となって結晶が成 長し、 均一、 かつ、 大きな表面凹凸が形成されることになる。
図面の簡単な説明
図 1は、 本発明の方法により製造される薄膜付きガラス板の一形態を 示す断面図である。
図 2は、 本発明の方法により製造される薄膜付きガラス板の別の一形 態を示す断面図である。
図 3は、 本発明の方法に用いる装置の一例の構成を示す図である。 図 4は、 本発明の方法に用いるコ一夕の一例の断面図である。
図 5は、 実施例により製造した薄膜付きガラス板を走査型電子顕微鏡 で観察した状態を示す図である。
図 6は、 別の実施例により製造した薄膜付きガラス板を走査型電子顕 微鏡で観察した状態を示す図である。
発明の実施の形態
以下、 本発明の好ましい実施形態について説明する。
まず、 第 1の方法について説明する。 この方法では、 ガラス中のアル カリ成分 (ナトリウム、 カリウムなどのアルカリ金属) と、 被膜形成ガ スに含まれる塩素とから、 アル力リ金属塩化物の微粒子が生成する温度 に、 基板となるガラスを保持することが好ましい。 この温度は、 6 0 0 °C以上、 例えば 6 0 0〜 7 2 0 °Cが好適である。
被膜形成ガスには、 少なくとも 1種の塩素含有化合物が用いられる。 塩素含有化合物は、 形成する膜の種類に応じて適宜選択すればよい。 例 JP02/00747
えば、 酸化錫膜を形成する場合には、 四塩化錫、 モノブチル錫トリクロ ライ ド、 ジメチル錫ジクロライ ド、 ジブチル錫ジクロライ ド、 ジォクチ ル錫ジク口ライ ドなどを用いることができる。これらの化合物の中では、 有機錫化合物 (有機錫塩化物) 、 特にモノブチル錫トリクロライ ド、 ジ メチル錫ジクロライ ドが好適である。 また、 例えば、 酸化チタン膜を形 成する場合には、 四塩化チタンなどを用いることができる。 また、 例え ば、 酸化亜鉛膜を形成する場合には、 二塩化亜鉛などを用いることがで きる。 さらには、 I T O (錫ドープ酸化インジウム) 膜を形成する場合 には、 ジメチルインジゥムクロライ ドなどを用いることができる。
被膜形成ガスには、 塩素含有化合物に加え、 通常、 酸化性ガスなどの 反応性ガスが添加される。 酸化性ガスとしては、 酸素、 水蒸気、 乾燥空 気、 二酸化炭素、 一酸化炭素、 二酸化窒素、 オゾンなどを用いることが できる。 被膜形成ガスには、 被膜の特性 (例えば電気的特定) を調整す るために、 その他のガスを添加してもよい。
塩化物微粒子を付着させた薄膜は、 微粒子が表面に露出し、 この微粒 子自体により凸部が形成されている状態でも使用できる。 しかし、 塩化 物 (代表例としては塩化ナトリウム) は概ね水溶性であるから、 微粒子 を覆う膜をさらに形成して塩化物の溶出を防ぐことが好ましい。 具体的 には、 塩化物微粒子が混入した薄膜を第 1の薄膜として、 この第 1の薄 膜上に塩化物微粒子を覆う第 2の薄膜を形成するとよい。 第 2の薄膜上 に、 さらに薄膜を積層しても構わない。
図 1は、 第 1の方法により製造した薄膜付きガラス板の一例の断面図 である。 アルカリ成分含有ガラス板 1上に、 第 1の薄膜として酸化錫膜 2が形成されている。 この酸化錫膜には、 この膜を C V D法により成膜 するときに生成した塩化物微粒子 5が表面に付着している。 塩化物微粒 子 5は、 その下端が膜 2の表面よりも下方にある状態で付着している。 このような状態は、 微粒子が C V D法による膜の形成中に付着したこと を示唆している。 ただし、 第 1の方法を適用して生成した微粒子がすべ て図示したように混入するとは限らない。 表面に凹凸が付与されている 限り、 塩化物微粒子は、 膜 2の内部に混入していてもよい。
図示した形態では、 酸化錫膜 2上に、 さらに、 第 2の薄膜 (酸化珪素 膜 3 ) および第 3の薄膜(フッ素がドープされた酸化錫膜 4 (以下、 「S n〇2 : F膜」 と称する) が形成されている。 これらの膜 3 , 4の表面 には、微粒子 5の形状および大きさを反映した凸部 9が形成されている。 塩化物微粒子の大きさは、 径が 1 0 0 n m〜 5 0 0 n m程度、 高さが 5 0 n m〜 2 0 0 n m程度が好適である。 また、 塩化物微粒子の分布密 度 (換言すれば凸部の分布密度) は、 ガラス表面 1 0 0 ^ m 2あたり、 1 0 0〜 1 0 0 0個程度が好適である。 塩化物微粒子の大きさや分布密 度は、 成膜ガスの成分比、 供給量、 ガラス温度などの制御により調整で きる。 なお、 本発明者が確認した限りでは、 塩化物微粒子は、 図示した ように、 岩塩型結晶構造を反映した形状となることが多い。
C V D法では、 通常、 コータ内において、 給気量と排気量とを適切な 範囲に調整しながら成膜が行われる。 排気量は、 一般には、 膜に不純物 が混入しない程度にまで、 給気量よりも大きく設定される。 しかし、 こ こでは、 塩化物微粒子が膜中に混入または膜表面に付着するように、 給 気量と排気量とのバランスが調整される。 もっとも、 気相で生成した微 粒子の挙動は、 ガラス上方の空間の広さ、 具体的には、 ガラス表面から コータ下端までの高さ、 にも大きな影響を受ける。 したがって、 C V D 法による成膜に際しては、 この空間の高さ (以下、 単に 「空間高さ J と 称する) と、給気量に対する排気量の比率(排気量/給気量;以下、 「排 気バイアス」 と称する) とを、 微粒子の膜への混入または付着のために 適切な範囲に制御するとよい。 この範囲は、 膜の種類、 選定された原料、 成膜温度などにもよるが、 一般に、 排気バイアスは 1. 0~ 1. 5または 3. 0 ~ 5. 0とするこ とが好ましく、 空間高さは 8 mm〜 1 0 mmが好適である。 排気バイァ スが 1. 0〜 1. 5の場合は、 コータ下面の気流が穏やかで、 形成され た塩化物微粒子が気流で卷き上げられることはない。一方、 3. 0〜 5. 0の場合は、 塩化物微粒子は一旦は気流により巻き上げられるが、 コー タの排気口付近で乱流が発生するため、 この付近で再度ガラス板上に落 ちることになる。 したがって、 排気バイアスが 3. 0〜 5. 0の場合で も、 塩化物微粒子を薄膜表面に付着させることができる。
次に、 第 2の方法について説明する。 この方法では、 ガラス成分との 反応が必須ではないため,、 ガラス温度は 5 0 0〜7 00°C程度でよい。 この方法では、有機ガスの添加または珪素含有有機化合物の使用により、 予め混合して供給される成膜ガスの反応を制御しながら、 気相において 珪素化合物 (代表例としては酸化珪素) の微粒子を生成させる。
珪素含有無機化合物としては、 モノシラン、 ジシラン、 トリシラン、 モノクロロシランなどを用いることができる。 また、 珪素含有無機化合 物と有機ガスとを含む被膜形成ガスに代えて、 珪素含有有機化合物を含 む被膜形成ガスを用いてもよい。 この場合、 珪素含有有機化合物として は、例えば 1, 2—ジメチルシラン、 1 , 1 , 2— トリメチルジシラン、 1 , 1, 2 ' 2—テ トラメチルジシラン、 テトラメチルオルソシリケー ト、 テトラェチルオルソシリケート (TEO S) などが挙げられる。 有機ガスは、 炭素一炭素不飽和結合を有する有機化合物、 例えば、 ェ チレン、 アセチレンなどが好適である。 モノシラン (S i H4) に代表 される诖素含有無機化合物は反応性が高いが、 炭素間の二重結合や三重 結合は、 その反応性を抑制する作用を有する。 有機ガスは、 成膜ガスに おいて、 モル比により表示して、 珪素原子あたりの炭素一炭素不飽和結 一 7 - 02 00747
合が 5 ~ 7となるように添加することが好ましい。
第 2の方法においても、 被膜形成ガスには、 さらに、 酸化性ガスなど の反応性ガスが添加される。 酸化性ガスとしては、 上記に例示したガス を用いればよい。 上記と同様、 被膜の特性を調整するために、 その他の ガスを添加してもよい。
この方法により生成した微粒子は、 詳細な理由は現段階では明らかで はないが、 高い選択性を有する結晶成長核として作用する。 このため、 この微粒子が表面に付着した酸化珪素膜上に、 さらに結晶性被膜を形成 すると、 結晶粒が局部的に大きく成長する。 このような高い選択性は、 第 1の方法により生成した塩化物微粒子などからは得られない。
結晶性被膜としては、 具体的には、 酸化錫膜、 酸化亜鉛膜、 酸化チタ ン膜、 I T O膜などを用いることができる。 ただし、 結晶性被膜は、 微 粒子を成長核とする結晶粒が成長する限り、 種類、 成分などに制限はな い。 例えば酸化錫膜の導電性を高めるためにドープされるフッ素、 アン チモンなどのように、 結晶性被膜は添加物を含んでいても構わない。 図 2は、 第 2の方法により製造した薄膜付きガラス板の一例の断面図 である。 ガラス板 1上に、 第 1の薄膜として酸化珪素膜 3が形成されて いる。 この酸化珪素膜には、 この膜を C V D法により成膜するときに生 成した珪素酸化物微粒子 6が膜面に付着している。 図示を省略するが、 微粒子の一部は酸化珪素膜に埋没していても構わない。
この珪素酸化物微粒子 6は、 有機ガスの添加 (または珪素含有有機化 合物の使用) により、 有機ガスを添加しない場合などと比較すると、 粒 径が小さくなる傾向を示す。 しかし、 図示したように、 酸化珪素膜上に 第 2の薄膜として結晶性被膜である酸化錫膜 4を形成すると、 この微粒 子 5が成長核となって酸化錫結晶が局部的に異常成長する。 こう して、 微粒子の上方では相対的に大きな凸部 7が形成され、 微粒子自体の粒径 JP02/00747
よりも遙かに大きい凹凸が出現する。 図示したように、 凸部 7は、 一般 にドーム型の外観を呈する。
珪素酸化物微粒子とその上方の凸部との径の差異が大きいため、 結晶 性被膜の形成後に凸部の断面を観察しても、 当該断面において、 凸部の 下方に必ずしも微粒子の存在を確認できるわけではない (微粒子が存在 する断面であるとは限らない) 。 微粒子の分布や粒径の確認は、 結晶性 被膜を形成する前の酸化珪素膜表面の観察(例えば走査型電子顕微鏡(S E M) による観察) により確認できる。 結晶性被膜の形成前後の膜面の S E M観察により、 酸化珪素膜表面の微粒子の生成と結晶性被膜表面の 凸部の生成との間には強い相関関係があることが実験的に確認されてい る。 また、 この実験 おける S E M観察によれば、 図示したようなドー ム型の凸部を形成するための核として特に好適な珪素酸化物微粒子の粒 径は、 1 0 0 n m以下、 例えば 5 n m〜4 0 n m程度であった。
凸部の大きさや分布密度は、 結晶性被膜の膜厚、 酸化珪素膜を形成す るガスの成分比や供給量などの制御により調整できる。
第 2の方法においても、 C V D法による成膜に際し、 排気バイアスと 空間高さを、 微粒子の膜中への混入のために適切な範囲に制御するとよ い。 この範囲は、 選定された原料、 成膜温度または成膜方法 (オンライ ン成膜もしくはオフライン成膜) などにもよるが、 オンライン成膜の場 合、 一般に、 排気バイアスは 1 . 0〜: L . 5または 3 . 0 ~ 5 . 0が好 ましい。 ここで、 オンライン成膜とは、 フロートガラス製造工程におい て、ガラスリボン上に連続的に上述の薄膜を成形する方法をいい、一方、 オフライン成膜とは、 一旦板状に成形し、 適当な大きさに切断したガラ ス板を成膜装置を用いて個別に薄膜形成処理する方法をいう。 排気バイ ァスが 1 . 0〜 1 . 5の場合は、 コータ下面で乱流が発生しないため、 気層中で形成された微粒子が順次落ちてガラス表面に均一に配置される c また、 3. 0〜 5. 0の場合は、 上述のようにコータの排気口付近の乱 流により、 微粒子がガラス板表面に落ちてくる。 一方、 オフライン成膜 の場合は、 上記同様の理由により、 排気バイアスは 1. 0〜 2. 0また は 3. 5〜 6. 0が好ましい。 空間高さは、 オンライン成膜の場合は 8 mm- 1 2 mmが好ましく、 一方オフライン成膜の場合は 1 5mm〜 2 5 m m力 ナ適である。
以下、 本発明の特に好ましい実施形態として、 フロートガラス製造ェ 程において、 ガラスリボンが有する熱を利用することにより、 ガラスリ ボンのトップ面 (錫槽における錫非接触面) に膜を形成する方法 (オン ライン成膜) を説明する。
フロート法におけるガラスリボン表面に C VD法により薄膜を形成す るための装置の一形態を図 3に示す。 図 3に示したように、 この装置で は溶融窯 1 1から錫フロート槽 1 2内に流れ出し、 錫浴 1 5で帯状に成 形されて移動するガラスリボン 1 0の直上に所定個数のコータ 1 6 (図 示した形態では 3つのコータ 1 6 a、 1 6 b、 1 6 c) が配置されてい る。 コータの数や配置は、 形成する被膜の種類や厚さに応じて適宜選択 すればよい。 これらのコータから、 あらかじめ調整、 気化された原料が 供給され、 ガラスリボン 1 0のトップ面に連続的に被膜が形成される。 また、 各コータで異なる原料を供給することにより、 第 1の薄膜、 第 2 の薄膜、 第 3の薄膜を連続的に積層することができる。 ガラスリボン 1 0の温度は、 コータ 1 6の直前で所定温度となるように、 錫フロート槽 1 2内に配置されたヒーターおよびクーラー (図示省略) により制御で きる。 薄膜が形成されたガラスリポン 1 0はロール 1 7によって引き上 げられ、 徐冷炉 1 3で冷却される。
この形態では、 高いガラス温度、 具体的には 6 0 0〜 7 5 0°C、 さら には 6 3 0〜 7 5 0°C程度の温度を得ることができる。 ガラスリボン 1 0の温度は放射温度計により計測しながら制御するとよい。
本発明の適用は、 オンライン成膜に限るものではない。 オフライン成 膜によっても本発明を実施することは可能である。
図 4は、 本発明の実施に用いることができるコータの一例である。 こ のコータ 2 0は、 その下端がガラスリポン 1 0の表面から距離 (高さ) Hだけ離れるように設置されている。 コータとガラス表面との間の空間 2 3には、 供給ノズル 2 1から成膜ガスが供給され、 この空間における 成膜ガスの熱分解、 酸化などの反応により、 ガラスリボン 1 0上に所定 の膜が形成される。 成膜後のガスは、 ガラスリボン搬送方向 (図中矢印 方向) 前後において供給ノズルをはさむように配置された排気ノズル 2 2から排出される。 このコータには、 供給する成膜ガスの成分を分離す るためのノズルを用意する必要はなく、 単一の供給ノズルを準備すれば 足りる。
上記のようにして得た凹凸を有する薄膜付きガラス板は、 その凹凸を 活かし、 各種用途に供することができる。 この薄膜付きガラス板の用途 は、 特に制限されないが、 親水性ガラスなどが特に好適である。
実施例
以下、 実施例により本発明をさらに詳細に説明するが、 本発明は、 以 下の実施例に限定されるものではない。
[塩化物微粒子による凹凸の形成]
実施例 1〜 2、 比較例 1〜 2では、 図 3およぴ図 4を参照して説明し たものと同様の装置を用い、 C V D法により、 ガラスリボン表面に薄膜 を積層した。 成膜の際には、 錫フロート槽空間に 9 8体積%の窒素と 2 体積%の水素からなる混合ガスを供給し、 槽外よりもやや高圧となるよ うに維持した。 錫フロート槽内に、 溶融窯で溶融されたソーダライムガ ラス生地を流し込み、成形して厚み 4 m mのガラスリボンとした。以下、 TJP02/00747
具体的な成膜方法について説明する。
(実施例 1 )
最上流側に位置するコータ直前のガラスリボン表面温度を 6 8 0°Cと し、 このコータから、 ジメチル錫ジクロライ ド (DMT) 、 酸素、 窒素 からなる成膜ガスを 5 0 0 L/分の割合で供給した。 このコータの排気 バイアスは 1. 2、 空間高さは 8 mmとした。 こう して、 ガラスリポン のトップ面に、 膜厚が約 2 3 nmの酸化錫膜を形成した。
続けて、 下流側のコータから、 モノシラン、 エチレン、 酸素からなる 混合ガスを供給した。 こめコータの排気バイアスおよび空間高さは、 従 来から適用されている範囲とし、 珪素酸化物微粒子が生成しても膜に混 在しないように制御した。 引き続き、 さらに下流側のコータから、 ジメ チル錫ジクロライ ド、 酸素、 水蒸気、 窒素、 フッ化水素からなる混合ガ スを供給した。 こう して、 酸化錫膜上に、 膜厚が約 2 5 nmの酸化珪素 膜、 膜厚が約 3 20 nmの S n 02 : F膜をこの順に積層した。 このガ ラスリポンをさらに下流側で切断して、 薄膜付きガラス板を得た。
(比較例 1 a)
ガラスリボンの表面に接して酸化錫膜を形成する際のガラス温度を 5 8 0°Cとした点を除いては、 実施例 1 と同様にして、 薄膜付きガラス板 を得た。
(比較例 1 b )
ガラスリボンの表面に接して酸化錫膜を形成する際の排気バイアスを 2. 0とした点を除いては、 実施例 1 と同様にして、 薄膜付きガラス板 を得た。
(実施例 2)
S n 02 : F膜の膜厚を約 6 0 0 nmと した点を除いては、 実施例 1 と同様にして、 薄膜付きガラス板を得た。 (比較例 2)
ガラスリボンの表面に接して酸化錫膜を形成する際の排気バイアスを 2. 0とした点を除いては、 実施例 2と同様にして、 薄膜付きガラス板 を得た。
以上より得た各薄膜付きガラス板のヘイズ率を測定した。ヘイズ率は、 日本工業規格 (J I S) K 7 1 0 5— 1 9 8 1に記載されている曇価 測定法に基づいて測定した。 結果を (表 1) に示す。
(表 1 ) (%)
-ィズ率 実施例 1 1 · 2 比較例 1 a 0. 7 比較例 1 b 0. 7 実施例 2 8. 8 比較例 2 5. 2
ヘイズ率は、 膜表面の凹凸の程度を反映するため、 膜表面の状態の比 較に便利である。 結晶性被膜である酸化錫膜の膜厚が厚くなると、 結晶 粒が大きくなるためにヘイズ率は高くなる。 しかし、 表 1に示したよう に、 酸化錫膜の膜厚が同じでも、 実施例と比較例との間には、 ヘイズ率 に顕著な差異が認められた。 S EMにより、 薄膜 (S n〇2 : F膜) の 表面を観察したところ、 実施例 1, 2では、 比較例では観察できない大 TJP02/00747
きな凸部が膜面に散在していた。
この凸部を含むようにガラス板を割って断面を S EMにより観察した ところ、 凸部の下方において結晶粒が膜中に混入していることが確認で きた。 この結晶粒は、 ほぼ塩化ナトリウムからなることが確認できた。 実施例 1と同様にして酸化錫膜と酸化珪素膜とを形成した (S n〇2 : F膜形成前の) 薄膜付きガラス板について、 断面および表面の状態を S EMにより観察した。 この S EM写真を図 5として示す。 この断面を 模式的に示すと、 図 1に示したような構造となる。
比較例 1 aでは、 用いた塩素含有化合物から塩化物微粒子を生成させ るためにはガラス温度が低く過ぎ、 比較例 l b、 2では、 塩化物微粒子 が系外へと速やかに排出されたと考えられる。
[珪素含有微粒子を利用した凹凸の形成]
実施例 3、 比較例 3においても、 上記と同様にして、 ガラスリボン上 への成膜を行った。 実施例 4、 比較例 4では、 ガラス板上への成膜を行 つた。 以下、 具体的な成膜方法について説明する。
(実施例 3)
最上流側に位置するコータ直前のガラスリボン表面温度を 6 5 0°Cと し、 このコータから、 ジメチル錫ジクロライ ド (DMT) 、 酸素、 窒素 からなる成膜ガスを供給して、 ガラスリポンのトップ面に、 膜厚が約 2 3 nmの酸化錫膜を形成した。 このコータの排気バイアスおよび空間高 さは、 従来から適用されている範囲とし、 生成した塩化物微粒子が膜に 混在しないように制御した。
続けて、 下流側のコータから、 モノシラン、 エチレン、 酸素からなる 成膜ガスを供給した。 このコータの排気バイアスは 1. 2、 空間高さは 1 2mmとした。 成膜ガスにおけるモノシランに対するエチレンのモル 比は 6とした。 こう して、 酸化錫膜上に、 膜厚が約 2 5 nmの酸化珪素 膜を形成した。
引き続いて、 さらに下流側のコータから、 実施例 1 と同様にして、 膜 厚が約 6 0 0 nmの S n〇2 : F膜を形成した。 このガラスリボンをさ らに下流側で切断して、 薄膜付きガラス板を得た。
(比較例 3 )
酸化珪素膜を形成する際の排気バイアスを 2. 4、 空間高さを 6 mm と した点を除いては、実施例 3と同様にして、薄膜付きガラス板を得た。 (実施例 4)
オフライン成膜により、 薄膜付きガラス基板を製造した。 予め 1 5 0 mmX 1 5 Ommの大きさに切断した厚さ 3 mmのガラス板を大気解放 型の搬送炉に搬入し、 コータの下方を搬送しながら、 このコータから、 モノシラン、 エチレン、 酸素からなる成膜ガスを供給した。 なお、 ここ でも、 図 4に示したものと同様の構造を有するコータを使用した。 この コータの排気バイアスは 1. 5、 空間高さは 2 5 mmとした。 また、 成 膜ガスにおけるモノシランに対するエチレンのモル比は 6とした。 こう して、ガラス板の表面上に、膜厚が約 3 0 nmの酸化珪素膜を形成した。 続けて、 再び、 上記搬送炉内のコータ下方を搬送しながら、 酸化錫膜 上に、 コータから、 ジメチル錫ジク.口ライ ド、 酸素、 水蒸気、 窒素、 フ ッ化水素からなる混合ガスを供給した。 こう して、 酸化珪素膜上に、 さ らに膜厚が約 6 O O nmの S n〇2 : F膜が形成された薄膜付きガラス 板を得た。 なお、 上記両膜の成膜時におけるガラス板の温度は、 ともに 約 6 0 0 °Cと した。
(比較例 4)
酸化珪素膜を形成する際の排気バイアスを 3. 1、 空間高さを 1 3 m mとした点を除いては、 実施例 4と同様にして、 薄膜付きガラス板を得 た。 こう して得た各薄膜付きガラス板のヘイズ率を上記と同様にして測定 した。 結果を (表 2 ) に示す。
(表 2 ) (% ) へィズ率 実施例 3 8 . 1 比較例 3 4 . 4 実施例 4 8 . 6 比較例 4 2 . 0
表 2でも、 実施例と比較例との間には、 ヘイズ率に顕著な差異が認め られた。 S E Mにより、 薄膜 (フッ素をドープした酸化錫膜) の表面を 観察したところ、 実施例 3 , 4では、 比較例では観察できない大きなド ーム型の凸部が膜面に散在していた。 実施例 4により形成した薄膜の表 面の S E M写真を図 6として示す。 この凸部を含むようにガラス板を割 つて断面を透過型電子顕微鏡 (T E M) により観察したところ、 図 2に 破線で模式的に示したように、 凸部の下方では、 酸化錫の結晶粒が局部 的に異常に大きく成長していることが確認できた。
さらに、 実施例 4と同様にして、 酸化珪素膜のみを形成した薄膜付き ガラス板を作製した。 この膜の表面を、 S E M観察したところ、 粒径が' 5 〜 4 0 n m程度の微粒子が散在していることが確認できた。 この微粒 子は、 酸化珪素微粒子であった。 一方、 比較例 4と同様にして形成した 酸化珪素膜の表面には、 このような微粒子は存在しなかった。 比較例 4 では、 比較例 3においても同様であるが、 生成した微粒子が系外に速や かに排出されたと考えられる。
以上説明したように、 本発明の方法により製造した薄膜付きガラス板 には、 膜に塩化物微粒子や珪素含有微粒子が混在しているという特徴が ある。 塩化物微粒子が (ガラス板と接触せずに) 膜中に混入または膜表 面に付着し、 この塩化物微粒子により膜表面に凸部が形成されている形 態 (例: 図 1 ) 、 および (表面が実質的に平坦である) 酸化珪素膜から 成長した結晶性被膜の表面に結晶粒の局部的な成長によるドーム型の凸 部が形成されている形態 (例: 図 2 ) は、 本発明の方法によって初めて 実現できた構造の例であると考えられる。
本発明によれば、 C V D法による膜形成と共に微粒子を生成させ、 こ れを薄膜に混入させることにより、 表面に 凸を有する薄膜付きガラス 板を効率的に製造できる。 本発明の方法は、 成膜ガスにおける急激な反 応を伴わず、 商業的規模での製造にも適している。

Claims

請求の範囲
1 . アル力リ成分を含有するガラス板上またはガラス板製造工程におけ るガラスリボン上に、 塩素含有化合物を含む被膜形成ガスを供給して、 前記ガラス板上または前記ガラスリボン上に薄膜を形成する薄膜付きガ ラス板の製造方法であって、 前記薄膜を形成しながら、 前記アルカリ成 分を含む塩化物微粒子を生成させ、 この塩化物微粒子を前記薄膜の内部 に混入、 または表面に付着させることにより、 前記薄膜の表面に凹凸を 付与することを特徴とする薄膜付きガラス板の製造方法。
2 . 6 0 0 °C以上のガラス板上またはガラスリポン上に、 薄膜を形成す る請求項 1に記載の薄膜付きガラス板の製造方法。
3 . 凸部が形成された薄膜を第 1の薄膜として、 この第 1の薄膜上に前 記塩化物微粒子を覆う第 2の薄膜を形成する請求項 1に記載の薄膜付き ガラス板の製造方法。
4 . ガラス板上またはガラスリボン上に被膜形成ガスの給排気を行うコ ータを配置して、前記コータの給気量に対する排気量の比率を 1以上 1 . 5以下または 3 . 0以上 5 . 0以下とし、 前記ガラス板または前記ガラ スリボンの表面から前記コータまでの高さを 8 m m以上 1 0 m m以下と する請求項 1に記載の薄膜付きガラス板の製造方法。
5 . ガラス板上またはガラス板製造工程におけるガラスリポン上に、 被 膜形成ガスを供給して、 前記ガラス板上または前記ガラスリボン上に薄 膜を形成する薄膜付きガラス板の製造方法であって、 珪素含有無機化合 物と有機ガスとを含む被膜形成ガスを供給して珪素含有膜を形成しなが ら、 珪素含有微粒子を生成させ、 この珪素含有微粒子を前記珪素含有膜 の表面に付着させることを特徴とする薄膜付きガラス板の製造方法。
6 . 珪素含有微粒子が付着した珪素含有膜の表面に、 前記珪素含有微粒 子から成長した結晶粒が局部的に大きい結晶性被膜を形成することによ り、 薄膜の表面に凹凸を付与する請求項 5に記載の薄膜付きガラス板の 製造方法。
7 . 有機ガスが、 炭素一炭素不飽和結合を有する有機化合物である請求 項 5に記載の薄膜付きガラス板の製造方法。
8 . ガラスリボン上に被膜形成ガスの給排気を行うコータを配置して、 前記コータの給気量に対する排気量の比率を 1以上 1 . 5以下または 3 . 0以上 5 . 0以下とし、 前記ガラスリポンの表面から前記コータまでの 高さを 8 m m以上 1 2 m m以下とする請求項 5に記載の薄膜付きガラス 板の製造方法。
9 . 被膜形成装置の被膜形成ガス供給部から排気部に渡って前記ガスを 緩やかに反応させて微粒子を生成させ、 その微粒子を、 ガラス板上また はガラス板製造工程におけるガラスリボン上に前記ガスから形成する薄 膜の表面に付着させることを特徴とする薄膜付きガラス板の製造方法。
1 0 . 請求項 1、 5または 9に記載の方法により製造された薄膜付きガ ラス板。
PCT/JP2002/000747 2002-01-31 2002-01-31 Procede de production de plaque de verre a film mince et plaque de verre WO2003064345A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2002/000747 WO2003064345A1 (fr) 2002-01-31 2002-01-31 Procede de production de plaque de verre a film mince et plaque de verre
EP20020711244 EP1486468A1 (en) 2002-01-31 2002-01-31 Method for producing glass plate with thin film and glass plate
US10/503,201 US20050144981A1 (en) 2002-01-31 2002-01-31 Method of manufacturing glass sheet with thin film and the glass sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2002/000747 WO2003064345A1 (fr) 2002-01-31 2002-01-31 Procede de production de plaque de verre a film mince et plaque de verre

Publications (1)

Publication Number Publication Date
WO2003064345A1 true WO2003064345A1 (fr) 2003-08-07

Family

ID=27639270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/000747 WO2003064345A1 (fr) 2002-01-31 2002-01-31 Procede de production de plaque de verre a film mince et plaque de verre

Country Status (3)

Country Link
US (1) US20050144981A1 (ja)
EP (1) EP1486468A1 (ja)
WO (1) WO2003064345A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013161827A1 (ja) * 2012-04-24 2015-12-24 旭硝子株式会社 無機微粒子含有酸化ケイ素膜付ガラス基板の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6244573A (ja) * 1985-08-20 1987-02-26 Nippon Sheet Glass Co Ltd 二酸化珪素含有被膜の製造方法
JP2000128581A (ja) * 1998-10-22 2000-05-09 Mitsubishi Heavy Ind Ltd 防汚皮膜及びその形成方法
EP1057796A1 (en) * 1999-05-31 2000-12-06 Nippon Sheet Glass Co., Ltd. Transparent layered product and glass article using the same
JP2001060708A (ja) * 1999-06-18 2001-03-06 Nippon Sheet Glass Co Ltd 透明積層体およびこれを用いたガラス物品
JP2002087846A (ja) * 2000-09-11 2002-03-27 Nippon Sheet Glass Co Ltd 薄膜付きガラス板の製造方法およびそのガラス板

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1573154A (en) * 1977-03-01 1980-08-13 Pilkington Brothers Ltd Coating glass
US5065696A (en) * 1987-05-18 1991-11-19 Libbey-Owens-Ford Co. Temperature controlled distributor beam for chemical vapor deposition
CA2159296C (en) * 1994-10-14 2007-01-30 Michel J. Soubeyrand Glass coating method and glass coated thereby
US6350397B1 (en) * 1999-03-10 2002-02-26 Aspen Research Corporation Optical member with layer having a coating geometry and composition that enhance cleaning properties

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6244573A (ja) * 1985-08-20 1987-02-26 Nippon Sheet Glass Co Ltd 二酸化珪素含有被膜の製造方法
JP2000128581A (ja) * 1998-10-22 2000-05-09 Mitsubishi Heavy Ind Ltd 防汚皮膜及びその形成方法
EP1057796A1 (en) * 1999-05-31 2000-12-06 Nippon Sheet Glass Co., Ltd. Transparent layered product and glass article using the same
JP2001060708A (ja) * 1999-06-18 2001-03-06 Nippon Sheet Glass Co Ltd 透明積層体およびこれを用いたガラス物品
JP2002087846A (ja) * 2000-09-11 2002-03-27 Nippon Sheet Glass Co Ltd 薄膜付きガラス板の製造方法およびそのガラス板

Also Published As

Publication number Publication date
US20050144981A1 (en) 2005-07-07
EP1486468A1 (en) 2004-12-15

Similar Documents

Publication Publication Date Title
EP1473606A1 (en) Safety network system, safety slave, and communication method
JP2769307B2 (ja) 二酸化ケイ素の非常に低い温度の化学蒸着法
US4981724A (en) Deposition of silicon oxide films using alkylsilane liquid sources
JP6334782B2 (ja) ガラス基板上にシリカコーティングを形成するプロセス
JP6320303B2 (ja) ガラス基材上にシリカ被膜を成膜するための化学的気相成長プロセス
JP4430402B2 (ja) ガラス基板およびその製造方法
EP1462540B1 (en) Method for forming thin film.
EP2825687A2 (en) Chemical vapor deposition process for depositing zinc oxide coatings, method for forming a conductive glass article and the coated glass articles produced thereby
WO2003017377A1 (fr) Plaque de verre pourvue d'un film electro-conducteur
WO2003064345A1 (fr) Procede de production de plaque de verre a film mince et plaque de verre
JP2002087846A (ja) 薄膜付きガラス板の製造方法およびそのガラス板
JP4315363B2 (ja) 薄膜形成方法
WO2003065461A1 (fr) Substrat pour dispositif de conversion photoelectrique
WO2003010104A1 (fr) Verre a faible emissivite et procede de production de celui-ci
JP2005029464A (ja) 薄膜付きガラス板とその製造方法、およびこのガラス板を用いた光電変換装置
JP3635706B2 (ja) 多孔質母材の製造方法及び多孔質母材製造用反応容器
JP2005029463A (ja) 透明導電膜付きガラス板とその製造方法、およびこのガラス板を用いた光電変換装置
JP2007022839A (ja) 調光ガラスの製造方法
JP4670139B2 (ja) コーティング装置および方法
JP2002094083A (ja) 光電変換装置用基板
WO2003082759A1 (fr) Substrat de verre possedant un film mince et procede de fabrication correspondant

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10503201

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2002711244

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002711244

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Ref document number: 2002711244

Country of ref document: EP